高考复习立体几何课件
合集下载
《高中数学立体几何》课件
立体几何在数学、工程、建筑等领域 有着广泛的应用,是理解和描述现实 世界空间关系的重要工具。
立体几何的重要性
01
02
03
培养空间思维能力
学习立体几何有助于培养 学生的空间想象力和逻辑 思维能力,提高解决实际 问题的能力。
数学学科基础
立体几何是数学学科体系 中的重要组成部分,对于 理解数学概念、掌握数学 方法具有重要意义。
《高中数学立体几何》ppt课 件
目 录
• 立体几何简介 • 立体几何基础知识 • 立体图形的性质与分类 • 立体几何的应用 • 解题技巧与思路 • 立体几何的未来发展
01
立体几何简介
什么是立体几何
立体几何是研究三维空间中图形和物 体性质的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量关系。
角度的计算
角度是描述两条射线或线段之间夹角 的大小的量。在立体几何中,角度可 以通过使用三角函数或几何定理来计 算。
距离的计算
距离是描述两点之间或一点到一条线 段之间的最短路径的大小的量。在立 体几何中,距离可以通过使用勾股定 理或几何定理来计算。
03
立体图形的性质与分类
立体图形的性质
空间性
立体图形存在于三维空间 中,具有空间特性。
近现代发展
随着数学和科学技术的不断进步, 立体几何逐渐与代数学、分析学等 学科交叉融合,形成了更加丰富和 深入的研究领域。
02
立体几何基础知识
点、线、面的基本性质
点的基本性质
面的基本性质
Байду номын сангаас
点是几何学中最基本的元素,没有大 小和形状。在空间中,点的唯一特征 是它的位置。
面是由无数条线组成的,它只有面积 而没有厚度。面的形状和位置由其上 的点和其上的线的分布决定。
立体几何的重要性
01
02
03
培养空间思维能力
学习立体几何有助于培养 学生的空间想象力和逻辑 思维能力,提高解决实际 问题的能力。
数学学科基础
立体几何是数学学科体系 中的重要组成部分,对于 理解数学概念、掌握数学 方法具有重要意义。
《高中数学立体几何》ppt课 件
目 录
• 立体几何简介 • 立体几何基础知识 • 立体图形的性质与分类 • 立体几何的应用 • 解题技巧与思路 • 立体几何的未来发展
01
立体几何简介
什么是立体几何
立体几何是研究三维空间中图形和物 体性质的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量关系。
角度的计算
角度是描述两条射线或线段之间夹角 的大小的量。在立体几何中,角度可 以通过使用三角函数或几何定理来计 算。
距离的计算
距离是描述两点之间或一点到一条线 段之间的最短路径的大小的量。在立 体几何中,距离可以通过使用勾股定 理或几何定理来计算。
03
立体图形的性质与分类
立体图形的性质
空间性
立体图形存在于三维空间 中,具有空间特性。
近现代发展
随着数学和科学技术的不断进步, 立体几何逐渐与代数学、分析学等 学科交叉融合,形成了更加丰富和 深入的研究领域。
02
立体几何基础知识
点、线、面的基本性质
点的基本性质
面的基本性质
Байду номын сангаас
点是几何学中最基本的元素,没有大 小和形状。在空间中,点的唯一特征 是它的位置。
面是由无数条线组成的,它只有面积 而没有厚度。面的形状和位置由其上 的点和其上的线的分布决定。
高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
2023版高考数学一轮总复习第六章立体几何第一讲空间几何体的结构特征和直观图课件
以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y
轴的线段长度减半,平行于 x 轴和 z 轴的线段长度不变)来
掌握.
(2)按照斜二测画法得到的平面图形的直观图,其面积
与原图形的面积的关系:S
= 直观图
2 4S
原图形.
【变式训练】
一个水平放置的图形的斜二测直观图是一个底角为
45°,腰和上底均为 22的等腰梯形,那么原平面图形的面积
由斜二测画法可知,A′B′=AB=a,O′C′=21OC
= 43a,在图 6-1-6 中作 C′D′⊥A′B′于 D′,则 C′D′
= 22O′C′= 86a.所以 S△A′B′C′=21A′B′·C′D′=
12·a·86a= 166a2.
