现代控制一级倒立摆

合集下载

一阶倒立摆建模及simulink仿真

一阶倒立摆建模及simulink仿真

《现代控制理论》三级项目报告题目:一级倒立摆控制系统设计姓名:刘然学号:160103010258专业:过程控制4班指导教师:吴忠强分数:2019年4月一级倒立摆控制系统设计倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。

对于倒立摆系统的控制研究长期以来被认为是控制理论及其应用领域里引起人们极大兴趣的问题,倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统。

研究倒立摆控制能有效地反映控制中的许多问题,倒立摆研究具有重要的理论价值和应用价值,理论上,它是检验各种新的控制理论和方法的有效实验装置。

应用上,倒立摆广泛应用于控制理论研究!航空航天控制,机器人、杂技顶杆表演等领域,在自动化领域中具有重要的价值。

另外,由于此装置成本低廉,结构简单,便于用模拟、数字等不同方式控制,在控制理论教学和科研中也有很多应用。

本文中,以一级倒立摆为研究对象,对它的起摆以及稳定控制做了研究,主要工作如下:1.首先介绍了倒立摆系统的组成和控制原理,建立了一级倒立摆的数学模型,对倒立摆系统进行定性分析,说明在平衡点是能控的。

2.分析了倒立摆的起摆过程,对倒立摆的起摆能量反馈控制进行分析与说明。

3.在matlab2018a的simulink库下对倒立摆构造单级倒立摆状态反馈控制系统的仿真模型。

4.对这次仿真的总结。

一、倒立摆的控制目标倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

二、建立单级倒立摆系统的状态空间模型其中,质量为M的小车在水平方向滑动,质量为m的球连在长度为L的刚性摆一端,x表示小车的位移,u是作用在小车上的力,通过移动小车使带有小球的摆杆始终处于垂直的位置。

为了简单起见,假设小车和摆仅在一个平面内运动,且不考虑摩擦、摆杆的质量和空气阻力。

如图1图1设系统的动态特性可以用小车的位移和速度及杆偏离垂线的角度θ和角速度⋅θ来描述。

倒立摆模型

倒立摆模型

摆杆/小车铰接点与摆杆质心的距离
l 0.25m
摆杆绕其质心的转动惯量
I 0.0034kg m2
备注:可忽略了空气阻力以及小车与摆杆之间铰接点上的摩擦力矩。
表 1. 实验装置参数
现基于现代控制理论,按照如下步骤实现对研究直线一级倒立摆的控制方 法:1)建立直线一级倒立摆的运动方程;2)推导状态空间方程;3)分析能控
F
M
g
a. 小车的受力分析
b. 摆杆的受力分析
图2. 小车与摆杆的受力分析
小车在水平方向运动,则通过对小车的水平受力分析,可以得到以下方程:
(1) 摆杆作平面运动,可以分解为质心的平动和绕质心转动,由水平方向的受力 分析,可以得到下式:
即,
(2)
带入方程(1)得:
(3) 再由摆杆的垂直方向的受力分析,得到下式:
即, 又由摆杆对质心的力矩平衡方程有:
2
(4) (5)
直线一级倒立摆控制方法
由于
,所以等式左边有负号。最后,整理方程 (4),(5),可得: (6)
由于 ,则有
. 用 u 代表输入,也就是作用在
小车上的作用力,整理方程(3),(6)可以得到一级倒立摆的运动方程
(7) 2. 系统的状态空间方程
为求系统的状态空间方程,对方程(7)进行拉氏变换,得到:
1
直线一级倒立摆控制方法
及能观性;4)计算状态反馈矩阵及状态观测矩阵;5)通过离线仿真分析验证上 述控制算法的有效性;6)通过上机实验观察其实际控制效果。 1. 建立直线一级倒立摆的运动方程
对小车和摆杆进行受力分析如图 2,其中,N 和 P 为小车与摆杆相互作用力 的水平和垂直两个方向的分量。
N
P

现代控制一级倒立摆

现代控制一级倒立摆

现代控制一级倒立摆倒立摆实验电子工程学院自动化学号:目录1实验设备简介 (4)1.1倒立摆介绍 (4)1.2直线一级倒立摆 (5)2 倒立摆建模 (6)2.1 直线一阶倒立摆数学模型的推导 (6)2.1.1受力分析 (6)2.1.2微分方程建模 (8)2.1.3状态空间数学模型 (9)2.2 实际系统模型建立 (10)3系统定性、定量分析 (11)3.1系统稳定性与可控性分析 (11)3.1.1稳定性分析 (11)3.1.2能控性分析 (13)4极点配置的设计步骤 (13)4.1极点配置的计算 (13)4.2用MATLAB进行极点配置的计算 (15)4.3极点配置的综合分析 (16)5小结 (17)1实验设备简介1.1倒立摆介绍倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。

