实验一流体流动阻力
流体阻力实验MicrosoftWord文档
实验一 流体流动阻力测定实验1 实验目的(1)掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
(2)识别组成管路的各种管件、阀门的结构、使用方法和性能。
(3)学习压差计、流量计的使用方法。
(4)学习光滑直管和粗糙直管的摩擦系数λ与雷诺准数Re 的测量方法,并验证流体处于不同流动类型时的λ与Re 二者间的关系。
(5)测定流体流经管件、阀门时的局部阻力系数ξ。
2 基本原理2.1 直管摩擦系数λ与雷诺数Re 的测定流体在管内从一个截面流到另一个截面时,由于流体具有粘性,流体层之间的分子动量传递产生的内摩擦阻力,或由于流体之间的湍流动量传递而引起的摩擦阻力,我们将这部分机械能称为能量损失。
下面给将介绍圆形直管摩擦系数与雷诺数的实验测定方法。
对于不可压缩流体在水平等直径直管内作定态流动,根据伯努利方程有:2ff 2P L u h d λρ∆==⨯ (1.1)(1.1)式中:h f —压头损失,J/kg ;L —两测压点间直管长度,m ;d —直管内径,m ;λ—摩擦阻力系数;u —流体流速,m/s ;ΔP f —直管阻力引起的压降,N/m 2;ρ—流体密度,kg/m 3。
将(1.1)式经适当变形,可以得到摩擦系数的表达式,即:f22P d L u λρ∆=⨯(1.2) 雷诺准数定义式如下:du Re ρμ=(1.3)(1.2)式中:µ—流体粘度,Pa.s 。
在管壁粗糙度、管长和管径一定的条件下,本实验将选择水作为流体,通过改变水的流量,并测得不同流量下的ΔP f 值,连同L 、d 、u 和ρ(对一定流体来说,ρ和μ都是温度的函数,可以根据流体的种类及温度从手册中查出)一同带入式(1.2)和(1.3),将能够分别求出不同流量下的直管摩擦系数λ和雷诺准数Re ,从而整理出λ与Re 的关系并绘制二者关系曲线。
2.2 测定局部阻力系数(1)局部阻力系数ξ的测定。
局部阻力损失的计算方法有两种,即局部阻力系数法和当量长度法。
实验一流体流动阻力
实验一流体流动阻力的测定一、实验目的1.了解流体流过直管或管件阻力的测定方法。
2.掌握直管摩擦系数λ与雷诺数Re之间关系的变化规律。
3.熟悉液柱压差计和转子流量计的使用方法。
4.测定流体流过阀门、变径管件(突然扩大、突然缩小)的局部阻力系数ξ。
二、实验内容1.测定流体流经直管(不锈钢管、镀锌管)时摩擦系数λ与雷诺数Re之间关系。
2.测定全开截止阀、突然扩大及突然缩小的阻力系数ξ。
三、基本原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地引起流体压力的损失。
流体在流动时所产生的阻力有直管摩擦阻力(又称沿程阻力)和管件的局部阻力。
这两种阻力,一般都是用流体的压头损失h f或压强降∆P f表示。
1.直管阻力直管摩擦阻力h f与摩擦系数λ之间关系(范宁公式)如下:h f=λ·ld·u22(1—1)式中h f——直管阻力损失, J/kg;l——直管长度, m;d——直管内径, m;u——流体平均速度, m/s;λ——摩擦系数,无因次。
其中摩擦系数λ是雷诺数Re和管壁相对粗糙度ε/d的函数,即λ=f(Re,ε/d)。
对一定相对粗糙度而言,λ=f(Re);λ随ε/d和Re的变化规律与流体流动的类型有关。
层流时,λ仅随Re变化,即λ=f(Re);湍流时,λ既随Re变化又随相对粗糙度ε/d改变,即λ=f(Re,ε/d)。
据柏努利方程式可知阻力损失hf的计算如下:h f=(Z1-Z2)g+ρ21pp-+22 22 1uu-(1—2) 当流体在等直径的水平管中流动时,产生的摩擦阻力可由式(1—2)化简而得:h f =p p 12-ρ=∆p ρ=ρfp ∆ (1—3)式中 ρ——流体的平均密度, kg/m 3;p 1——上游测压截面的压强, Pa ;p 2——下游测压截面的压强, Pa ;∆p ——两测压点之间的压强差, Pa ;∆p f ——单位体积的流体所损失的机械能, Pa 。
其中压强差∆p 的大小采用液柱压差计来测量,即在实验设备上于待测直管的两端或管件两侧各安装一个测压孔,并使之与压差计相连,便可测出相应压差∆p 的大小。
流体流动阻力测定实验指导书
化工原理实验辅助讲义化工原理实验指导书姜少华编五邑大学化工与环境基础实验教学中心2006年9月实验一流体流动阻力的测定一、实验目的1.把握测定流体流经直管、管件和阀门时阻力损失的一样实验方式。
2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一样湍流区内λ与Re的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数。
4.学会无纸记录仪和涡连番量计的利用方式。
5.识辨组成管路的各类管件、阀门,并了解其作用。
二、大体原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失必然的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引发的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳固流动时,阻力损失为:(1)即,(2)式中:λ —直管阻力摩擦系数,无因次;d —直管内径,m;—流体流经l米直管的压力降,Pa;—单位质量流体流经l米直管的机械能损失,J/kg;ρ —流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。
滞流(层流)时,(3)(4)式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确信。
