幂的运算例题精讲dy
高中幂运算练习题及讲解
高中幂运算练习题及讲解题目1:基础幂运算计算以下表达式的值:1. \( a^3 \)2. \( b^2 \)3. \( (-2)^3 \)4. \( (-3)^4 \)答案:1. 需要知道 \( a \) 的值才能计算。
2. 需要知道 \( b \) 的值才能计算。
3. \( (-2)^3 = -8 \)4. \( (-3)^4 = 81 \)题目2:幂的乘法计算以下表达式的值:1. \( (x^2)^3 \)2. \( (y^3)^2 \)3. \( (-2)^2 \cdot (-2)^3 \)答案:1. \( (x^2)^3 = x^6 \)2. \( (y^3)^2 = y^6 \)3. \( (-2)^2 \cdot (-2)^3 = 4 \cdot (-8) = -32 \) 题目3:幂的除法计算以下表达式的值:1. \( \frac{x^6}{x^2} \)2. \( \frac{y^8}{y^4} \)3. \( \frac{(-3)^6}{(-3)^2} \)答案:1. \( \frac{x^6}{x^2} = x^4 \)2. \( \frac{y^8}{y^4} = y^4 \)3. \( \frac{(-3)^6}{(-3)^2} = 729 \) 题目4:幂的乘方计算以下表达式的值:1. \( (x^2)^4 \)2. \( (y^3)^3 \)3. \( (-2)^6 \)答案:1. \( (x^2)^4 = x^8 \)2. \( (y^3)^3 = y^9 \)3. \( (-2)^6 = 64 \)题目5:组合幂运算计算以下表达式的值:1. \( (x^2y^3)^2 \)2. \( (3a^2b^3)^2 \)3. \( (-4x^2y^3)^3 \)答案:1. \( (x^2y^3)^2 = x^4y^6 \)2. \( (3a^2b^3)^2 = 9a^4b^6 \)3. \( (-4x^2y^3)^3 = -64x^6y^9 \)题目6:零指数幂计算以下表达式的值:1. \( a^0 \)2. \( (-3)^0 \)3. \( (2x)^0 \)答案:1. \( a^0 = 1 \)(对于任何非零的 \( a \))2. \( (-3)^0 = 1 \)3. \( (2x)^0 = 1 \)(对于任何非零的 \( x \))题目7:负指数幂计算以下表达式的值:1. \( a^{-2} \)2. \( (-3)^{-1} \)3. \( (2x)^{-3} \)答案:1. \( a^{-2} = \frac{1}{a^2} \)2. \( (-3)^{-1} = -\frac{1}{3} \)3. \( (2x)^{-3} = \frac{1}{(2x)^3} \)幂运算讲解幂运算是代数学中的基础概念,它涉及到将一个数(称为底数)自身乘以自身若干次(称为指数)。
《幂的运算复习》课件
基础练习题
1. 计算
2^3 + 3^2
3. 计算
a^m × a^n
总结词
考察幂的运算基本概念和简单 计算
2. 计算
(a^2)^3 × a^4
4. 计算
(x^2)^3
进阶练习题
1. 计算
(a + b)^2
3. 计算
(a × b)^n
总结词
考察幂的运算规则 和复杂计算
2. 计算
(a - b)^3
4. 计算
总结词 理解幂的乘方运算在解决实际问 题中的应用。
开方运算
总结词
详细描述
总结词
详细描述
掌握幂的开方运算规则,理解 开方的意义和性质。
幂的开方运算规则是"底数开方 ,指数减半"。即,√a^m = a^(m/2)。例如,√2^3 = 2^(3/2)。
理解幂的开方运算在解决实际 问题中的应用。
在解决实际问题时,有时需要 求一个数的平方根,这时就可 以使用幂的开方运算。此外, 在计算一些几何量时,也可以 使用幂的开方运算来简化计算 过程。
忽略幂的运算优先级
总结词
在进行幂的运算时,学生容易忽略运 算的优先级,导致计算结果错误。
详细描述
在数学运算中,幂运算具有优先级, 应该先进行幂运算,然后再进行加减 乘除等其他运算。学生常常忽略这一 点,例如将"a+b*c^2"误写为 "a+(b*c)^2",导致计算结果错误。
错误应用幂的性质
总结词
在金融领域,幂的运算用 于构建各种金融模型,如 股票价格模型、利率模型 等。
人口统计
在人口统计学中,幂的运 算用于预测人口增长和分 布。
七年级数学幂的运算讲解与例题
8.1 幂的运算1.了解幂的运算性质,会利用幂的运算性质进行计算.2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.1.同底数幂的乘法(1)同底数幂的意义“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.(2)幂的运算性质1同底数幂相乘,底数不变,指数相加.用字母可以表示为:a m·a n=a m+n(m,n都是正整数).(3)性质的推广运用当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.③不要忽视指数是1的因数或因式.【例1-1】(1)计算x3·x2的结果是______;(2)a4·(-a3)·(-a)3=__________.解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.答案:(1)x5(2)a10正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.【例1-2】计算:(1)(x+y)2·(x+y)3;(2)(a-2b)2·(2b-a)3.分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5;方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5.本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5相乘,读作“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3;(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n =m m m n a a a ⋅⋅⋅L 1442443个=m m m n a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅L L L L 142431424314243144444424444443个个个个=a mn(m ,n 都是正整数) (2)幂的运算性质2幂的乘方,底数不变,指数相乘.用字母可以表示为:(a m )n =a mn(m ,n 都是正整数).这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用幂的乘方性质可推广为: [(a m )n ]p =a mnp(m ,n ,p 均为正整数).(4)注意(a m )n 与am n的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58.因此,(a m )n ≠am n .【例2】(1)计算(x 3)2的结果是( ).A .x 5B .x 6C .x 8D .x 9(2)计算3(a 3)3+2(a 4)2·a =__________.解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.答案:(1)B (2)5a 9防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8都是错误的.3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n等.(2ab )3=(2ab )·(2ab )·(2ab )(乘方意义)=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.(ab )n =n ab ab ab ()()()L 1442443个=n a a a (⋅⋅⋅)L 14243个n b b b (⋅⋅⋅⋅)L 14243个=a n b n(n 为正整数).(2)幂的运算性质3积的乘方等于各因式乘方的积.也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.用字母可以表示为:(ab )n =a n b n(n 是正整数). (3)性质的推广运用三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n(n 是正整数).【例3】计算:(1)(-2x )3;(2)(-xy )2;(3)(xy 2)3·(-x 2y )2;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34.分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2,y 的积;(4)-12ab 2c 3含有四个因数-12,a ,b 2,c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.解:(1)(-2x )3=(-2)3·x 3=-8x 3;(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2;(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34=⎝ ⎛⎭⎪⎫-124a 4(b 2)4(c 3)4=116a 4b 8c 12.(1)在计算时,把x 2与y 2分别看成一个数,便于运用积的乘方的运算性质进行计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.4.同底数幂的除法 (1)幂的运算性质4同底数幂相除,底数不变,指数相减.用字母可以表示为:a m ÷a n =a m -n(a ≠0,m ,n 都是正整数,且m >n ).这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.(2)性质的推广运用三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p(a ≠0,m ,n ,p 为正整数,m >n +p ).【例4】计算:(1)(-a )6÷(-a )3;(2)(a +1)4÷(a +1)2;(3)(-x )7÷(-x 3)÷(-x )2. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .解:(1)(-a )6÷(-a )3=(-a )6-3=(-a )3=-a 3;(2)(a +1)4÷(a +1)2=(a +1)4-2=(a +1)2; (3)方法1:(-x )7÷(-x 3)÷(-x )2=(-x )7÷(-x )3÷(-x )2=(-x )7-3-2=(-x )2=x 2. 方法2:(-x )7÷(-x 3)÷(-x )2=(-x 7)÷(-x 3)÷x 2=x 7-3-2=x 2.运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.5.零指数幂与负整数指数幂(1)零指数幂:任何一个不等于零的数的零次幂都等于1.用字母可以表示为:a 0=1(a ≠0).a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.用字母可以表示为:a -p=1ap (a ≠0,p 是正整数).a -p =1ap 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2=19.规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n(a ≠0,m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1a;正整数指数幂的某些运算,在负整数指数幂中也能适用.如a -2·a -3=a-2-3=a -5等.【例5】计算:(1)1.6×10-4;(2)(-3)-3;(3)⎝ ⎛⎭⎪⎫-53-2;(4)(π-3.14)0;(5)⎝ ⎛⎭⎪⎫130+⎝ ⎛⎭⎪⎫-13-2+⎝ ⎛⎭⎪⎫-23-1.分析:此题是负整数指数幂和零指数幂的计算,可根据a -p=1ap (p 是正整数,a ≠0)和a 0=1(a ≠0)计算.其中(1)题应先求出10-4的值,再运用乘法性质求出结果.解:(1)1.6×10-4=1.6×1104=1.6×0.000 1=0.000 16.(2)(-3)-3=1-33=-127. (3)⎝ ⎛⎭⎪⎫-53-2=⎝ ⎛⎭⎪⎫-352=925. (4)因为π=3.141 592 6…, 所以π-3.14≠0.故(π-3.14)0=1.(5)原式=1+1⎝ ⎛⎭⎪⎫-132+1⎝ ⎛⎭⎪⎫-231=1+9-32=812.只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即⎝ ⎛⎭⎪⎫a b -p =⎝ ⎛⎭⎪⎫b a p .6.用科学记数法表示绝对值较小的数(1)绝对值小于1的数可记成±a ×10-n的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5显然大于2.57×10-8,前者是后者的103倍.【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).A .0.156×10-5B .0.156×105C.1.56×10-6 D.1.56×106解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.答案:Cn的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).A.0.000 124 B.0.012 4C.-0.001 24 D.0.001 24解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.答案:D本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.7.幂的混合运算幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.【例7-1】下列运算正确的是( ).A.a4+a5=a9B.a3·a3·a3=3a3C.2a4·3a5=6a9D.(-a3)4=a7解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.答案:C【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3=-8(x2)3·y3+8x4·x2·y6÷y3=-8x6y3+8x6y3=0.8.幂的运算性质的逆用对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.(1)逆用同底数幂的乘法性质:a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.(2)逆用幂的乘方性质:a mn =(a m )n =(a n )m (m ,n 均为正整数).逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2,至于选择哪一个变形结果,要具体问题具体分析.(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.【例8-1】(1)已知3a =2,3b =6,则33a -2b的值为__________;(2)若m p =15,m 2q =7,m r =-75,则m 3p +4q -2r的值为__________.解析:(1)因为3a =2,3b=6,所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62=29.(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.答案:(1)29 (2)15【例8-2】(1)计算:⎝ ⎛⎭⎪⎫18 2 011×22 012×24 024;(2)已知10x =2,10y =3,求103x +2y的值.分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012逆用积的乘方性质,此时发现与⎝ ⎛⎭⎪⎫18 2 011底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性质,简化计算;(2)可逆用幂的乘方,把103x +2y化为条件中的形式.解:(1)原式=⎝ ⎛⎭⎪⎫18 2 011×22 012×(22)2 012(逆用幂的乘方)=⎝ ⎛⎭⎪⎫18 2 011×(2×22)2 012(逆用积的乘方) =⎝ ⎛⎭⎪⎫18 2 011×82 012 =⎝ ⎛⎭⎪⎫18 2 011×82 011×8(逆用同底数幂的乘法) =⎝ ⎛⎭⎪⎫18×8 2 011×8(逆用积的乘方) =8.(2)因为103x =(10x )3=23=8,102y =(10y )2=32=9,所以103x +2y =103x ·102y=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.比较幂的大小,一般有以下几种方法:(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.(3)作商比较法:当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.【例9】(1)已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a(2)350,440,530的大小关系是( ).A .350<440<530B .530<350<440C .530<440<350D .440<530<350(3)已知P =999999,Q =119990,那么P ,Q 的大小关系是( ).A .P >QB .P =QC .P <QD .无法比较解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122,又124>123>122,所以3124>3123>3122,即a >b >c .故选A .(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440.故选B .(3)因为P Q =999999×990119=9×119999×990119=99×119999×990119=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B10.幂的运算性质的实际应用利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103m/s ,则卫星运行3×102s 所走的路程约是多少?分析:要计算卫星运行3×102s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106,所以卫星运行3×102 s 所走的路程约为2.37×106m . 11.幂的运算中的规律探究题探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×52=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.利用你发现的规律计算:①(x3)15;②(x3)6;③[(2a-b)3]8.解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.(2)x2x2×3=x6x mn①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.。
幂的运算习题课PPT课件
第10页/共25页
3、注意幂的运算法则逆用
am+n=am·an (a≠0,m、n为正整数), amn=(am)n , anbn=(ab)n
第11页/共25页
(1)用于实数计算
计算: 1、(-4)2007×0.252008 2、22006-22005-22004-…-2-1
数学符号表示: (am )n amn
(其中m、n为正整数)
[(am )n ]p amnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8, [(b2)3]4 b234 b24 (x2)2n1 x4n2, (a4)m (am )4 (a2m )2
第2页/共25页
)
=p6+10 ( 同底数幂的乘法法则 )
=p16
第6页/共25页
例、木星是太阳系九大行星中最大的一 颗,木星可以近似地看作球体.已知木星 的半径大约是7×104km,木星的体积大约 是多少km3(∏取3.14)?