如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂,多变量,存在严重非线性,非自制不稳定系统。

常见的倒立摆一般由小车和摆杆两部分组成,其中摆杆可能是一级,二级或多级,在复杂的倒立摆系统中,摆杆的长度和质量均可变化。

1.2直线一级倒立摆根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质的杆组成的系统。

倒立摆系统是典型的机电一体化系统其机械部分遵循牛顿的力学定律其电气部分遵守电磁学的基本定理.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统.小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

2 倒立摆建模2.1 直线一阶倒立摆数学模型的推导对于忽略各种摩擦参数和空气阻力之后,直线一即倒立摆抽象为小车和均质杆组成的系统。

一级倒立摆【控制专区】系统设计

一级倒立摆【控制专区】系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。

设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。

二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。

三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。

计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。

四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得 一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩即 G 1(s)= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下:222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg.m2 额定转矩:TN=0.64Nm 最大转矩:TM=1.91Nm 电磁时间常数:Tl=0.001s 电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为:F=0~16N ;与其配套的驱动器为:MSDA021A1A ,控制电压:UDA=0~±10V 。

一级倒立摆控制策略的研究

一级倒立摆控制策略的研究

摘要倒立摆是一种复杂、时变、非线性、强耦合、自然不稳定的系统,许多抽象的控制理论概念都可以通过倒立摆实验直观的表现出来。

因此,倒立摆系统经常被用来检验控制策略的实际效果,也广泛用于高年级本科生的实验教学,是现代控制理论研究与教学中的一种较为理想的实验设备。

本课题利用牛顿法对直线一级倒立摆的小车和摆杆部分进行理论建模和分析;在此基础上采用线性二次型最优控制方法(LQR)设计倒立摆的控制器;并且应用MATLAB 软件对系统进行理论仿真,以达到较好的控制效果;最后,本文通过直线一级倒立摆实物调试平台验证该方案的可行性。

关键词:直线一级倒立摆;建模;线性二次型最优控制AbstractInverted pendulum is a complex, time-dependent, nonlinear, strong coupling, system with natural instability, through the experiment of which many control theory of abstract concepts can be manifested intuitively. Therefore, the control of inverted pendulum system is often used to test strategies in action and undergraduate experimental teaching in higher grade, making it ideal experiment equipment in the study and teaching of modern control theory.This design maintain theoretical modeling and analysis of the wagon and the pendulum part on the straight-line one-level inverted pendulum by Newton's method, based on which the controller is designed for inverted pendulum using linear quadratic optimal control method; and the software MATLAB is used to get theoretical simulation, in order to achieve better control effect. Finally, the design validates the feasibility of this scheme using a straight-line one-level inverted pendulum debugging platform.Keywords: straight-line one-level inverted pendulum; modeling; linear quadratic optimal control目录第一章绪论 (1)1.1问题的提出及研究意义 (1)1.1.1 问题的提出 (1)1.1.2 研究意义 (1)1.2本论文主要研究的内容 (2)第二章单级倒立摆数学模型 (3)2.1倒立摆系统的组成 (3)2.2倒立摆系统的工作原理 (3)2.3直线一级倒立摆模型的数学建模 (4)2.4直线一级倒立摆系统的定性分析 (8)2.4.1 稳定性、能控性和能观性判据 (8)2.4.2 基于状态方程的系统定性分析 (9)第三章一级倒立摆控制器的设计及理论仿真 (11)3.1基于LQR的一级倒立摆最优控制系统理论分析 (11)3.2LQR控制器的设计与仿真 (12)第四章一级倒立摆的实物调试 (15)4.1倒立摆系统的组成及工作原理 (15)4.1.1 系统组成 (15)4.1.2 系统主要硬件电路及功能说明 (16)4.2实验结果 (18)结论 (20)参考文献 (22)谢辞 (23)第一章绪论1.1 问题的提出及研究意义1.1.1 问题的提出杂技顶杆表演之所以为人们熟悉,不仅是其技艺的精湛,更重要的是其物理与控制系统的稳定性密切相关。

直线一级倒立摆建模与控制

直线一级倒立摆建模与控制

期望特征多项式为
s 2 k2 20 s 20 k1 k2 1
* 由设计者选取,考虑“引入状态反馈向量后系统特 1*、2
* f * s s 1* s 2 =s2 (1* 2* )s 1*2*
征多项式”和“期望特征多项式”的系数相等即可求出状态反 馈向量。
,线性化运动方程。
倒立摆系统单输入-单输出传递函数模型
线性化后运动方程(参考):
I ml mgl mlx
2
以小车加速度为输入、摆杆角度为输出,令
ax
拉普拉斯变换后系统传递函数模型(参考):
s ml G s A s I ml 2 s 2 mgl
双击“Controller1”,输入选取的4个闭环极点对应的增益,运行仿真后双击 “Scope1”观测响应曲线,其中小车位置应该很好的收敛到0.01,小车速度、摆杆角
度和角速度应该收敛到0。若响应曲线效果不好则需重新选取闭环极点。
状态空间极点配置实物控制
选取了合适的4个闭环极点并通过了仿真测试后即可进行倒立摆系统实物控制。 进入 MATLAB Simulink 实时控制工具箱“Googol Education Products”打 开 “Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo,如下图。
状态空间极点配置仿真控制
参考上述实例,选取倒立摆系统的4个闭环极点,进入 MATLAB Simulink 实时 控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Poles Placement Experiments”中的“Poles Control Simulink”,如下图。