由式(2)可知,欲测定λ,需确信l、d,测定、u、ρ、μ等参数。
l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算取得。
例如本装置采纳涡连番量计测流量,V,m3/h。
(5)可用U型管、倒置U型管、测压直管等液柱压差计测定,或采纳差压变送器和二次仪表显示。
(1)当采纳倒置U型管液柱压差计时(6)式中:R-水柱高度,m。
(2)当采纳U型管液柱压差计时(7)式中:R-液柱高度,m;-指示液密度,kg/m3。
化工原理实验—流体流动阻力测定实验
化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。
(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。
2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。
3.熟悉压差计和流量计的使用方法。
4.认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
北京理工大学流体流动阻力的测定_实验报告
实验一 流体流动阻力的测定摘要:通过实验测定流体在光滑管、粗糙管、层流管中流动时,借助于伯努利方程计算摩擦阻力系数和雷诺数之间的关系,并与理论值相比较。
同时以实验手段计算突然扩大处的局部阻力,并对以上数据加以分析,得出结论。
一、目的及任务1.掌握测定流体流动阻力的实验的一般实验方法。
2.测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
3.测定层流管的摩擦阻力。
4.验证湍流区内摩擦阻力系数λ与雷诺数Re 和相对粗糙度的函数。
5.将所得的光滑管的λ-Re 方程与Blasius 方程相比较。
二、基本原理1.直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在突然扩大、弯头等管件时,由于流体运动速度和方向的突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。
流体流动阻力与流体的性质,流体流经处几何尺寸以及流动状态有光,可表示为∆p=f (d ,l ,u ,ρ,μ,ε)引入下列无量纲数群雷诺数Re=μρdu相对粗糙度d ε 管子的长径比dl从而得到),,du (p 2d ld u εμρρψ=∆令λ=Φ(Re ,dε) 2)(Re,2u d d l pερΦ=∆可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。
22u d l ph f ⨯=∆=λρ式中 f h ——直管阻力,J/Kg ; l ——被测管长,m ; d ——被测管内径,m ;u ——平均流速,m/s ;λ——摩擦阻力系数。
当流体在一管径为d 的圆形管中流动时,选取两个截面,用U 形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。
改变流速可测出不同Re 下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ-Re 关系。
实验一 流体流动阻力测定实验
实验一流体流动阻力测定实验
实验目的:
1. 掌握流体流动阻力的测量方法;
2. 研究液体流动速度与流动阻力的关系;
3. 探究不同液体的流动阻力之间的差异。
实验器材:
1. 测量罐(配有胶管和流量计);
2. U形玻璃管;
3. 液体(水和甘油);
4. 秒表;
5. 卡尺。
实验原理:
在实验中,将液体从一容器倾泻到另一容器中,同时测量流量计时流量、升高高度、液体的密度和粘度等参数,然后根据流量和压力的大小计算出液体的流动阻力大小。
实验步骤:
1. 将测量罐放在试验台上,它应该与液体倾泻的容器保持水平。
2. 将U形玻璃管的两端插入液体倾泻的容器中和流入测量罐中。
3. 调整流量计,使其指针刻度为零,然后开始倾泻液体。
4. 记录下液体流动的时间和流量,以及液体的高度和温度。
5. 测量液体的密度,并计算出其粘度。
6. 重复以上步骤,倾泻另一种液体,记录相关数据。
7. 计算并比较两种液体的流动阻力。
实验注意事项:
1. 测量液体的过程中,要保持容器和测量罐平稳,以避免产生冲击和震动。
2. 测量液体的温度和粘度要准确,否则将影响结果的准确性。
3. 测量过程中,要充分排除管路和装置中的气泡。
4. 测量结束后,要及时清洗仪器,以免对下次实验造成影响。
实验一流体流动阻力的测定
实验一 流体流动阻力的测定一、实验目的1、学习直管摩擦阻力ΔP f ,直管摩擦系数λ的测定方法2、掌握直管摩擦系数λ与雷诺数Re 之间关系的测定方法及其变化规律3、学会压差变送器和流量计的安装及使用方法。
4、识别组成管路中各个管件,阀门并了解其作用。
二、 实验内容1、测定水在不同流量下,流过一段等直径水平管的流动阻力和直管摩擦系数。
2、测定不同流量下,流体经阀门或90°弯管时的流动阻力系数,检查数据的重复性。
三、基本原理由于流体粘性的存在,流体在流动的过程中会发生流体间的摩擦,从而导致阻力损失。
层流时阻力损失的计算式是由理论推导得到的;湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究,获得经验的计算式。
其研究的基本步骤如下:①寻找影响过程的主要因素对所研究的过程作初步的实验和经验的归纳,尽可能地列出影响过程的主要因素。