答案:D
【题后反思】
(1)画几何体的直观图一般采用斜二测画法,其规则可
3.(教材改编题)如图 6-1-1,长方体 ABCD-A′B′C′D′
被截去一部分,其中 EH∥A′D′.剩下的几何体是(
)
A.棱台 C.五棱柱 答案:C
图 6-1-1 B.四棱柱 D.六棱柱
题组三 真题展现
4.(2021 年新高考Ⅰ)已知圆锥的底面半径为 2,其侧 面展开图为一个半圆,则该圆锥的母线长为( )
A.2
B.2 2
C.4
D.4 2
答案:B
5.(2020 年全国Ⅰ)如图 6-1-2,在三棱锥 P-ABC 的平面 展开图中,AC=1,AB=AD= 3 ,AB⊥AC,AB⊥AD, ∠CAE=30°,则 cos∠FCB=________.
答案:-14
图 6-1-2
考点一 空间几何体的结构特征
[例 1] (1)给出下列命题:
高考数学复习10立体几何.ppt
例3 如图所示,ABCD是边长为3的正 方形,EF∥AB,EF=32,EF 与
面ABCD的距离为2,则该多面体的体 积为( )
课堂互动讲练
9 A.2 C.6 【思路点拨】
B.5 15
D. 2
或依据提供选项,利用所求体积大于 VE-ABCD,可得答案.
课堂互动讲练
【解析】 法一:可利用排除法来解 决.棱锥 E-ABCD 的体积 V1=13×32×2 =6,而此多面体的体积 V>V1.故选 D.
三基能力强化
1.(教材习题改编)表面积为3π的
圆锥,它的侧面展开图是一个半圆, 则该圆锥的底面直径为( )
A.1
B.2
15 C. 5
2 15 D. 5
答案:B
三基能力强化
2.母线长为1的圆锥的侧面展开图的
圆心角等于43π,则该圆锥的体积为(
)
22 A. 81 π
8 B.81π
C.4815π
D.1801π
1.球的组合体 与球有关的组合体问题,一种 是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位 置,确定有关元素间的数量关系, 并作出合适的截面图.
课堂互动讲练
2.几何体的展开与折叠 几何体的表面积,除球以外,都是 利用展开图求得的.利用了空间问题平 面化的思想.把一个平面图形折叠成一 个几何体,再研究其性质,是考查空间 想象能力的常用方法,所以几何体的展 开与折叠是高考的一个热点.
三基能力强化
5.已知一个几何体的三视图如图所 示,则此几何体的表面积是__________.
答案:(5+ 2)πa2
三基能力强化
课堂互动讲练
考点一 多面体的表面积
求解有关多面体表面积的问 题,关键是找到其特征几何图形, 如棱柱中的矩形,棱台中的直角梯 形,棱锥中的直角三角形,它们是 联系高与斜高、边长等几何元素间 的桥梁,从而架起求侧面积公式中 的未知量与条件中已知几何元素间 的联系.
面ABCD的距离为2,则该多面体的体 积为( )
课堂互动讲练
9 A.2 C.6 【思路点拨】
B.5 15
D. 2
或依据提供选项,利用所求体积大于 VE-ABCD,可得答案.
课堂互动讲练
【解析】 法一:可利用排除法来解 决.棱锥 E-ABCD 的体积 V1=13×32×2 =6,而此多面体的体积 V>V1.故选 D.
三基能力强化
1.(教材习题改编)表面积为3π的
圆锥,它的侧面展开图是一个半圆, 则该圆锥的底面直径为( )
A.1
B.2
15 C. 5
2 15 D. 5
答案:B
三基能力强化
2.母线长为1的圆锥的侧面展开图的
圆心角等于43π,则该圆锥的体积为(
)
22 A. 81 π
8 B.81π
C.4815π
D.1801π
1.球的组合体 与球有关的组合体问题,一种 是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位 置,确定有关元素间的数量关系, 并作出合适的截面图.
课堂互动讲练
2.几何体的展开与折叠 几何体的表面积,除球以外,都是 利用展开图求得的.利用了空间问题平 面化的思想.把一个平面图形折叠成一 个几何体,再研究其性质,是考查空间 想象能力的常用方法,所以几何体的展 开与折叠是高考的一个热点.