一级倒立摆控制系统设计说明

一级倒立摆控制系统设计说明

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。

设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。

二、设计要求倒立摆的设计要使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用 MATLAB进行仿真,并用simulink对相应的模块进行仿真。

三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。

计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。

四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得 一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩即 G 1(s)= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下:222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg.m2 额定转矩:TN=0.64Nm 最大转矩:TM=1.91Nm 电磁时间常数:Tl=0.001s 电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为:F=0~16N ;与其配套的驱动器为:MSDA021A1A ,控制电压:UDA=0~±10V 。

一级和二级倒立摆控制

一级和二级倒立摆控制

-3.7809,-8.7060]。有三个特征值分布在S 平面右半部,因此该对象系统是不稳 定的。并且此系统能控能观。为了使其稳定,必须加入控制器,重新配置系统的极 点以满足要求。结合《最优控制》课程的学习,选用线性二次型性能指标设计法 (LQR 法) 进行控制器设计。
3. 线性二次型最优控制
3.1 控制器的设计 对于线性二次型,其控制目标为: 1 1 tf T J = X T (t f ) SX T ( t f ) + ∫ 0 [ X (t ) Q ( t) X T (t ) + uT (t ) R (t )u( t )] dt 最小。 2 2 其中 Q、R 分别是对状态变量和输入向量的加权矩阵, t f 为中止时间。对此 目标函数,其取最小值的解即为 Riccati 方程 PA + AT P − PBR −1B T P + Q = 0 的解。 二级倒立摆的控制目的是使二级倒立摆在不稳定的平衡点保持稳定的平衡, 能经受一定的外加干扰。对于系统是在初始条件 X ( 0) = 0 和所有状态可测(或可 重构)下,要求从状态变量X 中产生控制量u =- KX , 令系统过渡到最终状态X ( ∞) = 0 ,并使二次性能指标
& , 在任一时刻, 该系统的状态都由 4 个变量描述小车位置 X ,小车平移速度 X & 摆杆与竖直方向的夹角 θ 及角加速度 θ
& 令X = & θ θ x x , Y = [θ 考虑倒立状态: θ 《1
T
x]
T
则在倒立状态附近有: sin θ ≈ θ ,cosθ ≈ 1. 故可得:
m1g − F11 + F21 = m1l1 θ1 sin θ 1 + m1l1 θ cos θ1 d J1 θ 1 = F l sin θ + F ( L − l ) sin θ − F l cosθ − F ( L − l ) cosθ 111 1 21 1 1 1 121 1 22 1 1 1 dt

一级倒立摆分析

一级倒立摆分析

一级倒立摆的极点配置及仿真摘要倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。

倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。

本文主要研究的是一级倒立摆,首先应用动力学方程建立一级倒立摆的非线性数学模型,采用小偏差线性化的方法在平衡点附近局部线性化得到线性化的数学模型。

然后通过输入单位阶跃信号分析系统的开环稳定性,由线性化得到的状态方程判断系统的能控性和能观性,结合系统的稳定性条件、调整时间以及超调量找到合适的极点,运用极点的配置方法(Matlab的acker函数)算出状态反馈增益矩阵K,运用状态空间分析方法,采用状态反馈为倒立摆系统建立稳定的控制律,并判断加入反馈矩阵K后的能观性和能控性是否改变。

最后应用Matlab中的Simulink建立相应框图,得到输出变量水平位置和角度随时间的变化曲线,验证加入反馈矩阵K后一级倒立摆系统的稳定性。

关键词:一级倒立摆状态反馈极点配置Matlab Simulink目录1、一级倒立摆系统简介 (2)2、一级倒立摆系统的数学模型 (3)2.1、数学模型的建立 (3)2.2、运动分析 (4)2.2.1、沿水平方向运动(直线运动) (4)2.2.2、绕轴线的转动(旋转运动) (6)3、状态空间极点配置 (8)3.1、系统开环稳定性分析 (8)3.2、开环系统的能控性分析 (10)3.3、开环系统的能观性分析 (11)3.4、系统极点配置 (12)3.5、闭环系统的能控性和能观性分析 (15)4、一级倒立摆系统Matlab仿真 (16)4.1、系统开环Simulink搭建及仿真 (16)4.2、系统极点配置后的Simulink仿真 (19)5、总结 (23)6、参考文献 (24)1、一级倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。