分析:球体体积公式 v 4 R3 解: v 4 (7 104 )3 3
3
4 73 1012
(1)如果(x3)6=86,则 x=__—+_2___
(2)小明在计算过程中发现(32)3=(33)2; [(-2)3]4=[(-2)4]3,于是得出结论:(am)n=(an)m (m,n为正整数).同时认为(-am)n=(-an)m也是成立 的。你同意他的观点吗?
(3)计算[( 2 )3]2的值。
第5页/共25页
想一想:
1.下面的计算对吗? 错的请改正:
(1) (43)5=48 ×, 415 (2) (-28)3=(-2)24 ×, 224
初中数学幂的运算专题讲解及典型题练习(含答案)
初中数学幂的运算专题讲解及典型题练习【知识点梳理】1.有理数的乘方定义求个相同因数的积的运算,叫做乘方.乘方运算的结果叫幂.n 一般地,,叫做底数,叫做指数,叫做幂。
n n a a a a a ⋅⋅⋅= 个a n n a 读作“的次幂”或读作“的次方”.n a a n a n 【注意】(1)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算的结果.(2)一个数可以看作是这个数本身的一次方,例如5就是,就是,指数是1通常省略15a 1a 不写.2.有理数幂的符号法则(1)正数的任何次幂都是正数.(2)负数的奇数次幂是负数,负数的偶数次幂是正数.(3)特别地,.()11,00n n n ==为正整数【注意】“负幂”与“负数的幂”区别:“负幂”例如表示的相反数,其结果为负数.“负51()2-51()2数的幂”例如,结果要看指数,即负数的奇次幂为负数,负数的偶次幂为正数.1()2n -3.有理数的混合运算一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算,称为有理数的混合运算.【注意】加法、减法、乘法、除法有各自的运算法则,也有各自的运算技巧,减法可以统一成加法,除法可以统一成乘法,加法与乘法还有各自的运算律,乘方是乘法的特例,也有自己的符号法则,同时也要考虑整体的符号关系以及简便算法.4.有理数的混合运算顺序(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右依次进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【注意】(1)在加、减、乘、除、乘方这几种运算基本掌握的前提下,学习混含运算,首先应注意的就是运算顺序的问题.(2)通常把六种基本的代数运算分成三级:第一级运算是加和减,第二级运算是乘和除,第三级运算是乘方和开方(以后学习).运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.(3)括号前带负号,去括号后要将括号内的各项都要变号,即.()(),a b a b a b a b -+=----=-+5.科学记数法把一个数写成(其中,是正整数)的形式,这种记数法称为科学记数10n a ⨯110a <≤n 法.【注意】(1)科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构,即要掌握形式的结构特征: ,为正整数,且值等于原数的整数位数减1.10n a ⨯110a <≤n n (2)在把用科学记数法表示的数还原为原数时,根据其基本原理和结构,把的小数点向右a 移动位,中数字不够时,用补足.n a 0【典型例题讲解】【例1】计算:.2007200812()2⨯-【分析】直接进行各自的乘方运算非常困难,但根据乘方的意义可得.共200722222=⨯⨯⨯⋅⋅⋅⨯2007个2相乘,2008200811()()22-=2007112008200722111111111222222222=⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=⨯个个()利用乘法交换律和结合律,把2007个2与结合在一起相乘,利用互为倒数即可求出数12值.【解析】2007200812()2⨯-20072008122=⨯().20072007200711111222222=⨯⨯⨯⨯=()()=(2)【方法总结】此题主要应用互为倒数、乘法运算律及乘方的意义进行计算,事实上我们不难发现,当与互为倒数时,其值为1.计算时要注意符号的问题.多加理解与练()m m m a b ab = a b 习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:、.2010201115()5⨯-200920102 2.55⎛⎫-⨯ ⎪⎝⎭【解析】.20102010201111115()55555⎡⎤⎛⎫⎛⎫⨯-=⨯-⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.200920092009201020102252552.5 2.5552522⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯=-⨯⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【例2】计算:.22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦【分析】根据有理数的混合运算法则进行计算,分清计算的先后顺序,还要注意去括号的时候要注意符号.【解析】22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦[]135(13)435(1253)40.04⎡⎤=---+-⨯÷=---+-⨯÷⎢⎥⎣⎦[][]35(175)435(74)4=---+-÷=---+-÷.[]35(18.5)3(23.5)20.5=---+-=---=【借题发挥】计算:()()[]2243225.02115.01--⨯⎪⎭⎫ ⎝⎛-÷-+-【解析】原式=()[]()()2411110.52910.571167554162⎛⎫⎛⎫-+-÷⨯-=-+-÷⨯-=-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭【例3】已知,,求的值.12x =-13y =-432231x y x --【分析】把,的值分别代入要求的式子,按有理数混合运算顺序进行计算.x y 【解析】把,代入,得12x =-13y =-432231x y x -- 原式43211112()3()23()231627111()124⨯--⨯-⨯-⨯-==---11114141789()3893627544-==+⨯=+=【方法总结】此类题一方面代入要准确,即负数或分数代入时一般加上小括号,另一方面代入后计算必须准确,最后结果是分数时一定是最简分数.【借题发挥】求当时,代数式的值.2,1x y =-=-2222222x y x xy y x y x y--+++-【解析】将带入,得2,1x y =-=-2222222x y x xy y x y x y --+++-原式=.()()()()()()()()()()2222221222113114221531521⨯-----⨯-⨯-+--+=+=⨯-+-----【例4】(1)补充完整下表:1323334353637383392781(2)从表中你发现3的方幂的个位数有何规律?(3)3251的个位数是什么数字?为什么?【分析】幂的个位上的数字3、9、7、l 交错重复出现,即每隔四个数,个位数字就重复一次,所以用251除以4所得的余数来确定.【解析】(1)132333435363738339278124372921876561(2)个位上的数字为3、9、7、1交错重复出现.(3)的个位数是7,因为除以4的余数是3.是重复出现时的第三个数.2513251【方法总结】此类题一般都是通过写出一些简单的幂,通过这些幂的结果总结出末位出现数字的种类及循环规律,进一步把指数按循环数进行分解,通过剩余指数求得最后答案.【借题发挥】的个位数是 ,的个位数是 ,253263的个位数是 ,的个位数是 .273283【解析】3,9,7,1.【例5】怎样比较,,的大小呢?553444335【解析】本题如果通过硬算,数字太大,不可能,因此要观察此三个数的特点,经观察,我们发现55、44、33存在着最大公因数11,不妨利用这一点以及乘方的定义来入手解题.具体过程如下:5511115533333(33333)243=⋅⋅⋅=⨯⨯⨯⨯= 个344111144444444(4444)256=⋅⋅⋅=⨯⨯⨯= 个.33111133555555(555)125=⋅⋅⋅=⨯⨯= 个因为,所以256243125>>111111256243125>>即.445533435>>【借题发挥】1.试比较的大小.443322234、、【解析】因为:,则,即()()()111111444113331122211221633274416======,,11111627<.442233243<=2.你能比较和的大小吗?2004200320032004 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较和1n n +(1)n n +的大小(是自然数).然后,我们从分析…这些简单情形人手,从中发现规n 1,2,3,n n n ===律,经过归纳,猜想出结论.(1)通过计算.比较下列各组中两个数的大小(填“>”,“<”或“”).- ①___;②____;③ ;④____;⑤ ;…21123223433454456556 (2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是 .1n n +(1)n n + (3)根据上面归纳猜想后得到的一般结论,试比较下面两个数的大小:.2004200320032004【解析】经计算与分析可推出结论:当时,<;当时,>.3n <1n n +(1)n n +3n ≥1n n +(1)n n +(1)①<;②<;③>;④>;⑤> (2) 当时,<;当时,>3n <1n n +(1)n n +3n ≥1n n +(1)n n +(3)>.(2)【借题发挥】比较下面各对数的大小:___; ; .211243342010200920092010【解析】<;>;>.【例6】比较与的大小.109.99810⨯111.00110⨯【分析】二者是用科学记数法表示的数,一方面可以把它们化成原数,通过比较原数大小来比较这两个数的大小;另一方面也可以把它化为相同指数,通过比较前面数(即)的大小来比a 较二者大小.【解析】解法一:,109.9981099980000000⨯=.111.00110100100000000⨯= 又,100100000000>99980000000.∴10119.99810 1.00110⨯<⨯ 解法二:,1110101.001l01. 0011010 10.0110⨯=⨯⨯=⨯ 又,10.019.998> .∴10119.99810 1.00110⨯<⨯【方法总结】解法一是常规方法,但书写起来很麻烦,易出现错误;方法二较巧妙地转化了,容易比较大小.11101.0011010.0110⨯=⨯【借题发挥】试比较:和.20099.9810⨯20101.0510⨯【解析】.2010200920091.051010.5109.9810⨯=⨯>⨯【例7】 定义“”“”两种运算,对于任意的两个数、,都有,○+○-a b a ○+b 1a b =+-a ○-b 1ab =-.求[()()]的值.4○-3○+5○+6○-2【分解】按规定的“”与“”进行各自的运算,运算时先算士括号里的,再算中括号里的.○+○-【解析】由,,得a ○+b 1a b =+-a ○-b 1ab =-[()()]4○-3○+5○+6○-2[()()]4=○-351+-○+621⨯-()()4=○-7○+114=○-7111+-.4=○-174=⨯171-67=【方法总结】此类题按规定的运算关系进行计算,首先要读懂表达式的含义,会套用公式,计算时注意符号关系及准确性外,还要注意运算的先后顺序.【借题发挥】“△”表示一种新的运算符号,其意义是对于任意,都存在△,如果△△a b a b 2a b =-x (1,则 .3)2=x =【解析】由△,得△△,即,则,所a b 2a b =-x (13)2=()()21312x x ⨯-=-=△△()212x --=以.12x =【例8】若尺布可做件上衣,则尺布能做多少件这样的上衣?619【解析】第题按计算件,但实际情况是只能做件,所以只能舍,不能入;961.5÷=105.【借题发挥】若每条船能载个人,则个人需要几条船?310【解析】按计算,但实际情况是条船不够,需要4条船,所以在这里应该入,取1103=33÷3134.【方法总结】在实际问题中,经常对药对一些数位上的数进行取舍,有的要求进行四舍五入,有的则按生活及生产实际进行取舍,千万不能遇及以上的数就入,遇以下的数就舍.555【随堂练习】1.计算: .2008(1)-=【答案】1.2.计算: .20102010201020104(0.25)(1)1-+-+= 【答案】原式=.201020102010201014()(1)111114-+-+=-++= 3.若,则 .21(2)0a b ++-=20102009()a b a ++=【答案】由题意知 得,代入原式可求结果为:0.1020a b +=⎧⎨-=⎩12a b =-⎧⎨=⎩4.如果那么的值为 .214,,2x y ==222x y -【答案】.222112243122x y -=⨯-=5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下米,第二次后剩下米,第三次后剩下米,由此推下1221142⎛⎫= ⎪⎝⎭312⎛⎫ ⎪⎝⎭去,第次后剩下米.所以六次后剩下的木条为(米).n 12n ⎛⎫ ⎪⎝⎭611264⎛⎫= ⎪⎝⎭6.计算:(1); (2); (3)321()(1)33-÷-232(3)-⨯-32221(0.2)(1).3(0.3)-⨯÷-【答案】(1);(2)108;(3).290.002-7.(1). (2).451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯()1452515213⨯-÷+-(3). (4).