二次函数典型例题解析解读

合集下载

二次函数解析式习题及详解

二次函数解析式习题及详解

二次函数解析式习题及详解二次函数是高中数学中的重要内容之一、它的解析式可以用一般形式y = ax^2 + bx + c 表示,其中 a、b、c 是常数,a ≠ 0。

解析式中的x 是自变量,y 是因变量,表示二次函数的图像上的点的坐标。

下面我们来看一些关于二次函数解析式的习题及详解。

1.求解一元二次方程3x^2+4x-1=0的解。

解:这是一个一元二次方程,可以写成 3x^2 + 4x - 1 = 0。

按照二次方程求解的步骤,我们可以先计算出Δ(delta),再根据Δ 的值来分类讨论。

首先计算Δ = b^2 - 4ac = 4^2 - 4 × 3 × (-1) = 16 + 12 = 28根据Δ的值可以得出以下结论:-当Δ>0时,方程有两个不相等的实数解。

-当Δ=0时,方程有两个相等的实数解。

-当Δ<0时,方程没有实数解,但有两个共轭复数解。

我们计算得到Δ=28>0,所以方程有两个不相等的实数解。

接下来,我们可以继续使用求根公式:x=(-b±√Δ)/2a来求解方程的解。

x1=(-4+√28)/(2×3)≈0.236x2=(-4-√28)/(2×3)≈-1.570。

所以方程3x^2+4x-1=0的解为x≈0.236和x≈-1.570。

2.求解二次函数y=x^2+4x-5的图像与x轴交点的坐标。

解:要求解二次函数与x轴交点的坐标,就是求解方程y=x^2+4x-5=0的解。

我们可以使用因式分解或者求根公式来解这个方程。

这里我们使用求根公式:将方程y=x^2+4x-5=0转化为一元二次方程的标准形式,即x^2+4x-5=y=0。

根据一元二次方程的求根公式x=(-b±√Δ)/2a,我们可以计算出方程的解。

a=1,b=4,c=-5;Δ = b^2 - 4ac = 16 + 20 = 36;x1=(-4+√36)/(2×1)=1x2=(-4-√36)/(2×1)=-5所以方程y=x^2+4x-5=0的解为x=1和x=-5因此,该二次函数图像与x轴交点的坐标为(1,0)和(-5,0)。

九年级数学上册第二十二章二次函数典型例题(带答案)

九年级数学上册第二十二章二次函数典型例题(带答案)

九年级数学上册第二十二章二次函数典型例题单选题1、若二次函数y=ax2+bx+c的图像如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0答案:D分析:观察图象可知抛物线开口方向,根据图象经过(1,0),(3,0)可得抛物线对称轴为直线x=2,进而求解.解:∵抛物线开口向下,经过点(1,0),(3,0),∴抛物线对称轴为直线x=2,∴当1<x<3时,y>0,A选项正确,不符合题意.当x=2时y有最大值,B选项正确,不符合题意.∵图象经过(0,−3),抛物线对称轴为直线x=2,∴抛物线经过点(4,−3),C选项正确,不符合题意.当x<0或x>4时,y<−3,选项D错误,符合题意.故选D.小提示:本题考查二次函数的图象及性质,能够根据函数图象找出对称轴、判断开口方向和增减性是解题的关键.2、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y=ax2+2ax+a−1的图象只经过三个象限,∴a-1≥0,∴a≥1.故选C.小提示:本题考查了二次函数y=ax2+2ax+a−1的图象只经过三个象限,运用函数图象与x轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.3、已知a<−1,点(a−1,y1),(a,y2),(a+1,y3)都在函数y=3x2−2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1答案:D分析:先求出抛物线的对称轴,抛物线y=3x2-2的对称轴为y轴,即直线x=0,图象开口向上,当a<-1时,a-1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.解:∵当a<-1时,a-1<a<a+1<0,而抛物线y=3x2-2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故选:D.小提示:本题考查的是二次函数图象上点的坐标特点,当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.4、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可. 解:设每月总利润为w ,依题意得:w =y(x −50)=(−5x +550)(x −50)=−5x 2+800x −27500=−5(x −80)2+4500∵−5<0,此图象开口向下,又x ≥50,∴当x =80时,w 有最大值,最大值为4500元.故选:B .小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.5、下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当x >1时,y 的值随x 值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断. 解:设二次函数的解析式为y =ax 2+bx +c ,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254), ∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意; 故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.6、如图所示是二次函数y =ax 2+bx +c (a ≠0)的图象,以下结论:①abc <0;②3a +c =0;③ax 2+bx +c =0的两个根是x 1=−1,x 2=3;④4a +2b +c >0,其中正确的是( )A .③④B .①②C .②③D .②③④答案:C分析:根据二次函数的图象与性质即可求出答案.解:①由图象可知:a >0,c <0,由对称轴可知:−b 2a >0,∴b <0,∴abc >0,故①错误;②由对称轴可知:−b 2a =1,∴b =−2a ,∵抛物线过点(1,0),∴a −b +c =0,∴a+2a+c=0,∴3a+c=0,故②正确;③由对称轴为直线x=1,抛物线过点(−1,0),∴抛物线与x轴的另一个交点为(3,0),∴ax2+bx+c=0的两个根是x1=−1,x2=3,故③正确;④由图象可知,当x=2时,y<0,∴4a+2b+c<0,故④错误;故选:C.小提示:本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.7、对于抛物线y=−3(x+1)2−2,下列说法正确的是()A.抛物线开口向上B.当x>−1时,y随x增大而减小C.函数最小值为﹣2D.顶点坐标为(1,﹣2)答案:B分析:根据二次函数图象的性质对各项进行分析判断即可.解:抛物线解析式y=−3(x+1)2−2可知,A、由于a=−3<0,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为x=−1,结合其开口方向向下,可知当x>−1时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意.故选:B.小提示:本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题.8、已知实数a,b满足b−a=1,则代数式a2+2b−6a+7的最小值等于()A.5B.4C.3D.2答案:A分析:由已知得b=a+1,代入代数式即得a2-4a+9变形为(a-2)2+5,再根据二次函数性质求解.解:∵b-a=1,∴b=a+1,∴a2+2b-6a+7=a2+2(a+1)-6a+7=a2-4a+9=(a-2)2+5,∵(a-2)2≥0,∴当a=2时,代数式a2+2b-6a+7有最小值,最小值为5,故选:A.小提示:本题考查二次函数的最值,通过变形将代数式化成(a-2)2+5是解题的关键.9、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为()A.4√5米B.10米C.4√6米D.12米答案:B分析:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣1x²,再将y=﹣1代25入解析式,求出C、D点的横坐标即可求CD的长.解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,∵O 点到水面AB 的距离为4米,∴A 、B 点的纵坐标为﹣4,∵水面AB 宽为20米,∴A (﹣10,﹣4),B (10,﹣4),将A 代入y =ax 2,﹣4=100a ,∴a =﹣125, ∴y =﹣125x 2, ∵水位上升3米就达到警戒水位CD ,∴C 点的纵坐标为﹣1,∴﹣1=﹣125x 2, ∴x =±5,∴CD =10,故选:B .小提示:本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.10、已知抛物线y =ax 2 +bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0;②2c ﹣3b <0</span>;③5a +b +2c =0;④若B (43,y 1)、C (13,y 2)、D (−13,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4答案:B分析:根据二次函数的图象与性质一一判断即可.解:由图象可知,开口向上,图象与y轴负半轴有交点,则a>0,c<0,对称轴为直线x=−b2a=1,则b=−2a<0,∴abc>0,故①正确;当x=3时,y=9a+3b+c=0,∵b=−2a,∴3a+c=0,即3a=−c∴2c−3b=2×(−3a)−3×(−2a)=0,故②错误;∵对称轴为直线x=−b2a=1,∴抛物线与x轴负半轴的交点为(−1,0),∴a−b+c=0,∵9a+3b+c=0,两式相加,则10a+2b+2c=0,∴5a+b+c=0,故③错误;∵|−13−1|=43,|13−1|=23,|43−1|=13,∴43>23>13,∴根据开口向上,离对称轴越近其对应的函数值越小,则有y3>y2>y1,故④正确;∴正确的结论有2个,故选:B小提示:本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.填空题11、已知函数y=mx2+2mx+1在−3⩽x⩽2上有最大值4,则常数m的值为 __.答案:38或−3分析:分两种情况:m>0和m<0分别求y的最大值即可.解:y=mx2+2mx+1=m(x+1)2+1−m.当m>0时,当x=2时,y有最大值,∴4m+4m+1=4,∴m=3;8当m<0时,当x=−1时,y有最大值,∴m−2m+1=4,∴m=−3,或−3.综上所述:m的值为38故答案是:3或−3.8小提示:本题考查了二次函数的最值,熟练掌握二次函数的图象及性质,解题时,注意要分类讨论,以防漏解.12、二次函数y=(x-1)2+2的最小值是__________.答案:2分析:根据二次函数y=(x-1)2+2的性质得抛物线的开口向上,即当横坐标等于在对称轴的值时函数取得最小值.解:二次函数y=(x-1)2+2的展开式为:y=x2−2x+3,∵a=1>0,∴抛物线的开口向上,∴当x=−−2=1时,有最小值y=2,2所以答案是:2.小提示:本题考查了二次函数的性质,解题的关键是掌握二次函数的性质.13、如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD的长)为______.答案:40米分析:以底部所在的直线为x轴,以线段CD的垂直平分线所在的直线为y轴建立平面直角坐标系,用待定系数法求得抛物线的解析式,则可知点C、D的横坐标,进而可得CD的长.解:如图,以底部所在的直线为x轴,以线段CD的垂直平分线所在的直线为y轴建立平面直角坐标系:∴A(−40,0),B(40,0),E(0,200)设抛物线的解析式为y=a(x+40)(x−40),将E(0,200)代入,得:200=a(0+40)(0−40),,解得:a=−18∴抛物线的解析式为y=−1x2+200,8x2+200=150,将y=150代入得:−18解得:x=±20,∴C(−20,150),D(20,150),∴CD=40,所以答案是:40米.小提示:本题考查了二次函数在实际问题中的应用.解题的关键在于建立二次函数模型.体现了数形结合的思想.14、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是_____.答案:﹣3<x<1分析:根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.所以答案是:﹣3<x<1.小提示:本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.15、如图,在平面直角坐标系中,菱形ABCD的一边AB在x轴上,顶点B在x轴正半轴上.若抛物线y=x2﹣5x+4经过点C、D,则点B的坐标为______.答案:(2,0)分析:根据抛物线y=x2﹣5x+4经过点C、D和二次函数图象具有对称性,可以求得该抛物线的对称轴和CD 的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.解:∵抛物线y=x2﹣5x+4,∴该抛物线的对称轴是直线x=5,点D的坐标为(0,4),2∴OD=4,∵抛物线y=x2﹣5x+4经过点C、D,∵四边形ABCD为菱形,AB在x轴上,∴CD∥AB,即CD∥x轴,∴CD=5×2=5,2∴AD=5,∵∠AOD=90°,OD=4,AD=5,∴AO=√AD2−OD2=√52−42=3,∵AB=5,∴OB=5﹣3=2,∴点B的坐标为(2,0),所以答案是:(2,0).小提示:本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.解答题16、如图,点P(a,3)在抛物线C:y=4−(6−x)2上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=−x2+6x−9.求点P′移动的最短路程.答案:(1)对称轴为直线x=6,y的最大值为4,a=7(2)5分析:(1)由y=a(x−ℎ)2+k的性质得开口方向,对称轴和最值,把P(a,3)代入y=4−(6−x)2中即可得出a的值;(2)由y=−x2+6x−9=−(x−3)2,得出抛物线y=−x2+6x−9是由抛物线C:y=−(x−6)2+4向左平移3个单位,再向下平移4个单位得到,即可求出点P′移动的最短路程.(1)y=4−(6−x)2=−(x−6)2+4,∴对称轴为直线x=6,∵−1<0,∴抛物线开口向下,有最大值,即y的最大值为4,把P(a,3)代入y=4−(6−x)2中得:4−(6−a)2=3,解得:a=5或a=7,∵点P(a,3)在C的对称轴右侧,∴a=7;(2)∵y=−x2+6x−9=−(x−3)2,∴y=−(x−3)2是由y=−(x−6)2+4向左平移3个单位,再向下平移4个单位得到,平移距离为√32+42=5,∴P′移动的最短路程为5.小提示:本题考查二次函数y=a(x−ℎ)2+k的图像与性质,掌握二次函数y=a(x−ℎ)2+k的性质以及平移的方法是解题的关键.17、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如表所示:2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?答案:(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元分析:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x,则四月份的游客为4(1+x)人,五月份的游客为4(1+x)2人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收入为W万元,再列出W与m的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x,由题意,得4(1+x)2=5.76∴(1+x)2=1.44,解这个方程,得x1=0.2,x2=−2.2(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:2−0.6=1.4(万人),购买乙种门票的人数为:3−0.4=2.6(万人),所以:门票收入问;100×1.4+80×2.6+(160−10)×(2+1)=798(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,由题意,得W=100(2−0.06m)+80(3−0.04m)+(160−m)(2+0.06m+0.04m)化简,得W=−0.1(m−24)2+817.6,∵−0.1<0,∴当m=24时,W取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元.小提示:本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.18、已知,如图,二次函数y=−x2+bx+c的图像与x轴交于A,B两点,与y轴交于点C(0, 6),且经过点(1, 10)(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.(3)求△ABC的面积,写出y>0时x的取值范围.答案:(1)y=−x2+5x+6;(2)顶点坐标是(52, 494),对称轴是x=52;(3)ΔABC的面积为21,y>0时,x的取值范围是-1<x<6.分析:(1)直接利用待定系数法将已知点代入得出方程组求出答案;(2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x轴的交点坐标,然后利用三角形面积公式和图像得出答案.(1)∵二次函数y=−x2+bx+c的图像经过点C(0, 6)、(1, 10),∴{c =6−1+b +c =10, 解这个方程组,得{b =5c =6, ∴该二次函数的解析式是y =−x 2+5x +6;(2)y =−x 2+5x +6=−(x −52)2+494,∴顶点坐标是(52, 494); 对称轴是x =52; (3)∵二次函数y =−x 2+5x +6的图像与x 轴交于A ,B 两点,∴−x 2+5x +6=0,解这个方程得:x 1=−1,x 2=6,即二次函数y =−x 2+5x +6与x 轴的两个交点的坐标为A (−1, 0),B (6, 0).∴ΔABC 的面积S △ABC =12AB ×OC =12×|6−(−1)|×6=21. 由图像可得,当-1<x <6时,y >0,故y >0时,x 的取值范围是-1<x <6.小提示:本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键.。