对湍流时直管阻力损失h f 与诸多影响因素的关系式应为:h f =f(d,u,ρ,μ,l ,ε) (1) ②、因次分析法规划实验当一个过程受多个变量影响时,通常用网络法通过实验以寻找自变量与因变量的关系,以(1)式为例,若每个自变量的数值变化10次,测取h f的值而其他自变量保持不变,6个自变量,实验次数将达106。
为了减少实验工作量,需要在实验前进行规划,以尽可能减少实验次数。
因次分析法是通过将变量组合成无因次数群,从而减少实验自变量的个数,大幅度地减少实验次数。
通过因次分析法可以将对(1)式的研究转变成对以下(2)式的4个无因次数之间的关系的研究。
即:),,('2dd l du f u h f εμρ= (2) 其中,若实验设备已定,那么以上(2)式可写为:2),(2u d l d du f h f ⋅⋅=εμρ (3)若实验设备是水平直管,以上(3)式可写为:2),(2u d l d du f P⋅⋅=∆εμρρ (4) 所以: 22u d l P⋅⋅=∆λρ (5) 即: ),(ddu f εμρλ= (6) Re du ρμ=(7)式中: ΔP f 一直管阻力引起的压强降。
化工原理试验报告-流体流动阻力的测定
实验一流体流动阻力的测定一、实验目的1、掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2、测定直管摩擦系数大与雷诺准数Re的关系,验证在一般湍流区内为与Re的关系曲线。
3、测定流体流经管件(阀门)时的局部阻力系数季4、识辨组成管路的各种管件、阀门,并了解其作用。
二、实验装置实验装置如下图所示:11+J1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器10、压差传感器11、压差传感器12、粗糙管实验段13、光滑管实验段14、层流管实验段15、压差传感器16、压差传感器17、阐阀18、截止阀图1实验装置流程图装置参数:三、实验原理1、直管阻力摩擦系数大的测定流体在水平等径直管中稳定流动时,阻力损失为:. 2 d Ap九二- -fP lu 2du pRe = 一N采用涡轮流量计测流量VV u =900冗d 2用压差传感器测量流体流经直管的压力降A P f o根据实验装置结构参数1、d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,求取Re和大,再将Re和大标绘在双对数坐标图上。
2、局部阻力系数Z的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,这种方法称为阻力倍数法。
即:故0= 2A L ⑹P U 2根据连接管件或阀门两端管径中小管的直径d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,,通过式⑸或⑹,求取管件(阀门)的局部阻力系数Z。
四、实验步骤1、开启仪表柜上的总电源、仪表电源开关。
2、首先对水泵进行灌水,然后关闭出口阀,启动水泵,待电机转动平稳后,把出口阀缓缓开到最大。
3、实验从做大流量开始做起,最小流量应控制在1.5m3/h。
由于实验数据处理时使用的是双对数坐标,所以实验时每次流量变化取一递减的等比数列这样得到的数据点就会均匀分布,时实验结果更具准确性。
实验1 流体流动阻力的测定
第二章 实验部分实验一 流体流动阻力的测定一、实验目的(1)了解流体流动阻力的测定方法。
(2)测定流体流过直管时的磨擦阻力,并确定磨擦系数λ与雷诺数Re 的关系。
(3)测定流体流过管件(本实验为闸阀)时的局部阻力,并求出阻力系数ξ。
(4)了解与本实验有关的各种流量测量仪表、压差测量仪表的结构特点和安装方式,掌握其测量原理、学会正确使用。
二、基本原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。
这种损耗包括流体经过直管的沿程阻力以及因流体运动方向改变或因管子大小形状改变所引起的局部阻力。
1.沿程阻力流体在水平均匀管道中稳定流动时,由截面1到截面2,阻力损失表现在压强的降低;h f =gp p ρ21-影响阻力损失的因素十分复杂,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,扩大实验结果的应用范围,可采用因次分析法将各变量综合成准数关系式。
影响阻力损失的诸因素有:(1)流体性质:密度ρ,粘度μ;(2)管路的几何尺寸:管径d ,管长l ,管壁粗糙度e ; (3)流动条件:流速u 。
可表示为:△P=f(d,l ,μ,ρ,u,e)。
组合成如下的无因次式:,,,2⎪⎭⎫⎝⎛=∆d e d l du u Pμρφρ22Re u d e dl p∙∙∙=∆⎪⎭⎫ ⎝⎛ϕρ引入⎪⎭⎫ ⎝⎛∙=d eRe ϕλ,则上式变为:gu dl pfh22∙=∆=λρ式中,λ称为直管摩擦系数,滞流时λ=64/Re ;湍流时λ与Re 的关系受管壁粗糙度的影响,需由实验求得。
根据伯努利方程可知,流体通过直管的沿程阻力损失,可直接由所测得的液柱压差计读数ΔR 算出:△p=ΔR(ρ指-ρ水)g其中:ρ指——压差计中指示液密度,kg/m 3。
本实验中用水银作指示液,被测流体为水。
ΔR ——U 型管中水银位差,m 。
g ——重力加速度,g=9.81m/s 2。
2.局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
实验一 流体流动阻力的测定
实验一 流体流动阻力的测定一、实验目的1、了解流体在管道内摩擦阻力的测定方法;2、确定摩擦系数λ与雷诺数Re 的关系。
二、基本原理由于流体具有粘性,在管内流动时必须克服内摩擦力。
当流体呈湍流流动时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。