()3432322⎪⎭⎫ ⎝⎛-⨯-÷-()()()3428102-⨯---÷+-(5).()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---(6).()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-【答案】(1) (2) (3) (4) (5) (6)225-347-1111620-11147224-8.利用乘方的有关知识确定的末两位数字.20076【答案】9.已知“三角”表示运算“”,“正方形”表示的运算是“” ,试计a b c -+d f g e -+-算的值.【答案】原式=.()()()199649551996281474116-+⨯-+-=-⨯=-9.计算:.111111111248163264128256512++++++++【答案】原式=11111111111122448816128256256512⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+⋅⋅⋅+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.151********-=10.光年是天文学中使用的距离单位,指的是光在真空中经历一年所走的距离,若真空中光的速度为千米/秒,用科学记数法表示l 光年是多少?(1年按天计算)300000365【答案】已知:千米/秒,(秒).300000v =365243600t =⨯⨯ 由(千米).300000365243600s vt ==⨯⨯⨯9460800000000=129.460810=⨯所以,l 光年是千米.129.460810⨯11.阅读下列解题过程:计算:()632113115⨯⎪⎭⎫ ⎝⎛--÷-解:()632113115⨯⎪⎭⎫ ⎝⎛--÷-(第一步)()662515⨯⎪⎭⎫ ⎝⎛-÷-=(第二步)()()2515-÷-=(第三步)53-=回答:(1)上面的解题过程中有两个错误,第一处是第 步,错误的原因是 ;第二处是第 步,错误原因是 .(2)正确的结果是 .【答案】(1)二,乘除为同一等级的计算,没有按照从前往后的顺序求解;(2)三,负数乘以负数得到正数,题中为负数. (2).3215【课堂总结】【课后作业】一、填空题1. .=---3232. .()22533235-⨯-⨯+=3. .()()()()()=-⨯---⨯---⨯++n n n 212211111014. .()()=-÷⎪⎭⎫ ⎝⎛-+-⨯-5214387165. .()()()=-⨯-+⨯-03.716.016.4003.76. .()()=-⨯+-÷-2333227.若、互为倒数,、互为相反数,,则 .a b c d 2=m ()=-+⋅+23m ab ba d c 8.一个数用科学记数法表示为,则它是 位整数.10n a ⨯二、选择题9.下列公式计算正确的是( )A .B .()527527⨯--=⨯--31354453=÷=⨯÷C . D .⎪⎭⎫ ⎝⎛÷÷=÷÷5454354543()932=--10.计算的值是( )()()2007200822-+-A .1 B . C . D .2-20072-2007211.下列各组数中,相等的一组是( ).A .与B .与23-2(3)-2(3)--3(2)-- C .与 D .与3(3)-33-223-⨯332-⨯12.用合理的方法计算:(1) ; (2) ;515635236767---1544 3.87 4.253495-+-+(3) ; (4) ; 1511342461832⎛⎫⎛⎫--+--+ ⎪ ⎪⎝⎭⎝⎭()110.5678111-----+⎡⎤⎣⎦13.计算:(1); (2);63221⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷2131521(3); (4).⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--838712787431⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯1811351121961365514.用科学计数法表示下列计算结果:(1)一昼夜小时是多少秒?24 (2)50251002⨯15.(1)阅读短文《拆项计算》:拆项计算下面带分数的计算申,常把整数部分和分数部分拆开,以简化计算过程,举例如下:5231591736342⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭()5231591736342523159173634252315917363425213063241235644⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=----++--⎛⎫=--+-+--+- ⎪⎝⎭⎛⎫=-+++ ⎪⎝⎭=-+=-(2)仿照第(1)小题的计算方法计算:5211200620054000116332⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】1.-11 2.21 3.1 4.2 5.-281.2 6.-7 7.-1 8.1n +9.D 10.D 11.C12.(1) 515655163523325319867676677⎡⎤⎛⎫⎛⎫⎛⎫---=-+-+-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2) 1541451454 3.87 4.253437437495459459-+-+=-+-+=(3) 151153424146183218⎛⎫⎛⎫--+--+=- ⎪ ⎪⎝⎭⎝⎭ (4) ()110.56781110.4321-----+=-⎡⎤⎣⎦13.(1) 121266612323⎛⎫⎛⎫-⨯=⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭(2) ()2117216853255⎛⎫÷-=⨯-=- ⎪⎝⎭(3) 377733114812888⎛⎫⎛⎫⎛⎫--÷-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4).51111351936361853911366623518633519⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-÷-=⨯-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭14.(1) 一昼夜小时是(秒)244246060864008.6410⨯⨯==⨯(2) =50251002⨯50505010025410010⨯==15.原式=()5211352200620054000110.6332263⎛⎫⎛⎫--+++--++=+-+=- ⎪ ⎪⎝⎭⎝⎭。
幂的运算知识要点归纳及答案解析
幂的运算知识要点归纳及答案解析【要点概论】要点一、同底数幂的乘法特点+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一特点,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,算法更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭重点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,算法时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算特点,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题解析】类型一、同底数幂的乘法特点1、算法:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【标准答案与解析】 解:(1)原式234944++==.(2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,算法时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】算法:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【标准答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()ppp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【标准答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n aa a +=⋅.类型二、幂的乘方法则3、算法:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【标准答案与解析】解:(1)2()m a 2m a =.(2)34[()]m -1212()m m =-=. (3)32()m a-2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【标准答案与解析】 解:∵ 25mx=,∴ 62331115()55520555m m x x -=-=⨯-=.【总结升华】(1)逆用幂的乘方法则:()()mnm n n m a a a ==.(2)本题培养了学生的整体思想和逆向思维能力. 举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【标准答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【标准答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题算法是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【标准答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略.【典型例题】类型一、同底数幂的乘法特点1、算法:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 【标准答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()nnnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则 2、算法:(1)23[()]a b --; (2)32235()()2y y y y +-g ; (3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【标准答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x xx =⋅=.【总结升华】(1)运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n变成323288(8)(8)m n m n ⨯=⨯,再代入算法.【标准答案与解析】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算特点,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mm ab ==,则()()()36322mm m m a b a b b +-⋅= .【标准答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、算法:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算特点进行算法. 【标准答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-. (2)24333[()]a a b -⋅-231293636274227()()()a a b a a ba b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【标准答案】A ;提示:只有⑤正确;()3236928x yx y -=-;()326m maa -=-;()3618327aa =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一特点. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nna a -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算特点仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0na a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、算法:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则算法.(2)、(4)两小题要注意符号. 【标准答案与解析】解:(1)83835x x xx -÷==.(2)3312()a a aa --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行算法的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、算法下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷- (3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再算法,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【标准答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行算法.3、已知32m =,34n =,求129m n+-的值.