三基能力强化
5.已知一个几何体的三视图如图所 示,则此几何体的表面积是__________.
答案:(5+ 2)πa2
三基能力强化
课堂互动讲练
考点一 多面体的表面积
求解有关多面体表面积的问 题,关键是找到其特征几何图形, 如棱柱中的矩形,棱台中的直角梯 形,棱锥中的直角三角形,它们是 联系高与斜高、边长等几何元素间 的桥梁,从而架起求侧面积公式中 的未知量与条件中已知几何元素间 的联系.
高考数学(理)一轮复习精品课件:专题《立体几何》
2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
1.多面体的结构特征
2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
定义:从一个几何体的正前方、正左方、正上方三个 不同的方向看这个几何体,描绘出的平面图形,分别 称为正(主)视图、侧(左)视图、俯视图.
2.外接球、内切 球的计算问题
在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+
r2.
8
9
10
11
12
13Байду номын сангаас
14
考法2 空间几何体的三视图
1.识别三视 图的步骤
(1)弄清结构,明确位置 (2)先画正视图,再画俯视图,最后画侧视图 (3)被遮住的轮廓线要画成虚线
2.判断余下视图
1.计算有关 线段的长
当球内切于正方体时,切点为正方体各个 面的中心,正方体的棱长等于球的直径;
2.外接球、内切 球的计算问题
7
考法1
空间几何体的结构特征
球与旋转体的组合通常作轴截面解题. 球与多面体的组合,通过多面体的一条侧棱
1.计算有关 线段的长
和球心(或“切点”“接点”)作出截面图解题. 设球O的半径为R,截面圆O′的半径为r,M为截 面圆上任一点,球心O到截面圆O′的距离为d,则
专题8
第1 节
立体几何
空间几何体的三视图、表面积和体积
第2 节
质 第3 节
空间直线、平面平行与垂直的判定及其性
空间中的计算问题
1
考点42
空间几何体的结构、三视图
人教版高中数学高考一轮复习--高考中的立体几何(课件 共47张PPT)
∴CA,CB,CC1两两垂直.
以点C为坐标原点, , , 1 分别为x轴、y轴、z轴正方向,建立空间直
角坐标系,如图所示,
则 C(0,0,0),C1(0,0,2),A1(2 3,0,4),E(0,2,4λ).
设平面 A1EC1 的法向量为 n1=(x1,y1,z1),
1 ·1 1 = 0,
3.用向量方法证明面面平行或垂直的方法:α∥β⇔e1∥e2⇔存在实数λ,使
2 ⊥ ,
e2=λe1(e1≠0);α⊥β⇔e1⊥e2⇔e1·e2=0;α∥β⇔
其中α,β为不重合的
2 ⊥ .
两个平面,e1,e2为α,β的法向量,A,B,C为α内不共线的三个点.
例2 如图,CC1⊥平面ABC,平面ABB1A1⊥平面ABC,四边形ABB1A1为正
2
2 2
2 2 2
设平面 PDC 的法向量为 n=(x,y,z),=(-1,0,1), =(-1,1,1),
- + = 0,
· = 0,
则
即
取 n=(1,0,1).
- + + = 0,
· = 0,
1 1
∵n· = 2 − 2=0,∴ ⊥n.
又 EF⊄平面 DCP,∴EF∥平面 DCP.
2 31 + 21 = 0,
则
即
21 + (4-2)1 = 0,
1 ·1 = 0,
3
令 z1=1,则 x1=- ,y1=1-2λ,
3
3
可取 n1= - 3 ,1-2,1 .
设平面 A1EC 的法向量为 n2=(x2,y2,z2),
2 ·1 = 0,
2 32 + 42 = 0,
人教版高中数学必修立体几何复习课件(共102张PPT)
1 1
1
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是_____8_0__0.0 cm 3
3
2 0 20
主视图
10
10
2 俯0视图
2 侧0视图
第二章 点、直线、平面之间的位置关系
• 四个公理
直线与直线位置关系 • 三类关系 直线与平面位置关系
平面与平面位置关系
(3)
a a
// b
b
(较常用);
(4)
a
//
a
;
(5)
a a
b
a
(面面垂直 线面垂直)
a b
4.面面垂直
向的侧视图(或称左视图)为(
A
A
H
G
Q
B
C
侧视 B
)A
C
I
P
E
图1
F
B
D
E
D
图2
F
B
B
B
E A.