现代控制理论单倒立摆综合报告

现代控制理论单倒立摆综合报告
在仿真的过程中也遇到了一些问题,比如在定量时, 不知道如何处理 r kx u ,在r存在时,如何保持输入 u仍然为阶跃信号,依然未能解决。但可以分析在两倍
干扰下观察角度 的波形,间接地分析输出的稳定性。
在给定一个窄脉冲信号,模拟外部干扰的情况下,摆 杆能迅速回到平衡也充分验证了系统的鲁棒性。

g
y= 0
0
1
0


x
g x
g
X AX BU
Y CX
x1
y= 0
0
1
0

x2


x3 x4

系统稳定性能控性及能观测性分析
由matlab程序语言可得:
>> a=[0 1 0 0;15.76 0 0 0;0 0 0 1;-7.164 0 0 0];


x


15.76
0
107.0544
0

x
1.462
u

107.0544
y
0 0 9 1 0 9
7.164 0 46.76 0

0.907


46.76

框图及仿真
原系统框图
加入状态反馈及状态观测器之后系统的框图
和输出位移x 曲线
系统在阶跃函数下输出函数的响应曲线如图
图5 原系统阶跃输入响应曲线 图6 反馈系统阶跃输入响应曲线
总结
通过对单倒立摆系统综合前后的仿真实验可知,在系 统成功引入状态反馈后系统的稳定性明显增强,这在加 入干扰信号仿真测试下可以清楚地看到;这次综合设计, 能很好的锻炼理论与实践相结合的能力,以及怎样构建 实际的数学模型运用自己的所学来解决实际问题。

一阶倒立摆控制系统设计

一阶倒立摆控制系统设计

一阶倒立摆控制系统设计首先,设计一阶倒立摆控制系统需要明确系统的参数和模型。

一阶倒立摆通常由一个平衡杆和一个摆组成。

平衡杆的长度、摆的质量和位置等都是系统的参数。

根据平衡杆的转动原理和摆的运动方程,可以得到一阶倒立摆的数学模型。

接下来,根据系统的数学模型,进行系统的稳定性分析。

稳定性分析是判断一阶倒立摆控制系统是否能够保持平衡的重要步骤。

常用的稳定性分析方法有判据法和根轨迹法。

判据法通过计算特征方程的根来判断系统的稳定性,根轨迹法则通过特征方程的根随一些参数变化的路径来分析系统的稳定性。

在进行稳定性分析的基础上,选择合适的控制策略。

常见的控制策略有比例控制、积分控制和微分控制等。

比例控制通过将系统的输出与期望值之间的差异放大一定倍数来控制系统;积分控制通过积分系统误差来进行控制;微分控制通过对系统误差的微分来进行控制。

在选择控制策略时,需要考虑系统的动态响应、稳态误差和鲁棒性等指标。

在选定控制策略后,进行控制器的设计和参数调节。

控制器是实现控制策略的核心部分。

控制器可以是传统的PID控制器,也可以是现代控制理论中的模糊控制器、神经网络控制器等。

控制器的参数需要通过试探法、经验法或者系统辨识等方法进行调节,以使系统达到最佳的控制效果。

最后,进行实验验证和性能评估。

在实验中,需要将控制器与倒立摆系统进行连接,并输入一定的控制信号。

通过测量系统的输出响应和误差,可以评估控制系统的性能,并进行调整和改进。

综上所述,一阶倒立摆控制系统设计的步骤包括系统参数和模型确定、稳定性分析、控制策略选择、控制器设计和参数调节、实验验证和性能评估等。

在设计过程中,需要综合考虑系统的稳定性、动态响应和鲁棒性等因素,以实现一个稳定可靠、性能优良的一阶倒立摆控制系统。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。

在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。

本文将介绍一阶倒立摆控制设计与实现的相关内容。

一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。

该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。

常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。

在本文中,我们将使用比例控制器来控制一阶倒立摆。

比例控制器的输出与误差成正比,误差越大,输出越大。

比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。

三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。

四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。

我们可以使用MATLAB等工具进行建模和仿真。

在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。

在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。

在实现控制系统时,我们需要选择合适的硬件平台和控制器。

常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。

在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。

五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。

一级倒立摆

一级倒立摆

d.模糊规则浏览器图形界面
e.模糊推理后的三维空间图
(四)仿真图的建立:
Step
1 Gain3 e xuanbi
7.3 mu Ke -K200s s+200 ec 8.4 Kec Fuzzy Logic Controller Ku Saturation Ka -24.6 Kac -3.1 Transfer Fcn1 200s s+200 x' = Ax+Bu y = Cx+Du State-Space vote
这里,我们采用基于MATLAB下的模糊控制方法来设 计控制器。采取解析法和仿真分析法分别对系统进行分析 和设计。 (一)建模:
系统采用拉格朗日动力学分析法 建立运动方程为:
" ( J1 m2 L2 )1" m2 L1L2 2 cos(1 2 ) 1
m2 L1 L sin(1 2 ) m2 gL1 sin sin 1 M
0 1 0 1 2 0 Vm . 0 1 29.43 0 . 20.82 2
而输出部分的
1 0 0 0 C 0 1 0 0
故输出为:
1 2 1 0 0 0 y . 0 1 0 0 1 . 2
鲁棒控制是自动控制领域 20 世纪末最重要的研究结 果之一。简单地说鲁棒控制处理的是不确定性对象,这种 不确定性包括外部扰动、模型参数变化未建模动态(即模型 与实际系统差异)、 执行器的误差等等。 鲁棒控制算法在倒立摆中的应用,尽管这方面的研究 工作还没有充分展开,但从已有的一些研究成果不难推断 出,鲁棒控制方法是解决倒立摆这一对象非线性、复杂性 和不确定性的一种工具。鲁棒控制的发展方向是面向不确 定性的研究对象,如何将其研究成果与实际应用相结合, 解决不确定系统的控制问题,或使已有的控制系统具有更 强的鲁棒性,这是一项艰巨而复杂的工作。倒立摆是一个 验证理论的正确性及实际应用中的可行性的典型对象。通 过将鲁棒控制算法应用到倒立摆中来验证鲁棒控制算法优 越性,最终将鲁棒算法的实际应用更进一步。

