2017年四川大学652数学分析考研真题【圣才出品】

合集下载

伍胜健《数学分析》笔记和考研真题详解(多元函数的极限和连续)【圣才出品】

伍胜健《数学分析》笔记和考研真题详解(多元函数的极限和连续)【圣才出品】

③用列向量
来表示
,称 x 为 中的一个点或向量
的转置.
④记
为 中的原点或零向量.
(2) 中的运算
① 中的加法运算

,定义

并称 x y 为 x 与 y 的和.
② 中的数乘运算

,定义
1 / 22
圣才电子书

并称 x 为 与 x 的数乘.
十万种考研考证电子书、题库视频学习平台

向量空间 有了内积运算后,称 为欧几里得(Euclid)空间或欧氏空间.
②向量的模
利用内积运算,定义向量
的模如下:
中两个非零向量 x 与 y 的内积为:

其中 x, y 是向量 x 与 y 的夹角.
(5)距离
①距离的定义


为 中任意两个点,则 x 与 y 的距离定义
表示单位向量(0,1),并称它们为单位坐标向量.因此,对于
,有
3 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

③当 n=3 时,用 (x, y, z) 表示空间 中的点,记

于是对于

(7)矩阵的范数

是一个 m n 矩阵,其中
2.点列极限
(1)欧氏空间 中邻域的概念
集合,并称之为 E 的内部.
②若存在
使得
,则称 x 是 E 的外点.E 的所有外点构成的集合称
为 E 的外部.
③若对于
,有
,并且
,则称 x 是 E 的边界点,
并用 来记 E 的边界点集,称之为 E 的边界.
注:E 的内点一定属于 E;E 的外点一定不属于 E,且 E 的外部即为 的内部 ;E

伍胜健《数学分析》(第1册)配套题库【考研真题+章节题库+模拟试题】【圣才出品】

伍胜健《数学分析》(第1册)配套题库【考研真题+章节题库+模拟试题】【圣才出品】

,使得
存在
,使得
。改变 n 的值,有
[北 取,
依次类推,有 且
而且满足
很明显,
为一个严格单调递减的数列,
3.设{xy}为所有 xy 乘积的集合,其中
,且 x≥0 及 y≥0.证明:
[武汉大学研]
证明:设



,可取
.且使


,∴存在
由③有

由②,④得证
4.设 解:当 当-1≤x<0 时,
.[同济大学研]
第1章 函 数
一、填空题 设 A.0 B.1 C. D. 【答案】B 【解析】
( ).[浙江大学研]
二、解答题
1.使用确界原理证明单调递减的有界数列必有极限。[天津大学研]
证明:确界原理,即有上界的非空集必有上确界,有下界的非空集必有下确界。
设 为单调递减且有界的数列,则由确界原理可知,
存在。下面证该下确界就是 的极限。
由下确界定义:
(1)对任意的 n,有
,当然
成立,这ε为任意小的正数。
(2)对上述任意的ε,存在 N,当 n>N 时,有
。又因为条件(1),所以
成立。
2.设 S 是非空集合,ξ=infS,试证明:若ξ∈S,则 S 中必存在一个严格单调递减的
,使得
京航空航天大学研]
证明:若ξ=infS,即(1)对任意的 x∈S,有 X≥ξ:(2)对任意的ε>0,存在