E B.ቤተ መጻሕፍቲ ባይዱ
E C.
E D.
练习10:(1)如图是一个空间几何体的三
视图,如果直角三角形的直角边长均为
正视图 侧视图
1,那么几何体的体积为( ) C
A.1 B.1 C. 1 D.1
俯视图
2
3
6
V1 3S底 h1 31111 3
②判定定理:如果一个平面内的两条相交直线都平行于 另一个平面,那么两个平面互相平行;
符号表述: a,b , a b O, a //,b // //
//
③面面平行的性质定理:
a
a
//
《高中数学课件-立体几何》
高中数学课件——立体几 何
从什么是立体几何开始,学习立体几何的基本概念和术语,图像表示方法, 三视图,以及球体、圆锥体、圆柱体的性质和应用。
立体几何中的三视图
1
俯视图
2
从上方观察物体,可以显示物体的
轮廓和底面特征。
3
主视图
从正面观察物体,显示物体的主要 形状和特征。
侧视图
从侧面观察物体,可以
球形对象,具有平坦的内表面和无限多个点在 相同距离处。
圆锥体
由一个尖顶和一个平面底部组成的体形,底部 是一个圆锥。
圆柱体
由两个互相平行的圆面和一个侧面组成的体形。
立体几何中的重要概念
相似
对于两个物体,它们的形状相似(形状相 同但大小不同),可以通过等比例缩放从 一个物体得到另一个。
1 复杂体形
指由多个基本体形组成的更复杂形状的立体物体。
2 分析和计算
通过分解复杂体形为基本体形,然后进行面积和体积计算。
立体几何中的四面体和正多面体
四面体
四个面都是三角形的立体多面体,具有四个 顶点和六条边。
正多面体
所有的面都是相同正多边形的立体多面体, 如正四面体、正六面体、正八面体等。
立体几何中的空间几何题解析 技巧
全等
对于两个物体,它们既形状相同又大小相 同,可以通过平移、旋转和镜像变换从一 个物体得到另一个。
立体几何中的投影和投影面
1 投影
2 投影面
将三维物体投影到一个或多个二维平面 上,以便观察物体在不同视角下的形状。
用于投影的平面,通常选择与物体的某 个面平行的投影面。
立体几何中的立体角和最小覆盖球
1
立体角
由线段的端点和空间中的一点组成的角。
从什么是立体几何开始,学习立体几何的基本概念和术语,图像表示方法, 三视图,以及球体、圆锥体、圆柱体的性质和应用。
立体几何中的三视图
1
俯视图
2
从上方观察物体,可以显示物体的
轮廓和底面特征。
3
主视图
从正面观察物体,显示物体的主要 形状和特征。
侧视图
从侧面观察物体,可以
球形对象,具有平坦的内表面和无限多个点在 相同距离处。
圆锥体
由一个尖顶和一个平面底部组成的体形,底部 是一个圆锥。
圆柱体
由两个互相平行的圆面和一个侧面组成的体形。
立体几何中的重要概念
相似
对于两个物体,它们的形状相似(形状相 同但大小不同),可以通过等比例缩放从 一个物体得到另一个。
1 复杂体形
指由多个基本体形组成的更复杂形状的立体物体。
2 分析和计算
通过分解复杂体形为基本体形,然后进行面积和体积计算。
立体几何中的四面体和正多面体
四面体
四个面都是三角形的立体多面体,具有四个 顶点和六条边。
正多面体
所有的面都是相同正多边形的立体多面体, 如正四面体、正六面体、正八面体等。
立体几何中的空间几何题解析 技巧
全等
对于两个物体,它们既形状相同又大小相 同,可以通过平移、旋转和镜像变换从一 个物体得到另一个。
立体几何中的投影和投影面
1 投影
2 投影面
将三维物体投影到一个或多个二维平面 上,以便观察物体在不同视角下的形状。
用于投影的平面,通常选择与物体的某 个面平行的投影面。
立体几何中的立体角和最小覆盖球
1
立体角
由线段的端点和空间中的一点组成的角。
高三数学 立体几何(458张PPT)
双 向 固 基 础 点 面 讲 考 向 多 元 提 能 力 教 师 备 用 题
第41讲 直线、平面垂直的判 定与性质
返回目录
考试大纲
1.理解以下判定定理: (1)一条直线与一个平面内的两条相交直线都垂直,则 该直线与此平面垂直. (2)一个平面经过另一个平面的垂线,则这两个平面互 相垂直. 2.理解以下性质定理,并能够证明: 两个平面垂直,则一个平面内垂直于它们交线的直线 与另一个平面垂直. 3.能运用公理、定理和已获得的结论,证明一些空间 图形的位置关系的简单命题.