二次函数 经典题型详解

二次函数 经典题型详解

二次函数经典题型详解
二次函数是数学中的一个重要概念,它在代数、几何和三角学中都有广泛的应用。

下面是一些经典的二次函数题型及其解答方法。

1. 求二次函数的解析式
题目:已知二次函数的图像经过点(1,0),(2,0)和(3,4),求这个二次函数的
解析式。

解法:设二次函数的解析式为 $y = a(x - 1)(x - 2)$,将点(3,4)代入解析式,得到 $4 = a(3 - 1)(3 - 2)$,解得 $a = 2$,所以这个二次函数的解析式为$y = 2(x - 1)(x - 2)$。

2. 求二次函数的顶点坐标和对称轴
题目:已知二次函数 $y = ax^2 + bx + c$ 的对称轴为 $x = 1$,且经过点(0,3),求这个二次函数的解析式。

解法:由于对称轴为 $x = 1$,所以顶点的横坐标为 1,设顶点坐标为$(1,m)$,将点 (0,3) 代入解析式 $y = a(x - 1)^2 + m$,得到 $3 = a(0 -
1)^2 + m$,解得 $a = 3 - m$,所以这个二次函数的解析式为 $y = (3 - m)(x - 1)^2 + m$。

3. 求二次函数的最大值或最小值
题目:已知二次函数 $y = x^2 - 2x$,求这个二次函数的最小值。

解法:由于 $a = 1 > 0$,所以这个二次函数的最小值为顶点的纵坐标,即$\frac{4ac - b^2}{4a} = \frac{4 \times 1 \times (-2) - (-2)^2}{4 \times 1} = -\frac{3}{4}$。

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。

二次函数经典例题及解答

二次函数经典例题及解答

⎧⎪⎨⎪⎩二次函数一、中考导航图1.二次函数的意义;2.二次函数的图象;3.二次函数的性质⎧⎪⎪⎨⎪⎪⎩顶点对称轴开口方向增减性顶点式:y=a(x-h)2+k(a ≠0)4.二次函数 待定系数法确定函数解析式一般式:y=ax 2+bx+c(a ≠0) 两根式:y=a(x-x 1)(x-x 2)(a ≠0)5.二次函数与一元二次方程的关系。