证明:
,并利用(1),求极限
证明:(1)(i)先设
,由①式,
.[中国人民大学研] ,存在 N>0,当 n>N 时有
特别取 n=N+1,N+2,……

伍胜健《数学分析》笔记和考研真题详解(函数)【圣才出品】

伍胜健《数学分析》笔记和考研真题详解(函数)【圣才出品】

伍胜健《数学分析》笔记和考研真题详解第1章函数1.1复习笔记一、实数1.数集(1)集合的概念集合是将具有某种特性的、确定的、互不相同的对象的全体作为一个整体,这些对象称为集合中的元素,若a是集合A中的元素,则记为a∈A,如果a不是集合A中的元素,则记为.(2)集合的表示方法①列举法:是将集合中的元素全部列出.②描述法:是将集合的特性精确给出.(3)子集的相关概念①子集的定义:若集合A中的每一个元素X都属于集合B,则称B包含A,记为,此时也称A是B的子集.②集合相等:如果和同时成立,则认为A,B是同一个集合,此时也记为A=B.③真子集的定义:若且A≠B,则称A是B的真子集,记为A B⊂.≠注:空集即中不含有任何元素,因此是任何集合的子集.(4)集合的运算给定集合A,B,集合有以下常用运算:①称为A与B的并;②称为A与B的交;③称为A与B的差.2.实数系的连续性(1)分划的定义设S是一个有大小顺序的非空数集,A和B是它的两个子集,如果它们满足以下条件①②③都有④A中无最大数,则将A,B称为S的一个分划,记为.(2)戴德金分割定理对实数系R的任一分划(A|B),B中必有最小数.3.有界集与确界(1)有界集①设集合并且,a.如果存在使得对有x≤M,则称E是有上界的,并且说M是E的一个上界;b.如果存在使得对有x≥m,则称E是有下界的,并且说m是E的一十万种考研考证电子书、题库视频学习平台圣才电子书个下界;c.如果E 既有上界又有下界,则称E 是有界的.②E 是有界的充分必要条件是:存在M>0,使得对任意的有(2)确界的定义①上确界设为一个非空数集,若有满足a.M 是E 的一个上界,即有b .对存在使得则称M 为E 的上确界,记为.②下确界设为一个非空数集,若有满足:a.m 是E 的一个下界,即有b .对存在使得,则称m 为E 的下确界,记为显然,E 的上确界就是它的最小上界,而下确界就是它的最大下界.(3)确界定理非空有上界的实数集必有上确界;非空有下界的实数集必有下确界.(4)常用不等式①实数的绝对值由此可知,对任何有②三角不等式,③伯努利(Bernoulli)不等式:对任意的和任意正整数n,有④算术—几何平均不等式:对任意n个非负实数有:(5)常用记号①N:全体正整数组成的集合;②Z:全体整数组成的集合;③Q:全体有理数组成的集合;④R:全体实数组成的集合.显然有⑤闭区间:⑥开区间:⑦左开右闭区间:⑧左闭右开区间:且;⑨无穷区间:.二、函数的概念1.函数的定义(1)对于给定的集合,如果存在某种对应法则f,使得对X中的每一个数x,在R中存在唯一的数y与之对应,则称对应法则f为从X到R的一个函数,记做其中y称为f在点x的值,X称为函数f的定义域,数集称为函数f的值域,记为f(x),x称做自变量,y称做因变量.(2)构成一个函数必须具备三个基本要素:定义域、值域和对应法则.2.常见函数类型(1)基本初等函数①常值函数:②幂函数:③指数函数:④对数函数:⑤三角函数:⑥反三角函数:.(2)特殊函数①符号函数②狄利克雷(Dirich1et)函数.③高斯(Gauss)取整函数其中[x]即不超过x的最大整数,即n≤x<n+1.④黎曼(Riemann)函数⑤特征函数:设,称为集E的特征函数.3.函数的构造(1)函数的四则运算设为两个已知函数,且则可以利用实数的四则运算构造新函数如下:(2)函数的限制与延拓设函数和满足:且则称f(x)是g(x)在X1上的限制,而g(x)是f(x)在X2上的延拓.(3)函数的复合设为两个函数,若则定义在X1上的函数称为f1和f2的复合函数,记作,通常称f1为该复合函数的内函数,f2为外函数.注:函数的复合运算可以进行的前提条件是,外函数的定义域必须包含内函数的值域.(4)映射和反函数的定义①单射:设是一个函数,若对任意的只要x1≠x2,就有。

陈纪修《数学分析》(第2版)(下册)名校考研真题-Euclid空间上的极限和连续(圣才出品)

陈纪修《数学分析》(第2版)(下册)名校考研真题-Euclid空间上的极限和连续(圣才出品)

第11章Euclid空间上的极限和连续一、判断题1.若f(x,y)在D内对x和y都是连续的,则f(x,y)对(x,y)∈D为二元连续函数.[重庆大学研]【答案】错【解析】举反例:,很明显但是不存在,如果选取路径y=kx趋于0,有不唯一.二、填空题(1)函数的定义域是______,它是______区域;(2)函数的定义域是______;(3)函数的定义域是______;(4)二元函数的定义域是______;(5)函数的定义域是______.[西安交通大学研]【答案】(1)(2)(3)椭圆与抛物线所围的区域;(4)(5)三、解答题1.设f(x)为定义在上的连续函数,α是任意实数,有证明:E是开集,F是闭集.[江苏大学2006研]证明:对任意的,有.因为f(x)在上连续,所以由连续函数的局部保号性知,存在的一个邻域使得当时有,从而,故E是开集.设为F 的任意一个聚点,则存在F中的点列使得.由于f(x)在上连续,所以,又,从而,即,故F是闭集.2.求.[南京大学研、厦门大学研、山东科技大学研]解:方法一由于令,有所以方法二由于,,所以,故有3.设f(x,y)在[a,b]×[c,d]上连续,证明:在[c,d]上连续.[南京理工大学研、华东师范大学研]证明:反证法.假设g(y)在某点处不连续,则存在及点列,使得因为f(x,y)在[a,b]×[c,d]上连续,故在[a,b]×[c,d]上一致连续.于是对,存在δ>0,当时恒有.特别当时,即.固定y,让x在[a,b]上变化,取最大值,可得即时,.因为,所以对δ>0,存在N >0,当n>N时有,从而有,这与一开始得到的不等式矛盾,结论得证.4.设,为有界闭集,试证:开集W、V,使得A证明:A、B为有界闭集.[四川大学研]令显然W、V为开集.5.设试讨论下面三种极限:[南京工学院研]解:由于在y=0和x=0的函数极限不存在,故在(0,0)点的两个累次极限都不存在.6.设f(x,y是区域D:|x|≤1,|y|≤1上的有界k次齐次函数(k≥1),问极限是否存在?若存在,试求其值.[南京大学研]解:令x=rcosθ,y=rsinθ.由于f(x,y)是区域D上的有界k次齐次函数7.设二元函数f(x,y)在正方形区域[0,1]×[0,1]上连续.记J=[0,1].(1)试比较的大小并证明之;(2)给出并证明使等式成立的(你认为最好的)充分条件.[浙江大学研]解:(1),有上式对于任意的x都成立,则由y的任意性可知(2)若,使下面证明上面条件为充分条件显然8.设为n维欧氏空间,A是的非空子集,定义x到A的距离为证明:上的一致连续函数.[南京大学研] 证明:有对使故对时,即上的一致连续函数.9.[暨南大学2013研] 解:设,则。