直二面角
返回目录
第41讲
双 向 固 基 础
直线、平面垂直的判定与性质
五、两个平面垂直 1.定义 两个平面相交,如果它们所成的二面角是 ____________ 直二面角 , 就说这两个平面互相垂直.
返回目录
第41讲
双 向 固 基 础
直线、平面垂直的判定与性质
2.两个平面垂直的判定和性质
类 别 语言表述 根据定义, 证明两平 面所成的 二面角是 ________ 判 直二面角 一个平面 定 过另一个 平面的 ______, 垂线 那么这两 个平面垂 直 图形表示 符号表示 应 用
图形表示面 角α-l-β的平面角, ∠AOB=90° 则____________
证两 条 直线 垂直
性 质 两个平面垂直, 则一个平面内 垂直于 交线 ______ 的直线垂直于 _____________ 另一个平面 证直 线 与平 面 垂直
返回目录
第41讲
双 向 固 基 础
双 向 固 基 础
直线、平面垂直的判定与性质
四、二面角 半平面 所组成的图 定义:从一条直线出发的两个________ 形叫做二面角.这条直线叫做二面角的________ , 这两 棱 面 个半平面叫做二面角的________ .
第41讲 直线、平面垂直的判 定与性质
返回目录
考试大纲
1.理解以下判定定理: (1)一条直线与一个平面内的两条相交直线都垂直,则 该直线与此平面垂直. (2)一个平面经过另一个平面的垂线,则这两个平面互 相垂直. 2.理解以下性质定理,并能够证明: 两个平面垂直,则一个平面内垂直于它们交线的直线 与另一个平面垂直. 3.能运用公理、定理和已获得的结论,证明一些空间 图形的位置关系的简单命题.
直二面角
返回目录
第41讲
双 向 固 基 础
直线、平面垂直的判定与性质
五、两个平面垂直 1.定义 两个平面相交,如果它们所成的二面角是 ____________ 直二面角 , 就说这两个平面互相垂直.
返回目录
第41讲
双 向 固 基 础
直线、平面垂直的判定与性质
2.两个平面垂直的判定和性质
类 别 语言表述 根据定义, 证明两平 面所成的 二面角是 ________ 判 直二面角 一个平面 定 过另一个 平面的 ______, 垂线 那么这两 个平面垂 直 图形表示 符号表示 应 用
图形表示面 角α-l-β的平面角, ∠AOB=90° 则____________
证两 条 直线 垂直
性 质 两个平面垂直, 则一个平面内 垂直于 交线 ______ 的直线垂直于 _____________ 另一个平面 证直 线 与平 面 垂直
返回目录
第41讲
双 向 固 基 础
双 向 固 基 础
直线、平面垂直的判定与性质
四、二面角 半平面 所组成的图 定义:从一条直线出发的两个________ 形叫做二面角.这条直线叫做二面角的________ , 这两 棱 面 个半平面叫做二面角的________ .