6.抛物线y=ax 2+bx+c 的图象与a 、b 、c 之间的关系。

三、中考知识梳理 1.二次函数的图象在画二次函数y=ax 2+bx+c(a ≠0)的图象时通常先通过配方配成y=a(x+b 2a)2+ 4a 24ac-b 的形式,先确定顶点(-b 2a,4a 24ac-b ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标. 2.理解二次函数的性质抛物线的开口方向由a 的符号来确定,当a>0时,在对称轴左侧y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大;简记左减右增,这时当x=-b 2a 时,y 最小值=4a24ac-b ;反之当a<•0时,简记左增右减,当x=-b2a时y 最大值=4a 24ac-b .3.待定系数法是确定二次函数解析式的常用方法一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax 2+bx+c,然后组成三元一次方程组来求解;在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k;在所给条件中已知抛物线与x•轴两交点坐标或已知抛物线与x 轴一交点坐标和对称轴,则可设解析式为y=a(x-x 1)(x-x 2)来求解. 4.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 当y=0时抛物线便转化为一元二次方程ax 2+bx+c=0,即抛物线与x 轴有两个交点时,方程ax 2+bx+c=0有两个不相等实根;当抛物线y=ax 2+bx+c 与x 轴有一个交点,方程ax 2+bx+c=0有两个相等实根;当抛物线y=ax 2+bx+c 与x 轴无交点,•方程ax 2+bx+c=0无实根.5.抛物线y=ax 2+bx+c 中a 、b 、c 符号的确定a 的符号由抛物线开口方向决定,当a>0时,抛物线开口向上;当a<0时,•抛物线开口向下;c 的符号由抛物线与y 轴交点的纵坐标决定.当c>0时,抛物线交y 轴于正半轴;当c<0时,抛物线交y 轴于负半轴;b 的符号由对称轴来决定.当对称轴在y•轴左侧时,b 的符号与a 的符号相同;当对称轴在y 轴右侧时,b 的符号与a 的符号相反;•简记左同右异. 6.会构建二次函数模型解决一类与函数有关的应用性问题,•应用数形结合思想来解决有关的综合性问题. 四、中考题型例析 1. 二次函数解析式的确定例1 求满足下列条件的二次函数的解析式 (1)图象经过A(-1,3)、B(1,3)、C(2,6); (2)图象经过A(-1,0)、B(3,0),函数有最小值-8; (3)图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为y=ax 2+bx+c,把A(-1,3)、B(1,3)、C(2,6)各点代入上式得3,3,642.a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩ 解得1,0,2.a b c =⎧⎪=⎨⎪=⎩∴解析式为y=x 2+2.(2)解法1:由A(-1,0)、B(3,0)得抛物线对称轴为x=1,所以顶点为(1,-8).• 设解析式为y=a(x-h)2+k,即y=a(x-1)2-8. 把x=-1,y=0代入上式得0=a(-2)2-8,∴a=2. 即解析式为y=2(x-1)2-8,即y=2x 2-4x-6.解法2:设解析式为y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把x=1,y=-8•代入上式得-8=a(1+1)(1-3).解得a=2, ∴解析式为y=2x 2-4x-6.解法3:∵图象过A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a. ∵函数有最小值-8.∴24(3)(2)4a a a a---=-8.又∵a ≠0,∴a=2.∴解析式为y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是x=-1,xyO又∵图象与x 轴两交点的距离为6,即AB=6.由抛物线的对称性可得A 、B 两点坐标分别为A(-4,0),B(2,0), 设出两根式y=a(x-x 1)·(x-x 2),将A(-4,0),B(2,0)代入上式求得函数解析式为y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意3对x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解;•如果三个已知条件中有顶点坐标或对称轴或最值,可选用y=a(x-h)2+k 来求解;若三个条件中已知抛物线与x 轴两交点坐标,则一般设解析式为y=a(x-x 1)(x-x 2). 2. 二次函数的图象例2 (2003·孝感)y=ax 2+bx+c(a ≠0)的图象如图所示,则点M(a,bc)在( • ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 分析:由图可知: 抛物线开口向上⇒a>0.002y c bx y b a ⇒<=-⇒<⎫⎪⎬⎪⎭抛物线与轴负半轴相交对称轴在轴右侧⇒bc>0.∴点M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定a 、b 、c 的符号.例3 (2003·岳阳)已知一次函数y=ax+c 二次函数y=ax 2+bx+c(a ≠0),它们在同一坐标系中的大致图象是( ).分析:一次函数y=ax+c,当a>0时,图象过一、三象限;当a<0时,图象过二、•四象限;c>0时,直线交y 轴于正半轴;当c<0时,直线交y 轴于负半轴;•对于二次函数y=•ax 2+bx+c(a ≠0)来讲:⎧⎪⎪⎪⎨⎪⎪⎪⎩开口上下决定a的正负左同右异(即对称轴在y轴左侧,b的符号与a的符号相同;)来判别b的符号抛物线与y轴的正半轴或负半轴相交确定c 的正负解:可用排除法,设当a>0时,二次函数y=ax 2+bx+c 的开口向上,而一次函数y=•ax+c 应过一、三象限,故排除C;当a<0时,用同样方法可排除A;c 决定直线与y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3. 二次函数的性质例4 (2002·杭州)对于反比例函数y=-2x与二次函数y=-x 2+3,•请说出他们的两个相同点:①_________,•②_________;•再说出它们的两个不同点:••①________,••②_________.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命题的热点.4. 二次函数的应用例5 (2003·厦门)已知抛物线y=x 2+(2k+1)x-k 2+k, (1)求证:此抛物线与x 轴总有两个不同的交点.(2)设x 1、x 2是此抛物线与x 轴两个交点的横坐标,且满足x 12+x 22=-2k 2+2k+1. ①求抛物线的解析式.②设点P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点,•且关于此抛物线的对称轴对称. 求m+m 的值.分析:(1)欲证抛物线与x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令y=0,证△>0即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出k 的值,可确定抛物线解析式;•②由P 、Q 关于此抛物线的对称轴对称得n 1=n 2,由n 1=m 12+m 1,n 2=m 22+m 2得m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0可求得m 1+m 2=-1. 解:(1)证明:△=(2k+1)2-4(-k 2+k) =4k 2+4k+1+4k 2-4k=8k 2+1. ∵8k 2+1>0,即△>0,∴抛物线与x 轴总有两个不同的交点.(2)①由题意得x1+x2=-(2k+1), x1· x2=-k2+k.∵x12+x22=-2k2+2k+1,∴(x1+x2)2-2x1x2=-2k2+2k+1,即(2k+1)2-2(-k2+k)=-2k2+k+1,4k2+4k+1+2k2-2k=-2k2+2k+1.∴8k2=0,∴k=0,∴抛物线的解析式是y=x2+x.②∵点P、Q关于此抛物线的对称轴对称,∴n1=n2.又n1=m12+m1,n2=m22+m2.∴m12+m1=m22+m2,即(m1-m2)(m1+m2+1)=0.∵P、Q是抛物上不同的点,∴m1≠m2,即m1-m2≠0.∴m1+m2+1=0即m1+m2=-1.点评:本题考查二次函数的图象(即抛物线)与x轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.基础达标验收卷一、选择题:1.(2003·大连)抛物线y=(x-2)2+3的对称轴是( ).A.直线x=-3B.直线x=3C.直线x=-2D.直线x=22.(2004·重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,ca)在( ).A.第一象限;B.第二象限;C.第三象限;D.第四象限3.(2004·天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有( ).A.b2-4ac>0B.b2-4ac=0C.b2-4ac<0D.b2-4ac≤04.(2003·杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( ).A.b=3,c=7B.b=-9,c=-15C.b=3,c=3D.b=-9,c=215.(2004·河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( ).6.(2004·昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,•图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ).A.4+mB.mC.2m-8D.8-2m二、填空题1.(2004·河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=_______.2.(2003·新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003·天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004·武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003·黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002·北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:三、解答题1.已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值范围.2.已知抛物线y=- 12x2+(6- 2m)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.(1)求m的值;(2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.一、学科内综合题1.如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,•与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,•求这个二次函数的解析式.二、实际应用题3.某公司推出了一种高效环保型洗涤用品,年初上市后,•公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)•刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?4.如图,有一座抛物线形拱桥,在正常水位时水面AB•的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,•忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,•要使货车安全通过此桥,速度应超过每小时多少千米?答案:基础达标验收卷一、1.D 2.D 3.A 4.A 5.B 6.C二、1.(x-1)2+2 2.图象都是抛物线或开口向上或都具有最低点(最小值)3.y=-12x 2+2x+52 4.如y=-x 2+1 5.1 6.y=15x 2-85x+3或y=-15x 2+85x-3或y=-17x 2-87x+1或y=-17x 2+87x-1三、1.解:(1)∵函数y=x 2+bx-1的图象经过点(3,2), ∴9+3b-1=2,解得b=-2. ∴函数解析式为y=x 2-2x-1. (2)y=x 2-2x-1=(x-1)2-2. 图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x ≥3时,y ≥2. ∴当x>0时,使y ≥2的x 的取值范围是x ≥3. 2.(1)设A(x 1,0) B(x 2,0). ∵A 、B 两点关于y 轴对称.∴12120,0.x x x x +=⎧⎨≤⎩∴2(60,2(3)0.m ⎧⎪=⎨--≤⎪⎩解得m=6. (2)求得y=-12x 2+3.顶点坐标是(0,3) (3)方程-12x 2)x+m-3=0的两根互为相反数(或两根之和为零等). 3.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC; ②抛物线CBE; ③抛物线DEB; ④抛物线DEC; ⑤抛物线DBC. (2)在(1)中存在抛物线DBC,它与直线AE 不相交. 设抛物线DBC 的解析式为y=ax 2+bx+c.将D(-2, 92),B(1,0),C(4,0)三点坐标分别代入,得942,20,164.a b c a b c a b c ⎧-+=⎪⎪++=⎨⎪++=⎪⎩解这个方程组,得a=14,b=-54,c=1. ∴抛物线DBC 的解析式为y=14x 2-54x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2, 92),得a=14也可.】 又将直线AE 的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得20,6.m n n -+=⎧⎨=-⎩解这个方程组,得m=-3,n=-6. ∴直线AE 的解析式为y=-3x-6. 能力提高练习 一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y 轴的左侧, ∴-2ba<0,∴b>0. 又∵抛物线交于y 轴的负半轴. ∴c<0.(2)如图,连结AB 、AC.∵在Rt △AOB 中,∠ABO=45°, ∴∠OAB=45°.∴OB=OA.∴B(-3,0). 又∵在Rt △ACO 中,∠ACO=60°, ∴OC=OA ·cot60°3∴3 设二次函数的解析式为 y=ax 2+bx+c(a ≠0).由题意930,330,3.a b ca b cc-+=⎧⎪++=⎨⎪=-⎩3,31,3.abc⎧=⎪⎪⎪⇒=-⎨⎪=-⎪⎪⎩∴所求二次函数的解析式为y=33x2+ (3-1)x-3.3.解:(1)设s与t的函数关系式为s=at2+bt+c由题意得1.5,422,255 2.5;a b ca b ca b c++=-⎧⎪++=-⎨⎪++=⎩或1.5,422,0.a b ca b cc++=-⎧⎪++=-⎨⎪=⎩解得1,22,0.abc⎧=⎪⎪=-⎨⎪=⎪⎩∴s=12t2-2t.(2)把s=30代入s=12t2-2t, 得30=12t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s=12×72-2×7=212=10.5;把t=8代入,得s=12×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴25,100 3.a ha h=-⎧⎨=--⎩解得1,251.ah⎧=-⎪⎨⎪=⎩抛物线的解析式为y=-125x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.。