伍胜健《数学分析》笔记和考研真题详解(含参变量积分)【圣才出品】

伍胜健《数学分析》笔记和考研真题详解(含参变量积分)【圣才出品】

伍胜健《数学分析》笔记和考研真题详解第17章含参变量积分17.1复习笔记一、含参变量定积分1.基本概念设函数在平面区域上有定义.(1)若对于定积分存在,则由此定义了区间[a,b]上的函数I(x)称为含参变量定积分(简称含参变量积分),其中x为参变量.(2)若对于存在,则也称J(y)为含参变量定积分,其中y为参变量.2.基本性质(1)连续性定理①设函数在区域上连续,则对于含参变量定积分存在,并且I(x)在区间[a,b]上连续.注:f(x,y)在D上连续只是I(x)连续的充分条件.②设函数在区域上连续,则有③设函数在区域上连续,则对变上限含参变量积分存在,并且二元函数I(x,u)在D上连续.对于变下限含参变量积分,也有类似的结论.(2)可积性定理①设函数f(x,y)在区域上连续,则函数和分别在区间[a,b]和[c,d]上可积,并且②设函数f(x,y)在区域上连续,则(3)可导性定理①设函数f(x,y)及其偏导数在区域上连续,则函数在区间[a,b]上可导,并且有②设函数f(x,y)及其偏导数在区域上连续,则求导数运算与积分运算是可交换顺序的.③设函数及其偏导数在区域上连续,且是满足的可微函数,则函数在区间上可导,并且二、含参变量广义积分1.含参变量无穷积分(1)含参变量无穷积分的定义设函数在上有定义,其中为一个集合.若对于广义积分收敛,则可得到E上的函数称该函数为含参变量无穷积分.(2)含参变量无穷积分的一致收敛①含参变量无穷积分的一致收敛的定义设函数在上有定义,其中是一个区间.若对于当时,对于有则称含参变量无穷积分在E上一致收敛.②含参变量无穷积分的绝对一致收敛的定义设函数在上有定义,其中是一个区间.若对于收敛,则称在E上绝对收敛.若在E上绝对收敛,则在E 上收敛.另外,若在E上一致收敛,则在E上绝对一致收敛.(3)一致收敛的判别法则①柯西准则设函数在上有定义,其中是一个区间,则含参变量无穷积分在E上一致收敛的充分必要条件是:对当时,对,有②魏尔斯特拉斯定理设函数在上有定义,其中是一个区间.若存在函数使得对于及有并且收敛,则在E上绝对一致收敛.③狄利克雷判别法设函数在上有定义(其中是一个区间),并且满足:a.存在对于及有b.对任意固定的是y的单调函数,且对于当时,对一切有即当时,q(x,y)关于x一致趋于0,则含参变量无穷积分在E上一致收敛.④阿贝尔判别法设函数在上有定义(其中是一个区间,并且满足:a.在上一致收敛;b.对任意固定的是y的单调函数,并且存在常数对于及有则含参变量无穷积分在E上一致收敛.(4)基本性质①定理1设函数在上有定义,其中则含参变量无穷积分在上一致收敛的充分必要条件是:对任意的满足条件且的序列函数序列在E 上一致收敛.②定理2设函数在上连续,其中是一个区间,并且含参变量无穷积分在E 上一致收敛到函数I(x),则I(x)在E 上连续.③定理3设函数在上连续,且含参变量无穷积分在[a,b]上一致收敛,则有④定理4设函数f(x,y)及其偏导数在上连续,其中是一个区间,再设存在x 0∈E,使得收敛,并且在E 上一致收敛,则a.在E 上一致收敛;b.⑤狄尼定理设函数在上连续且不变号,设对于收敛,且I(x)在[a,b]上连续,则I(x)在[a,b]上一致收敛.2.含参变量瑕积分(1)定义设函数在上连续,当时,以c为瑕点.若对任意瑕积分(17-1)收敛,则I(x)在[a,b]上有定义.称I(x)为含参变量瑕积分.(2)基本性质利用变换可以将(17-1)式化成含参变量无穷积分从而得到含参变量瑕积分也有相应的一致收敛性以及其它的性质.三、函数与 函数1.函数(1)定义函数是指由如下含参变量积分定义的函数:(2)定义域。