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立 体 几 何 总 复 习
1
平行问题 垂直问题 角度问题 距离问题 柱锥问题
综合问题 体积面积问题
2
返回
平 行 问 题
3
返回
直线和平面的位置关系 直线和平面的平行关系 平面和平面的平行关系
4
返回
线面位置关系
直线在平面内 直线和平面相交 直线和平面平行
有无数个公共点
有且仅有一个公 共点
没有公共点
(A) 有无数个
BA
(B) 不能作出
l
(C) 只能作出一个 (D) 以上都有可能
情况一
13
返回
过直线l外两点,作与直线l平行的平 面,这样的平面( )
(A) 有无数个 (B) 不能作出 (C) 只能作出一个 (D) 以上都有可能
A Bl
情况二
14
返回
过直线l外两点,作与直线l平行的平
D 面,这样的平面( )
(A) 有无数个 (B) 不能作出 (C) 只能作出一个 (D) 以上都有可能
BA
l
情况三
15
返回
例: 有以下四个命题: ① 若一条直线与另一条直线平行,则它就
与经过另一条直线的平面平行; ② 若一条直线垂直于一个平面的一条垂线,
则此直线平行于这个平面; ③ 若一条直线和一个平面内的两条直线都
垂直,则此直线必垂直于这个平面; ④ 平面内两条平行直线,若其中一条直线
平
的两个平面
行
27
二、两个平面平行的性质
返回
1、两个平面没有公共点
两
2、其中一个平面内的所有直线
个
都平行于另一个平面
平 面
3、两个平行平面同时和第三个平 面相交,它们的交线平行
平
4、一直线垂直于两个平行平面中
行
的一个,则它也垂直于另一个平面 5、夹在两个平行平面间的平行线
段相等
28
判断下列命题是否正确?
线线平行
E
线面平行
F
19
返回
在正方体AC1中,E为DD1的中 点,求证:DB1//面A1C1E
D1 A1
E
D
F
C1
B1
∵DB1 // EF
∴ DB1 //面A1C1E
C
A
B 线线平行 线面平行
20
如图,两个全等的正方形ABCD和ABEF所 返回 在平面交于AB,M.N分别是对角线上的 点,AM=FN。求证:MN//面BCE。
已知:a b a//b 求证:a//
(1) a,b确定平面,=b
(2) 假设a与不平行
a
则a与有公共点P
则P =b
(3) 这与已知a//b矛盾 b P
(4) ∴a //
18
返回
如图,空间四面体P-ABC,M,N分别是
面PCA和面PBC的重心,求证:MN//面BCA
∵MN// EF
P
∴ MN //面BCA
9
返回
(4)过两条异面直线中的一条和另 一条平行的平面有 且仅有一 个。
10
返回
(5)如果l1 // l2 , l1 平行于 平面,则l2 或 // 平面
l2 l1
l2
11
返回
(6)如果两直线a,b相交,a平行于 平面,则b与平面的位置关系 是 相交或平行 。
b a
b
12
返回
过直线l外两点,作与直线l平行的平 面,这样的平面( )
与一个平面平行,则另一条直线也与这个平面
平行. 其中正确命题的个数是(A).
A.0 B.1 C.2 D.3
16
返回
(1)定义——直线与平面没有公共点 (2)定理——如果平面外一条直线和 这个平面内的一条直线平行,那么这 条直线和这个平面平行。
17
线面平行判定定理——如果平面外一条直 返回 线和这个平面内的一条直线平行,那么这 条直线和这个平面平行。
D1 E
求体E,证AFB,:CGD分O-CA别11B为∥1C面1DE1中FG, A1
F B1
证A求1明D证1:,:A1面B1,EAF1GA∥的面中B点DC,1G
由上知面EFG∥面
A
F
∵MN // GH
DM B
G C
N
HE
∴ MN //面BCE
线线平行
线面平行 21
如图,两个全等的正方形ABCD和ABEF所 返回 在平面交于AB,M.N分别是对角线上的点, AM=FN。求证:MN//面BCE。
A DM
B
C
F
N
∵△AFN∽ △BNH
∴ AN/NH=FN/BN ∴ AN/NH=AM/MC
EH
∴ MN//CH
∴ MN //面BCE 22
返回
在正方体AC1中,O为平面ADD1A1的 中心,求证:CO // 面A1C1B
D1
C1
A1
B1
O
F
D
C
A
B
23
线面平行的性质
返回
(1)如果一条直线与一个平面平行, 则这条直线与这个平面无公共点
(2)如果一条直线与一个平面平行, 则这条直线与这个平面内的直线成 异面直线或平行直线
25
返回
如图,a,b是异面直线,O为AB的中点, 过点O作平面与两异面直线a,b都平行 MN交平面于点P,求证:MP=PN
a AM
O DP N
bB
26
返回
一、两个平面平行的判定方法