一级倒立摆的实时控制

一级倒立摆的实时控制

一级倒立摆的实时控制摘要倒立摆系统,顾名思义就是将倒置摆铰链固定在小车的车架上处于不稳定状态,从而通过人为操控使其处于动态平衡状态用来验证相对应的控制算法的可靠性。

倒立摆是个非常典型的多变量、非线性、快速的不稳定系统。

可以通过倒立摆反应出控制中的许多问题,例如:系统的鲁棒性、稳定性、可靠性、随动性问题,具有重要的理论和应用价值。

理论中,倒立摆系统能够检验许多控制理论与控制算法是否有效,并且倒立摆的控制方法在航天,机器人控制中应用广泛。

本文通过对直线一级摆的物理模型进行分析,运用了牛顿-欧拉方法进行数学建模,进而通过倒立摆的各种物理参数进行运算,证明一级直线倒立摆系统是开环不稳定的,但其在平衡点附近是能控能观的。

本文只讨论研究倒立摆稳摆时的控制方式,对此设计了PID控制器,通过Simulink仿真来确定控制器参数;还运用了线性二次型最优控制器—LQR,用Matlab 软件仿真多次选取矩阵Q和R得到最合适的反馈矩阵K。

分别运用这两种控制器在实验室的固高台上进行实物操作并记录实验现象;设计模糊控制器并仿真,最后对比以上三种方法的实验结果分析它们的优缺点,为以后更好地开展倒立摆的实物操作提供了多种控制方法与控制思路。

关键词倒立摆; 牛顿-欧拉方法; LQR; PID控制Real-time Control of an Inverted PendulumAbstractInverted pendulum system, just as its name implies is to inverted pendulum hinge is fixed on the frame of the car is in unstable state, and thus is in a state of dynamic equilibrium by artificial control used to verify the reliability of the control algorithm. Inverted pendulum system is a very typical multi-variable, nonlinear, unstable system rapidly. Can through the study of inverted pendulum system reflects many problems in control, for example: the system robustness, stability, reliability, follow-up, has important theoretical and application value. Theory, the inverted pendulum system can test many control theory and control algorithm is valid, and the inverted pendulum control method in the aerospace, widely used in robot control.This article through to the straight line level of the physical model of inverted pendulum is analyzed, using the Newton - euler method for mathematical modeling, and then through the operations of the various physical parameters of the inverted pendulum, the inverted pendulum system is open-loop unstable, but is can control can view it in balance. This article just discuss research of inverted pendulum is steady time control method, have designed the PID controller, using Simulink simulation controller parameters; Also using the linear quadratic optimal controller - LQR, Matlab software simulation multiple selection matrix Q and R are the most appropriate feedback matrix K. Respectively using the two kinds of controller in the laboratory physical operation and record the experimental phenomenon; Design simulation of the fuzzy controller, finally compared to the experimental results of the three kinds of methods mentioned above analysis the advantages and disadvantages of them, for later better physical operation of inverted pendulum in university laboratoryoffers a variety of control and control method is proposed.Keywords Inverted pendulum, Newton-euler method, LQR, PID control目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 倒立摆课题简介 (1)1.1.1 研究意义 (2)1.1.2 国内外研究状况介绍 (2)1.2 本论文主要研究的内容 (4)第2章直线一级摆系统的建模分析 (5)2.1 直线一级摆系统的控制原理 (5)2.2直线一级摆数学模型的构建 (6)2.2.1 一级摆模型原理的推导 (6)2.2.2 直线一级摆的数学建模 (6)2.3一级倒立摆系统的性能分析 (10)2.4本章小结 (11)第3章控制器的仿真 (12)3.1 PID控制 (12)3.1.1 PID控制器简介 (12)3.1.2 PID控制器的仿真设计 (13)3.2直线一级摆的LQR控制 (21)3.2.1线性二次型最优控制 (21)3.2.2 直线一级摆LQR控制器设计 (23)3.3基于融合函数的模糊控制 (26)3.3.1模糊控制简介 (26)3.3.2 模糊控制的思想方法 (27)3.3.3直线一级摆的模糊控制 (30)3.4本章小结 (32)第4章实时控制 (33)4.1 直线一级摆实物介绍 (33)4.2 控制软件简介 (34)4.3不同方法的实时控制结果 (35)4.3.1单回路PID的实时控制 (35)4.3.2双闭环PID的实时控制 (36)4.3.3 线性二次型调节器的实时控制 (39)4.4 本章小结 (40)结论 (41)致谢 (42)参考文献 (43)附录A (45)附录B (51)第1章绪论1.1倒立摆课题简介随着航空航天,机器人,工业过程领域的不断发展,对控制理论领域的要求越来越高并提出了一系列的难度挑战。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现以一阶倒立摆控制设计与实现为题,本文将介绍倒立摆控制系统的设计原理和实现过程。