2017考研数学二真题及答案解析

2017考研数学二真题及答案解析

2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1))若函数1cos ,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则()(A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】001112lim lim ()2x x xf x ax ax a ++→→-== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则()()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则()()A 当lim sin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有lim sin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++(B )22(cos 2sin 2)xx Axee B x C x ++(C )22(cos 2sin 2)xx Aexe B x C x ++(D )22(cos 2sin 2)xx Axee B x C x ++【答案】A【解析】特征方程为:21,248022iλλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x xf x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),xx y y y Aexe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则(A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f <【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则()(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。

伍胜健《数学分析》配套模拟试题及详解【圣才出品】

伍胜健《数学分析》配套模拟试题及详解【圣才出品】

5.(15 分)利用替换 结果,求
来计算积分
利用这个
解:设


代入得
所以
令 a=-2,b=3,m=2,n=3,并设
即得
4 / 62
圣才电子书

十万种考研考证电子书、题库视频学习平 台
6.(15 分)讨论级数
的敛散性.
解:令
显然必须设 α≥0,否则若 α<0,对于某些
可能无意义. 当 α=0 时,
内且在 后面的诸多
中任取一个作为 ,依次类推可得(这是可能的,因为每个 项)
中包含 无穷多
1 / 62
圣才电子书
十万种考研考证电子书、题库视频学习平


的一个子序列
满足
由此可得
所以

一个子序列,结论得证.


2.(15 分)若
收敛,则当 x→∞时是否必有 f(x)→0?研究例子:
(2)在任意闭区间[a,b]上,当 δ 足够小时,可使 F(x)与 f(x)一致逼近(即任给
ε>0,对一切
均有
证明:Leabharlann 因为 f(x)处处连续,所以 F'(x)连续,即 F(x)对任何 x 有连续导数. 所以由洛必达法则可得
故对任给 ε>0,当 δ 足够小时,对一切 立.
均有
即所证结论成
8.(20 分)证明:若 f(x)在[a,b]连续,且非线性函数 f(x)在(a,b)可导,
穷多项,则任取其一作为
.再将
二等分,又可得
所给序列的无限多项,依次类推,于是可得一串区间
(若两者均含有无 ,它包含
其中每一项
都包含所给序列的无限多项,且

欧阳光中《数学分析》笔记和考研真题详解(集合)【圣才出品】

欧阳光中《数学分析》笔记和考研真题详解(集合)【圣才出品】

称为点 a 的δ闭邻域. ③去心邻域 设 a∈R,δ>0.集合
则称为点 a 的δ去心邻域.
2.上界与下界
(1)上界
设 A 是一给定的数集,若存在数 M,使得
有 x≤M,则称 M 为集合 A 的一个
上界.
(2)下界
设 A 是一给定的数集,若 数 m,使得
有 x≥m,则称数 m 为集合 A 的一个
下界.
A-B 表示由在 A 中但不在 B 中的元素所组成的集,即 A-B={x|x∈A 且 x∉ B}.
(4)补集
设 A 是 X 的一个子集,A 的补集(又称余集) 定义为
,即属于 X 但
不属于 A 的元素的全体组成的集合.
6.集合运算公式
7.无限个集合的运算 (1)可列多个集合
的并集
3/6
圣才电子书 十万种考研考证电子书、题库视频学习平台
若 B 不是 A 的子集,则记为

(2)命题
A 是任意一个集合,必有
4.若干逻辑记号
(1)设 P,Q 是两个命题.
表示命题 P 成立时命题 Q 也成立,俗称从 P 可推
2/6
圣才电子书

出 Q.
十万种考研考证电子书、题库视频学习平台
(2)
表示

即 P 成立的充要条件是 Q 成立.
为 infA.上、下确界统称确界.
(2)确界定理
上(下)有界的非空数集必存在(惟一)上(下)确界.
(3)上下确界常用的等价定义
①上确界等价定义
设 A 是一个数集,若数β(包括+∞与-∞)满足以下两个条件:
a.
有 x≤β;
b.β的任一邻域
中都含集合 A 的元素,
则称β是 A 的上确界.