【标准答案与解析】解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和算法,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【标准答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1, ∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、算法:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【标准答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】算法:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【标准答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭ 45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m =,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________. 【标准答案与解析】解: ∵ 331133273m -===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-. ∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122n n -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三: 【变式】算法:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭; 【标准答案】 解:(1)原式424626b a b c a c --==. (2)原式8236981212888b b c b cb c c---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【标准答案与解析】解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯;(3)-0.000135=41.3510--⨯;(4)0.00067=46.710-⨯.【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】一.选择题1. ()()35c c -⋅-的值是( ).A. 8c -B. ()15c -C. 15cD.8c 2.2n n a a +⋅的值是( ).A. 3n a +B. ()2n n a +C. 22n a +D. 8a 3.下列算法正确的是( ).A.224x x x +=B.347x x x x ⋅⋅=C. 4416a a a ⋅=D.23a a a ⋅=4.下列各题中,算法结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010C. 100×310=510D. 100×1000=4105.下列算法正确的是( ).A.()33xy xy =B.()222455xy x y -=-C.()22439x x -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25m n ==,则2m n +=____________.8. 若()319x a a a ⋅=,则x =_______.9. 已知35n a =,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦ ______; ()523-=______.12.若n 是正整数,且210n a =,则3222()8()n n a a --=__________.三.解答题13. 判断下列算法的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值.【标准答案与解析】一.选择练习题1. 【标准答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=. 2. 【标准答案】C ;【解析】2222n n n n n a a a a ++++⋅==.3. 【标准答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.4. 【标准答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【标准答案】D ;【解析】()333xy x y =;()2224525xy x y -=;()22439x x -=.6. 【标准答案】C ;【解析】()333915288,39,315m n m n a ba b a b m n ====,解得m =3,n =5. 二.填空题7. 【标准答案】30;【解析】2226530m n m n +==⨯=g .8. 【标准答案】6;【解析】3119,3119,6x a a x x +=+==.9. 【标准答案】25;【解析】()2632525n n a a ===. 10.【标准答案】5;1;【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==.11.【标准答案】64;9n -;103-;12.【标准答案】200;【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=. 三.解答题13.【解析】解:(1)×;(2)×;(3)×;(4)×14.【解析】解:(1)3843241237()()x x x x x xx ⋅-⋅-=-⋅⋅=-; (2)233322696411()()327a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272aa a a a a a -+-⋅=-⋅=-. 15.【解析】解:(1)∵3335n n x xx +⋅= ∴ 4335n x x +=∴4n +3=35∴n =8(2)m =4,n =3解:∵()3915n m a b ba b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15∴n =3且m =4就这么多了,祝大家思修不挂科!!!页眉设计。
幂的运算知识详解及练习
幂的运算一、同底数幂的乘法:)(是正整数、n m aaanm nm+=⋅同底数幂相乘,底数不变,指数相加 推广:三个或三个以上的同底数幂相乘,即()mn pm m paa aam n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.练习:1.m a 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;2.写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;3.计算=⋅⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛41015101 =--⋅⋅32)(m m m=⋅⋅⋅953c c c c =⋅-1255m=⋅+qqn 1=-+⋅⋅112p p n n n=-⋅23b b=-⋅3)(a a=--⋅32)()(y y =--⋅67)5()5( =--⋅32)()(q q n=--⋅69)(b b2323()()()()x y x y y x y x -⋅-⋅-⋅-23()()()a b c b c a c a b --⋅+-⋅-+2344()()2()()x x x x x x-⋅-+⋅---⋅122333m m m x xx xx x---⋅+⋅-⋅⋅4.下面的计算对不对?如果不对,应怎样改正?523632=⨯ 633a a a =+ n n n y y y 22=⨯ 22m m m =⋅422)()(aa a =-⋅- 1243a a a =⋅ 334)4(=- 6327777=⨯⨯5.若21464n +=,求n 的值.6.若a m =2,a n =3,则a m+n=7.若34m a a a =,则m=________;若416a x x x =,则a=__________;8.若2345y xx x x x x =,则y=______;若25()x a a a -=,则x=_______.二、幂的乘方与积的乘方1.幂的乘方)()(是正整数、n m aamnnm=幂的乘方,底数不变,指数相乘.练习:1.计算=-32])2[( =-32)2(=-⋅3224)()(a a =-⋅-323)()(a a=-+-4554)()(x x=⋅-++mm a a1231)()(22254222)()()()(3x x x x ⋅-⋅ =122)(--n x =2.下列各式计算正确的( )A.x a ·x 3=(x 3)aB.x a ·x 3=(x a )3C.(x a )4=(x 4)aD. x a · x a · x a =x a +3 3.下列各式错误的是( )A .[(a+b )2]3=(a+b )6 B.[(x+y )n 2]5=(x+y )52+n C. [(x+y )m ]n =(x+y )mn D. [(x+y )1+m ]n =[(x+y )n ]1+m4. 若(91+m )2=316,求正整数m 的值.5.若 2·8n·16n=222,求正整数m 的值.6.已知105,106αβ==,求2310αβ+的值7.若 3=nx, 则=nx 3________.2.积的乘方)nn na b a b=((n 是正整数)积的乘方,把积的每一个因式分别乘方,再把所有得幂相乘。
《幂的运算复习》课件
幂的除法运算:a^m/a^n=a^(m-n)
幂的除法运算:a^m/a^n=a^(m-n)
乘方运算
概念:乘方运算是一种特殊的乘法运算,表示一个数自乘若干次
符号:乘方运算的符号为“^”,如2^3表示2的3次方
运算规则:a^m * a^n = a^(m+n),如2^3 * 2^2 = 2^5
幂的运算方法:包括加法、减法、乘法、除法、乘方、开方等
《幂的运算复习》PPT课件
单击添加副标题
Ppt
汇报人:PPT
目录
01
单击添加目录项标题
03
幂的运算方法
05
幂的运算注意事项
02
幂的定义与性质
04
幂的运算应用
06
幂的运算易错点分析
07
幂的运算练习题与答案解析
添加章节标题
01
幂的定义与性质
02
幂的定义
幂是指一个数自乘若干次
幂的表示方法:a^n,其中a是底数,n是指数
幂的运算分配律:a^m*(b+c)=a^mb+a^mc
幂的运算结合律:a^m*a^n=a^(m+n)
幂的运算优先级:乘方>乘除>加减
底数与指数的符号问题
底数与指数的符号对幂的运算结果有重要影响
底数为负数时,幂的运算结果也为负数
指数为负数时,幂的运算结果也为负数
底数为正数时,指数为正数或负数,幂的运算结果都为正数
指数方程的解法:利用指数函数的性质和指数方程的性质进行求解
指数方程的性质:指数函数的单调性、奇偶性、周期性等
指数方程的求解步骤:确定指数方程的类型、利用指数函数的性质进行求解、验证解的正确性
幂函数的性质与图像
幂函数习题精选精讲.docx
慕函数两数作为高中数学的主线,贯穿于整个高中数学学习的始终,而幕*1数是英中的一部分内容,这部分内容虽然少而简单,却包含了一些重要的数学思想.下血剖析儿例,以拓展同学们的思维.一、分类讨论的思想例1已知函数y = r2-2n-3 (neZ)的图象与两处标轴都无公共点,且其图象关于),轴对称,求n的值,并画出函数的图象.解:因为图象与),轴无公共点,故X-2—3 W0,又图象关于),轴对称,则n2-2n-3为偶数,山斥一?〃-3 W 0 ,得-1W/Z W3,又因为n G Z ,所以«=0, ±1,2,3 .当〃=0时,/J 一2〃—3 = -3不是偶数;当斤=1时,n2-2n-3 =一4为偶数;当/? = -1 时,n2-2n-3 = 0为偶数;当n = 2时,川一2八-3 = -3不是偶数;当n = 3时,z?2-2n-3 = 0为偶数;所以n为一1 , 1或3.此时,幕函数的解析为y = x°(x工0)或,y = X'4,其图象如图1所示.例2已知点(72,2)在幕函数f(x)的图象上,点(-2,-1,在幕函数g(x)的图象上. I 4丿问当兀为何值时有:(1)/(X)> g(x);( 2 ) /(x) = g(兀):(3) f(x)<g(x).分析:由幕函数的定义,先求岀/(X)与g(x)的解析式,再利用图象判断即可.解:设f(x) = x m ,则由题意,得2 =(厨,5 = 2,即f(x) = x2.再令g(x) = x n,则山题意,得丄=(—2)",4・・・斤=一2,即g(x) = x-2(x^0).在同一坐标系中作出/(X)与g(x)的图彖,如图2所示•由图彖可知:(1)当兀>1或兀v-l 时,f(x) > g(x);(2)当兀二±1 时,f(x) = g(x);(3)当一1 <x < 1 且兀H O时,f(x) < g(x).小结:数形结合在讨论不等式时有着重要的应用,注意木题中g(x)的隐含条件XH0.三、转化的数学思想例3断数y = (mx2 + 4x + + 2) + (m2 - mx + 1)的定义域是全体实数,则实数加的取值范围是( ).A. (5/5 -1»2)B .心-1,+ 8)C. (-2,2)D. (-1-75,-1 + 75)解析:要使函数y = (rnx2 4-4x + m 4- 2) 4 + (m2 - mx +1)的定义域是全体实数,可转化为mx2 + 4x +加+ 2〉0对-•切实数都成立, 即m > 0 且A = 42 - 4/w(m + 2) < 0.