二次函数的经典例题

二次函数的经典例题

二次函数的经典例题
例题:已知二次函数y = ax^2+bx + c的图象经过点(-1,0),(3,0),且顶点的纵坐标为-8,求二次函数的表达式。

解析:
1. 分析已知条件
- 因为二次函数y = ax^2+bx + c的图象经过点( - 1,0)和(3,0),所以这两点是二次函数图象与x轴的交点。

- 那么二次函数的对称轴为x=(-1 + 3)/(2)=1。

2. 求顶点坐标
- 已知顶点的纵坐标为-8,且顶点横坐标x = 1,所以顶点坐标为(1,-8)。

3. 设二次函数的表达式
- 设二次函数的表达式为y=a(x - 1)^2-8(顶点式)。

4. 代入已知点求解a
- 把点(-1,0)代入y=a(x - 1)^2-8得:
- 0=a(-1 - 1)^2-8。

- 即0 = 4a-8。

- 移项可得4a=8,解得a = 2。

5. 得出二次函数表达式
- 把a = 2代入y=a(x - 1)^2-8得y = 2(x - 1)^2-8。

- 展开y=2(x^2-2x + 1)-8=2x^2-4x+2 - 8=2x^2-4x - 6。

所以,二次函数的表达式为y = 2x^2-4x - 6。

青岛版九年级数学下册《二次函数的典型例题的解析》评课稿

青岛版九年级数学下册《二次函数的典型例题的解析》评课稿

青岛版九年级数学下册《二次函数的典型例题的解析》评课稿一、引言《二次函数的典型例题的解析》是青岛版九年级数学下册中的一篇课文,旨在帮助学生深入理解和掌握二次函数的典型例题的解题方法和思路。

本评课稿将对该课文进行评述和分析,以期评估课文的教学效果并提出改进建议。

二、教学目标本课文的教学目标主要包括: 1. 掌握二次函数的基本概念和性质; 2. 理解并能运用解一元二次方程的方法; 3. 学会运用二次函数解决实际问题。

三、教学内容分析《二次函数的典型例题的解析》共包含六个例题,每个例题都涉及到二次函数的不同应用场景。

以下是对每个例题的详细分析:1. 例题一:求一元二次方程的解这个例题主要要求学生运用求解一元二次方程的方法来求出方程的解,并要求理解解的含义。

通过这个例题,学生能够巩固和运用解一元二次方程的基本知识。

2. 例题二:求解二次函数的顶点坐标该例题要求学生求解二次函数的顶点坐标。

学生需要了解顶点坐标的定义和求解方法。

同时,通过解析该例题,学生还能够进一步认识到二次函数图像在平面坐标系中的特点。

3. 例题三:利用二次函数求解实际问题这个例题涉及到了二次函数在实际问题中的应用。

通过这个例题,学生将会学会如何利用二次函数来解决实际生活中的问题,培养他们对数学的应用能力。

4. 例题四:求解二次函数的零点该例题要求学生求解二次函数的零点,并对解的意义进行解释。

通过这个例题,学生将进一步巩固对零点的理解和求解方法。

5. 例题五:求解二次函数的解的范围这个例题要求学生求解二次函数解的范围。

通过这个例题,学生将学会利用解的范围来解决一元二次方程的问题。

6. 例题六:解决具体问题最后一个例题要求学生通过运用二次函数的概念和方法来解决一个具体的问题。

通过这个例题,学生将会将所学的数学知识应用到实际问题中,并提高他们的解决问题的能力。

四、教学方法和策略本课文的教学可以采用多种方法和策略。

以下是一些建议:1.理论结合实际:通过具体问题引入和讨论,帮助学生理解二次函数在实际问题中的应用,增加学习的兴趣。

二次函数的典型例题的解析

二次函数的典型例题的解析
M(3 2,2 5 -1)
注意:1.用圆规 2等腰三角形:分类讨论
二.难点突破1——函数的面积问题
已知一次函数y 1 x 5 与y 2 交于点A(-1,2),B(- 4,0.5)
22
x
求AOB的面积。
解题思路:1.确定“割”或“补” 2.直线与坐标轴交点
C
S∆AOB=S∆AOC-S∆BOC
解题思路:1.关注“点” AB C MDN
MN ? MN=ND-MD MN=N的纵坐标-M的纵坐标
N(m,-m2+2m+3)
二.难点突破1——函数的面积问题 小结:
E
二.难点突破2——函数的线段最短问题
已知一次函数y 1 x 5 与y 2 交于点A(-1,2),B(- 4,0.5)
22
x
• 已知y= -0.5x2+2x+6与x轴交于点A(-2,0), B,与y轴交于点C,在抛物线的对称轴上存 在一点M,使得MA+MC的值最小,求点M的坐 标。
三.课堂小结
• 1.函数易错题 • 2.面积(最大面积)问题 • 3.线段最短问题
一落实基础,试题重现
• 3.如图,点P是菱形ABCD边上的一动点,它从 点A出发沿在A→B→C→D路径匀速运动到点D, 设△PAD的面积为y,P点的运动时间为x,则y 关于x的函数图象大致为( B )
A
B
C
D
一落实基础,试题重现
4.二次函数y -x2 2x 3如图所示,当函数值y为正数时, 自变量x的取值范围是___1___x___3____ .
注意:巧求交点
5.如图,函数y
k1x
b与y
k2 x
(x
0)交于点A(-1,2),B(-