倒立摆是一种经典的控制系统问题,它涉及到动力学建模、控制算法设计和实时控制等多个方面。

本文将从这些方面逐步展开,为读者介绍一阶倒立摆控制的基本知识。

1. 动力学建模倒立摆是一个复杂的动力学系统,它由一个可以旋转的杆和一个连接在杆末端的质点组成。

杆的旋转可以由一个电机控制,质点则受到重力和杆的作用力。

为了建立倒立摆的动力学模型,我们需要考虑杆的旋转角度和质点的位置。

2. 控制算法设计一阶倒立摆的控制目标是使杆保持竖直位置,即旋转角度为零,并且使质点保持在某个给定的位置上。

为了实现这个目标,我们可以设计一个控制器来控制杆的旋转角度和质点的位置。

常用的控制算法有PID控制算法、模糊控制算法和神经网络控制算法等。

PID控制算法是一种经典的控制算法,它通过调节比例、积分和微分三个参数来实现控制效果。

模糊控制算法则利用模糊逻辑的思想,将输入和输出之间的关系用模糊集合表示。

神经网络控制算法则利用神经网络的学习能力,通过训练网络来实现控制效果。

3. 实时控制倒立摆的控制需要实时采集传感器数据,并根据这些数据计算控制信号。

在实际应用中,我们可以使用编码器来测量杆的旋转角度,使用加速度计来测量质点的加速度,然后通过控制器来计算电机的控制信号。

为了实现实时控制,我们可以使用嵌入式系统来实现。

嵌入式系统是一种专门设计用于控制和处理实时数据的计算机系统,它通常由微处理器、存储器和输入输出设备组成。

通过将控制算法和传感器接口集成到嵌入式系统中,我们可以实现倒立摆的实时控制。

总结本文介绍了一阶倒立摆控制的基本原理和实现方法。

倒立摆是一个复杂的动力学系统,控制它需要建立动力学模型,并设计合适的控制算法。

通过实时采集传感器数据并计算控制信号,我们可以实现倒立摆的控制。

希望本文对读者理解一阶倒立摆控制有所帮助,同时也希望读者能够进一步探索和研究这个有趣的控制问题。

一级倒立摆系统最优控制

一级倒立摆系统最优控制

摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,许多抽象的控制理论概念都可以通过倒立摆实验直观的表现出来。

因此,倒立摆系统经常被用来检验控制策略的实际效果。

应用上,倒立摆广泛应用于航空航天控制、机器人,杂项顶杆表演等领域,研究倒立摆的精确控制对工业复杂对象的控制也有着重要的工程应用价值。

本文以固高公司生产的GIP-100-L型一阶倒立摆系统为研究对象,对直线一级倒立摆模型进行了建模,控制算法的仿真对比,并得出了相应的结论。

文中介绍了倒立摆的分类、特性、控制目标、控制方法等以及倒立摆控制研究的发展及其现状。

利用牛顿力学方法推到了直线以及倒立摆的动力学模型,求出其传递函数及其状态空间方程。

在建立了系统模型的基础下,本文还研究了倒立摆系统的线性二次型最优控制问题,并且使用了MATLAB软件进行仿真,通过改变LQR模块及状态空间模块中的参数,在仿真中取得了不同的控制效果,最终得到了最好的控制效果。

关键字:一级倒立摆线性系统、数学建模、最优控制、LQR、仿真目录1 一阶倒立摆的概述 (1)1.1倒立摆的起源与国内外发展现状 (1)1.2倒立摆系统的组成 (1)1.3倒立摆的分类: (1)1.4倒立摆的控制方法: (2)2.一阶倒立摆数学模型的建立 (3)2.1概述 (3)2.2数学模型的建立 (4)2.4实际参数代入: (5)3.定量、定性分析系统的性能 (7)3.1对系统的稳定性进行分析 (7)3.2 对系统的能空性和能观测性进行分析: (8)4.线性二次型最优控制设计 (9)4.1线性二次最优控制简介 (9)4.2 直线一级倒立摆LQR控制算法 (10)4.3 最优控制MATLAB仿真 (18)总结 (21)参考文献 (22)1 一阶倒立摆的概述1.1倒立摆的起源与国内外发展现状倒立摆的最初研究开始于二十世纪五十年代,麻省理工学院的控制理论专家根据火箭助推器原理设计出来一级倒立摆实验设备。

