数形结合思想例题分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想例题分析
一、构造几何图形解决代数与三角问题: 1、证明恒等式:
例1 已知x 、y 、z 、r 均为正数,且
222,x y z +=222z x r x ⋅-= 求证:.rz xy =
分析:由222,x y z +=自然联想到勾股定理。由
222.z x r x ⋅-=可以联想到射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种
算法,结论的正确性一目了然。
证明:(略)
小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。
2、证明不等式:
例2 已知:0<a <1,0<b <1. 求证
22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥
证明:如图,作边长为1的正方形ABCD ,在AB 上取点E ,使AE=
a ;在AD 上取点G ,使AG=
b ,
过E 、G 分别作EF//AD 交CD 于F ;作GH//AB 交BC 于H 。设EF 与GH 交于点O ,连接AO 、BO 、CO 、DO 、AC 、BD.
由题设及作图知△
AOG 、△BOE 、△COF 、△DOG 均为直角三角形,因此
22
OA a b =+
22
(1)OB a b =-+
22(1)(1)OC a b =-+-
22
(1)OD a b =+-
且
2AC BD ==
由于 ,.OA OC AC OB OD BD +≥+≥ 所以:
B
A
C
x
y
z
r
y=1
x y
22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥
当且仅当1
2
a b ==时,等号成立。
小结:在求证条件不等式时,可根据题设条件作出对应的图形,然后运用图形的几何性质或者平面几何的定理、公理去建立不等式使结论获证。 3、求参数的值或参数的取值范围:
例3 若方程
2
210ax x -+= (a >0)的两根满足:1x <1,1<2x <3,求a 的取值范围。
解析:画出与方程对应的二次函数
2
21y ax x =-+ (a >0)的草图: 0123
x
y
0123
x
y
由图可知:当
x =1时,y <0; 当x =3时,y >0.
即 2
1
211a ⨯-⨯+<0 ; 23231a ⨯-⨯+>0.
解得:5
9
<a <1.
例4 若关于x 的不等式2021x mx ≤
++≤ 的解集仅有一个元素,求m 的值。
解:如图:在同一坐标系内,作出1y =与
2
2y x mx =++的图象。题设条件等价于抛物线
22y x mx =++在直线0y =与
1y =之间的带状区域仅有一个交点,且抛物线开口向上。由图形的直观
性质可知:这个交点只能在直线
1
y =上,故方程组
212y y x mx =⎧
⎨=++⎩
仅有一组解。
2410m ∴∆=-⨯= 即 2.m =±
小结:对于含参方程(不等式),可将其与对应的函数(图象)联系起来,运用数形结合思想,去揭示问题中所蕴含的几何背景,往往能为解题提供清晰的思路。 4、求最值问题:
例5 已知a 、b 均为正数,且 2.a b +=求
2241a b +++的最小值。
解:如图,作线段AB=2,在AB 上截取AE=a ,
EB=b ,过A 作AC ⊥AB ,且AC=2,过B 作BD ⊥AB ,且BD=1。由勾股定
理:CE=
24a +,BD=21b +,原题即求CE+ED 的最小值。
又如图,延长CA 至G,使AG=AC ,连接GE ,由三角形两边之和大于第三边,则G 、E 、D 三点共线时,GE+ED=DG 最短。作出图形,延长DB 至F ,使BF//AG 且BF=AG ,连接GF.
则在Rt △DGF 中,DF=1+2=3,GF=AB=2
22223213DG DF GF ∴=+=+=
∴CE+DE 的最小值是13.
即
2241a b +++的最小值是13.
小结:此题由式子特点联想勾股定理,构造图形解决问题。 二、用代数与三角方法解决几何问题:
例6 如图,在△ABC 中,AB >AC ,CF 、BE 分别是AB 、AC 边上的高。试证:
AB CF AC BE +≥+
证法一:(三角法)因为0sin 1A ≤≤,
()sin AB AC AB AC A ∴-≥-⋅
sin sin AB AC A AC AB A ∴+
⋅≥+⋅
(90)AB CF
AC BE A ∴+≥+∠=当时取等号
证法二:(代数法)由AB >AC >CF ,AB >BE 及S △ABC
11
22
AB CF AC BE =⋅=⋅ .AB AC AC CF BE CF AC
-∴
==AB-BE 变形得:AB
AB BE ∴->AC CF -
A B C D E F
G
a
b
22122A
B
C
E
F