2017考研数真题答案

2017考研数真题答案

2017考研数真题答案考研数学真题的答案通常包含多个部分,包括选择题、填空题、解答题等。

由于考研数学分为数学一、数学二和数学三,不同科目的真题答案也有所不同。

下面我将给出一个虚构的2017年考研数学真题的答案示例,供参考。

选择题1. 根据题目所给的函数表达式,我们可以求出其导数,进而判断其单调性,选择正确答案为B。

2. 利用定积分的性质,我们可以计算出所给区间的积分值,答案为C。

3. 根据向量的数量积公式,我们可以计算出两个向量的数量积,答案为A。

填空题1. 根据级数的收敛性判断,该级数是收敛的,其和为π²/6,答案填写为:π²/6。

2. 利用特征方程求解线性代数方程组的特征值,答案填写为:λ₁=3, λ₂=-1。

解答题1. 证明题:证明函数f(x)=x³-3x在(-∞,+∞)上是增函数。

- 解:首先求导f'(x)=3x²-3,令f'(x)>0,解得x>1或x<-1。

因此,函数在(-∞,-1)和(1,+∞)上单调递增,从而证明函数在整个实数域上是增函数。

2. 计算题:计算定积分∫₀¹ (2x+1)dx。

- 解:根据定积分的计算法则,我们有:∫₀¹ (2x+1)dx = [x²+x]₀¹ = (1²+1) - (0²+0) = 2。

3. 应用题:某工厂生产某种产品,其成本函数为C(x)=5000+50x,销售价格为P(x)=150-2x,其中x为产品数量。

求该工厂在生产多少产品时利润最大。

- 解:利润函数为L(x)=P(x)C(x)=x(150-2x)-5000-50x。

对L(x)求导,得L'(x)=-4x+100,令L'(x)=0,解得x=25。

进一步分析L'(x)的符号变化,可知当x=25时,利润函数L(x)取得最大值。

请注意,以上内容仅为示例,实际的考研数学真题答案需要根据具体的题目来确定。

2017考研数学真题及答案汇总

2017考研数学真题及答案汇总

2017考研数学真题及答案汇总
考研英语真题考研数学真题
政治真题
专业课真题英语一真题英语二真题数学一真题数学二真题数学三真题数农真题考研英语答案考研数学答案
政治答案
专业课答案英语一答案英语二答案数学一答案数学二答案数学三答案数农答案2017年考研即将到来,出国留学网考研数学频道将在考后第一时间为大家提供2017考研数学真题及答案汇总,
2017考研数学真题及答案汇总年份数学一数学二数学三数农2017真题答案真题答案真题答案真题答案小编精心为您推荐:
2017考研数学真题及答案解析汇总
2017考研英语一真题及答案已公布
2017考研英语作文真题及范文汇总
2017考研真题及答案汇总
2017考研政治真题及答案
2017考研分数线信息汇总
2017考研成绩查询信息汇总
2017考研国家线信息汇总
2017全国考研调剂信息汇总
2017全国考研复试信息汇总
2017年34所自划线高校分数线汇总。