解得w > V5 -1 . 故选(B)幕函数中的三类讨论题所谓分类讨论,实质上是“化整为零,各个击破,再积零为整”的策略.分类讨论时应注垂理解和掌握分类的原则、方法与技巧,做到确定对彖的全体,明确分类的标准,不靈、不漏的分类讨论.在幕函数屮,分类讨论的思想得到了垂婆的体现,可根据幕函数的图象和性质,依据幕函数的单调性分类讨论,使得结果得以实现.类型一:求参数的取值范围例1已知函数/(x) = x-2,n2+,,,+\m G Z)为偶函数,且/⑶< /(5),求加的值,并确定/(%)的解析式.分析:函数f(x) = x-2ml+m+\rneZ)为偶函数,已限定了一2加2+加+ 3必为偶数,且〃疋Z, /(3) < /(5),只要根据条件分类讨论便可求得m的值,从而确定/(X)的解析式.解:•・•/◎)是偶函数,・・・—2/+〃7 + 3应为偶数./2、-2〃,+加+3 2 又V /(3)</(5),即3©"5”+3 < 5亠"5”+3 ‘ 整理'得2 <1, A _2ZZ?2 ++ 3 > 0 ,,5丿 2 又 *.* m e Z , :. m — 0 或1.当〃?二0时,一2加'+加+ 3 = 3为奇数(舍去);当加=1时,—2tn2 + /?? + 3 = 2为偶数.故m的值为1, /(x) = x2.评注:利用分类讨论思想解题时,要充分挖掘已知条件中的每一个信息,做到不重不漏,才可为正确解题奠定坚实的基础.类型二:求解存在性问题例2已知函数f(x) = x\设函数+ (2q -1)/(%) + 1 ,问是否存在实数g(g<0),使得g(x)在区间是减函数,口在区间(-4,0) ±是増函数?若存在,请求出來;若不存在,请说明理由.分析:判断函数的单调性时,可以利用定义,也可结合濒数的图象与性质进行判断,但要注意问题中符号的确定,耍依赖于自变量的取值区间.解:V/(x) = x2,则g(x) = -qx4 + (2q - \)x2 +1.假设存在实数q(q < 0),使得g(x)满足题设条件,设兀]< x2'则g (召)一gg) = -qx^ + (2q - 1)彳 + qx;一(2q -1)4=(坷 + 兀2)(兀2 —州)+ 球)一(2g — 1)].若西,x2 e (-°°,- 4],易知召+兀2<0, x2-x l>0 ,要使g(x)在(一一4]上是减函数,则应有q(彳+ x;)-(2彳一1) < 0恒成立.X| v —4 ,毛~4,•: xj" + x; > 32 . ifij q < 0 ,・;+ xf) < 32q ..从而要使讥彳+球)<2g-1恒成立,则有2q-&32q,即qW-—.若兀],x2 e (-4,0),易知(x, +x2)(x2 -xj <0 ,要使/(x)在(-4,0) Ji是増函数,则应冇+ x;)-(2q-1)〉0恒成立.T —4 < Xj V 0,一4 < %2 v 0 ,/.彳 + x; V 32 ,而(/ <0 , q(xj + x;) > 32q .要使讥彳+€)>2彳-1恒成立,贝IJ必有2q-\W32q ,即-丄.3 0综上可知,存在实数q =-丄,使得g(x)在(-oo,_4]±是减函数,且在(-4,0) ±是增函数.评注:本题是一道综合性较强的题目,是泵函数性质的综合应用.判断函数的单调性时,可从定义入手,也可根据函数图象利性质进行判断,但对分析问题和解决问题的能力要求较高,这在平时要注意有针对性的训练.类型三:类比幕函数性质,讨论函数值的变化情况例3讨论两数y =仗$ +収5-\在x > °时随着兀的增大其函数值的变化情况.分析:首先应判定函数是否为常数函数,再看邪指数,并参照邪函数的性质讨论.解:(1)当k2+k=0,叩k=0或鸟=一1时,y = 0为常两数;(2)当k2-2k-l = 0时,k=\-迥或k=\+近,此时两数为常两数;[k2+k>0, r(3)\ . 即0 vkvl +血时,函数为减函数,函数值随x的增犬而减小;W—2R—1V O,k2+k>^ 厂(4)当彳即£<一1或£>1 + 丁2时,函数为增函数,函数值随x的增大而增大;疋一2£-1>0,\k2+k<0,厂(5)当彳°W]-yJ2<k< 0时,函数为増函数,函数值随兀的增人而增人;k2-2k-\<(\[k2+k<09 r(6)当彳°,即-l<k<l-yJ2时,函数为减函数,函数值随兀的増大而减小.疋一2—1〉0,评注:含参数系数问题,可以说是解题中的-个致命杀手,是导致错误的一个重要因索.这应引起我们的高度警觉.例1若(加+ 1)-*<(3 - 2mY l,试求实数m的取值范围.加+1工0,错解(数形结合):山图1可加3-2加工0,加+1 > 3 —2m,to2 3解得W > —,且加H —•3 2剖析:函数j = X"1(x H 0)虽然在区间(-8,0)和(0, + OO)上分别具冇单调性,但在区间(-8,0) U (0, + 8)上不具冇单调性,因而运用单调性解答是错误的. 正解(分类讨论):3 一 2m > 0,23 解得一< dm < —: 32I 3丿剖析:很明显,此解法机械地模仿例1的正确解法,而忽视了函数间定义域的不同.由此,使我们感受到了幕函数的定义域在解题中 的重要作用.2 正解(利用单调性):由于函数y = ?在(一8, + 8)上单调递增,所以加+ 1<3-2加,解得w <-. 例2正确解法深化了对慕函数单调性的理解,激活了同学们的思维.下面再航飞和"4两个问题与解法进行探究.丄丄例3若(加+ 1/ <(3-2加卩,试求实数加的取值范围. 23 - 2m > 0, ,解得 一 1 W 加 < —・ 33 一 2m > m + L+1〉3 — 2m, (2) 3-2/n<0, 此时无解;加 +1 > 3 — 2m,(3)〃? +1 v 0, 3亠>0,'解得〃— 综上可得心亠,-叫亍計现在把例1中的指数-1换成3看看结果如何.若(m +1)3 <(3 -2m )3,试求实数加的取值范围.错解 (分类讨论):由图2知,m + 1 > 0,(1) (2) (3) 3 一 2rn > 0, in +1 v 0,3-2//? <0, 3 一 2/?7 > w + L1, 解得 3此时无解;解得 m < -1 •综上可得 1H G (―00 , — 1) U —1,—・解:由图3,例4若(加+ 1)4 <(3-2加『,试求实数加的収值范围.解析:作出幕函数y = x 4的图象如图4.由图彖知此函数在(-8,0)U(0, + 8)上不具冇单调性,若分类讨论步骤较繁,把问题转化到 一个单调区间上是关键.考虑a=4时,x 4 = |x|4.于是有(加+ 1)4 v(3 —2加)4,即|/n + l|4 <|3-2/??|4. 又•・•幕函数y = x 4在(0, + 8)上单调递増,上述解法意识到幕函数y = x a (a>0)在第一象限的递增性,于是巧妙运用转化思想解题,从而避免了分类讨论,使同学们的思维又一 次得到深化与发展.解题点悟:通过以上探究,我们对幕1*1数的定义域、单调性、奇偶性及图彖乂有了较深刻的认识,同时对于形如<[g(x)]“(Q 是常数)型的不等式的解法有了以下体会:(1)当 a = -L -—J ,解法同例 1⑵当口亏5,尹•,解法同例2\ D 丿 z=1 (X —丄—9 丄—9 丄—,・・・,, fflTY 厶 17' 2 4 6(4)当0= ±2, ±4 ±6,…,解法同例4. (3)当tz =±—,土一,土一,…八解法同例3。
专题15 幂的运算(知识点串讲)(解析版)-2020-2021学年八年级数学上册(人教版)
专题15 幂的运算重点突破幂的运算性质(基础): ● a m·a n=am +n(m 、n 为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
3)乘数a 可以看做有理数、单项式或多项式(整体思想)。
4)如果底数互为相反数时可先变成同底后再运算。
● (a m )n=amn(m 、n 为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
● (ab)n=a n b n(n 为正整数) 积的乘方等于各因式乘方的积. ● a m÷a n=am -n(a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减.【同底数幂相除注意事项】1.因为0不能做除数,所以底数a≠0.2.运用同底数幂法则关键看底数是否相同,而指数相减是指被除式的指数减去除式的指数。
3.注意指数为1的情况,如x 8÷x =x 7,计算时候容易遗漏或将x 的指数当做0. 4.多个同底数幂相除时,应按顺序计算。
● a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 考查题型考查题型一 同底数幂相乘典例1.(2020·阳泉市期末)下列运算正确的是( ) A .23a a a ⋅= B .623a a a ÷=C .2222a a -=D .()22436aa =【答案】A 【提示】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解; 【详解】解:2123•a a a a +==,A 准确;62624a a a a -÷==,B 错误; 2222a a a -=,C 错误;()22439a a =,D 错误;故选:A . 【名师点拨】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.变式1-1.(2019·石家庄市期末)43()()x y y x -•-可以表示为( ) A .7()x y - B .7()x y --C .12()x y -D .12()x y --【答案】B 【提示】根据同底数幂的乘法法则计算即可得出结论. 【详解】(x ﹣y )4•(y ﹣x )3=﹣(x ﹣y )4•(x ﹣y )3=﹣(x ﹣y )7. 故选B . 【名师点拨】本题考查了同底数幂的乘法法则.掌握同底数幂的乘法法则是解答本题的关键. 变式1-2.(2019·杭州市期中)若2n +2n +2n +2n =2,则n=( ) A .﹣1 B .﹣2C .0D .14【答案】A【提示】利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n=0,从而解关于n 的方程即可. 【详解】∵2n +2n +2n +2n =2,∴4×2n =2, ∴2×2n =1, ∴21+n =1, ∴1+n=0, ∴n=﹣1, 故选A .【名师点拨】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m •a n =a m+n (m ,n 是正整数). 变式1-3.(2019·苏州市期中)已知x+y ﹣4=0,则2y •2x 的值是( )A.16 B.﹣16 C.18D.8【答案】A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16.故选A.名师点拨:a m·a n=a m+n.考查题型二同底数幂乘法的逆用典例2.(2020·河池市期末)已知a m=3,a n=4,则a m+n的值为()A.7 B.12 C.D.【答案】B【提示】根据同底数的幂的乘法法则,代入求值即可.【详解】.故选:.【名师点拨】本题考查了同底数的幂的乘法法则,理解指数之间的变化是关键.变式2-1.(2019·仁寿县期末)若3⨯9m⨯27m=213,则m的值是()A.3 B.4 C.5 D.6 【答案】B【解析】∵3⨯9m⨯27m=3⨯32m⨯33m=31+2m+3m∴1+2m+3m=21∴m=4故选B变式2-2.(2018·南昌市期中)计算的结果是()A.2 B.-2 C.20162D.20162-【答案】D【提示】先提取公因式2016(2)-,再进行计算,即可. 【详解】 = = =20162-. 故选D . 【名师点拨】本题主要考查含乘方的有理数的加法运算,掌握同底数幂的乘法运算的逆运用,是解题的关键. 变式2-3.(2020·成都市期末)已知2,3a b x x ==-,则2a b x +的值为( ) A .12 B .2C .12-D .3-【答案】C 【提示】利用同底数幂的乘法及幂的乘方的逆用将原式变形,然后代入求值即可. 【详解】解:222()a b a b a b x x x x x +==当2,3a b x x ==-时,原式=22(3)12⨯-=- 故选:C 【名师点拨】本题考查幂的乘方及同底数幂的乘法,熟记公式灵活应用是本题的解题关键. 考查题型三 幂的乘方运算典例3.(2020·惠州市期末)计算3()a a •- 的结果是( ) A .a 2 B .-a 2C .a 4D .-a 4【答案】D 【提示】直接利用同底数幂的乘法运算法则计算得出答案. 【详解】解:34()=a a a •--, 故选D . 【名师点拨】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.变式3-1.(2020·青岛市期中)计算(-a3)2的结果是()A.-a5B.a5C.a6D.-a6【答案】C【提示】根据幂的乘方法则:幂的乘方,底数不变,指数相乘.即可得出结果【详解】()236a a-=,故选C.【名师点拨】本题考查幂的乘方,本题属于基础应用题,只需学生熟练掌握幂的乘方法则,即可完成.变式3-2.(2019·合肥市期中)如果(a n•b m b)3=a9b15,那么( )A.m=4,n=3 B.m=4,n=4C.m=3,n=4 D.m=3,n=3【答案】A【提示】根据(a n b m b)3=a9b15,比较相同字母的指数可知,3n=9,3m+3=15,即可求出m、n.【详解】解:∵(a n b m b)3=a9b15,∴(a n)3(b m)3b3=a3n b3m+3=a9b15,∴3n=9,3m+3=15,,解得:m=4,n=3,∴m、n的值为4,3.所以A选项是正确的.【名师点拨】本题考查了积的乘方的性质和幂的乘方的性质,根据相同字母的次数相同列式是解题的关键. 变式3-3.(2019·南京市期末)若33×9m=311,则m的值为()A.2 B.3 C.4 D.5【答案】C【提示】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案. 