美国高超声速研究

合集下载

超音速飞行器的研究现状及展望

超音速飞行器的研究现状及展望

超音速飞行器的研究现状及展望随着人类对于高速航空技术的追求,超音速飞行器的研究逐渐成为航空领域的热门话题。

超音速飞行器是指在大气层内飞行时速度达到或超过音速(340米/秒)的飞行器。

超音速飞行器的研制能够提高飞行速度、降低飞行时间和成本,同时还能为军事领域的快速打击提供可能性。

本文将对超音速飞行器的现状和未来进行展望。

一、研究现状1. 美国X-43A飞行器美国国家航空航天局(NASA)研制的X-43A飞行器是目前最快的超音速飞行器,它于2004年11月在美国加利福尼亚州的埃德华兹空军基地进行了一次不到十秒的飞行试验,速度达到了10.6马赫(约3.1千米/秒)。

X-43A采用了约0.5米长的无人机,采用氢气作为燃料,安装了一个气动热制动系统,可以快速制动,避免因高速导致的结构损坏。

2. 中国DF-ZF高超声速飞行器中国2014年公开了一种名为DF-ZF的高超声速飞行器,被认为是中国发展高超声速武器的先驱。

DF-ZF的速度是高超声速,即超过5马赫,有报道称其速度接近马赫10。

这种飞行器采用了三个分离级技术,通过光纤和无线电遥测连接,可以在大气层内完成大规模试验和计算机模拟。

3. 印度超音速飞行器计划印度也加入了超音速飞行器竞赛,其超音速飞行器计划是一个被称为“超音速技术试飞计划”的4个阶段的项目。

该项目已完成了第一阶段,成功试飞了一个超音速飞行器,在大气层内飞行了7秒钟,达到了马赫1.8的速度。

二、展望1. 技术瓶颈和风险超音速飞行器的研究面临着多方面的技术瓶颈和风险。

首先,高速下的气动力学和热学问题对于超音速飞行器的稳定性、耐久性和安全性提出了严峻的挑战。

其次,飞行器的材料、动力、遥测系统和稳定控制技术需要不断改进和创新,成本也很高。

2. 全球竞争和合作超音速飞行器的研究是全球性的竞争,美国、中国、俄罗斯和欧洲等国家和地区都在积极探索和研究。

而在超音速技术方面,国际合作也是一个有益的途径。

例如,美国、澳大利亚、英国和其他国家之间的共同研究,在材料、动力和遥测技术等方面进行合作,成果丰硕,相信未来这种合作模式会在更多国家之间发生。

高超声速飞行器技术研究的历史与未来

高超声速飞行器技术研究的历史与未来

高超声速飞行器技术研究的历史与未来
高超声速飞行器是飞行速度在马赫数5以上的飞行器,其速度较快,能够带来很多优势,如缩短远距离飞行时间并提高交通运输效率。

然而,高超声速飞行器的技术研究一直以来都是一个热门话题,同时也是一个充满挑战性的领域。

历史上,高超声速飞行器得到了多个国家的关注和投入。

尤其是在上个世纪50年代至60年代,在美国、苏联、法国等国的积极开展下,高超声速技术取得了重要进展。

当时,美国主攻转子式高超声速飞行器,苏联则主攻翼龙式高超声速飞行器,法国则研制平板翼式高超声速滑翔器。

这些成果对后来高超声速技术研究奠定了基础。

近年来,随着技术水平的进步,高超声速飞行器的研究成果也在逐步出现。

例如,中国成功进行了高超声速滑翔飞行器试飞、美国成功研发了“X-51A“高超声速飞行器等。

在这些研究中,高超声速飞行器技术发展的难点包括高温材料、发动机设计、气动热力学、空气动力学等方面。

未来,高超声速飞行器技术将继续向前发展。

首先,高超声速飞行器将被广泛应用于军事领域,如可以用来进行快速反击、反
侦测等。

其次,在民用领域,高超声速飞行器可以用来加快旅行速度,缩短飞行时间,增强航空交通运输的效率,同时对于航空航天科学的推进也具有重要意义。

总之,高超声速飞行器技术的研究具有重要的意义。

历史上,多国在高超声速技术研究上取得了突破性进展,但同时也面临各种技术难点。

未来,高超声速飞行器技术的应用前景广阔,同时其技术研究也是一个需要不断努力突破的领域。

高超声速飞行器技术研究

高超声速飞行器技术研究

高超声速飞行器技术研究第一章研究背景高超声速飞行器技术是目前国际上航空飞行领域最具前沿性的重要研究方向之一。

这种新型飞行器能够在大气层极高速度下飞行,具有极强的机动能力和抗干扰能力,实用价值极高。

目前,美国、俄罗斯、中国等国家都在积极开展高超声速飞行器技术研究,目的在于提高自身国防实力,并拓展民用领域的应用前景。

第二章技术现状目前,全世界在高超声速飞行器技术方面的研究可分为两大类,即飞行器的气动布局和运动控制。

在气动布局方面,高超声速飞行器主要分为气动光滑体、球弹、掠面机翼等几种形式。

在运动控制方面,高超声速飞行器涉及多学科交叉,主要包括热防护材料、涡流制动、魔方阵控制等方面。

在美国,高超声速技术一直是国防部关注的重点领域。

美国空军和海军等军方单位已经开展了多年的高超声速飞行器研究,先后研制出多款高超声速飞行器,如X-51Waverider、X-43A、X-15等。

我国自2000年开始开展高超声速技术研究,随着国家实力的不断增强,高超声速飞行器技术也取得了长足发展。