二次函数实例解析

二次函数实例解析

初中二次函数实例解析已知:如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求抛物线的解析式.由OA=OC=3,得A(-3,0),C(O,-3)把A,C坐标带入y=x²+bx+c中(−3)2=−3+b×(-3)+c=0⇀=2=−3故y=x²+2x-3(2)判断△ACD的形状,并说明理由.由y=x²+2x-3=(x+1)²-4得D(-1,-4)又A(-3,0),C(0,-3)由两点间距离公式,得AC2=18CD²=2AD²=20则AC2+CD2=AD2故△ACD为直角三角形已知:如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(3)在对称轴上找一点P,使△BCP的周长最小,求出点P的坐标及△BCP的周长.由A(-3,0),C(O,-3)得AC:y=-x-3由y=(x+1)²-4得对称轴x=-1∵点A,B关于x=-1对称∴AC与x=-1的交点即为点P=−−3=−1⇀=−1=−2故P(-1,-2)由A(-3,0),B(1,0),C(0,-3)得AC=32,BC=10故△BCP的周长为BP+CP+BC=AC+BC=32+10已知:如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(4)在直线AC下方的抛物线上有一点N,过点N作直线l//y轴,交AC 于点M,当点N 在什么位置时,线段MN 的长度最大,并求出最大值.设N(t,t²+2t-3)由AC:y=-x-3,则M(t,-t-3)则MN=y m -y n =-(t+32)2+94故当t=-32时,MN有最大值94此时N(-32,-154)(5)在直线AC下方的抛物线上是否存在一点N,使得△ACN 的面积最大,最大值为多少?过N作直线l//y 轴,交AC于M,交x轴于H作CP ⊥l于点P,则l⊥x轴S △ACN =S △AMN +S △CHN=12MN×|x a -x c |=32MN故当MN 取最大值时,△ACN面积最大(S △ACN )max =278已知:如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(6)在直线AC 下方的抛物线上是否存在一点P,使得P到直线AC的距离为2.若存在,求出点P的坐标;若不存在,请说明理由.在y轴上取点E(0,-5),作EF⊥AC,则CE=2又OA=OC,则∠OAC=∠OCA=∠ECF=45°,故EF=2过点E 作l/AC,则l上所有点到AC 的距离均为2由AC:y=-x-3,则l:y=-x-5联立=−−5=2+2−3得=−1=−4或=−2=−3故P(-1,-4)或(-2,-3)(7)在直线AC上是否存在一点P,使得BP+OP最小.若存在,求出点P的坐标,并求出最小值;若不存在,请说明理由.作B关于AC的对称点B’,连接BB'交AC于M,则PB=PB'连接OB',故OB'即为所求由AC:y=-x-3,OA=OC,则∠MAB=∠MBA=45°又A,B关于x=-1对称故M必在对称轴x=-1上,即M(-1,-2)由AB=4,得MA=MB=22,则MB'=MA=22故AB'=4且AB'⊥x轴,则B'(-3,-4)已知:如图抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D. (8)在直线AC上是否存在一点P,使得BP+12AP最小,若存在,求出点P的坐标,并求出最小值;若不存在,请说明理由.如图,作直线l与AC夹角为30°,作PM⊥l,则BP+12AP=BP+PM作BN⊥l于点N,交AC于P此即为所求P点,BP+12AP最小值为BNBN=AB×sin75°=AB×sin(45°+30°)=4×(sin45°cos30°+cos45°sin30°)=4×(22×32+22×12)(9)点E是线段AC 上的一动点,点P是线段AB 上的一动点,PE//BC,是否存在这样的点P,使得△PEC的面积最大.若存在,求出点P的坐标,并求出△PEC 面积的最大值;若不存在,请说明理由.设P(t,0),AP=t+3,BP=1-t,AC:y=-x-3,BC:y=3x-3由PE//BC,设PE:y=3x+6则O=3t+6,解得b=-3t,即PE:y=3x-3t联立:=3K3=−K3得=3−34=−3−94即E(3K34,−3K94)S △PAE =12PA×|y E |=38(t+3)2S △PBC =12PB×OC=32(1-t)S △ABC =12AB×OC=6故S △PEC =S △ABC -S △PAE =-38(t+1)2+32当t=-1时S △PEC 取最大值32已知:如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(10)点P是直线AC 下方的抛物线的一个动点,作PE⊥x轴交AC 于点E,PF⊥AC 与点F,是否存在这样的点P,使得△PEF 周长的最大.若存在,求出点P 的坐标,并求出△PEF周长的最大值;若不存在,请说明理由.由OA=OC,得∠OAC=45°又PE⊥x轴,PF⊥AC,则∠PEF=∠EPF=45°故PE=2PF=2EF,则△PEF的周长为PE+PF+EF=(2+2)PF 故PF取最大值时即可(PF)max 92故△PEF周长最大值:94(2+1)(11)点E是对称轴上的一个动点,是否存在这样的点E,使得△ACE是等腰直角三角形。

初三二次函数经典题型及解析

初三二次函数经典题型及解析

初三二次函数经典题型及解析一、二次函数基础概念题型初三二次函数的概念可是很重要的哦。

比如说,给你一个函数表达式,像y = ax²+bx + c(a≠0),然后问你这个函数是不是二次函数。

这时候你就得瞅准了,a不能等于0哦,要是a等于0了,那就变成一次函数了。

就像y = 3x + 2,这就是一次函数,和二次函数可不一样啦。

还有那种给你实际问题,让你列出二次函数表达式的题。

比如说,一个小球从高处落下,它下落的高度h和时间t 的关系,根据物理知识和二次函数的概念,你就能列出h = 1/2gt²(这里g是重力加速度,是个常数)这样的表达式。

这种题就需要你理解二次函数在实际中的意义,把实际问题转化成数学表达式。

二、二次函数图像题型二次函数的图像那可太有趣了。

它的图像是一条抛物线呢。

当a>0的时候,抛物线开口向上,就像一个笑脸一样;当a<0的时候,抛物线开口向下,就有点像哭脸啦。

对称轴是x = -b/2a这个公式可一定要记住哦。

比如说,给你一个二次函数y = 2x² - 4x + 1,先求对称轴,把a = 2,b = -4代入对称轴公式,得到x = -(-4)/(2×2)=1。

然后你还可以求顶点坐标,把x = 1代入函数表达式,就能算出y的值啦。

还有那种通过图像判断a、b、c的取值范围的题。

如果抛物线开口向上,那a>0;如果对称轴在y轴左侧,那么b和a同号,如果对称轴在y轴右侧,b和a异号;当x = 0时,y = c,所以看图像与y轴交点就知道c的取值啦。

三、二次函数最值题型二次函数的最值问题也是经常考的呢。

对于二次函数y = ax²+bx + c(a≠0),当a>0时,函数有最小值,这个最小值就在顶点处取得,也就是y = (4ac - b²)/4a;当a<0时,函数有最大值,同样是在顶点处取得这个值。