一级直线倒立摆的控制策略与仿真分析

一级直线倒立摆的控制策略与仿真分析

一级直线倒立摆的控制策略与仿真分析一、引言倒立摆系统是研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,参数和结构易于调整的优点。

然而倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合特性,是一个绝对不稳定系统。

倒立摆实物仿真实验是控制领域中用来检验某种控制理论或方法的典型方案,它对一类不稳定系统的控制以及对深入理解反馈控制理论具有重要意义。

倒立摆系统在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果已经应用到航天科技和机器人学等诸多领域。

二、一级直线倒立摆模型的建立图1 一级直线倒立摆物理模型图2 小车和摆杆的受力分析图2.1 传递函数模型图1、2是系统中小车和摆杆的受力分析图。

设小车质量为M,摆杆质量为m,小车摩擦系数为b,摆杆转动轴心到杆质心的长度为l,摆杆的转动惯量为I,根据牛顿第二定律,可以得到系统的两个运动方程:F ml ml x b x m M =-+++∙∙∙∙∙∙θθθθsin cos )(2(1)θθθcos sin )(2∙∙∙∙-=++x m l m gl m l I (2)设φπθ+=, 假设φ与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dtd θ。

用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:2()()I ml mgl ml x M m x b x ml uϕϕϕ∙∙∙∙∙∙∙∙∙+-=++-= (3)假设初始条件为0,对式(3)进行拉普拉斯变换得到:22222()()()()()()()()()I ml s s mgl s mlX s s M m X s s bX s s ml s s U s +Φ-Φ=++-Φ=(4)由于输出为角度φ,求解方程组的第一个方程,可以得到:mgl s ml I mls s X s -+=Φ222)()()((5)令∙∙=x v ,则有:mgls ml I mls V s -+=Φ22)()()((6) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(222222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++(7)整理后得到传递函数:232()()()()mlss qb I ml M m mgl bmgl U s s s s q q qΦ=+++--(8) 其中])())([(22ml ml I m M q -++=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆实验电子工程学院自动化学号:目录1实验设备简介 (2)1.1倒立摆介绍 (2)1.2直线一级倒立摆 (3)2 倒立摆建模 (4)2.1 直线一阶倒立摆数学模型的推导 (4)2.1.1受力分析 (4)2.1.2微分方程建模 (6)2.1.3状态空间数学模型 (6)2.2 实际系统模型建立 (7)3系统定性、定量分析 (8)3.1系统稳定性与可控性分析 (8)3.1.1稳定性分析 (8)3.1.2能控性分析 (10)4极点配置的设计步骤 (10)4.1极点配置的计算 (10)4.2用MA TLAB进行极点配置的计算 (12)4.3极点配置的综合分析 (13)5小结 (14)1实验设备简介1.1倒立摆介绍倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。

如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂,多变量,存在严重非线性,非自制不稳定系统。

常见的倒立摆一般由小车和摆杆两部分组成,其中摆杆可能是一级,二级或多级,在复杂的倒立摆系统中,摆杆的长度和质量均可变化。

1.2直线一级倒立摆根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质的杆组成的系统。

倒立摆系统是典型的机电一体化系统其机械部分遵循牛顿的力学定律其电气部分遵守电磁学的基本定理.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统.小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

2 倒立摆建模2.1 直线一阶倒立摆数学模型的推导对于忽略各种摩擦参数和空气阻力之后,直线一即倒立摆抽象为小车和均质杆组成的系统。

本系统的参数定义如下:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置(变量)φ摆杆与垂直向上方向的夹角(输出)摆杆与垂直向下方向的夹角(考虑到摆杆θ初始位置为竖直向下)2.1.1受力分析下面我们对这个系统作一下受力分析。

N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

应用牛顿第二定律方法来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程:N x b F xM --= (2-1) 由摆杆水平方向的受力进行分析可以得到下面等式:22(sin )d N m x l dt θ=+ (2-2)2cos sin N mx ml ml θθθθ=+- (2-3)把这个等式代入上式中,就得到系统的第一个运动方程:F ml ml x b x m M =-+++θθθθsin cos )(2 (2-4)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:22(cos )d P mg m l dt θ-=- (2-5)2sin cos P mg ml ml θθθθ-=+ (2-6) 力矩平衡方程如下:θθθ I Nl Pl =--cos sin (2-7)注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。

合并这两个方程,约去P 和N ,得到第二个运动方程:θθθcos sin )(2x ml mgl ml I -=++ (2-8)2.1.2微分方程建模设φπθ+=,当摆杆与垂直向上方向之间的夹角φ与1(单位是弧度)相比很小,即 1<<φ 时,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dt d θ。