【详解】∵33×9m=311,∴33×(32)m =311, ∴33+2m =311, ∴3+2m=11, ∴2m=8, 解得m=4, 故选C . 【名师点拨】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键. 考查题型四 幂的的乘方的逆用典例4.(2020·无锡市期中)计算2015201623()()32⨯的结果是( ) A .23B .23-C .32D .32-【答案】C 【提示】 将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得. 【详解】2015201623()()32⨯ =(23)2015×(32)2015×32=(23×32)2015×32=32. 故选C. 【名师点拨】本题主要考查幂的乘方与积的乘方,掌握幂的乘方与积的乘方的运算法则是解题的关键. 变式4-1.(2019·德州市期中)9m ·27n 可以写为( ) A .9m+3n B .27m+nC .32m+3nD .33m+2n【答案】C 【解析】原式=2323333m n m n +⋅= ,故选C.变式4-2.(2019·宿迁市期中)计算3n · ( )=—9n+1,则括号内应填入的式子为( ) A .3n+1B .3n+2C .—3n+2D .—3n+1解:∵-9n+1=-(32)n+1=-32n+2=-3n+n+2=3n (-3n+2), ∴括号内应填入的式子为-3n+2. 故选C.变式4-3.(2018·洛阳市期中)已知23×83=2n ,则n 的值为( ) A .18 B .7C .8D .12【答案】D 【提示】根据幂的乘方和积的乘方的运算法则求解. 【详解】解:∵23×83=23×29=212=2n , ∴n =12. 故选D . 【名师点拨】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则. 考查题型五 积的乘方典例5.(2019·马龙区期中)若3915()m n a b a b =,则,m n 的值分别为( ) A .9,5 B .3,5C .5,3D .6,12【答案】B 【解析】根据积的乘方法则展开得出a 3m b 3n =a 9b 15,推出3m=9,3n=15,求出m 、n 即可. 解:∵(a m b n )3=a 9b 15, ∴a 3m b 3n =a 9b 15, ∴3m=9,3n=15, ∴m=3,n=5, 故选B .变式5-1.(2020·扬州市期中)下列运算错误的是( ) A .2363(2)8a b a b -=- B .243612()x y x y = C .23282()()x x y x y -⋅=D .77()ab ab -=-原式各项利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.【详解】A、(-2a2b)3=-8a6b3,本选项正确;B、(x2y4)3=x6y12,本选项正确;C、(-x)2•(x3y)2=x2•x6y2=x8y2,本选项正确;D、(-ab)7=-a7b7,本选项错误.故选D.【名师点拨】此题考查了幂的乘方与积的乘方,以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.变式5-2.(2020·张家口市期中)下列计算正确的是( )A.a3-a2=a B.a2·a3=a6C.(3a)3=9a3D.(a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选D.变式5-3.(2019·邵阳市期中)计算的结果是()A.81281a b B.C.6712a b12a b D.67【答案】B【提示】直接利用积的乘方运算法则计算得出答案.【详解】解:=故应选B.【名师点拨】此题主要考查了积的乘方运算,正确掌握相关运算法则是解题关键.考查题型六积的乘方的逆用典例6.(2019·大庆市期中)2012201253()(2)135-⨯-=( ) A .1- B .1C .0D .1997【答案】B 【提示】根据积的乘方公式进行简便运算. 【详解】 解: = = =1. 故选B 【名师点拨】此题主要考查了积的乘方,解题时,先对分数变形,然后根据特点,找到规律,再根据积的乘方的逆用,直接计算即可.变式6-1.(2020·揭阳市期中)2101×0.5100的计算结果正确的是( ) A .1 B .2 C .0.5 D .10【答案】B 【解析】试题提示:首先将其化成同指数,然后进行计算得出答案.原式=()100100100220.5220.52⨯⨯=⨯⨯=,故选B .变式6-2.(2019·南京市期中)已知32m =8n,则m 、n 满足的关系正确的是( ) A .4m=n B .5m=3nC .3m=5nD .m=4n【答案】B 【解析】 ∵32m =8n ,∴(25)m =(23)n , ∴25m =23n , ∴5m=3n . 故选B .变式6-3.(2018·昆明市期末)已知a m =2,a n =3,则a 3m+2n 的值是( ) A .24B .36C .72D .6【答案】C 【解析】试题解析:∵a m =2,a n =3, ∴a 3m+2n =a 3m •a 2n =(a m )3•(a n )2 =23×32 =8×9 =72. 故选C.考查题型七 同底数幂的除法典例7.(2019·金华市期末)计算63a a ÷,正确的结果是( ) A .2 B .3aC .2aD .3a【答案】D 【提示】根据同底数幂除法法则即可解答. 【详解】根据同底数幂除法法则(同底数幂相除,底数不变,指数相减)可得,a 6÷a 3=a 6﹣3=a 3. 故选D . 【名师点拨】本题考查了整式除法的基本运算,必须熟练掌握运算法则. 变式7-1.(2018·晋江市期中)计算255m m ÷的结果为( ) A .5m B .5C .20D .20m【答案】A 【提示】把25m 写成52m ,然后利用同底数幂相除,底数不变指数相减解答. 【详解】解:25m ÷5m =52m ÷5m =52m-m =5m . 故选A . 【名师点拨】本题考查了同底数幂的除法,幂的乘方的性质,熟记运算性质是解题的关键.变式7-2.(2020·杭州市期末)下列计算正确的是( )A.a6+a6 = a12B.a6·a2 = a8C.a6÷a2 = a3D.(a6)2= a8【答案】B【提示】根据合并同类项、同底数幂乘除法和幂的乘方法则逐项计算即可.【详解】解:A. a6+a6=2a6,故错误;B. a6·a2 = a8,正确;C. a6÷a2 = a4,故错误;D. (a6)2= a12,故错误;故选:B.【名师点拨】本题考查了合并同类项、同底数幂乘除法和幂的乘方,熟练掌握运算法则是解题关键.变式7-3.(2020·合肥市期中)a11÷(﹣a2)3•a5的值为()A.1 B.﹣1 C.﹣a10D.a9【答案】C【提示】根据同底数幂的乘除法法则以及幂的乘方运算法则计算即可.【详解】解:a11÷(﹣a2)3•a5=a11÷(﹣a6)•a5=﹣a11﹣6+5=﹣a10.故选:C.【名师点拨】本题主要考查了同底数幂的乘除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.考查题型八同底数幂除法的逆用典例8.(2019·连云港市期中)若a x=6,a y=4,则a2x﹣y的值为()A .8B .9C .32D .40【答案】B【解析】 因为a 2x-y =a 2x ÷a y =(a x )2÷a y =62÷4=9,故答案为B. 变式8-1.(2020·达州市期末)如果3a =5,3b =10,那么9a -b 的值为( ) A .12 B .14 C .18D .不能确定 【答案】B【解析】∵3a =5,3b =10, ∴2(a-b)2a 2b 19(3)=33=25100=4a b -=÷÷, 故选B.变式8-2.(2019·南阳市期末)已知3,5a b x x ==,则32a b x -=( )A .B .910C .35D .52【答案】A【提示】直接利用同底数幂的除法和幂的乘方运算法则将原式变形得出答案.【详解】∵x a =3,x b =5,∴x 3a-2b =(x a )3÷(x b )2=33÷52=.故选A.【名师点拨】考查了同底数幂的乘除运算和幂的乘方运算,正确将原式变形是解题关键.变式8-3.(2020·常州市期末)已知2a =3,2b =6,2c =12,则a ,b ,c 的关系为①b=a+1②c=a+2③a+c=2b ④b+c=2a+3,其中正确的个数有( )A .1个B .2个C .3个D .4个 【答案】D【提示】根据整式的运算法则(同底数幂相乘,幂的乘方,积的乘方等)进行提示即可.【详解】因为,2a=3,2b=6,2c=12,所以,2ⅹ2a=2a+1=6= 2b,22×2a=12=2a+2=2c,2a×2c=3×12=2c+a=36=(2b)2,2b×2c=6×12=72=2b+c=9×8=(2a)2×23=22a+3, 所以,①b=a+1②c=a+2③a+c=2b④b+c=2a+3,故选D【名师点拨】本题考核知识点:整式乘法. 解题关键点:熟记并运用整式乘法法则.。
初中数学幂的运算专题讲解及典型题练习(含答案)
n n a a a a a ⋅⋅⋅=个,“a 的n 次幂”或读作乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算一个数可以看作是这个数本身的一次方,例如.有理数幂的符号法则1120082007222222222⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=个个利用乘法交换律和结合律,把2007个2与12结合在一起相乘,利用互为倒数即可求出数2008)20072008122=⨯() 1111()m b ab =习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:20105(⨯-【解析】20105⨯553333(3⋅⋅⋅=⨯个34444444(4⋅⋅⋅=⨯个3355555(55⋅⋅⋅=⨯个256243125>>,55335>.解法二: 1.001>又10.019.998⨯∴9.99810【方法总结】11⨯=1.0011010.012.计算:20102010201020104(0.25)(1)1-+-+= .【答案】原式=201020102010201014()(1)111114-+-+=-++=. 3.若21(2)0a b ++-=,则20102009()a b a ++= .【答案】由题意知1020a b +=⎧⎨-=⎩ 得12a b =-⎧⎨=⎩,代入原式可求结果为:0.4.如果214,,2x y ==那么222x y -的值为 . 【答案】222112243122x y -=⨯-=. 5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下12米,第二次后剩下21142⎛⎫= ⎪⎝⎭米,第三次后剩下312⎛⎫ ⎪⎝⎭米,由此推下去,第n 次后剩下12n ⎛⎫ ⎪⎝⎭米.所以六次后剩下的木条为611264⎛⎫= ⎪⎝⎭(米). 6.计算:(1)321()(1)33-÷-; (2)232(3)-⨯-; (3)32221(0.2)(1).3(0.3)-⨯÷- 【答案】(1)29;(2)108;(3)0.002-. 7.(1)451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯. (2)()1452515213⨯-÷+-. (3)()3432322⎪⎭⎫ ⎝⎛-⨯-÷-. (4)()()()3428102-⨯---÷+-. (5)()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---. (6)()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-. 【答案】(1)225- (2)347- (3)11116 (4)20- (5)1114 (6)7224- 8.利用乘方的有关知识确定20076的末两位数字.【答案】9.已知“三角”表示运算“a b c -+”,“正方形”表示的运算是“d f g e -+-” ,试计算的值.【答案】原式=()()()199649551996281474116-+⨯-+-=-⨯=-.。
《幂的运算》复习课课件讲课
幂的乘方
总结词
幂的乘方,底数不变,指数相乘。
详细描述
当一个幂再次被取幂时,可以将它们的指数相乘,底数保持不变。例如,$(a^m)^n = a^{m times n}$。
积的乘方
总结词
积的乘方等于各因式乘方的积。
详细描述
当几个项的乘积被取幂时,可以将每个项分别取幂后再相乘。例如,$(ab)^n = a^n times b^n$。
《幂的运算》复习课课件讲课
汇报人: 202X-12-28
目录
• 幂的定义与性质 • 幂的运算规则 • 幂运算的应用 • 幂运算的注意事项 • 幂运算的练习题与解析
01
幂的定义与性质
Chapter
幂的定义
总结词
幂是乘方运算的结果,表示一个 数连续与一个相同的数相乘的次 数。
详细描述
幂运算是一种数学运算,表示一 个数连续与一个相同的数相乘的 次数。例如,2的3次幂表示2乘 以自己2次,即2×2×2=8。
幂的性质
总结词
幂的性质包括同底数幂相乘、同底数 幂相除、幂的乘方和积的乘方等。
详细描述
同底数幂相乘时,指数相加;同底数 幂相除时,指数相减;幂的乘方时, 底数不变,指数相乘;积的乘方时, 将每个因式分别乘方,然后相乘。
幂的性质的推导过程
总结词
通过实例和证明,理解幂的性质的推导过程。
详细描述
通过具体的实例和证明,深入理解幂的性质的推导过程。例如,对于同底数幂 相乘的性质,可以设两个同底数幂为a^m和a^n,则它们的乘积为a^(m+n), 从而证明了同底数幂相乘时,指数相加的性质。
03
幂运算的应用
Chapter
02
幂的运算规则
幂的运算-ppt课件
(2)系数应连同它的符号一起乘方,尤其是当系数是-1时,不
可忽略.