中国航空航天工业集团、中国航天科技集团等国内航空工业领域企业已相继进行高超声速飞行器技术研究和开发计划,取得了多项成果,推动了我国高超声速技术的发展。

目前,我国的高超声速技术主要应用于航空军事、纵深打击、反导拦截和航空航天探测等领域,同时对于物理科学、可再生能源、环保等方面也有着广泛的探索和研究。

第三章技术难点高超声速飞行器技术的研究难点主要集中于以下几个方面:1. 气动布局方面。

高超声速飞行器面临着气动热、气动力等诸多问题,设计合理的气动布局是高超声速飞行器研究的重中之重。

2. 热防护材料方面。

高超声速飞行器的速度较快,摩擦加热程度极高,需要采用超高温热防护材料。

3. 运动控制方面。

高超声速飞行器的机动和操控能力需要达到极高水平,运动控制的研究和应用是高超声速飞行器研究的重要目标。

第四章技术前景高超声速飞行器技术的应用前景非常广阔。

以综合学术角度剖析美国X-43A超高声速飞机的试验

以综合学术角度剖析美国X-43A超高声速飞机的试验

美国政府耗费巨资支持的造假—超高速飞机的神话柝解以综合学术角度剖析美国X-43A超高声速飞机试验作者深圳刘昌喆注:本文是应《中国军事》杂志建军八十周年记念约稿而作(2007)。

因观点非主流而被拒载。

留此存照,亦期交流。

2008年上传此文,因博客字数所限分成上下两部分,阅读不方便。

如今网站进步又重新整篇上传,—2010年的说明。

又注:当年文档中插不进图片,如今网站功能强大,所以加进图片整理重发。

美国的超高速骗局还在继续重演,2012年又有X-51试飞报道。

所以这篇写于2007年的文章仍有现实参考意义。

关键词:超高音速激波燃烧速度混合过程动量结构空气动力学飞行姿态稳定性学术结果不真实摘要:美国超高音速飞机X-43A在2001年曾试飞失败,当时舆论界在将信将疑中毁誉参半。

在2004年发布的X-43A飞机两次试验成功的结果以后,全世界舆论都为之贺彩;美国舆论称之为莱氏兄发明飞机后又一航空史上的重大突破。

各国航空学界多为美国科技之高超而折服,进而引发一轮包括中国在内的全世界范围的超高音速冲压发动机研发跟风热潮。

本文以严谨的多学科理论根据分析,证明该耗资1.8亿美金、轰动世界的试验原理上就存在多方面致命错误。

而关于所谓“试验的成功”的各种报道,也破绽多多,经不起推敲。

事实并非如报道的那样辉煌。

这应该是在美国政府出于政治利益而默许的、研究单位出于对耗掉如此巨资而无果,因利益需要的一起毫门学术造假。

一、X-43A超高音速飞机的“试验飞行”成功报道中的疑点X-43A超高音速飞机的“试验飞行”成功,在网上、报刊和电视的所有新闻媒体都有一段时间醒目的报道。

但在所有关于X-43A报道却有着共同的疑点:1、为什么耗此1.8亿巨资的,又是“成功”的试验项目最有价值的试验飞机不回收?这在技术上和经济上都应没有障碍(现代技术人造卫星都可以收回),尤其X-43A是在海面溅落,回收相对更容易。

如回收飞机实体,一是有助技术总结的巨大科研价值,二是可与莱氏兄弟的飞机同样陈列在美国国家博物馆,其里程碑式“成功”使该试验飞机文物价值应该无法估量。

080630-高超声速技术研究和发展

080630-高超声速技术研究和发展


MIMI(Module-To-Module)模型是几 个相邻的模块构成,用以确定模块之间 工作的相互影响.至此,模型试验已接近 全部完成。
NASP计划的结束 1994年NASP计划宣布结束,主要原因 有: 经费困难,拨款连年减少; 技术难度大,工作进展慢; NASA 与国会意见分歧。

高超声速冲压发动机 NASP最重要的研究内容是发展从超声速 到高超声速飞行工作的超燃冲压发动机, 开始是进行发动机模型研究,使用1/7 缩比的超声速燃烧冲压发动机。研究了 多种模型,如GBL模型, A—C模型, SX20模型, SXPE和CDE模型, MIMI模型 等.


以上试验验证了发动机流路设计方法, 验证了几何尺寸,动压,试车台气体成 分,粘性效应,附 面层厚度的影响。
(2)在经济上,高超声速武器将提 高作战的实效性。使用空天飞机,将 降低到达地球低轨道的有效载荷发射 费用,可从航天飞机的每公斤有效载 荷一万美元,RLV的每公斤有效载荷 一千美元,降到使用空天飞机的每磅 一百美元,是解决人类进一步开发太 空资源的重要手段,使空间开发更为 现实;同时,提高了安全性和可靠性。
2. 2 NASP计划 1986年2月4日美国宣布推行NASP计划, 研究水平起降,单级入轨的研究机X-30。 NASP计划目的是发展可完全重复使用、单 级入轨、水平起降、超燃冲压发动机推进 的空天飞机。

主要技术问题有: (1)确定在高马赫数的高超声速冲压发动 机特性; (2)确定空天飞机飞行时,由层流附面层 转换为紊流附面层的转捩点; (3)保证空天飞机高超声速飞行时的稳定 性和可操作性。
X-51A计划主要目的