为了与控制理论的表达习惯相统一,即u 一般表示控制量,用u 来代表被控对象的输入力F ,线性化后得到该系统数学模型的微分方程表达式:()⎪⎩⎪⎨⎧=-++=-+u ml x b x m M x ml mgl ml I φφφ )(2 (2-9)2.1.3状态空间数学模型由现代控制理论原理可知,控制系统的状态空间方程可写成如下形式:Du CX Y Bu AX X+=+= (2-10)方程组(2-9)对φ,x 解代数方程,得到如下解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++-==++++++++++-==u Mml m M I ml Mml m M I m M mgl x Mml m M I mlb u Mml m M I ml I Mml m M I gl m x Mml m M I b ml I x x x 2222222222)()()()()()()()()(φφφφφ (2-11)整理后得到系统状态空间方程:u Mml m M I ml Mml m M I mlI x x Mml m M I m M mgl Mml m M I mlbMml m M I gl m Mml m M I b ml I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡2222222222)(0)(00)()()(010000)()()(00010φφφφ 1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(2-12)2.2 实际系统模型建立实际系统参数如下,求系统的传递函数、状态空间方程,并进行脉冲响应和阶跃响应的Matlab 仿真。

1)以外界作用力作为输入的系统状态方程:ux x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ 2.683800.89060031.69261.9235-0100000.71670.0891-00010ϕϕϕϕ1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦3系统定性、定量分析3.1系统稳定性与可控性分析 3.1.1稳定性分析先分析系统的稳定性,将数据代入状态方程中,利用matlab 程序可以求出系统的零极点。

程序段如下:[num,den]=ss2tf(A,B,C,D) %状态空间表达式——>传递函数为-2.6838/(s^2-31.6926) [z,p,k]=tf2zp(num,den) %传递函数——>零极点型结果如下:零点:z =5.4344 0.5492-5.4344 -0.0000极点:p =-5.65165.6081-0.0456由得到的p(极点)可知,有的极点在单位圆外,所以可知原系统是不稳定。

3.1.2能控性分析我们可以利用matlab来得到系统的能控性,源代码如下:uc=ctrb(A,B) %判断能控性r=rank(uc) %求秩r =4由得到的rank(ud)的值可知,原系统的能控性矩阵为4,所以我们可知原系统是能控的。

4极点配置的设计步骤4.1极点配置的计算对于如上所述的系统,设计控制器,要求系统具有较短的调整时间和合适的阻尼。

倒立摆极点配置原理图如图所示:极点配置步骤如下:(1)检验系统能控性(以证)(2)计算特征值选取期望的闭环极点)(4,3,2,1i i ==μλ,其中:j j 3.32-3.32-10-10-1321-=+===μμμμ期望的特征方程为:()()()()()()()()14898.69789.194243.323.3210102344321++++=++-+++=----λλλλλλλλμλμλμλμλj j因此可以得到:2489,1948.69714894321====αααα由系统的特征方程:λλλλλλλλλ8238.2-6926.31-0891.06926.31-9235.1010007167.0-0891.00001-234-=-+-=A I因此有:0891.06926.31-8238.204321-====a a a a系统的反馈增益矩阵为:[]144332211-----=T a a a a K αααα(3)状态反馈增益矩阵K 为:[]19.8540] 114.1177 32.9817- -56.6141[144332211=----=-T a a a a K αααα4.2用MATLAB 进行极点配置的计算程序段如下:[num,den]=ss2tf(A,B,C,D) %状态空间表达式——>传递函数为-2.6838/(s^2-31.6926)p=[-10 -10 -2+3.3j -2-3.3j]; %期望极点配置K=acker(A,B,p) %求状态增益K结果相同:19.8540] 114.1177 32.9817- -56.6141[=K系统输出响应图3 系统输出响应图4.3极点配置的综合分析极点配置法成功实现了同时对倒立摆摆角和小车的位置的控制,但是在极点配置时,期望极点的选取,需要考虑、研究它们对系统品质的影响以及它们与零点分布状况的关系,还需要顾及抗干扰性能方面的要求。

状态反馈系统的主要优点是极点的任意配置,无论开环极点和零点在什么位置,都可以任意配置期望的闭环极点。

这为我们提供了控制系统的手段,假如系统的所有状态都可以被测量和反馈的话,状态反馈可以提供简单而适用的设计。

5小结通过本次读书工程,我对状态空间有了更深的了解,从建立系统传递函数到状态空间方程再到对系统的稳定性能控性分析,都充分的将理论与实践结合了起来。

极点配置法做得很成功,输入参数后摆杆能成功倒立,当有干扰的时候,可以迅速的恢复稳定,也学会了将不稳定的发散的系统通过状态反馈和观测,进行极点配置,从而得到稳定的系统。

最后通过直线一级倒立摆系统的设计使我掌握了用matlab来进行系统设计仿真的方法,并熟悉了现代控制理论的相关知识,学以致用,学会一般系统的建模方法和控制器设计方法。

很好的将课本上的知识运用到了生活中。

相关文档
最新文档