感悟新知
知3-练
例 5 计算:
(1)(x·y3)2; (2)(-3×102)3;
(3) -
2;
(4)(-a2b3)3.
解题秘方:运用积的乘方、幂的乘方的运算法则
进行计算.
感悟新知
知3-练
最后结果要符合科
学记数法的要求
(2)(-3×102)3=(-3)3×(102)3=-27×106=-2.7×107;
解:(1)(x·y3)2=x2·(y3)2=x2y6;
(3) -
12
a ;
2=
-
· () 2 =
2
2
=
·(a6)2 =
系数乘方时,要带前面的符号,特
a4n-a6n用a2n表示,再把a2n=3 整体代入求值.
解:a4n-a6n=(a2n)2-(a2n)3=32-33=9-27=-18.
感悟新知
知2-练
4-1.已知10m=3,10n=2,求下列各式的值:
(1)103m;
解:103m=(10m)3=33=27;
(2)102n;
102n=(10n)2=22=4;
感悟新知
知3-练
6-1. [中考·淄博] 计算(-2a3b)2-3a6b2的结果是( C )
A.-7a6b2
B. -5a6b2
C. a6b2
D. 7a6b2
感悟新知
知3-练
6-2. 计算:
(1)(-2anb3n)2+(a2b6)n;
幂的运算例题精讲dy
幕的运算【有提前做,带直尺与圆规】注意:零指数幕的意义“任何不等于 0的数的0次幕都等于1”和负指数幕的意义“任何不等于 0的数的负次幕等于它正次幕的倒数”知识点1同底数幕的意义及同底数幕的乘法法则( 【典型例题】1 •计算(一2) 2007+ (- 2) 2008 的结果是() A • 22015B • 22007C.— 2D •— 220082•当a<0, n 为正整数时,(一a ) 5•(— a ) 2n的值为() A •正数 B •负数C.非正数 D •非负数3. (—题多解题)计算:(a — b ) 2m — 1• (b — a ) 2m • (a — b ) 2m+1,其中m 为正整数.知识点2逆用同底数幕的法则逆用法则为: a m n a m ?a n(m 、n 都是正整数)【典型例题】1 •(一题多变题) (1)已知 xm=3 , xn=5 ,求 xm+n .(2) 一变:已知 xm=3 , xn=5,求 x2m+n ; (3) 二 变:已知 xm=3 , xn=15,求 xn . 知识点3幕的乘方的意义及运算法则 【典型例题】1 .计算(-a2) 5+ (-a5)2 的结果是( ) A • 0 2 .下列各式成立的是()A. (a3) x= ( ax ) 3 B. 3 .如果(9n ) 2=312,贝U n 的值是( )A . 44. 已知x2+3x+5的值为7,那么3x2+9x-2的值是( 6.计算:(1) a 2a 4a 3a 3(a 3)2知识点4积的乘方意义及运算法则 典型例题】2. ()5=(8 >8 >8 X8 X8)(a • a • a • a • a)3 •如果 a ^b 且(a p )3 b p+q =a 9b 5成立,贝H p= _______________ , q= ____________________B. 2a10C . -2a10D . 2a7 (an) 3=an+3C . (a+b) 3=a2+b2D. (-a) m=-amB. 3 C . 2 D . 1) A . 0 B . 2C .4D . 62\44/2\2(2) 2 (a ) a (a )1 .化简(a 2m a n+1)2 (-2a 2)3所得的结果为 4.右 m 11 n 2 2n 12m a b a b a 3b 5,则m+n 的值为()A . 1 B . 2 C . 3 D . -32j x2y3的结果等于()A3x10y10B•3x10y10C9x10y10 D. 9x10y10 1 20037 •如果单项式 3x4ab y 2与1x 3y a b 是同类项,那么这两个单项式的积进()36/3^28 3 26 4A . x yB • x yC ^x yD • x y&已知(x-y) • (x — y) 3 • (x-y) m= (x — y) 12,求(4m2+2m+1 )— 2 ( 2m2 — m — 5)的值.知识点5同底数幕的除法法则(重点)ma 法则: — a m n(m 、n 是正整数,m >n)即:同底数幕相除,底数不变,指数相减 a【典型例题】 一、 选择1 .在下列运算中,正确的是()A . a 2%=a 2B . (- a ) 6为2= (- a ) 3= -a 3C . a 2p 2=a2— 2=0D . (- a )3为2= - a2.在下列运算中,错误的是( )A. a 2m p m %3=a m — 3B. a m+n 4)n =a mC. (— a 2) 3十(—a 3) 2=— 1D . a m+2%3=a m —1二、 填空题 1. (— x 2)3十(一x) 3= . 2.[ (y 2) _____ n ] 3珂(y 3) n ] 2= .3. __________________ 104弋3W 02= ______________ . 4. ( — 3.14) 0= .三、 解答1. (一题多解题)计算:(a — b) 6- (b — a) 3. 2、 已知 a m=6, a n=2,求 a2m — 3n的值.为了更好的掌握幕的运算法则,我们还需注意以下四点:一、注意法则的拓展性:对于含有三个或三个以上同底数幕相乘(除) 、幕(积)的乘方等运算,法则仍然适用。
幂的运算例题精讲dy
幂的运算例题精讲dy幂的运算【有提前做,带直尺与圆规】【知识⽅法归纳】注意:零指数幂的意义“任何不等于0的数的0次幂都等于1”和负指数幂的意义“任何不等于0的数的负次幂等于它正次幂的倒数”知识点1 同底数幂的意义及同底数幂的乘法法则(【典型例题】1.计算(-2)2007+(-2)2008的结果是() A .22015 B .22007 C .-2 D .-22008 2.当a<0,n 为正整数时,(-a )5·(-a )2n 的值为() A .正数 B .负数 C .⾮正数 D .⾮负数 3.(⼀题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数.知识点2 逆⽤同底数幂的法则逆⽤法则为:n m nm a a a ?=+(m 、n 都是正整数)【典型例题】1.(⼀题多变题)(1)已知xm=3,xn=5,求xm+n .(2)⼀变:已知xm=3,xn=5,求x2m+n ;(3)⼆变:已知xm=3,xn=15,求xn .知识点3 幂的乘⽅的意义及运算法则【典型例题】1.计算(-a2)5+(-a5)2的结果是() A .0 B .2a10 C .-2a10 D .2a7 2.下列各式成⽴的是()A .(a3)x=(ax )3 B .(an )3=an+3 C .(a+b )3=a2+b2 D .(-a )m=-am 3.如果(9n )2=312,则n 的值是()A .4 B .3 C .2 D .14.已知x2+3x+5的值为7,那么3x2+9x-2的值是() A .0 B .2 C .4 D .6 6.计算:(1)233342)(a a a a a +?+? (2)22442)()(2a a a ?+? 知识点4 积的乘⽅意义及运算法则典型例题】1.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为_________________。
专题1.3幂的运算(精讲精练)(解析版)【苏科版】
2019-2020学年七年级下学期期中考试高分直通车(苏科版)专题1.3幂的运算【目标导航】【知识梳理】1.同底数幂的乘法:(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.m n m n a a a+⋅=(m ,n 是正整数) (2)推广:m n p m n p a a a a ++⋅⋅=(m ,n ,p 都是正整数)在用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(x-y )2与(x-y )3等;②a 可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.2.幂的乘方与积的乘方:(1)幂的乘方法则:底数不变,指数相乘.()m n mn a a =(m ,n 是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.()n n nab a b =(n 是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.3.同底数幂的除法:同底数幂的除法法则:底数不变,指数相减.m n m na a a-÷=(a≠0,m,n是正整数,m>n)①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.零指数幂与负整数指数幂:零指数幂:a0=1(a≠0)负整数指数幂:1ppaa-=(a≠0,p为正整数)【典例剖析】【例1】(2019春•滨海县期中)如果a m=12,a n=3,那么a m+n=________.【分析】根据同底数幂的乘法法则计算.【解析】∵a m=12,a n=3,∴a m×a n=12×3,∴a m+n=36,故答案为:36.【点睛】本题考查了同底数幂的乘法,解题的关键是能够熟练的运用同底数幂的乘法法则计算.【变式1-1】(2019春•南京期中)若2a=10,2b=5,则2a+b=________.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解析】∵2a=10,2b=5,∴2a+b=2a×2b=10×5=50,故答案为:50.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.【变式1-2】(2019春•全椒县期中)已知a m=3,a n=2,则a m+n=________.【分析】根据同底数幂的乘法,可得答案.【解析】a m+n=a m•a n=3×2=6,故答案为:6.【点睛】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.【变式1-3】(2018秋•如皋市期中)计算:a•a2•a3=a6.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解析】a•a2•a3=a6.故答案为:a6.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.考点2 幂的乘方【例2】(2019春•金坛区期中)若3n=5,则32n=________.【分析】直接利用幂的乘方运算法则将原式变形进而得出答案.【解析】∵3n=5,∴32n=(3n)2=25.故答案为:25.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.【变式2-1】(2019春•锡山区期中)计算(﹣a2)3+(﹣a3)2=0.【分析】根据积的乘方求出即可;先算乘方,再合并同类项即可.【解析】(a2b)3a6b3;(﹣a2)3+(﹣a3)2=﹣a6+a6=0故答案为:a6b3,0.【点睛】本题考查了幂的乘方与积的乘方,能灵活运用积的乘方进行变形是解此题的关键,注意:a m•b m =(ab)m,(a m)n=a mn.【变式2-2】(2019春•赣榆区期中)a m=2,b m=3,则(ab)m=________.【分析】根据积的乘方计算即可.【解析】因为a m=2,b m=3,所以(ab)m=a m•b m=2×3=6,故答案为:6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的运算【有提前做,带直尺与圆规】【知识方法归纳】注意:零指数幂的意义“任何不等于0的数的0次幂都等于1”和负指数幂的意义“任何不等于0的数的负次幂等于它正次幂的倒数”知识点1 同底数幂的意义及同底数幂的乘法法则( 【典型例题】1.计算(-2)2007+(-2)2008的结果是( ) A .22015 B .22007 C .-2 D .-22008 2.当a<0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数 3.(一题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数. 知识点2 逆用同底数幂的法则 逆用法则为:n m nm a a a •=+(m 、n 都是正整数)【典型例题】1.(一题多变题)(1)已知xm=3,xn=5,求xm+n . (2)一变:已知xm=3,xn=5,求x2m+n ; (3)二变:已知xm=3,xn=15,求xn .知识点3 幂的乘方的意义及运算法则 【典型例题】1.计算(-a2)5+(-a5)2的结果是( ) A .0 B .2a10 C .-2a10 D .2a72.下列各式成立的是( )A .(a3)x=(ax )3 B .(an )3=an+3 C .(a+b )3=a2+b2 D .(-a )m=-am 3.如果(9n )2=312,则n 的值是( )A .4 B .3 C .2 D .14.已知x2+3x+5的值为7,那么3x2+9x-2的值是( ) A .0 B .2 C .4 D .6 6.计算:(1)233342)(a a a a a +⋅+⋅ (2)22442)()(2a a a ⋅+⋅ 知识点4 积的乘方意义及运算法则 典型例题】1.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为_________________。