比如说,有个二次函数y = -x²+2x + 3,因为 a = -1<0,所以这个函数有最大值。

二次函数真题及答案解析

二次函数真题及答案解析

二次函数真题及答案解析二次函数是高中数学中的重要知识点,也是大学数学及工科类专业课的基础。

掌握二次函数的概念、性质和解题方法对学生的数学学习有着重要的作用。

本文就为大家选取了一些经典的二次函数真题,并对其答案进行详细解析,希望对大家的学习有所帮助。

一、真题及解析1已知函数f(x)=ax²+bx+c,其中a>0。

若对于任意的x,f(x)≥0,且不等式f(x)-c<x成立,求证:b²-4ac≥0。

解析:首先,根据题目要求,对于任意的x,都有f(x)≥0。

这意味着函数图像上的所有点都在x轴或者x轴以上。

所以,二次函数的开口一定向上,即a>0。

其次,不等式f(x)-c<x成立。

我们可以将函数f(x)进行整理,得到ax²+bx+(c-x)>0。

进一步整理可得ax²+(b-1)x+(c)>0。

根据二次函数的性质,当a>0时,二次函数的图像与x轴有两个交点,或者与x轴有一个切点。

对于这道题来说,如果函数图像与x轴有两个交点,则不可能对于任意的x,f(x)≥0。

所以只能是与x轴有一个切点。

综上所述,我们可以得知b²-4ac≥0。

二、真题及解析2已知函数f(x)=x²-4bx+4b+1,其中b为常数。

若对于任意的x,不等式f(x)≥0成立,则b的取值范围为多少?解析:根据题目要求,对于任意的x,都有f(x)≥0。

这意味着函数图像上的所有点都在x轴或者x轴以上。

所以,二次函数的开口一定向上,即a>0。

由于题目给出了函数f(x)=x²-4bx+4b+1,我们可以根据二次函数的性质来分析。

首先,根据a>0,可以得知开口是向上的。

其次,由于f(x)≥0,即对于任意x,函数图像都在x轴或者x 轴以上,我们可以知道判别式∆=b²-4ac≤0。

带入题目给出的函数,我们可以得到b²-(4b+4)≤0。

初中数学二次函数的应用例题解析

初中数学二次函数的应用例题解析

初中数学二次函数的应用例题解析【回顾与思考】二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少【例题经典】用二次函数解决最值问题例1 (2006年旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.例2 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x (1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?【解析】(1)设此一次函数表达式为y=kx+b .则1525,220k b k b +=⎧⎨+=⎩ 解得k=-1,b=40,•即一次函数表达式为y=-x+40.(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x-10)(40-x )=-x 2+50x-400=-(x-25)2+225.产品的销售价应定为25元,此时每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;(2)•问的求解依靠配方法或最值公式,而不是解方程.【考点精练】 1.二次函数y=12x 2+x-1,当x=______时,y 有最_____值,这个值是________. 2.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V0=10m/s,则该物体在运动过程中最高点距离地面________m.3.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.•有研究表明,晴天在某段公路上行驶上,速度为V(km/h)的汽车的刹车距离S(m)可由公式S=1100V2确定;雨天行驶时,这一公式为S=150V2.如果车行驶的速度是60km/h,•那么在雨天行驶和晴天行驶相比,刹车距离相差_________米.4.(2006年南京市)如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,•分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN~矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?5.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃(1得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x(元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?6.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)•与销售单价x(元)(x≥30)存在如下图所示的一次函数关系式.(1)试求出y与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(•直接写出答案).7.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C 点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.8.(2006年泉州市)一条隧道的截面如图所示,它的上部是一个以AD•为直径的半圆O,下部是一个矩形ABCD.(1)当AD=4米时,求隧道截面上部半圆O的面积;(2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米.①求隧道截面的面积S(米)关于半径r(米)的函数关系式(不要求写出r的取值范围);②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值( 取3.14,结果精确到0.1米)答案:例题经典例1:解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4)易知CN=4-x,EM=4-y.且有NP BC BFCN AF-=(作辅助线构造相似三角形),即34yx--=12,∴y=-12x+5,S=xy=-12x2+5x(2≤x≤4),此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,•函数的值是随x的增大而增大,对2≤x≤4来说,当x=4时,S有最大值S最大=-12×42+5×4=12.考点精练1.-1,小,-322.7 3.364.解:∵矩形MFGN∽矩形ABCD,∴MN MF AD AB=,∵AB=2AD,MN=x,∴MF=2x,∴EM=EF-MF=10-2x,∴S=x(10-2x)=-2x2+10x=-2(x-52)2+252,∴当x=52时,S有最大值为252.5.解:(1)正确描点、连线.由图象可知,y是x的一次函数,设y=kx+b,•∵点(•25,2000),(24,2500)在图象上,∴200025500,: 25002414500k b kk b b=+=-⎧⎧⎨⎨=+=⎩⎩解得,∴y=-500x+14500.(2)P=(x-13)·y=(x-•13)·(-500x+14500)=-500x2+21000x-188500=-500(x-21)2+32000,∴P与x的函数关系式为P=-500x2+21000x-188500,当销售价为21元/千克时,能获得最大利润.6.解:(1)设y=kx+b由图象可知,3040020,: 402001000k b kk b b+==-⎧⎧⎨⎨+==⎩⎩解之得,∴y=-20x+1000(30≤x≤50)(2)P=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000.∵a=-20<0,∴P有最大值.当x=-14002(20)⨯-=•35时,P最大值=4500.即当销售单价为35元/千克时,每天可获得最大利润4500元.(3)31≤x•≤34或36≤x≤39.7.解:(1)M(12,0),P(6,6).(2)设这条抛物线的函数解析式为:y=a(x-6)2+6,∵抛物线过O(0,0),∴a(0-6)2+6=0,解得a=16,∴这条抛物线的函数解析式为y=-16(x-6)2+6,即y=-16x2+2x.(3)设点A的坐标为(m,-16m2+2m),∴OB=m,AB=DC=-16m2+2m,根据抛物线的轴对称,可得:OB=CM=m,∴BC=12-2m,即AD=12-2m,∴L=AB+AD+DC=-16m2+2m+12-2m-16m2+2m=-13m2+2m+12=-13(m-3)2+15.∴当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.8.(1)当AD=4米时,S半圆=12π×(2AD)2=12π×22=2π(米2).(2)①∵AD=2r,AD+CD=8,∴CD=8-AD=8-2r,∴S=12πr2+AD·CD=12πr2+2r(8-2r)=(12π-4)r2+16r,②由①知CD=8-2r,又∵2米≤CD≤3米,∴2≤8-2r≤3,∴2.5≤r≤3,由①知S=(12π-4)r2+16r=(12×3.14-4)r2+16r=-2.43r2+16r=-2.43(r-82.43)2+642.43,∵-2.43<0,∴函数图象为开口向下的抛物线,∵函数图象对称轴r=82.43≈3.3.又2.5≤r≤3<3.3,由函数图象知,在对称轴左侧S随r的增大而增大,故当r=3时,S有最大值,S最大值=(12-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).答:隧道截面面积S的最大值约为26.1米2.。

二次函数经典例题及答案

二次函数经典例题及答案

例1 如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB =20米,顶点M 距水面6米(即MO =6米),小孔顶点N 距水面4.5米(NC =4.5米).当水位上涨刚好淹没小孔时,借助图2中的直角坐标系,求此时大孔的水面宽度EF .分析:如图2,由这个实际问题抽象出的数学模型题目已经给出,观察图象可知抛物线的对称轴为y 轴,顶点为(0,6),故可设函数关系式为y =ax 2+6.又因为AB =20,所以OB =10,故B (10,0)又在抛物线上,可代入求值.解:设抛物线所对应的函数关系式为y =ax 2+6. 依题意,得B (10,0). 所以a ×102+6=0.解得a =-0.06.即y =-0.06x 2+6.当y =4.5时,-0.06x 2+6=4.5,解得x =±5. 所以DF =5,EF =10. 即水面宽度为10米.例2 如图3所示,一位运动员在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.求抛物线的关系式. 分析:函数图象的对称轴为y 轴,故设篮球运行的路线所对应的函数关系式为y =ax 2+k (a ≠0,k ≠0). 解:设函数关系式为y =ax 2+k (a ≠0),由题意可知,A 、B 两点坐标为(1.5,3.05),(0,3.5). 则 1.52a+k=3.05,k=3.5.⎧⎨⎩解得a =-0.2,所以抛物线对应的函数关系式为y =-0.2x 2+3.5.二、在几何图形中,利用图形的面积、相似三角形等有关知识获得y 与x 的关系式例3 如图4,在矩形ABCD 中,AD =12,AB =8,在线段BC 上任取一点P ,连接DP ,作射线PE ⊥DP ,PE 与直线AB 交于点E .(1)设CP =x ,BE =y ,试写出y 关于x 的函数关系式. (2)当点P 在什么位置时,线段BE 最长?析解:在几何图形中,求函数关系式时,通常把两个变量放入两个图形,利用两个图形相似,或者在一个图形中利用面积建立它们之间的数量关系.本题要求y 与x 之间的关系式,通过观察可以发现y 、x 分别是△BPE 、△CDP 的边,而且由∠EPB +∠DPC =90°,∠DPC +∠PDC =90°,可得∠EPB =∠PDC ,又由∠B =∠C =90°,容易得到△BPE ∽△CDP .所以有BP BE CD CP =.即128x yx-=. 故y 关于x 的函数关系式为21382y x x =-+.当62bx a=-=时,y 有最大值,y 最大24942ac b y a -==最大. 即当点P 距点C 为6时,线段BE 最长.例4 某班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.小组讨论后,同学们设计了三种铝合金框架,图案如图5(1)、5(2)、5(3),请你根据以下图案回答下列问题:(题中的铝合金材料总长度均各指图11中所有黑线的长度和)(1)在图案(1)中,如果铝合金材料总长度为6m ,当AB 为1m 时,长方形框架ABCD 的面积是_____m 2;(2)图案(2)中,如果铝合金总长度为6m ,设AB 为x m ,长方形框架ABCD 的面积为S m 2,那么S =_______(用含x 的代数式表示);当AB =______m 时,长方形框架ABCD 的面积S 最大,在图案(3)中,如果铝合金材料总长度为lm ,当AB =______m 时,长方形框架ABCD 的面积S 最大.(3)在经过这三种情况的试验后,他们发现对于图案(4)这样的情形也存在着一定的规律.探索:如图(4),如果铝合金材料长度为lm ,共有n 条竖档,那么当竖档AB 长为多少时,长方形框架ABCD 的面积S 最大.分析:解此类问题通常是建立面积与线段长的函数关系式,然后利用二次函数的图象或性质求最大值(或最小值),在这类问题中常用到下列图形的面积公式:三角形、矩形、正方形、平行四边形、梯形和圆等. 解:(1)43; (2)22x x -+,1,8l ; (3)设AB 长为x cm ,那么AD 为3l nx-, 2333l nx n l S x x x -==-+.当2lx n =时,S 最大. 注:关于二次函数的实际应用,体现在生活中的方方面面,在此我们不再一一列举,关键是同学们掌握这种处理实际问题的思路,达到举一反三的效果,不管题目背景如何变化,但它万变不离其宗,只要我们有了这种方法,任何问题都可以迎刃而解. 25.(1)当0x =时,6y =,C ∴点坐标为(06),当0y =时,60x +=,6x ∴=- , A ∴点坐标为(60)-,………………………… 1分 (2)抛物线2(0)y ax bx a =+<经过(60)A -,,(00)O ,, ∴对称轴32bx a=-=-, ∴6b a =.① 当3x =-时,代入6y x =+得363y =-+=,∴B 点坐标为(33)-,. 点B 在抛物线2y ax bx =+上,∴393a b =-.②联立①、②解得1,23a b =-=-.∴该抛物线的函数关系式为2123y x x =--.……………………………………………3分(3)AC 与D 相切,理由如下:联结AD , AO OC =, 45ACO CAO ∴∠=∠=︒.B D x 与关于轴对称,∴45BAO DAO ==∠∠ .90BAD ∴=∠.又AD D 是的半径,AC ∴与D相切。