流体的粘性和流体的涡流产生了流体流动的阻力。
在被侧直管段的两取压口之间列出柏努力方程式,可得:ΔP f =ΔPL —两侧压点间直管长度(m)d —直管内径(m)λ—摩擦阻力系数u —流体流速(m/s )ΔP f —直管阻力引起的压降(N/m 2)µ—流体粘度(Pa.s )ρ—流体密度(kg/m 3)本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分别求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。
三、实验装置与仪器1、实验装置水泵将储水糟中的水抽出,送入实验系统,首先经玻璃转子流量计测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。
被测直管段流体流动阻力△P 可根据其数值大小分别采用变压器或空气—水倒置U 型管来测量。
实验系统流程图见图一压差传感器与直流数字电压表连接方法见图二2、设备的主要技术参数(1)被测直管段:管径d —0.0080(m) 管长L —1.6(m) 材料:紫铜管(2)玻璃转子流量计:型号LZB —25 测量范围100—1000(L/h) 精度:1.5 型号LZB —10 测量范围10—100(L/h) 精度:2.5(3)单项离心清水泵:型号WB70/055 流量20—2000(L/h)扬程:13.5~19(m) 电功功率:550(W) 电机功率:550(W) 电流:1.35(A) 电压:380(V)22u d L P h ff ⨯=∆=λρ22u P L d f ∆⨯=ρλμρdu =Re四、实验步骤:1、向储水槽内注蒸馏水,直到水满为止。
实验一流体阻力测定实验
实验一 流体阻力测定实验(1)流体阻力测定一. 实验目的1、 学习直管摩擦阻力以及局部阻力的测定方法2、 测定直管摩擦阻力系数λ和局部阻力系数ξ3、 掌握直管摩擦阻力系数λ与雷诺数Re 和管子的相对粗糙度之间的关系及其变化规律 二、实验内容:1、 测定直管摩擦阻力以及直管摩擦阻力系数λ2、 测定阀门的局部阻力以及局部阻力系数ξ 三、实验原理(1)λ─Re 的计算在被测直管段的两取压口之间列柏努利方程式,可得:△P f =△P ( 1 )△P f L u 2h f =───=λ── ── ( 2 ) ρ d 22d △P f λ=── ── ( 3 ) L ρ u 2du ρ Re =─── ( 4 ) μ 符号意义:d ─管径 (m) L ─管长 (m) u ─流体流速 (m /s) △P f ─直管阻力引起的压降 (N /m 2)ρ─流体密度 (Kg /m 3) μ─流体粘度 (Pa.s) λ─摩擦阻力系数 Re ─雷诺准数测得一系列流量下的△P f 之后,根据实验数据和式(1),(3)计算出不同流速下的λ值。
用式(4)计算出Re 值,从而整理出λ─Re 之间的关系, 在双对数坐标纸上绘出λ─Re 曲线。
(2).局部阻力的计算:H f 局=ΔP 局/ρ=(2ΔP 近-ΔP 远)/ρ=ξ×(u 2/2)22up⨯∆=ρξ 四、实验装置及流程:1.实验设备流程图:水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。
被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。
1.实验系统流程示意图见图一所示2.压力传感器与直流数字电压表连接方法见图二五、实验方法及步骤:1.向储水槽内注水,直到水满为止。
(有条件最好用蒸馏水,以保持流体清洁)2.直流数字表的使用方法请详细阅读使用说明书。
实验一流体流动阻力实验
第7章 化工原理实验7.1实验一 流体阻力实验在化工生产中,需要将流体从一台设备输送到另一台设备,或从一个位置输送到另一个位置,这就牵涉到流体输送、流体计量及流体输送机械的选择等问题。
因此,为了能更符合现代化工生产的实际,培养学生的工程观念,采用天津大学化工基础实验中心的“化工流动过程综合实验装置”。
在该实验装置上可单独进行流体流动阻力和离心泵两个单项实验,也可以进行流体流动阻力及离心泵联合实验,该联合实验装置还可进行离心泵的串联、并联实验。
它可以为不同层次的学生提供不同的实验。
学生可以根据教学大纲的要求进行实验,也可以根据自己的兴趣进行其他的实验开发、设计和研究等。
本实验装置可测定的项目:光滑管和粗糙管层流、湍流时摩擦系数的测定,球阀局部系数的测定和流量计的校正。
7.1.1 实验目的(1)学习管路阻力损失f p ∆、摩擦系数λ、局部阻力系数ζ的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识。
(2)了解测定摩擦系数的工程意义。
(3)学会倒U 型压差计和转子流量计的使用方法,以及了解各个管、阀件在管路中的用途。
(4)学习并掌握对数坐标的使用方法。
7.1.2 实验内容(1)测定光滑管内流体流动的阻力损失f p ∆、摩擦系数λ、并绘制Re ~λ的关系曲线。
(2)测定粗糙管内流体流动的阻力损失f p ∆、摩擦系数λ、并绘制Re ~λ的关系曲线。
(3)测定管路部件局部阻力损失f p ∆和局部阻力系数ζ。
7.1.3 实验原理由于流体存在粘性,在流动的过程中会产生内摩擦消耗一定的机械能,引起阻力损失。
管路是由直管和管件(如三通、弯头、阀门)等组成。
流体在直管中流动造成的机械能损失称为直管阻力。
而流体流经管件等局部地方时由于流道突然变化会引起边界层分离,边界层分离会产生大量的漩涡,引起阻力损失,这种阻力损失称为局部阻力损失。