(1) X-43C: X-43C是NASA和空军联合发展的。飞行 器长16英尺,装备三模块冲压发动机。使 用碳氢燃料超燃冲压发动机,并用燃料冷 却。飞行器被加速到马赫5,超燃冲压发动 机启动,然后自行加速到马赫7。飞行持续 5分钟,演示验证飞行性能。该计划的实现 将为发展高超声速巡航导弹创造条件。

美军又在研究超高音速飞行器

美军又在研究超高音速飞行器

美军又在研究超高音速飞行器据美国军事官员称,美国空军正在与军队的国防高级研究计划局(DARPA)合作一个新的项目——测试超高音速飞行能力。

实验方案正在最后定稿的过程中,旨在促进对超高音速飞行的研究,包括从开始于2004年的空军价值3亿美元的X-51A Waverider 的方案中获取信息。

无人驾驶机X-51A在5月1日成功完成了该计划的最后飞行,在计划好的紧急迫降前6分钟内,X-51A达到了最高速度5.1马赫(音速的5倍多),行驶了230多海里英里(425公里)。

空军官员当时说,这种超高音速飞行器飞行试验时间是有史以来最长的。

根据空军首席科学家Mica Endsley说。

五月份飞行测试实验使用的是波音公司最新的X-51A飞行器,目前没有再造飞行器的计划,但美国空军和DARPA合作的新方案将会建立在X-51A设计的基础上,将仔细寻找使超高音速技术更易于操作的方法。

“我们的X-51飞行非常成功,它展现了超高音速飞行器的速度。

” Endsley告诉Military网站,“我们现在正和DARPA合作一个后续的合资谅解备忘录的方案。

”美国军方官员说超高音速技术可以用来开发新的武器,飞机能够在很短的时间内到达地球上任何地方,超高音速飞行通常能达到任何5马赫以上的速度。

在海平面上,声音的速度是大约763英里(1,226公里/小时)。

5月1日,连接在一架B-52H“同温层堡垒”机翼的底面的X-51A从位于加利福尼亚州的爱德华兹空军基地起飞,在大约50,000英尺(15,000米)释放助推器,并在仅仅26秒内采用固体火箭助推器加速到4.8马赫。

在60,000英尺(18,300米)的高空时,X-51A与火箭分离,并靠超音速燃烧冲压式喷气发动机达到5.1马赫。

DARPA还用该机构的自身HTV高超音速轰炸机进行了高超声速飞行试验。

在2011年8月,HTV 滑翔机最高速度达到20马赫,不过随后失去控制。

美国X-43高超声速飞行器调研

美国X-43高超声速飞行器调研

美国X-43高超声速飞行器调研一、高超声速飞行器背景 (1)1.1美国在高超声速技术领域独占鳌头 (1)1.2 欧洲国家积极推进高超声速技术开发 (3)1.3 日本实施高超声速飞行器发展计划 (4)二、高超声速飞行器特点 (4)2. 1 推进技术 (4)2. 2 材料技术 (5)2. 3 空气动力学技术 (5)2. 4 飞行控制技术 (6)2.5 X-43在技术方面有如下特显 (7)三、气动外形设计方法 (8)四、高超声速飞行器制导原理 (9)五、执行机构的选择及配置 (12)5.1 推进系统 (12)5.2 控制系统的执行机构 (14)六、X—43控制原理 (16)6.1 高超声速控制技术发展 (16)6.2 高超声速控制分析 (16)6.3 X-43A控制方法及分析 (17)6.4 高超声速控制技术新技术 (18)(1)非线性控制方法 (18)(2)鲁棒自适应控制方法 (19)七、总结 (19)一、高超声速飞行器背景高超声速飞行器是指在大气层内飞行速度达到M a = 5以上的飞行器。

自20世纪60年代以来, 以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器, 而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术, 它的航程更远、结构质量轻、性能更优越。

实际上, 吸气式高超声速技术的发展始于20世纪50 年代,通过几十年的发展, 美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展, 并相继进行了地面试验和飞行试验。

高超声速技术实际上已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机和空天飞机等为应用背景的先期技术开发阶段。