面面平行的
判定定理
1、两个平面没有公共点
两
2、一个平面内有两条相交 直线都平行于另一个平面
个 平 面
3、都垂直于同一条直线
ABCD-A1B1C1D1 中,求 证:面AB1D1∥面BDC1
A1
B1
证明:
D
BD∥B1D1
A
BD 面BDC1
B1D1∥面BDC1
B1D1
面BDC1 同理: AB1∥面BDC1
B1D1∩AB1=B1
C B
面AB1D1∥ 面Hale Waihona Puke DC1线∥线线∥面
面∥面 31
变变形形:1若:如O为图B,D上在的正点方
(3)如果一条直线与一个平面平行, 经过这条直线的平面和这个平面相 交,则这条直线与交线平行。 24
返回
线面平行性质定理——如果一条直线与一 个平面平行,经过这条直线的平面和这个 平面相交,则这条直线与交线平行。
已知:a//,a, =b 求证:a//b
=b
a
b
a //
b
a b=
a//b
5
返回
平行于同一平面的二直线的位
置关系是 ( D )
(A) 一定平行
(B) 平行或相交 (C) 相交 (D) 平行,相交,异面
6
返回
(1)点A是平面外的一点,过A和 平面平行的直线有 无数 条。
A α
7
返回
(2)点A是直线l 外的一点,过A 和直线l 平行的平面有无数 个。
A
8
返回
(3)过两条平行线中的一条和另 一条平行的平面有 无数 个。
返回
1、平行于同一直线的两平面平行
2、垂直于同一直线的两平面平行
3、与同一直线成等角的两平面平行
α
α θ
α
θ
β
β
θ β
29
返回
4.垂直于同一平面的两平面平行 5.若α∥β,则平面α内任一直线a ∥β 6.若n α,m α,n∥β,m∥β则α∥β
α
β
γ
α m
n
β
30
例:如图,在正方体
D1
返回 C1
1
平行问题 垂直问题 角度问题 距离问题 柱锥问题
综合问题 体积面积问题
2
返回
平 行 问 题
3
返回
直线和平面的位置关系 直线和平面的平行关系 平面和平面的平行关系
4
返回
线面位置关系
直线在平面内 直线和平面相交 直线和平面平行
有无数个公共点
有且仅有一个公 共点
没有公共点
(A) 有无数个
BA
(B) 不能作出
l
(C) 只能作出一个 (D) 以上都有可能
情况一
13
返回
过直线l外两点,作与直线l平行的平 面,这样的平面( )
(A) 有无数个 (B) 不能作出 (C) 只能作出一个 (D) 以上都有可能
A Bl
情况二
14
返回
过直线l外两点,作与直线l平行的平
D 面,这样的平面( )
(A) 有无数个 (B) 不能作出 (C) 只能作出一个 (D) 以上都有可能
BA
l
情况三
15
返回
例: 有以下四个命题: ① 若一条直线与另一条直线平行,则它就
与经过另一条直线的平面平行; ② 若一条直线垂直于一个平面的一条垂线,
则此直线平行于这个平面; ③ 若一条直线和一个平面内的两条直线都
垂直,则此直线必垂直于这个平面; ④ 平面内两条平行直线,若其中一条直线
平
的两个平面
行
27
二、两个平面平行的性质
返回
1、两个平面没有公共点
两
2、其中一个平面内的所有直线
个
都平行于另一个平面
平 面
3、两个平行平面同时和第三个平 面相交,它们的交线平行
平
4、一直线垂直于两个平行平面中
行
的一个,则它也垂直于另一个平面 5、夹在两个平行平面间的平行线
段相等
28
判断下列命题是否正确?
线线平行
E
线面平行
F
19
返回
在正方体AC1中,E为DD1的中 点,求证:DB1//面A1C1E
D1 A1
E
D
F
C1
B1
∵DB1 // EF
∴ DB1 //面A1C1E
C
A
B 线线平行 线面平行
20
如图,两个全等的正方形ABCD和ABEF所 返回 在平面交于AB,M.N分别是对角线上的 点,AM=FN。求证:MN//面BCE。
已知:a b a//b 求证:a//
(1) a,b确定平面,=b
(2) 假设a与不平行
a
则a与有公共点P
则P =b
(3) 这与已知a//b矛盾 b P
(4) ∴a //
18
返回
如图,空间四面体P-ABC,M,N分别是
面PCA和面PBC的重心,求证:MN//面BCA
∵MN// EF
P
∴ MN //面BCA
9
返回
(4)过两条异面直线中的一条和另 一条平行的平面有 且仅有一 个。
10
返回
(5)如果l1 // l2 , l1 平行于 平面,则l2 或 // 平面
l2 l1
l2
11
返回
(6)如果两直线a,b相交,a平行于 平面,则b与平面的位置关系 是 相交或平行 。
b a
b
12
返回
过直线l外两点,作与直线l平行的平 面,这样的平面( )
与一个平面平行,则另一条直线也与这个平面
平行. 其中正确命题的个数是(A).