(1)圆形直管摩擦阻力损失(f p ∆)和摩擦系数(λ)测定原理根据流体力学的基本理论,流体在直管中流过时(无论是层流还是湍流),摩擦系数与阻力损失之间存在如下的关系即(范宁公式):22f u d l p ρλ=∆ (7-1-1) 在一根等径的水平放置的圆形直管上,如果没有外加流体输送机械做功,流体流经一定长度管路引起的阻力损失f p ∆等于此段管路的压力降,即21f p p p p -=∆-=∆ (7-1-2)因此可通过测定两截面的压差得到阻力损失。
实验一流体流动阻力的测定
实验一流体流动阻力的测定1.进行测试系统的排气工作时,是否应关闭系统的出口阀门?为什么?答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。
2.如何检验系统内的空气已被排除干净?答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。
3.在U形压差计上装设“平衡阀”有何作用?在什么情况下它是开着的,又在什么情况下它应该关闭的?答:用来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,平衡阀能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到平衡的作用。
平衡阀在投运时是打开的,正常运行时是关闭的。
4.U行压差计的零位应如何校正?答:打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验。
5.为什么本实验数据须在对数坐标纸上进行标绘?答:为对数可以把乘、除因变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。
6.本实验中掌握了哪些测试流量、压强的方法,它们有什么特点?答:测流量用转子流量计、测压强用U形管压差计,差压变送器。
转子流量计,随流量的大小,转子可以上、下浮动。
U形管压差计结构简单,使用方便、经济。
差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。
7.是否要关闭流程尾部的流量调节答:不能关闭流体阻力的测定主要根据压头来确定;尾部的流量调解阀;起的作用是调解出流量;由于测试管道管径恒定;根据出流量可以确定管道内流体流速;而流速不同所测得的阻力值是不同的;这个在水力计算速查表中也有反映出的。
流体流动阻力实验报告
流体流动阻力实验报告一、实验目的。
本实验旨在通过测量不同流速下流体通过不同形状截面管道时的流动阻力,探究流体流动阻力与流速、管道形状的关系,从而加深对流体力学的理解。
二、实验原理。
1. 流体流动阻力。
当流体通过管道流动时,由于管壁的摩擦力和管道内部的涡流等原因,会产生一定的阻力,称为流体流动阻力。
2. 流体流动阻力系数。
流体流动阻力系数与流速、管道形状等因素有关,通常用Reynolds数来表征,即Re=ρVD/μ,其中ρ为流体密度,V为流速,D为管道直径,μ为流体粘度。
不同形状的管道在不同流速下,其流动阻力系数也会有所不同。
三、实验装置。
1. 实验装置包括流速测量装置、管道系统、压力传感器、数据采集系统等。
2. 流速测量装置采用激光多普勒测速仪,能够准确测量流体通过管道的流速。
3. 管道系统包括不同形状截面的管道,用于测量不同形状管道的流动阻力。
四、实验步骤。
1. 将不同形状截面的管道依次连接到流速测量装置上,并通过数据采集系统记录流体通过管道的流速。
2. 调节流速测量装置,分别测量不同流速下流体通过不同形状管道的流速和压力。
3. 根据测得的数据,计算流体流动阻力系数,并绘制流速与流动阻力的关系曲线。
五、实验结果与分析。
1. 通过实验测得不同形状管道在不同流速下的流动阻力系数,发现在相同流速下,不同形状管道的流动阻力系数存在明显差异。
2. 经过分析发现,流体流动阻力系数与管道形状、流速等因素密切相关,其中流速对流动阻力系数的影响较大。
3. 实验结果与理论分析基本吻合,验证了流体流动阻力与流速、管道形状的关系。
六、实验结论。
1. 流体流动阻力与流速、管道形状密切相关,流速越大、管道形状越复杂,流动阻力越大。
2. 实验结果可为工程实践提供参考,对流体在管道内的流动阻力有一定的指导意义。
七、实验总结。
本实验通过测量不同形状管道在不同流速下的流动阻力系数,探究了流体流动阻力与流速、管道形状的关系,加深了对流体力学的理解。
流体流动阻力
流体流动阻力测定实验一、实验目的1.1掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
1.2测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re 的关系曲线。
1.3测定流体流经管件、阀门时的局部阻力系数ξ。
1.4学会倒U形压差计和涡轮流量计的使用方法。
1.5识辨组成管路的各种管件、阀门,并了解其作用。
二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
2.1直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221udlppphffλρρ=−=Δ= (1)即, 22lupdfρλΔ= (2)式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m;fpΔ—流体流经l米直管的压力降,Pa;fh—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。
滞流(层流)时,64=λ(3)μρdu=Re (4)式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。
l、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。