1.1美国在高超声速技术领域独占鳌头从1985 年至1994 年的10年间, 美国国家空天飞机计划(NASP)大大推动了高超声速技术的发展。

通过试验设备的大规模改造和一系列试验, 仅美国NASA 兰利研究中心就进行了包括乘波体和超燃发动机试验在内的近3 200次试验。

美国超-X计划与X43试飞器

美国超-X计划与X43试飞器
1) 对设计方案进行飞行鉴定试验 。 2) 改进设计方案 , 开发先进的设计软件 , 以改 进超燃冲压发动机推进的高超声速飞行器的设计 。 3) 降低 、预测和分析高超声速飞机的空气动 力 、推进系统和发动机/ 飞行器一体化系统性能有
图 2 双燃烧室冲压发动机巡航导弹模型
飞航导弹 2002 年第 5 期
飞马座火箭的气动外形类似一架飞机 , 火箭在 外形 、尺寸与发射质量方面均与 X215 试验机相似 。 飞马座的基体结构 、机翼与尾翼全部由质量轻 、强 度高的石墨纤维复合材料制成 。在整个飞马座火箭 结构质量中 , 石墨纤维复合材料占 94 % , 铝合金只 占 5 % , 钛合金占 1 %。
飞马座火箭也是美国第一种完全利用计算机进 行气动设计的运载火箭 。它在 NASA 艾姆斯研究中 心的数值气动模拟设施 ———克雷 2 、克雷 XMP 巨型 计算机上 , 利用计算流体力学软件进行计算并完成 了设计 , 整个研制过程没有进行风洞与缩比模型试 验。
X243C 试飞器的 3 台超燃冲压发动机并列 , 宽 度为 686mm , 它在 Ma = 7 时的推力要比 X243A 单 台发动推力大 2 倍 。X243C 采用根据空军高超声速 技术 ( HyThch) 项目研制的超燃冲压发动机 , 其原因 是 , C/ H 燃料可使用性和密度较高 。虽然 X243C 的 长度比 X243A 长 , 但其质量仍控制在 1 271. 2kg~ 1 362kg。X243C 由 NASA 马歇尔空间飞行中心的先 进空间运输项目资助 , 预计在 2006 年开始进行飞 行试验 。
1 超2X 计划 超2X( Hyper2X) 是 NASA 重点实施的高超声速发
展计划 。该计划的主要目的是研究并演示可用于高 超声速飞机与可重复使用的天地往返系统的超燃冲 压发动机技术与一体化设计技术 。

高超声速飞行器发展现状和关键技术问题

高超声速飞行器发展现状和关键技术问题

高超声速飞行器发展现状和关键技术问题高超声速飞行器是指可以飞行在5倍音速以上的飞行器,具有超过音速5倍速度的飞行能力。

它具有重要的军事战略意义和广阔的应用前景。

在当今世界,高超声速技术已经成为各国军事竞争的焦点之一。

本文将探讨高超声速飞行器的发展现状,并分析相关的关键技术问题。

首先,我们来看一下高超声速飞行器的发展现状。

目前,全球范围内有多个国家在高超声速飞行器领域进行着积极的研究和开发。

其中,美国、俄罗斯和中国是最活跃的国家之一。

美国在高超声速领域具有丰富的研究实力,被认为是全球高超声速飞行器技术的领先者。

美国国防部和美国航空航天局(NASA)在该领域进行了多项研究项目,其中包括X-51飞行器的研发。

X-51是一种无人驾驶的高超声速飞行器原型,它成功地进行了多次飞行试验。

俄罗斯在高超声速技术领域也有很强的实力。

俄罗斯成功研发了“雅歌”高超声速导弹系统,并在2018年进行了试射。

此外,俄罗斯还计划发展一种名为“复兴者”的可重复使用高超声速飞行器,该飞行器预计在2023年前进行首次试飞。

中国也在高超声速领域取得了重要的进展。

中国成功研发了“神舟飞机-2号”和“神舟飞机-3号”两型高超声速飞行器,在实验中取得了显著的成果。

另外,中国还计划发展一种名为“彩虹-5”的超高音速飞行器,该飞行器将具有可重复使用能力。

虽然全球多个国家都在高超声速飞行器领域进行积极研究,然而,这个领域仍然面临着许多关键技术问题。

首先是发动机技术。

高超声速飞行器的发动机需要提供足够的推力和稳定的工作性能。

目前,涉及到高超声速发动机的关键技术难题包括高温环境下的可靠燃烧和动力系统的散热问题。

燃烧过程中产生的高温和高速气流对发动机的耐久性和工作效率提出了很高的要求。

其次是材料技术。

高超声速飞行器需要使用能够承受高温和高速气流冲击的材料。

这些材料需要具备良好的高温稳定性、抗热疲劳和热传导性能。

目前,开发适合高超声速飞行器使用的材料仍然是一个挑战。

高超声速飞行器研究进展

高超声速飞行器研究进展

高超声速飞行器研究进展随着科技的发展,高超声速飞行器成为航空领域内一个备受关注的领域。

这个领域一直以来都是科学家们不断努力和研究的方向,因为它具有极高的速度和更远的飞行距离,促使科学家们在高超声速飞行器的研究上投入了大量的精力和时间。

高超声速飞行器是指可以在大气层内飞行超过5倍音速的一类飞行器。

它具有高速、高温和较大的机动性靶心,被认为是未来的飞行器新趋势。

高超声速飞行器运用科学、技术和工程学知识,通过改变飞行器的运动、抗风险等方面性能,从而达到更高的运行能力。

高超声速飞行器的研究是一个极其复杂的领域,他需要科学家们从材质科学到空气动力学等多个领域去协同研究,这是一个需要耐心和长远思路的过程。

在高超声速飞行器的研究中,研究人员们遭遇了许多技术难题,如受热和空气动力学方面的难题,但他们始终没有放弃对它的研究。

目前,美国、俄罗斯、中国等国家都在高超声速飞行器研究方面不断取得新进展。

近年来,美国和中国都在高超声速技术领域取得了突破性进展。

美国一直在研究快速打击武器系统,中国则在利用高超声速技术提高自己的防御力。

美国 Navy 海军研究局在2013年成功测试了一架名为"诺斯罗普·格鲁曼 X-47B"的无人机,这款飞行器装载RF-278 高超声速导弹,飞行时速达到了 Mach7.5 (约9300km/h),成功实现了发生超音速的突破。