欧阳光中《数学分析》笔记和考研真题详解(含参变量的积分)【圣才出品】

欧阳光中《数学分析》笔记和考研真题详解(含参变量的积分)【圣才出品】

欧阳光中《数学分析》笔记和考研真题详解第25章含参变量的积分25.1复习笔记一、含参变量的常义积分1.含参变量积分的概念(1)称如下形式的积分为含参变量x的积分.(2)当为常值时,称为固定限参变量积分,否则称为可变限参变量积分.2.含参变量积分的分析性质(1)不变限情形①连续性定理设f(x,y)于矩形[a,b]×[c,d]上二元连续,c,d有限,则函数于[a,b]上也连续.②可导性定理设f(x,y)和于矩形[a,b]×[c,d]上连续,则F(x)于[a,b]上也可导且.(2)可变限情形①连续性定理设f(x,y)于上二元连续,,且于[a,b]上连续,则于[a,b]上也连续.②可导性定理设f(x,y)于上二元连续,,且于[a,b]上连续,若导数存在且连续,则也存在,且二、含参变量的广义积分1.含参变量广义积分的一致收敛(1)定义设已给含参变量的广义积分(I是任意区间),假定对每个x∈I,上述积分已收敛.设为“余积分”,它是x,d的二元函数,于矩形I×[C,+∞)上有定义.①含参变量广义积分在奇点+∞处一致收敛的定义若数,使得“余积分”绝对值|r(x,d)|在矩形上点点小于ε(图25-1),即则称于奇点+∞处,积分在x∈I时一致收敛.图25-1②含参变量广义积分在有限奇点处一致收敛的定义若,使得在矩形上点点小于,即则称在奇点c处积分在x∈I时一致收敛.③当一个含参变量积分有限多个奇点时,只有积分在每个奇点处都一致收敛时才称该积分一致收敛.(2)Abe1不等式(u(x)单调,v'(x)可积)也常用来估计“余积分”.2.一致收敛的判别法(1)Cauchy收敛原理如果一致收敛存在,使得,有(2)Weierstrass判别法设①收敛;②收敛,则,一致收敛.(3)A.D.判别法已给若u(x,y)关于y单调,且u,v有一个是有界函数,另一个在y→+∞时在区间x∈I上一致收敛于零,则上述积分一致收敛(假定偏导数存在且关于y连续).3.含参变量广义积分的性质(1)定理1设f(x,y)于矩形I×[c,+∞)上连续且积分,x∈I内闭一致收敛,则于I上连续(连续性).(2)定理2设f(x,y)于矩形I×[c,+∞)上连续且积分,x∈I内闭一致收敛,若区间I=[a,b]有界,则(3)定理3设于上连续,积分,内闭一致收敛,又存在一点,积分收敛,则内闭一致收敛,且(4)定理4设上连续,公式在下列条件之一满足时成立:①②③(5)定理5设f(x,y)于[a,+∞)×[c,+∞)上连续且两个“里层”积分都存在.若存在充分大的及函数满足:其中函数一个可积,另一个局部有界(即在任一个内闭区间上有界),则成立三、B函数和Γ函数1.B函数和Γ函数的定义B函数和Γ函数是指2.B函数和Γ函数的性质(1)连续性B(p,q),Γ'(s)都是连续的.(2)对称性B(p,q)=B(q,P);(3)Γ函数是阶乘的拓广Γ(s+1)=sΓ(s),s>0.特别Γ(n+1)=n!;(4)B函数与Γ函数的关系;(5)余元公式;(6)Legendre公式.3.当s→+∞时Γ(s)的性态公式特别,当s=n(自然数)时,得。

四川大学2017年攻读博士学位研究生入学考试试题(数值分析)

四川大学2017年攻读博士学位研究生入学考试试题(数值分析)
三.(15 分)已知求积公式 1 f (x)dx 1 f (0) f (1) f '(0) f '(1) :
0
2
(1)求公式中的待定系数 ,使其代数精度尽可能的高,并求代数精度;
2017 年攻读博士学位研究生入学考试试题
(2)利用该公式计算积分 1(3x3 4x2 x 1)dx ,并求误差。 0
4.25 2.75
2.75 3.5


b


0.5 1.25
.
六.(15
分)取步长
h=0.1,分别用
Euler
公式和改进的
Euler
公式计算初值问题

y
'

y
-
2x y
,0

x
1

0.2
处的


y(0) 1
近似值。Βιβλιοθήκη 精确度。3.已知数据
xi -1 0 yi -0.9 1
考试科目:数值分析 科目代码:2029(工科用)
一.填空题:(每空 4 分,共 40 分)
1.若 f (x) x3 2x 1,在其定义域,则二阶差分 f 0,1,2 =
(试题共 2 页) (答案必须写在答题纸上,写在试题上不给分)
,三阶差分 f 0,1,2,3=
;若
取 x0, x1, x2, x3 为差值节点,则 f x 的二次插值多项式为

2.形如
2 0
f xdx
A0
f x0 求积公式中,当 Ac =
,x0 =
时使该求积公式具有尽可能高的代数
四.(10 分)定义内积 f , g 1 f (x)g(x)dx,