2.( )5=(8×8×8×8×8)(a ·a ·a ·a ·a) 3.如果a≠b ,且(a p )3·b p+q =a 9b 5 成立,则p=______________,q=__________________。
4.若()()b a b a b a m n n m 5321221=-++,则m+n 的值为( )A .1 B .2 C .3 D .-3 5.()23220032232312⎪⎭⎫⎝⎛-•-•⎪⎭⎫ ⎝⎛--y x y x 的结果等于( )A .yx 10103 B .yx 10103- C .y x 10109D .y x 10109-7.如果单项式y x b a 243--与yx ba +331是同类项,那么这两个单项式的积进( ) A .y x 46 B .y x 23- C .y x 2338- D .y x 46-8.已知(x -y )·(x -y )3·(x -y )m=(x -y )12,求(4m2+2m+1)-2(2m2-m -5)的值. 知识点5 同底数幂的除法法则(重点)法则:m m n n a a a-=(m 、n 是正整数,m >n ) 即:同底数幂相除,底数不变,指数相减【典型例题】 一、选择1.在下列运算中,正确的是( )A .a 2÷a=a 2B .(-a )6÷a 2=(-a )3=-a 3C .a 2÷a 2=a 2-2=0 D .(-a )3÷a 2=-a 2.在下列运算中,错误的是( )A .a 2m ÷a m ÷a 3=a m -3 B .a m+n ÷b n =a m C .(-a 2)3÷(-a 3)2=-1 D .a m+2÷a 3=a m -1 二、填空题1.(-x 2)3÷(-x )3=_____. 2.[(y 2)n ] 3÷[(y 3)n ] 2=______. 3.104÷03÷102=_______.4.(π-3.14)0=_____. 三、解答1.(一题多解题)计算:(a -b )6÷(b -a )3. 2、已知a m =6,a n =2,求a 2m-3n的值.为了更好的掌握幂的运算法则,我们还需注意以下四点:一、注意法则的拓展性:对于含有三个或三个以上同底数幂相乘(除)、幂(积)的乘方等运算,法则仍然适用。
例1. 计算:(1)=432a a a a··· (2)[]=432)(ab (3)()=-4xyz二、注意法则的底数和指数的广泛性:运算法则中的底数和指数,可取一个或几个具体的数;也可取单独一个字 母或一个单项式,甚至可以是一个多项式。
例2. 计算: (1)()y ym n m nm n -+-=22(2)()()()x y x y x y m n nm+÷+÷+++32222三、注意法则的可逆性:逆向应用运算法则,由结论推出条件,或将某些指数进行分解。
例3. 在下面各小题的括号内填入适当的数或代数式: (1)()--+x x m 1·()()()=--+x x n 32()()()·四、注意法则应用的灵活性:在运用法则时,要仔细观察题目的特点,采取恰当、巧妙的解法,使解题过程简便。
例4. 计算:125256255÷⨯÷n m同底数幂的乘法1、下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n等于( ) (A)5 (B)6 (C)8 (D)9 5、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ) (A)a7(B)a8(C)a 6(D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于( )A. ()12--n c B.nc 2- C.c-n2 D.nc29、已知x m -n·x 2n+1=x 11,且ym -1·y4-n=y 7,则m=____,n=____.幂的乘方 1、()=-42x 2、()()84aa = 3、( )2=a 4b 2; 4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12x B. 14x C. x19D.84x7、()()=-•342a a 8、n n 2)(-a 的结果是9、()[]52x --= 10、若2,xa=则3x a =同底数幂的除法1、()()=-÷-a a 42、()45a a a =÷ 3、()()()333b a ab ab =÷4、=÷+22x xn 5、()=÷44ab ab .6、下列4个算式(1)()()-=-÷-24c c 2c (2) ()y -()246y y -=-÷ (3)303z z z =÷ (4)44a a a m m =÷其中,计算错误的有 ( )A.4个 B.3个 C.2个 D.1个 幂的混合运算 1、a 5÷(-a 2)·a = 2、(b a 2)()3ab •2= 3、(-a 3)2·(-a 2)34、()m mx x x 232÷•=5、()1132)(--•÷•n m n m x xx x 6、(-3a)3-(-a)·(-3a)2 7、()()()23675244432x x x x x x x +•++8、下列运算中与44a a •结果相同的是( )A.82a a • B.()2a 4C.()44a D.()()242a a •49、32m ×9m ×27= 10、化简求值a 3·(-b 3)2+(-21ab 2)3 ,其中a =41,b =4。
【到此为止】混合运算整体思想1、(a +b)2·(b +a)3=2、(2m -n)3·(n -2m)2= ;3、(p -q)4÷(q -p)3·(p -q)24、()a b - ()3a b -()5b a - 5、()[]3m n -p()[]5)(p n m n m --•6、()m ma b b a 25)(--()m a b 7-÷ (m 为偶数,b a ≠) 7、()()y x x y --2+3)(y x -+()x y y x -•-2)(2分类讨论1、有人说:当n 为正整数时,1n 都等于1,(-1)n也等于1,你同意吗?2、你能求出满足(n-3)n =(n-3)2n-2的正整数n 吗?3、你能求出满足(n-3)n+3=(n-3)2n的正整数n 吗?4、若n 为正整数,则()[]()111812-⋅--⋅n n 的值 ( )A.一定是0;B.一定是偶数;C.不一定是整数;D.是整数但不一定是偶数. 化归思想1、计算25m÷5m的结果为 2、若32,35nm ==,则2313m n +-=3、已知a m =2,a n =3,求a 2m-3n的值。
4、已知: 8·22m -1·23m =217.求m 的值.5、若2x+5y —3=0,求4x -1·32y的值6、解关于x 的方程:33x+1·53x+1=152x+47、已知:2a ·27b ·37c =1998,其中a,b,c 是自然数,求(a-b-c)2004的值.8、已知:2a ·27b ·37c ·47d =1998,其中a,b,c,d 是自然数,求(a-b-c+d)2004的值.9、16、若a=8131,b=2741,c=961,则a 、b 、c 的大小关系为 .10、已知x 3=m,x 5=n,用含有m ,n 的代数式表示x 14=11、设x=3m ,y=27m+2,用x 的代数式表示y 是__ ___.12、已知x=2m+1,y=3+4m,用x 的代数式表示y 是___ __. 13、1083与1442的大小关系是【挑战中考】1.(2分)计算:-m 2·m 3的结果是( ) A .-m 6B .m 5C .m 6D .-m 52.(3分)计算:a ·a 2=___________-____.3.( 3分)下列运算中,正确的是( ) A .x 2+x 2=x 4B .x 2÷x=x 2C .x 3-x 2=x D .x ·x 2=x 34.( 4分)下列计算正确的是( ) A .a 3+a 4=a 7B .a 3·a 4=a 7C .(a 3)4=a 7D .a 6÷a 3=a 25、计算23()ab 的结果是( )A .5abB .6abC .35a bD .36a b6、下列计算正确的是 A .a 2+a 2=a 4B .a 5·a 2=a 7C .()325a a = D .2a 2-a 2=27、新建的北京奥运会体育场——“鸟巢”能容纳91 000位观众,将91 000用科学记数法表示为A .31091⨯; B.210910⨯; C.3101.9⨯; D.4101.9⨯ 8、下列算式中,正确的是( ) A .221a aa a =•÷; B.a a a -=-2232; C.26233)(b a b a =; D.623)(a a =-- 9、下列运算中,计算结果正确的是( )A.x ·x 3=2x 3; B.x 3÷x =x 2; C.(x 3)2=x 5; D.x 3+x 3=2x 610.计算x 3÷x 的结果是 ( ) A .x 4 B .x 3 C .x 2D .3 例1. 已知,求x 的值.例2. 若1+2+3+…+n =a ,求代数式的值.例3. 已知2x +5y -3=0,求的值.例4. 已知,求m 、n .例5. 已知的值.例7. 已知试把105写成底数是10的幂的形式.例8. 比较下列一组数的大小.例9. 如果.例6. 若的值.例10.已知,求n 的值.练习: 1.计算所得的结果是( ) A.-2 B.2 C.-D.2.当n 是正整数时,下列等式成立的有( ) (1)(2)(3)(4)A.4个 B.3个 C.2个 D.1个 3.计算:= .4.若,,则= .5.下列运算正确的是( )A .B .C .D .6.若. 7.与角平分线有关的辅助线一.在角两边取相等的线段,构造全等三角形.例1.已知:如图,AD 是∆ABC 的中线,DE 、DF 分别平分∠ADB ,∠ADC ,连结EF ,求证:EF ﹤BE +CF .类题1.已知:四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4,求证:BC=AB +CD .二.过角平分线上一点向角两边作垂线段,利用角平分线上的点到角两边距离相等去作题. 例2.如图在四边形ABCD 中,BC>BA ,AD=DC ,BD 平分∠ABC .求证:︒=∠+∠180C A .类题2.已知:如图,在∆ABC 中,∠A=90°,AB=AC ,∠1=∠2,求证:BC=AB+AD .三.有和角平分线垂直的线段时,把它延长可得到中点或相等的线段,从而与三角形中位线或三角形全等建立起联系.例3.已知:如图,∠1=∠2,AB ﹥AC ,CD ⊥AD 于D ,H 是BC 中点,求证:DH=21(AB -AEBF AB D1 2 ADBCAB CDE 1 234BABCE FABCD EA BCD E(1) (2)(3)(4)类题3.已知:如图,AB=AC ,∠BAC=90°,∠1=∠2,CE ⊥BE ,求证:BD=2CE .四.有角平分线时,常作平行线,构造等腰三角形。