A.0 B.1 C.2 D.3
16
返回
(1)定义——直线与平面没有公共点 (2)定理——如果平面外一条直线和 这个平面内的一条直线平行,那么这 条直线和这个平面平行。
17
线面平行判定定理——如果平面外一条直 返回 线和这个平面内的一条直线平行,那么这 条直线和这个平面平行。
D1 E
求体E,证AFB,:CGD分O-CA别11B为∥1C面1DE1中FG, A1
F B1
证A求1明D证1:,:A1面B1,EAF1GA∥的面中B点DC,1G
由上知面EFG∥面
A
F
∵MN // GH
DM B
G C
N
HE
∴ MN //面BCE
线线平行
线面平行 21
如图,两个全等的正方形ABCD和ABEF所 返回 在平面交于AB,M.N分别是对角线上的点, AM=FN。求证:MN//面BCE。
A DM
B
C
F
N
∵△AFN∽ △BNH
∴ AN/NH=FN/BN ∴ AN/NH=AM/MC
EH
∴ MN//CH
∴ MN //面BCE 22
返回
在正方体AC1中,O为平面ADD1A1的 中心,求证:CO // 面A1C1B
D1
C1
A1
B1
O
F
D
C
A
B
23
线面平行的性质
返回
(1)如果一条直线与一个平面平行, 则这条直线与这个平面无公共点
(2)如果一条直线与一个平面平行, 则这条直线与这个平面内的直线成 异面直线或平行直线
25
返回
如图,a,b是异面直线,O为AB的中点, 过点O作平面与两异面直线a,b都平行 MN交平面于点P,求证:MP=PN
a AM
O DP N
bB
26
返回
一、两个平面平行的判定方法
面面平行的
判定定理
1、两个平面没有公共点
两
2、一个平面内有两条相交 直线都平行于另一个平面
个 平 面
3、都垂直于同一条直线
ABCD-A1B1C1D1 中,求 证:面AB1D1∥面BDC1
A1
B1
证明:
D
BD∥B1D1
A
BD 面BDC1
B1D1∥面BDC1
B1D1
面BDC1 同理: AB1∥面BDC1
B1D1∩AB1=B1
C B
面AB1D1∥ 面Hale Waihona Puke DC1线∥线线∥面
面∥面 31
变变形形:1若:如O为图B,D上在的正点方
(3)如果一条直线与一个平面平行, 经过这条直线的平面和这个平面相 交,则这条直线与交线平行。 24
返回
线面平行性质定理——如果一条直线与一 个平面平行,经过这条直线的平面和这个 平面相交,则这条直线与交线平行。
已知:a//,a, =b 求证:a//b
=b
a
b
a //
b
a b=
a//b
5
返回
平行于同一平面的二直线的位
置关系是 ( D )
(A) 一定平行
(B) 平行或相交 (C) 相交 (D) 平行,相交,异面
6
返回
(1)点A是平面外的一点,过A和 平面平行的直线有 无数 条。
A α
7
返回
(2)点A是直线l 外的一点,过A 和直线l 平行的平面有无数 个。
A
8
返回
(3)过两条平行线中的一条和另 一条平行的平面有 无数 个。
返回
1、平行于同一直线的两平面平行
2、垂直于同一直线的两平面平行
3、与同一直线成等角的两平面平行
α
α θ
α
θ
β
β
θ β
29
返回
4.垂直于同一平面的两平面平行 5.若α∥β,则平面α内任一直线a ∥β 6.若n α,m α,n∥β,m∥β则α∥β
α
β
γ
α m
n
β
30
例:如图,在正方体
D1
返回 C1