伍胜健《数学分析》(第2册)配套题库【名校考研真题+章节题库+模拟试题】【圣才出品】

伍胜健《数学分析》(第2册)配套题库【名校考研真题+章节题库+模拟试题】【圣才出品】

第一部分名校考研真题说明:本部分从指定伍胜健主编的《数学分析》为考研参考书目的名校历年考研真题中挑选最具代表性的部分,并对其进行了详细的解答。

所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。

第7章定积分1.设f(x)和g(x)在[a,b]上连续,证明:其中[哈尔滨工业大学研]证明:不妨令.当M=0时,f(x)≡0,结论显然成立,所以不妨设M>0.∵g(x)在[a,b]上连续,从而一致连续,所以,当时,由ε的任意性,可知2.设f(x)及g(x)在[a,b]上连续,f(x)≤g(x),且证明:在[a,b]上,f(x)≡g(x).[湖南大学研]证明:设F(x)=f(x)-g(x),从而在[a,b]上,F(x)≤0,且下证F(x)≡0,反证法:若不然,,则存在,使在[x1,x2]上F(x)<0.从而其中,得出矛盾.故在[a,b]上,F(x)=0,即f(x)≡g(x).3.计算.[上海交通大学研]解:作变换,则,当时,,当时,,所以4.设f(x)连续,且有,求x≥0时f(x)的值.[北京航空航天大学研]解:由得,方程两边对x求导,得而x>0时,f(x)>0,所以,从而(c为常数).又因为,且f(x)连续,故因此5.给出有界函数f(x)在闭区间[a,b]上Riemann可积的定义.试举出一个在[a,b]上有界但不可积的例子,并给出证明.[上海大学研]证明:Riemann可积的定义:设f(x)是定义在[a,b]上的一个函数,J是一个确定的实数.若对任意给定的正数ε,总存在某一正数δ,使得对[a,b]的任何分割T,以及在其上任意选取的点集,只要,就有则称函数f(x)存区间[a,b]上Riemann可积.在[a,b]上有界但不可积的例子:在区间[a,b]的任何部分区间上均有,所以,它不趋于0.因此f(x)在[a,b]上不可积.6.求定积分.[上海大学2006研]解:由于是奇函数,故,从而7.求.[南京理工大学2006研]解:做变量替换,则8.设f(x)为[a,b]上的有界单调函数,证明:(1)函数至多只有可数个间断点;(2)讨论函数在[a,b]上的可积性.[江苏大学2006研]证明:(1)设D是f(x)的第一类间断点集,令,,则,故只需证明A、B为可数集即可.以A为例,对任意的,选取有理数,使得.再选取有理数和,,使当时,;而当时,(此由f(x)在X有单侧极限可知).因此,对应法则是从A到的一个映射,而且是单射,这是因为若有,,使,,,则.注意到,不妨设,于是可取,那么由前面的不等式,就得出的矛盾.这说明A与的一个子集对等,由可数,则A可数.(2)设f(x)为增函数,且f(a)<f(b)(若f(a)=f(b),则f(x)为常量函数,显然可积).对[a,b]的任一分割T,f(x)为增函数,f(x)在T所属的每个小区间上的振幅为于是有由此可见,任给ε>0,只要,就有所以f(x)在[a,b]上可积.9.设f(x)在[0,+∞)上连续有界,证明:[华东师范大学2006研]证明:记.显然有,又,故对任意的ε>0,存在,使得由上确界的定义知,对上述的ε>0,存在,.因为f(x)在处连续,由连续函数的局部保号性知存在δ>0,使得,.于是由于,所以存在,使得取,则有即.10.设函数f(x)在[a,b]上非负、连续、严格递增,g(x)在[a,b]上处处大于零、连续且.由积分中值定理,对任意自然数n,存在,使得求极限.[北京师范大学研]解:因为g(x)在[a,b]上处处大于零、连续,所以存在c>0使得当时,有g(x)≥c.从而对任意的ε>0,有由于,又f(x)在[a,b]严格递增,故由极限的保号性知,存在N>0,使得当n>N时,有,于是.又由f(x)在[a,b]上严格递增知,当n>N时,有成立,故.11.设函数f(x)是[-1,1]上的连续函数,且有,,证明:至少存在两个不同元素,使得.[北京师范大学2006研]证明:反证法.假设f(x)在(-1,1)内至多只有一个零点.若f(x)在(-1,1)内没有零点,不妨设f(x)在(-1,1)内恒正.由于f(x)在处连续,故由连续函数的局部保号性知,存在充分小的δ>0使得当时.有.于是矛盾.若f(x)在(-1,1)内只有一个零点c,则f(x)在内恒不为零.若f(x)在内恒正或恒负,可以类似前面的证明推出矛盾.若f(x)在(-1,c)内恒正,在(c,1)内恒负(f(x)在(-1,c)内恒负,在(c,1)内恒正的情况完全类似).由于,,所以.令,则,且g(x)在内恒正,往后类似前面的证明即可推出矛盾.12.设f(x)在[0,1]上Riemann可积,且,求.[浙江大学研]解:因为f(x)在[0,1]上Riemann可积,所以存在M,使得,则.则.13.利用可积函数条件证明:在[0,1]上可积.[南京师范大学2006研]证明:对[0,1]做任意分割T,注意到f(x)在[0,1]上有界,其不连续点为且f(x)在[0,1]的任意区间上的振幅w≤1.对任意的ε>0,由于f(x)在上只有有限个间断点,故可积.因此,存在η>0,对的任意分法,只要,就有.显然,,则对于[α,β]的任意分法,只要,就有.令,设是在[0,1]上满足的任意分法.设,由上述证明,有,显然又有,所以.于是,则f(x)在[0,1]上可积.。

伍胜健《数学分析》笔记和考研真题详解(曲线积分与曲面积分)【圣才出品】

伍胜健《数学分析》笔记和考研真题详解(曲线积分与曲面积分)【圣才出品】

6 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

其中 f(x,y,z)称为被积曲面积分的性质
①若在 S 上函数 f(x,y,z)≡1,则
为曲面 S 的面积.
②若曲面
,则函数 f(x,y)在 S 上的曲面积分即为二重积分
7 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.第二型曲面积分的定义