fpΔ例如本装置采用涡轮流量计测流量V(m3/h)。
2900dVuπ= (5)fpΔ可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
(1)当采用倒置U型管液柱压差计时(6) gRpfρΔ=式中:R-水柱高度,m。
(2)当采用U型管液柱压差计时()gRpfρρΔ−=0 (7)式中:R-液柱高度,m;0ρ-指示液密度,kg/m3。
流体流动阻力实验报告
西南民族大学学生实验报告课程名称:化工原理实验教师:实验室名称:BS-305教学单位:化环学院专业:中药学班级:1101班姓名:学号:实验日期:10.31实验成绩:批阅教师:日期:一.实验名称:实验一流体流动阻力的测定二.实验目的:① 握测定流体流动阻②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
③测定层流管的摩擦阻力。
④验证湍流区内摩擦系数λ为雷诺数Re和相对粗糙度的函数。
⑤识别组成管路的各种管件、阀门,并了解其作用。
三.基本原理:1.直管摩擦阻力系数λ测定流体在水平等径直管中稳定流动时,阻力损失为:22fp l uhdλρ∆==⨯即,22lupdρλ∆=式中fh——直管阻力,J/kg;l——被测管长,m;d——被测管内径,m;u——平均流速,m/s;λ——摩擦阻力系数。
滞流(层流)时,64Reλ=湍流时,雷诺数duReρμ=Aqu v=2.局部阻力系数ξ的测定:22fuhξ=,即22upρξ'∆=四.实验装置与流程:1、装置组成部分本实验装置如图1;装置相关参数在化工原理实验指导书上p21的表2-1所示。
由于管子的材质存在批次的差异,所以可能会产生管径的不同,所以表2-1中管内径只能做参考。
图1:流体阻力实验装置图1—水箱;2—离心泵;3—压力表;4—孔板流量计;5—上水阀;6—高位水槽7—曾流光流量调节阀;8—阀门管线开关阀;9—球阀;10—截止阀;11—光滑管开关阀12—粗糙管开关阀;13—突然扩大管开关阀;14—流量调节阀2、开车前准备3、流体流动阻力实验步骤①启动离心泵,打开被测管线上的开关阀及面板上与其对应的切换阀,关闭其他开关阀和切换阀,确保测压点一一对应。
②系统要排净气体使液体连续流动。
设备和测压管线中的气体都要排净,检验的方法是当流量为零时,观察U形压差计的两液面是否水平。
③读取数据时,应注意稳定后再读数。
测定直管摩擦阻力时,流量由大到小,充分利用面板量程测取7组数据。
实验一 流体流动阻力的测定
1、掌握测定流体流经圆形直管时的阻力损失hf和摩擦系数λ的方法; 2、掌握测定局部阻力系数ξ的方法; 3、学习双对数坐标纸的用法,在双对数坐标图上标绘λ―Re关系曲线; 4、学习U型压差计和流量计的使用方法。实验原理
流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系。
hf=ΔP/ρ= λι/dx(u^2)/2 (1-1 )
λ=2d/ριxΔPf/u^2 (1-2)
Re=ρdu/μ (1-3)
式中:
d——管径,m;
ΔPf——直管阻力引起的压强降,Pa;
u——流速, m/s;
ρ——流体的密度.kg/m3;
1、试验准备 ①将水槽注满水。 ②打开U型差压计的平衡阀,关闭离心泵出口阀门,启动离心泵,并打开转速显示仪开关。 ③打开离心泵出口阀门至最大循环几分钟,排出管路中气体,再把U型差压计上放气阀打开,让水把测压导管中气体记取U型差压计初始读数,打开出口阀,再关闭,看初始读数有无变化,如不变表明气体排尽。2、实验过程 ①测定直管阻力 调节泵出口阀门,使流量逐渐增大,在流量变化中取8~10组数据(流量小时数据密些),流量稳定时读取数据。 ②测定局部阻力(可在测定直管阻力时同时测定)测定不同流量时的5组数据。 ③记录水温。 ④实验完毕后的检查工作 a首先关闭泵出口阀门,及仪表开关,将U型压差计上平衡阀关闭,再关泵。b 排除槽中水。
实验报告要求
1、绘出λ、Re关系曲线 2、计算闸阀局部阻力系数ξ,并求出平均值。
思考题
1.在测量前为什么要将设备中的空气排尽?怎样赶气?如何检验是否赶尽? 2.在U型差压计上装设的“平衡阀”有何作用?在什么情况下它是开着的,又在什么情况下它应该是关闭的?(不测定时开,测量时关) 3.不同管径、不同水温测定的λ、Re关系曲线能否用于空气?如何应用? 4.如测压孔边缘有毛刺或安装就正,对静压的测量是否有影响?
实验一 流体流动阻力测定实验
4.1 流体流动阻力测定实验一、实验目的⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。
⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。
⒊掌握局部阻力的测量方法。
⒋学习压强差的几种测量方法和技巧。
⒌掌握双对数坐标系的使用方法。
二、实验内容⒈测定实验管路(光滑管和粗糙管)内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数。
三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。
流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f =ρfP ∆=22ud l λ(4-1)λ=22uP ldf ∆⋅⋅ρ (4-2)Re =μρ⋅⋅u d (4-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ;-u 流速,m / s ;-ρ流体的密度,kg / m 3;-μ流体的粘度,N ·s / m 2。