九下数学-二次函数(超经典例题讲解,习题含答案)

九下数学-二次函数(超经典例题讲解,习题含答案)
(C)二次函数(D)一次函数
3.若正比例函数y=(1-2m)x的图像经过点A( , )和点B( , ),当 < 时 > ,则m的取值范围是()
(A)m<0(B)m>0(C)m< (D)m>
4.函数y= kx+ 1与函数 在同一坐标系中的大致图象是( )
(A) (B) (C) (D)
5.下列各图是在同一直角坐标系内,二次函数 与一次函数y=ax+c的大致图像,有且只有一个是正确的,正确的是()
(A) , ,
(B) , ,
(C) , ,
(D) , ,
11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()
12.二次函数y=x2-2x+2有()
A.最大值是1 B.最大值是2 C.最小值是1 D.最小值是2
(A)(B)(C)(D)
6.抛物线 的顶点坐标是( )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)
7.函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是( )
A.ab>0,c>0 B.ab<0,c>0
C.ab>0,c<0 D.ab<0,c<0
8.已知a,b,c均为正数,且k= ,在下列四个点中,正比例函数
三、解答题:
(1) (2)
解:(1)如图,建立直角坐标系,设二次函数解析式为y=ax2+c
∵D(-0.4,0.7),B(0.8,2.2),∴
∴ ∴绳子最低点到地面的距离为0.2米.
(2)分别作EG⊥AB于G,FH⊥AB于H,

二次函数基础知识详细讲解(附例题与答案)

二次函数基础知识详细讲解(附例题与答案)

二次函数基础知识详细讲解(附例题与答案)一、什么是二次函数?【引例】一个正方体的棱长为a,它的表面积为S,于是我们可以得到函数关系式:S=6a²,这里a是自变量,S是a的函数,因为这里自变量的最高次数是2,所以我们把它称为二次函数我们可以以图表的形式把对应关系表示出来(不考虑实际意义):我们根据列表绘制出它的图像:我们发现:二次函数的图像是一条抛物线二、二次函数的图象研究刚才我们已经知道二次函数的图像是一条抛物线,那么这条抛物线有什么特点那?二次函数的一般形式:y=ax²+bx+c(a≠0)(1)我们先来研究a与抛物线y=ax²+bx+c图像的联系我们发现:当a>0时,抛物线开口向上;当a<>观察上面的抛物线我们发现:当a>0,a越大,开口越小当a<>即|a|越大,开口越小(2)抛物线与y轴的交点对于y=ax²+bx+c,令x=0,得y=c,即抛物线与y轴的交点为(0,c)(3)抛物线与x轴的交点对于y=ax²+bx+c,令y=0,就转化成了一元二次方程ax²+bx+c=0我们知道这个方程根的个数可以用判别式△=b²-4ac来判断,①当△>0时,方程有两个不相等的实根②当△=0时,方程有两个相等的实根③当△<>而一元二次方程ax²+bx+c=0的实根个数和抛物线y=ax²+bx+c 与x轴的交点个数是相对应的①当△>0时,抛物线与x轴有两个交点所以,当给出两个交点时,我们也可以把函数关系式写成:我们也把这个关系式叫做交点式②当△=0时,抛物线与x轴有一个交点③当△<>(4)抛物线的顶点及对称性不难发现,抛物线是个轴对称图形,那么它的对称轴是什么那?我们随便找一个二次函数y=2x²-4x+1,我们对它进行配方,得到y=2(x-1)²-1我们利用列表法描点:根据图像我们发现:此函数图像的对称轴为x=1当x<>当x>1,即在对称轴右侧时,抛物线呈增强趋势;当x=1,即在对称轴上时,y=-1,而(1,-1)即为抛物线y=2(x-1)²-1的顶点下面我们对一般情况进行分析:对二次函数一般形式y=ax²+bx+c进行配方得:因此抛物线y=ax²+bx+c的对称轴:顶点坐标:所以我们也把称为顶点式(5)抛物线的增减性与最值观察图像,我们发现:①若a>0②若a<>三、二次函数图象分析常用图四、二次函数题型归纳及做题技巧类型一二次函数的概念【知识点】判断二次函数解析式的三个特征:①整式;②a≠0;③化简后x的最高次数是2 例题1 下列函数中属于二次函数的是()A. y = 2x + 1 B. y = (x - 1)² - x²C. y = 2x²D.【提示】根据二次函数解析式三个特征例题2 已知是y关于x的二次函数,那么m的值为()A. -2 B. 2 C. ±2 D. 0【提示】根据二次函数解析式三个特征类型二二次函数的图像和性质【知识点】二次函数y=ax²+bx+c图像性质1、根据a判断开口方向,|a|判断开口大小①a>0,开口向上;a<>②|a|越大开口越小,|a|相等,抛物线的开口大小,形状相同2、根据c判断与y轴的交点位置①c>0,交于y轴正半轴②c<>③c=0,抛物线经过原点3、根据△判断交点个数①△>0,与x轴有2个交点②△=0,与x轴有1个交点③△<>4、对称轴对称轴是直线x = -b/2a①b=0时,对称轴为y轴②b/a>0(即a、b同号),对称轴在y轴左侧③b/a<>5、根据开口方向和对称轴判断增减性①a>0,对称轴左侧递减,右侧递增②a<>6、看图象判定代数式的值或范围①判断a,b,c的符号和取值根据开口方向及大小,对称轴在y轴哪侧,与y轴交点判断②如何得到a±b+c的值或范围x取±1时可得出③如何得到2a±b的值或范围比较对称轴-b/2a与±1的大小关系得出④如何得到b²-4ac的大小根据图象与x轴的交点个数⑤如何得到a,b,c的关系式试试经过的点代入⑥碰到特殊的技巧和规律就积累下来例题3 函数y= - x² + 1的图象大致为()【提示】根据二次函数的开口方向、对称轴和y轴的交点可得相关图象例题4 关于抛物线y = x² - 2x +1,下列说法错误的是()A. 开口向上B. 与x轴有两个重合的交点C. 对称轴是直线x = 1D. 当x>1时,y随x的增大而减小【提示】根据二次函数的开口方向、对称轴和y轴的交点可得相关图像,或直接画出图象例题5 下列图像中,有一个可能是函数y = ax² + bx + a + b (a≠0)的图象,它是()【提示】根据y = ax² + bx + a + b(a≠0),对a,b的正负进行分类讨论,把一定错误的排除掉即可得到正确选项例题6 已知函数y = ax² + bx +a + c,当y > 0时,-1/3 < x="">< 1/2,则函数y="cx²" -="" bx="" +="">【提示】根据a,b,c分别对图象的影响或利用根与系数的关系例题7 如图,已知二次函数y = ax² + bx + c(a≠0)的图像与x 轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x = 1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac-b²<8a ④1/3 < a="">< 2/3="" ="">其中含所有正确结论的选项是()A. ①③B. ①③④C. ②④⑤D. ①③④⑤【提示】根据对称轴及图象开口方向向上可判断出a,b,c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),从而判断②;根据图像经过(-1,0)可得到a,b,c之间的关系,从而判断③⑤;从图像与y轴的交点B在(0,-2)和(0,-1)之间,从而判断c的大小,进而判断④类型三利用二次函数的对称性解题【知识点】1、若抛物线上的点,纵坐标相同,它们一定关于对称轴对称如上图,经过抛物线的A、B两点的纵坐标都是2,那么它们一定关于对称轴对称2、若抛物线上A、B两点关于对称轴对称,且它们的横坐标分别为m、n,则对称轴为x=(m+n)/2例题8 二次函数y = ax² + bx +c,自变量x与函数y的对应值如表:下列说法正确的是()A. 抛物线开口向下B. 当x>-3时,y随x的增大而增大C. 二次函数的最小值是-2D. 抛物线的对称轴是x=-5/2【提示】注意表格中给出的y值,有三对相同的数字,而它们都是图象上点的纵坐标,抛物线上的点,纵坐标相同,它们一定关于对称轴对称,再根据二次函数的性质逐项判断例题9【提示】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,根据二次函数图象的对称性可知,关于对称轴对称,即可判断例题10 如图,抛物线y = x² - bx + c交x轴于点A(1,0),交y轴于点B,对称轴是x = 2(1)求抛物线的解析式(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB 的周长最小?若存在,求出点P的坐标;若不存在,请说明理由【提示】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,求出b,c即可;(2)因为点A与点C关于x=2对称,根据轴对称的性质连接BC 与x=2交于点P,点P即为所求,求出直线BC与x=2的交点即可类型四根据条件确定二次函数的解析式【知识点】注:有顶点信息用顶点式,有交点信息用交点式,没特殊信息用一般式例题11 已知某二次函数的图象如图,则这个二次函数的解析式为()A. y = - 3(x - 1)² + 3B. y = 3(x - 1)² + 3C. y = - 3(x + 1)² + 3D. y = 3(x + 1)² + 3【提示】有顶点信息,用顶点式例题12 已知二次函数的图象经过(-1,-5),(0,-4),(1,1),则这个二次函数的表达式为()A. y = - 6x² + 3x + 4B. y = - 2x² + 3x - 4C. y = x² + 2x - 4D. y = 2x² + 3x - 4【提示】无特殊信息,用一般式例题13 已知二次函数图象经过(1,0),(2,0),(0,2)三点,则该函数图象的关系式是_____________________.【提示】有交点信息,用交点式类型五利用二次函数解决实际问题例题14 在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是y cm²,设金色纸边的宽度为x cm,那么y关于x的函数是()A. y = (60+2x)(40+2x)B. y = (60+x)(40+x)C. y = (60+2x)(40+x)D. y = (60+x)(40+2x)【提示】挂图面积 = 长×宽 =(60+2x)(40+2x)例题15 某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?【提示】可参考(九年级第5讲)一元二次方程的实际应用【参考答案】例题1:C例题2:A例题3:B例题4:D例题5:C例题6:D例题7:D例题8:D例题9:D例题10:(1)解析式为:y=x²- 4x + 3(2)点P的坐标为(2,1)例题11:A例题12:D例题13:y= x² - 3x + 2例题14:A例题15:(1)销售量:600(件),销售利润:12000(元)(2)关系式:y= -20(x-75)² + 12500最大利润:12500元(3)定价为70元或80元时这批服装可获利12000元。