是分片光滑双侧曲面,若它有边界,则其边界由有限条分段光滑曲线组成.给
定 S 的一侧,S 上每点处的单位法向量记为
,向量函数
在 S 上有定义.对 S 作任意分割 每块小曲面的面积,记
给出时,则有
2.第一型曲面积分的定义
(1)第一型曲面积分的定义

是光滑曲面,函数 f(x,y,z)在 S 上有定义,又设
是 S 的一个分割,记
在 △ Sk 上 任 取 一 点
,作和式
对于 S 的任意分割 T 及任取的 时,有
.若存在常数 I,使得对于 当

则称 f(x,y,z)在 S 上的第一型曲面积分存在,并称 I 为 f(x,y,z)在 S 上的第一型 曲面积分,记为
数.对于 的任一分割 T:

为弧段

弧长(即 介于
之间部分的长度)及

上任取一点
,作和式
若存在 I ∈R,使得对于
,当λ(T)<σ时,有
对 的任意分割 T 及每个小弧段上任意选取的

则称 f(x,y,z)沿 的第一型曲线积分存在,并称 I 为 f(x,y,z)在 上的第一型曲
线积分,记为
1 / 26

特别地,当 是一条简单闭曲线时,有

伍胜健《数学分析》(第1册)章节题库-第1章 函 数【圣才出品】

伍胜健《数学分析》(第1册)章节题库-第1章 函 数【圣才出品】


解:图形关于 Oy 轴对称.周期为 π.将
的图形叠加即得.如图 1-4 所示.
图 1-4
12.证明:若函数
的图形对于两点
和 对称,则函数 f(x)是线性函数与周期函数的和.特别是,若
则函数 f(x)是周期函数. 证明:设 x 是任一实数.按假设有:
在(1)中,将 x 换成 x+(b-a)则得 将(3)代入(2)得 即

的数 x 的集合.
十万种考研考证电子书、题库视频学习平 台
4.求下列函数的存在域和函数值域:
解:当 1-2cosx>0 时,y 值确定.解之,得存在域为满足不等式
的数 x 的集合 A.因为
所以,函数值域为满足不等式
的数 y 的集合.
5.设 则
为单调增函数.证明:若
证明:设 为三个函数公共域内的任一点,则 由(1)以及函数 f(x)的单调增加性知
从而, 同理,可证 由 的任意性,于是,(2)式得证.
4 / 18
圣才电子书
十万种考研考证电子书、题库视频学习平

6.求反函数

和它的存在域,若:
解:由于 即
两端再取对数,并注意到
即-1<y<1,于是,
7.证明:若对于函数
有等式
(式中 k 和 T 为正的常数)成立,则
(2)由 R(x)的表达式及有理数的性质可知,
(其中 p,q 互质,q>0)是
有理数,且任一有理数可有此既约分数表达.
注意当 p,q 互质时,p+q 与 q 互质,且有理数加 1 仍为有理数,故
若 x 为无理数,有 x+1 为无理数,若 x 为有理数,则存在互质
整数 p,q(q>0),使
所以由 R(x)的定义有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年四川大学652数学分析考研真题
1.计算(每小题10分,共70分)
(1)设a ∈(
0,1),求
lim[(1)]a a n n n →+∞
+-
(2)求 21lim ln ln 1x x x x -→∞⎛⎫++ ⎪ ⎪-⎝⎭
(3)设f (x )=x 8arctanx ,求f (n )(0)
(4)求∫max (1,|x|)dx
(5)设D 是由曲线3
x y xy a b ⎛⎫+= ⎪⎝⎭
围成的区域,其中a >0,b >0,求D 的面
积。

(6)求 22d d 34S x y y x x y -+⎰
其中S 是椭圆2x 2+3y 2=1,方向沿逆时针方向。

(7)求
(,,)d S f x y z S ⎰⎰
其中S 是球面x 2+y 2+z 2=1
0(,,)0,0,z f x y z z z ≤≤=<>⎪⎩
2.(12分)证明:f (x )=|sinx|/x 在(-1,0)和(0,1)上都一致连续,但在(-1,0)∪(0,1)上不一致连续。

3.(10分)设f (x )在实数R 上有界且二次可导,证明:存在x 0∈R 使得f ″(x 0)=0。

4.(10分)设f (x )在[a ,b]可积,证明:
lim ()sin d 0b
c
c f x ax x →-∞=⎰
5.(10分)证明:0
(1)c n x x ∞=-∑在[0,1]上收敛但不一致收敛。

6.(12分)求a ,b 的值,使得椭圆x 2/a 2+y 2/b 2=1包含圆(x -1)2+y 2=1,且面积最小。

7.(14分)举例说明:二元函数的“两个累次极限存在”与“二重极限存在”互不蕴涵。

8.(12分)函数f在(0,1)上存在第一类间断点,证明:f在(0,1)上没有原函数。

相关文档
最新文档