直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。
根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
⒉局部阻力系数ζ的测定22'uPh ff ζρ=∆=' (4-4)2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (4-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
实验一流体流动阻力的测定.doc
实验一流体流动阻力的测定.doc
流体流动阻力测试是流体力学领域中一个重要的实验,它可以用来分析流体运动中受
到浮力、重力及其他外力的影响,从而更好地控制流体在管道、管棍等设备中的流动状态。
下面将介绍流体流动阻力测试的实验步骤。
1、首先,实验室应准备好相应的设备。
实验具有一台流量计,一台压力计,一个不
可熔断的管道和一台定时器,以及管棍的薄膜、堵头、控制阀等必要的仪器仪表。
2、安装管棍,管棍应安装在可控水泵和压力计入口之间,和实验室连接一个管路系统,设置一定压力,控制阀调节水流至一定流量。
3、实验测试:将薄膜张拉,使系统处于稳定状态,记录压差、流量的时变数据,把
它们纳入压力计、流量计的读数,并加上实验环境的温度,测得系统的静压阻力值。
4、校核:用实验数据与理论公式的计算差分结果进行比较,如果两者相差不大,则
认为实验结果可靠,如果相差较大,则要重新安装测试系统本身,或者改变系统流量,进
行重新测试。
实验流体流动阻力可以帮助我们更好地知晓在管道中流体受到的外力,以更好地控制
流体。
但是,受到实验环境和设备制约,实际实对流体流动阻力测试中不可避免的会存在
一定的误差,因此,在实验前,应当做好设备的校核等准备工作,减少实际测试的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一流体流动阻力的测定一、实验目的1.了解流体流过直管或管件阻力的测定方法。
2.掌握直管摩擦系数λ与雷诺数Re之间关系的变化规律。
3.熟悉液柱压差计和转子流量计的使用方法。
4.测定流体流过阀门、变径管件(突然扩大、突然缩小)的局部阻力系数ξ。
二、实验内容1.测定流体流经直管(不锈钢管、镀锌管)时摩擦系数λ与雷诺数Re之间关系。
2.测定全开截止阀、突然扩大及突然缩小的阻力系数ξ。
三、基本原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地引起流体压力的损失。
流体在流动时所产生的阻力有直管摩擦阻力(又称沿程阻力)和管件的局部阻力。
这两种阻力,一般都是用流体的压头损失h f或压强降P f表示。
1.直管阻力直管摩擦阻力h f与摩擦系数λ之间关系(范宁公式)如下:h f=λ·ld·u22(1—1)式中 h f——直管阻力损失, J/kg;l——直管长度, m;d——直管内径, m;u——流体平均速度, m/s;λ——摩擦系数,无因次。
其中摩擦系数λ是雷诺数Re和管壁相对粗糙度ε/d的函数,即λ=f(Re,ε/d)。
对一定相对粗糙度而言,λ=f(Re);λ随ε/d和Re的变化规律与流体流动的类型有关。
层流时,λ仅随Re变化,即λ=f(Re);湍流时,λ既随Re变化又随相对粗糙度ε/d改变,即λ=f(Re,ε/d)。
据柏努利方程式可知阻力损失hf的计算如下:h f=(Z1-Z2)g+ρ21pp-+22 22 1uu-(1—2)当流体在等直径的水平管中流动时,产生的摩擦阻力可由式(1—2)化简而得:h f =p p 12-ρ=∆p ρ=ρfp ∆ (1—3)式中 ——流体的平均密度, kg/m 3;p 1——上游测压截面的压强, Pa ;p 2——下游测压截面的压强, Pa ;p ——两测压点之间的压强差, Pa ;p f ——单位体积的流体所损失的机械能, Pa 。
其中压强差p 的大小采用液柱压差计来测量,即在实验设备上于待测直管的两端或管件两侧各安装一个测压孔,并使之与压差计相连,便可测出相应压差p 的大小。
本实验的工作介质为水,在一定的管路中流体流动阻力的大小与流体流速密切相关。
流速大,产生的阻力大,相应的压差大;流速小,阻力损失小,对应的压差也小。
为扩大测量范围,提高测量的准确度,小流量下用水—空气型压差计;大流量下用水—水银U 型压差计。
据流体静力学原理,对水—空气型压差计,压差p 为p=(-空气)g R ≈g R (1—4)式中 R ——压差计的读数, mH 2O ;g ——重力加速度, m/s 2;空气——空气在操作条件下的密度, Kg/m 3。
对于水—水银U 型压差计,有 p=(Hg —)g R (1—5) 式中 Hg ——水银的密度, kg/m 3。
其余符号的意义同式(1—4)。
整理(1—1)和(1—3)两式得:λ=ρρp u d ∆⋅⋅22 (1—6) 而 Re=du ρμ (1—7)式中 μ——流体的平均粘度, Pa ·s 。
在实验设备中,管长l 与管内径d 已固定,用水进行实验,若水温不变,则与也是定值。
所以该实验即为测定直管段的流动阻力引起压强降P 与流速的关系。
流量V h 的测定用转子流量计,据管内径的大小可算出流速u 的值。
调节一系列的流量就可测定和计算一系列的与Re 值,在双对数坐标中绘出—Re 关系曲线。
2.局部阻力局部阻力是由于流体流经管件、阀门及流量计时,因流速的大小和方向都发生了变化,流体受到干扰和冲击,涡流现象加剧而造成的。
局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
当量长度法是将流体流过管件或阀门而产生的局部阻力,用相当于流体流过与其具有相同管径的若干米长的直管阻力损失来表示,这个直管长度称为当量长度,用l e 表示。