中国也取得了许多高超声速技术方面的领先,如2018年中国成功测试了一架名为"神鹰-2"的高超声速滑翔机,这是首架能够在高超声速飞行时携带多个弹道饰品的飞行器,并且能够在导弹发射后选择返回或者再次飞行的高超声速飞行器。

这项技术为中国空中拦截、地对地打击等多种军事行动都带来了新的靶心。

此外,俄罗斯也在高超声速技术领域投入了大量的精力,他们目前正在研发能够在高超声速飞行下穿透任何战争防御系统和打击任何目标的导弹。

综上所述,高超声速飞行器的研究是一个极度复杂的领域,他需要多个学科领域的研究人员和国家机构进行协作,而且它还存在着许多技术难题。

美国X-43高超声速飞行器调研

美国X-43高超声速飞行器调研

美国X-43高超声速飞行器调研一、高超声速飞行器背景 (1)1.1美国在高超声速技术领域独占鳌头 (1)1.2 欧洲国家积极推进高超声速技术开发 (3)1.3 日本实施高超声速飞行器发展计划 (4)二、高超声速飞行器特点 (4)2. 1 推进技术 (4)2. 2 材料技术 (5)2. 3 空气动力学技术 (5)2. 4 飞行控制技术 (6)2.5 X-43在技术方面有如下特显 (7)三、气动外形设计方法 (8)四、高超声速飞行器制导原理 (9)五、执行机构的选择及配置 (12)5.1 推进系统 (12)5.2 控制系统的执行机构 (14)六、X—43控制原理 (16)6.1 高超声速控制技术发展 (16)6.2 高超声速控制分析 (16)6.3 X-43A控制方法及分析 (17)6.4 高超声速控制技术新技术 (18)(1)非线性控制方法 (18)(2)鲁棒自适应控制方法 (19)七、总结 (19)一、高超声速飞行器背景高超声速飞行器是指在大气层内飞行速度达到M a = 5以上的飞行器。

自20世纪60年代以来, 以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器, 而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术, 它的航程更远、结构质量轻、性能更优越。

实际上, 吸气式高超声速技术的发展始于20世纪50 年代,通过几十年的发展, 美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展, 并相继进行了地面试验和飞行试验。

高超声速技术实际上已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机和空天飞机等为应用背景的先期技术开发阶段。

1.1美国在高超声速技术领域独占鳌头从1985 年至1994 年的10年间, 美国国家空天飞机计划(NASP)大大推动了高超声速技术的发展。

通过试验设备的大规模改造和一系列试验, 仅美国NASA 兰利研究中心就进行了包括乘波体和超燃发动机试验在内的近3 200次试验。

高超声速

高超声速

外高超声速飞行器的发展及关键技术高超声速一般是指流动或飞行的速度超过5倍声速,即马赫数(Ma)大于或等于5。

自20世纪60年代以来,以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器,而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术。

吸气式高超声速飞行器飞行时不需要像火箭那样自身携带氧化剂,可以直接从大气中吸取氧气,因而它的航程更远、结构重量更轻、性能更优越。

实际上,吸气式高超声速技术的发展始于20世纪50年代,通过几十年的发展,美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展,并相续进行了地面试验和飞行试验。

高超声速技术已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机、跨大气层飞行器和空天飞机为应用背景的先期技术开发阶段。

一、国外高超声速飞行器的发展1.美国美国自20世纪50年代开始研究吸气式高超声速技术。

20世纪80年代中期,美国实施了采用吸气式推进、单级入轨(马赫数25)的国家空天飞机计划(NASP),由于在技术、经费和管理方面遇到了一系列的困难,NASP计划于1995年停止。

尽管如此,NASP计划仍然大大推动了美国高超声速技术的发展,仅美国航空航天局(NASA)兰利研究中心就进行了包括乘波外形一体化和超燃冲压发动机试验在内的近3200次试验。

通过这些试验,美国已经基本上掌握了马赫数小于8的超燃冲压发动机设计技术,并建立了大规模的数据库,从而为实际飞行器的工程设计打下了牢固的技术基础。

从1996年开始,美国对高超声速飞行器技术的发展进行了调整,确立了分阶段逐步发展的思路,降低了近期的发展目标。

目前,美国正在全方位发展高超声速飞行器技术,主要目标是研制马赫数小于8的高超声速巡航导弹(包括海军的高速打击导弹、空军的高超声速巡航导弹和国防高级研究计划局的“可负担得起的快速反应导弹”),同时实施以高超声速飞机为应用背景的高超声速飞行试验计划(Hyper一X)。