二次函数例题分析与解读

二次函数例题分析与解读

二次函数例题分析与解读在数学学科中,二次函数是一种非常重要且常见的函数形式。

它的一般表达式为y=ax^2+bx+c,其中a、b、c为实数且a≠0。

本文将从实际例题出发,分析并解读二次函数的特点、图像、性质以及应用。

例题一:设二次函数f(x)=2x^2+3x-2,求该函数的图像和顶点坐标。

解析:首先,我们可以通过绘制图像来直观理解函数的特性。

为此,我们可以利用平方完成的方法,将f(x)转化为标准形式。

根据平方完成的原则,我们将要计算的式子化简为f(x)=2(x^2+3/2x)-2。

接下来,我们需要利用平方完成的方法,将二次项的系数一半的平方加到式子中。

具体操作如下:f(x)=2[(x+3/4)^2-(3/4)^2]-2=2(x+3/4)^2-2(9/16)-2=2(x+3/4)^2-35/8现在我们可以看出函数f(x)的标准形式为f(x)=2(x+3/4)^2-35/8。

由标准形式可以得知,该二次函数的抛物线图像开口向上(因为a=2>0),顶点坐标为(-3/4, -35/8)。

例题二:已知函数f(x)的图像经过点(1,1)和(-2,8),求该函数的表达式。

解析:我们可以借助已知的两个点来构建方程,以求得函数f(x)的表达式。

由于已知点(1,1)在f(x)上,可知f(1) = 1。

同样地,已知点(-2,8)在f(x)上,可知f(-2) = 8。

将x分别代入方程,我们可以得到两个方程:f(1) = a(1)^2+b(1)+c = a+b+c = 1f(-2) = a(-2)^2+b(-2)+c = 4a-2b+c = 8进一步整理以上两个方程,我们可以得到一个由a、b、c构成的线性方程组:a+b+c = 14a-2b+c = 8通过解该线性方程组,我们可以得到相应的a、b、c的值,进而确定函数f(x)的表达式。

综上所述,本文通过两个实际例题分析和解读了二次函数的特点、图像、性质以及应用。

通过这些例题的解析,我们可以更好地理解和掌握二次函数的相关知识,进一步提升数学解题能力。

二次函数动点经典例题+练习(附解析)

二次函数动点经典例题+练习(附解析)

二次函数中的动点问题动点问题题型方法归纳总结:几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,在解题方法给以点拨。

例:如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。

第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数的动点问题1.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,.(1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.[解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,.设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,. 解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形. 所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤).所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形.由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数典型例题解析
关于二次函数的概念
例1 如果函数1)3(2
32++-=+-mx x m y m m 是二次函数,那么m 的值为 。

例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。

关于二次函数的性质及图象
例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,∆,c b a ++,c b a +-的符号
为 ,
例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。

乙:函数的图像经过第一象限。

丙:当x <2时,y 随x 的增大而减小。

丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。

例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式)
例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( )
(A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限
例7 双曲线x
k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( )
例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2的图象只可能是( )
确定二次函数的解析式
例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为(
(A )322++-=x x y (B )322--=x x y
(C )322+--=x x y (D )322---=x x y
例10 如图:△ABC 是边长为4的等边三角形,AB 在X 轴上,
点C 在第一象限,AC 与Y 轴交于点D ,点A 的坐标为(-1,0)
(1) 求 B 、C 、D 三点的坐标;
(2) 抛物线c bx ax y ++=2经过B 、C 、D 三点,求它的解析式;
以二次函数为基架的综合题
例11 二次函数y=ax 2+bx+c 的图象过点(1,0)(0,3),对称轴x= -1。

① 求函数解析式;
② 若图象与x 轴交于A 、B (A 在B 左)与y 轴交于C,顶点D ,求四边形ABCD 的面积。

例12 已知:抛物线m x x y +--=232与X 轴分别交于A 、B 两点(点A 在B 的左边),点P 为抛物线的顶点,(1)若抛物线的顶点在直线3
13+=x y 上,求抛物线的解析式; (2)若AP ∶BP ∶AB=1∶1∶2,求抛物线的解析式。

例12 已知二次函数y=x 2-(m 2+8)x+2(m 2+6),设抛物线顶点为A ,与x 轴交于B 、C 两点,问是否存在实数m,使△ABC 为等腰直角三角形,如果存在求m;若不存在说明理由。

例13 已知:抛物线y=ax 2+bx+c 过点A (-1,4),其顶点的横坐标是1/2,与X 轴分别交于B (x 1,0),C (x 2,0)两点(其中x 1<x 2),且x 12+x 22=13。

(1)求此抛物线的解析式及其顶点E 的坐标;(2)设此抛物线与y 轴交于点D ,点M 是抛物线上的点,若ΔMBO 的面积为ΔDOC 的面积的2/3倍,求点M 的坐标。

(西城区)
练习题:
1. 已知:抛物线4)3
4
3(2++-=x m mx y 与X 轴交于两点A 、B ,与Y 轴交于C 点,若△ABC 是等腰三角形,求抛物线的上解析式。

2. 知抛物线c bx ax y ++=2经过P (-2,-2),且与X 轴交于点A ,与Y 轴交于点B ,点A 的横坐标是方程
1114=--x x 的根,点B 的纵坐标是不等式组⎩⎨⎧>-≥-034012x x 的整数解,求抛物线的解析式。

3.抛物线c bx ax y ++=2的顶点为A (2,-3),与直线13+-=x y 有一个交点且该交点的横坐标为1。

⑴求它的解析式;
⑵设抛物线对称轴与x 轴交于B 点,抛物线与y 轴交于C 点,求△ABC 的面积。

4.已知:抛物线62++=mx x y 与X 轴相交于点A 、B ,点P 是抛物线的顶点,(1)当△PAB 的面积为81时,求抛物线的解析式;(2)是否存在实数m ,能使△PAB 为正三角形,若存在,求出m 的值;若不存在,说明理由。

相关文档
最新文档