其特点是便于管路总阻力的计算。
而局部阻力的测定通常采用阻力系数法。
据阻力计算通式h f =ξu 22 (1—8) 式中 ξ——局部阻力系数,无因次;u ——在小截面管中流体的平均流速, m/s 。
对于处在水平管路上的管件或阀门亦有式(1—3)这一关系,由此可知f f h p p ρ=∆=∆ (1—9)即两测压点间的压强差p 等于因流动阻力而引起的压强降p f 。
(1)全开的截止阀式(1—9)中p f 为两测压点间的局部阻力与直管阻力之和。
由于管件或阀门距测压孔的直管长度很短,引起的摩擦阻力与局部阻力相比可以忽略,p f 可近似认为全部由局部阻力损失引起。
p f 的大小通过测量p 来获得。
由于全开的截止阀的阻力系数较大,所以p 采用水—水银U 型压差计来测量,原理同式(1—5)。
由式(1—3)和式(1—可8)导出:ξρ=22∆p u (1—10) ξ的大小与管径、阀门的材料及加工精度有关。
(2)突然扩大与突然缩小在水平管的两测压点间列柏努力方程式u 122+p 1ρ=u 222+p 2ρ+h f (1—11) 局部阻力 h f =p p 12-ρ+u u 12222- (1—12) 式中 p 1——上游测压截面的压强, Pa ;p 2——下游测压截面的压强, Pa ;u 1——上游侧管内流体的流速, m/s ;u 2——下游侧管内流体的流速, m/s 。
由此可见,p f的大小除了包括局部阻力损失和可忽略的摩擦阻力损失之外,还包括动能和静压能之间能量转换值。
由于突然扩大与突然缩小阻力系数 ≤1,p可由水—空气型压差计来测量,而阻力系数可由式(1—4)、式(1—8)、式(1—12)联立求得。
特别注意p与动能变化的正负值。
同样调节一系列的流量,可获取相应的阻力系数值。
四、实验装置与流程1.实验流程实验装置流程如图所示。
水由离心泵从循环水槽中抽出,经两个并联的转子流量计计量后通过阀门控制流体流经不同的管路系统,最后流回水槽循环使用。
管路系统中两根不同材料的直管用于测定直管阻力,第三根用于测定截止阀、突然扩大与突然缩小的局部阻力。
2.测压系统测压系统采用U型、型两类压差计。
本装置有三套水—水银U型压差计,四套水—空气型压差计,根据流量大小选用不同的压差计来测量管件的压力降。
所有压差计在使用前都需进行排气操作。
3.流量测量大流量,用大转子流量计(LZB-80)测量;小流量,用小转子流量计(LZB-40)测量。
4.主要设备尺寸(1)DN25镀锌管:d内=27.5mm,l=3.5m;(2)DN25不锈钢管:d内=27.5mm,l=3.5m;(3)DN25不锈钢截止阀;(4)d1=27.5mm,d2=52.5mm的突然扩大;d1=52.5mm,d2=27.5mm的突然缩小,材质均为不锈钢。
(5)IST托架式单极单吸离心泵,规格:IST65-50-125;(6)不锈钢水槽:长1200mm宽600mm高800mm。
五、实验步骤1.熟悉实验装置,了解各阀门、旋塞的作用。
2.检查水槽是否充满水,给水槽注水。
3.关闭离心泵的出口阀,防止因启动电流太大而损坏电动机。
同时关闭应该关闭的阀门,以防液体渗漏,影响流量和压强的测量。
4.检查泵轴、叶轮是否转动。
若转动灵活,接通电源,打开开关,启动离心泵。
5.排气(1)管路排气。
在大流量下,使管内呈单相稳定流动。
(2)测压导管排气。
对待测管路上的压差计的引压管依次排气:在大流量下,打开U型压差计上端的放气旋塞,排除引压管内的气泡;型压差计的排气,将其上端的放气旋塞打开,直至连续出水为止,之后调整其液位为满刻度的1/2高度。
(3)检查排气是否完善。
将水量开大后,再关闭离心泵的出口阀,观察压差计两端的液位是否平齐。
若不平齐,继续排气操作。
注意型压差计的流量不得超过6m3/h。
流体流动阻力实验装置流程图1.离心泵 2.泵开关 3.泵出口调节阀 4.球阀 5.转子流量计 6.光滑管 7.粗糙管8.突然扩大 9.突然缩小 10.截止阀 11.水槽 12.压差计面板13.U型压差计 14.型压差计6.数据测量测量阻力的顺序依次为光滑管、粗糙管、局部阻力(阀门、突然扩大、突然缩小同时测量),实验数据记录在原始数据表中。
(1)直管阻力用离心泵的出口阀来调节流量作实验。
调节一个阀门开度,须经一定时间稳定后,记录一个流量,同时记录压差计的读数。
实验从最小流量到最大流量依次测取12~15组数据。
为尽可能使实验数据在对数坐标中分布均匀,用小流量计测取5~6组数据,用大流量计测取7~9组数据。
(2)局部阻力局部阻力的测定与直管阻力的测定步骤相同。
在2.0m3/h~6.0m3/h之间,按从小到大的顺序依次测5组数据。
7.实验结束,关闭离心泵的出口阀,停泵。
8.测量实验前和实验后的水温,取其平均值作为测量水温。
六、实验报告1.绘制原始数据表和数据整理表。
2.在双对数坐标中分别绘制不锈钢管、镀锌管的λ~Re曲线。
3.计算局部阻力系数,并取其平均值。
4.写出典型数据的计算过程,分析和讨论实验现象。
七、思考题1.如何检验系统内的空气已经被排除干净?2.U型压差计的零位应如何校正?3.待测截止阀接近出水管口,即使在最大流量下,其引压管内的气体也不能完全排出。
试分析原因,应该采取何种措施?4.测压孔的大小和位置,测压导管的粗细和长短对实验有无影响?为什么?5.试解释突然扩大、突然缩小的压差计读数在实验过程中有什么不同现象?6.不同管径、不同水温下测定的λ~Re曲线数据能否关联到同一曲线?7.在λ~Re曲线中,本实验装置所测Re在一定范围内变化,如何增大或减小Re的变化范围?8.本实验以水作为介质,作出λ~Re曲线,对其它流体是否适用?为什么?9.影响λ值测量准确度的因素有哪些?10. .11.12.。