高超声速飞行器的研发与应用

高超声速飞行器的研发与应用

高超声速飞行器的研发与应用高超声速飞行器是一种在高速飞行时,能够带来更快速的飞行速度和更高的平稳程度的飞行器。

高超声速飞行速度高达5至25马赫,比声速快5至25倍。

尽管高超声速飞行器仍处于研究和发展阶段,但其已经被广泛应用于军事和航天领域中。

这种飞行器在未来也能够用于民用航空领域,从而实现更快速的旅行和更迅捷的交通。

1.高超声速飞行器的研发历程高超声速飞行器的研发是一个极具挑战性的任务,需要克服众多技术难题。

最早的高超声速试验是在20世纪30年代进行的,随着时间的推移,其研究不断发展和完善。

20世纪末,中国、美国、俄罗斯、欧洲等多个国家都开始投入巨额资金和人力,加紧了高超声速飞行器的研究。

中国于2006年成功试飞了“飞跃-2”高超声速飞行器(Hypersonic Flight Vehicle, HFV),它的飞行速度高达马赫数10至15。

“飞跃-2”的研发,代表了中国在高超声速技术领域的可靠性和领先性。

美国的X-51A无人高超声速试验机,于2010年开始飞行试验。

这种可以在30分钟内飞抵太平洋的高超声速试验机在试飞期间达到了马赫数5.1的飞行速度,成为全球首个进入高超声速的无人驾驶飞机。

俄罗斯也积极发展高超声速飞行器,并提出了“俄罗斯中等和长期科技发展规划2030年”的目标,即发展高超声速飞行器技术和载人高超声速飞行器,推动该领域的发展。

欧洲高超声速联盟(European Hypersonics Alliance)则致力于推动欧洲在高超声速领域的技术和研究计划。

欧洲空间局已经成功测试出了一种积极冷却的火箭发动机,这种发动机可以帮助高超声速飞行器在气温高达2000度的条件下,保持良好的性能。

2.高超声速飞行器的应用高超声速飞行器领域的研究还处于起步阶段,但这种飞行器在军事和航天领域中已经被广泛应用。

军事方面,高超声速飞行器可以用于侦察、反制和打击敌方军事设施,包括更快速准确地进行打击和空袭。

高超声速飞行器的飞行速度高,能够极大提高战斗效率,并且可以更高效的通过传统防空系统和导弹拦截系统。

美国普惠公司吸气式高超声速推进技术发展综述

美国普惠公司吸气式高超声速推进技术发展综述

推进技术美国普惠公司吸气式高超声速推进技术发展综述 摘 要 美国普拉特2惠特尼公司(P&W)正在开发吸气式高超声速部件和发动机技术。

在将氢燃料推进系统用于空间进入飞行器的国家航空航天飞机(NASP)计划中,开发了超燃冲压喷气发动机数据库。

2004年进行的由普惠公司设计、由NASP派生的Hyper2X氢燃料超燃冲压喷气发动机两次成功的飞行试验,行试验数据。

第一次试验的马赫数接近7,第二次试验的马赫数接近10。

美空军研究实验室(AFRL)高超声速技术(HyTech)办公室已决定继续改进NASP,不断开发新技术,以验证液碳氢燃料超燃冲压喷气发动机系统在马赫数4~8下的适用性、性能和耐用性。

在AFRL和美国防高级研究计划局(DARP A)的资助下,计划在超燃冲压喷气发动机演示样机2骑波器(SE D2WR)项目下,在2008—2010年进行飞行质量、燃料冷却方式的碳氢超燃冲压喷气发动机飞行试验。

将超燃冲压喷气发动机用于组合循环推进系统的技术也正在研究中。

超燃冲压喷气发动机和固体火箭助推器的组合适用于高超声速巡航弹。

使用气体涡轮机进行低速加速和使用火箭发动机助推的超燃冲压式喷气发动机正在研究中,以用于高超声速巡航飞行器和可重复使用的发射系统。

关键词 高超声速巡航导弹 推进技术 超燃喷气发动机引 言20世纪60年代,美国联合技术研究中心(UTRC)的联合技术公司(UT C)开始开发冲压式喷气发动机和超燃冲压喷气发动机技术。

从20世纪70年代起,开始通过先进小体积冲压喷气发动机和先进战略空射导弹飞行试验对冲压喷气发动机技术进行验证。

随后,从20世纪90年代起,开始用先进空空导弹对其进行飞行试验验证。

20世纪80年代中期,随着国家航空航天飞机计划(NASP)的启动,普惠公司恢复了超燃冲压喷气发动机开发工作。

NASP的目的在于开发一体化低速加速器、冲压喷气发动机和超燃冲压喷气发动机推进系统,并对其进行飞行验证。

高超声速飞行器综合热管理及关键技术研究进展

高超声速飞行器综合热管理及关键技术研究进展

高超声速飞行器综合热管理及关键技术研究进展摘要:高超声速飞行器是飞行速度超过5倍声速的有翼或无翼飞行器。

随着科学与军事领域的发展,高超声速飞行器的跟踪控制研究已成为航空航天领域研究的热点问题之一。

飞行环境复杂多变,导致高超声速飞行器具有强不确定性、强耦合性、强非线性和快时变等特性。

这些复杂特性导致高超声速飞行器控制的研究面临诸多难题。

目前,基于高超声速飞行器纵向模型的控制方法主要有自适应反步控制、滑模控制和模糊控制等方法,然而现有的控制方法仍然存在一些不足。

因此,高超声速飞行器的控制研究是十分有意义的。

关键词:高超声速飞行器;热防护;舱内热管理;综合热管理引言高超声速飞行器(Hypersonic flight vehicle,HFV)因其飞行速度快、机动性强、突防能力好等特点,具有重要的军事价值和民用价值,受到国内外学者的广泛关注。

但由于HFV具有强非线性、强耦合、非最小相位的特性,且面临复杂快时变的飞行环境、大飞行包线内实际的气动参数与地面风洞/仿真所得的气动参数存在偏差等原因,HFV的飞行控制系统必须具备快速反应能力、鲁棒性和抗干扰能力。

另外,超燃冲压发动机的工作状态与迎角的大小密切相关,迎角必须满足一定的约束。

因此,HFV的飞行控制系统设计是一个重要而极具挑战性的课题。

1高超声速飞行器面临的热环境特性分析高超声速飞行器面临着高温高热流气动热环境。

美国空军实验室曾在一份研究报告中指出:飞行器所承载的热负荷随着马赫数的提高而增加,当马赫数大于5时,马赫数每提高1,总温约增加556K;在28km高空,当马赫数达到10时,飞行器外结构总温可达3889K,超出现有材料承受温限。

高超声速飞行器再入时典型部位热环境如图1所示,端头热流为14MW/m2,水平翼前缘热流为10.5MW/m2,超燃冲压发动机进气道唇口达到了40MW/m2。

面对高热流和高温热环境,要保持飞行器外结构特性,必须针对高超声速飞行器驻点、前缘、机身大面积等不同区域分别采取有效的热防护措施。

国外高超声速飞行器的发展及关键技术

国外高超声速飞行器的发展及关键技术

国外高超声速飞行器的发展及关键技术高超声速一般是指流动或飞行的速度超过5倍声速,即马赫数(Ma)大于或等于5。

自20世纪60年代以来,以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器,而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术。

吸气式高超声速飞行器飞行时不需要像火箭那样自身携带氧化剂,可以直接从大气中吸取氧气,因而它的航程更远、结构重量更轻、性能更优越。

实际上,吸气式高超声速技术的发展始于20世纪50年代,通过几十年的发展,美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展,并相续进行了地面试验和飞行试验。

高超声速技术已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机、跨大气层飞行器和空天飞机为应用背景的先期技术开发阶段。

一、国外高超声速飞行器的发展1.美国美国自20世纪50年代开始研究吸气式高超声速技术。

20世纪80年代中期,美国实施了采用吸气式推进、单级入轨(马赫数25)的国家空天飞机计划(NASP),由于在技术、经费和管理方面遇到了一系列的困难,NASP计划于1995年停止。

尽管如此,NASP计划仍然大大推动了美国高超声速技术的发展,仅美国航空航天局(NASA)兰利研究中心就进行了包括乘波外形一体化和超燃冲压发动机试验在内的近3200次试验。

通过这些试验,美国已经基本上掌握了马赫数小于8的超燃冲压发动机设计技术,并建立了大规模的数据库,从而为实际飞行器的工程设计打下了牢固的技术基础。

从1996年开始,美国对高超声速飞行器技术的发展进行了调整,确立了分阶段逐步发展的思路,降低了近期的发展目标。

目前,美国正在全方位发展高超声速飞行器技术,主要目标是研制马赫数小于8的高超声速巡航导弹(包括海军的高速打击导弹、空军的高超声速巡航导弹和国防高级研究计划局的“可负担得起的快速反应导弹”),同时实施以高超声速飞机为应用背景的高超声速飞行试验计划(Hyper一X)。

高超声速高焓风洞试验技术研究进展

高超声速高焓风洞试验技术研究进展

高超声速高焓风洞试验技术研究进展JIANG Zonglin【摘要】The development of high enthalpy wind tunnel and its test technology are the cornerstone to help mankind enter the hypersonic era,and the great progress has been achieved in recent years.High enthalpy wind tunnels with four typical driving modes areintroduced.Those are the air-directly-heated hypersonic wind tunnel,the light-gas-heated shock tunnel,the free-piston-driven shock tunnel, and the detonation-driven shock tunnel.Theories and critical techniques for developing these wind tunnels are introduced,and their merits and weakness are discussed based on tunnel performance evaluation.The measurement techniques are usually included into wind tunnel techniques because that the hypersonic and high-enthalpy flow is a chemically-reacting gas motion and its diagnose needs specially-designed instruments.Three measuring techniques are introduced here,including aerodynamic heat flux sensors,aerodynamic balances, and optical diagnose techniques.These techniques were usually developed for conventional hypersonic wind tunnels and combustion research,and are further improved to measure the hypersonic and high-enthalpy flows.The prospect for developing the experimental techniques of hypersonic and high-enthalpy wind tunnels is presente d from author’s point view.%高焓风洞及其试验技术是助力人类进入高超声速飞行时代的基石,近年来取得了长足的进展.本文首先重点介绍了四种典型驱动模式的高焓风洞,即直接加热型高超声速风洞、加热轻气体驱动激波风洞、自由活塞驱动激波风洞和爆轰驱动激波风洞.通过这些代表性风洞的介绍,讨论了相关风洞的理论基础和关键技术及其长处与不足.由于高超声速高焓流动具高温热化学反应特征,风洞试验技术研究还包含着针对高焓特色的测量技术发展.本文介绍了三种主要测量技术:气动热测量技术、气动天平技术和光学测量技术.这些技术是依据常规风洞试验测量需求而研制的,又根据高焓风洞的特点得到了进一步的改进和完善.最后对高超声速高焓风洞试验技术发展做了简单展望.【期刊名称】《空气动力学学报》【年(卷),期】2019(037)003【总页数】9页(P347-355)【关键词】高焓流动;激波风洞;高超声速飞行器;气动力/热特性;测量技术【作者】JIANG Zonglin【作者单位】State Key Laboratory of High Temperature Gas Dynamics , Institute of Mechanics , Chinese Academy of Sciences ,Beijing 100190,China) 2.Department of Aerospace Engineering Science ,School of Engineering Science , University of Chinese Academy of Sciences ,Beijing 100049,China【正文语种】中文【中图分类】V2 1 1.70 引言高超声速高焓气体流动主要是指一类动能极高的化学反应气体流动。

高超声速技术的研究进展

高超声速技术的研究进展

高超声速技术的研究进展高超声速技术是一种极为先进的航空技术,其运用于飞行器或导弹中,可以达到超过5倍音速的速度。

这种技术在航空领域具有重要的意义,因为它可以大幅缩短航程,加快侦察和打击的速度,提高作战效率。

以下是高超声速技术的研究进展。

一、高超声速技术的发展历史高超声速技术的发展可以追溯到20世纪50年代,当时美国的NASA开始研究高超声速飞行器。

在60年代,苏联研制出了首架高超声速飞机,引起了世界各国的关注。

在90年代,美国和俄罗斯开始对高超声速导弹的技术进行研究和开发。

二、高超声速技术的关键问题高超声速技术的研究涉及着诸多领域,其中最主要的难点是炉膛温度的控制和气动力的稳定性。

高超声速飞行器的速度非常快,所以需要在飞行过程中经受高温高压的气流,如果不能正确控制温度,则会导致飞行器烧毁。

此外,高超声速飞行器运动时的气流非常不稳定,容易产生剧烈震荡,影响飞行器的稳定性。

为了解决上述问题,科学家们不断地进行研究和开发。

他们采用了新型的材料,以改善炉膛温度的控制;同时,利用计算机模拟技术对高超声速飞行器的气动力进行模拟和优化,以提高气动力的稳定性。

这些技术的不断更新和发展,为高超声速技术的发展奠定了基础。

三、高超声速技术的应用领域高超声速技术在军事和民用领域都有着广泛的应用。

军方利用高超声速技术研制的超音速导弹,可以在短时间内达到目的地,提高打击效果。

同时,高超声速技术在无人机、侦察机和飞行器的研发也得到了广泛的应用,为军方提供了更加便捷,高效的作战方式。

在民用领域,高超声速技术也有着广泛的应用。

长距离的宇宙飞行,需要飞行器速度更快以加速到太空轨道。

此外,利用高超声速技术可以研制出更加高效、安全和环保的航空器,为人们提供更加舒适、快捷、实用的飞行服务。

四、高超声速技术的未来发展高超声速技术的研究和发展还有很长的路要走。

未来,科学家们将继续致力于高超声速技术研究,并结合人工智能等新兴技术,推动高超声速技术的不断进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国高超声速研究
纵览2012 年高超声速技术发展状态,美国、俄罗斯、德国、澳大利亚和印度等国的高超声速项目都在紧锣密鼓地进行。

其中以美国最为活跃,在通过各种渠道收集到的高超声速项目进展情报中,美国占世界总量的50%,是俄罗斯、欧洲空间局的4倍,德国、澳大利亚等国的8 倍。

可以说,美国的高超声速项目进展与趋势是世界范围内高超声速项目发展的风向标。

高超声速飞行器技术是未来高速飞行器发展的主要支撑性技术,已从概念和原理探索阶段进入到以高超声速巡航导弹、高超声速飞机、跨大气层飞行器和空天飞机等为应用背景的先期技术开发阶段。

高超声速飞行器技术一旦实现并应用于军事领域,将改变未来战争的作战样式,并对国家安全产生重大战略性影响。

21 世纪开始,美国基于全球到达,全球打击战略,提出了全方位的高超声速武器和先进航天器研制计划,相继实施Hyper-X、HyFly、FALCON 等高超声速飞行器计划,已陆续取得了技术上的重大突破,并相继进行了地面和飞行试验,引领世界范围的高超声速飞行器技术研发热潮。

本文从高超声速飞行器技术发展的视角,针对美国近期X-51A、Hy-Fly 和HTV-2 高超声速飞行器飞行试验相继失利的原因进行探讨和分析,给出了其失利原因和发展走向的基本判断和启示思考。

高超声速飞行器的研制面临巨大的技术挑战,如燃料在超声速气流中的稳定燃烧,严重的飞行器气动加热以及飞行过程中的稳定性控制等关键技术问题还需要进一步攻克。

美国自20世纪50 年代开始研究吸气式高超声速飞行器技术。

冷战期间,美国为争夺霸权和军备竞赛的需要,提出过许多超燃冲压发动机及高超声速飞行器发展计划,但由于在技术、经费和管理方面遇到了一系列的困难,这些计划均中途夭折。

1986 年,美国开始进行X-30 国家空天飞机( NASP) 计划,进一步开发超燃冲压发动机技术,但最终仍然由于技术上无法突破而最终放弃。

此后,美国航空航天局( NASA) 继续执行了一项规模较小的高超声速X 计划,其目的是扩展将来可以军用和民用的高超声速飞行的技术基础。

从1996 年开始,美国对高超声速飞行器技术的发展进行了调整,确立了分阶段逐步发展的思路,首先选择巡航导弹为突破口,而后转入其它飞行器与天地往返运输系统,降低了近期的发展目标。

目前,美国正在全方位发展高超声速飞行器技术,美国海军、空军、国防高级研究计划局( DAR-PA) 已确提出发展高超声速巡航导弹,并正在实施相关的多项研究计划( Hyper-X、HyFly、FALCON等) 。

但最近两年美国在高超声速飞行器飞行试验中屡次失败,给高超声速飞行器计划的前景蒙上了阴影。

X-51A Waverider( 乘波器) 项目是由美国空军、DARPA 以及Pratt &Whitney Rocketdyne 和波音公司共同承担,继承于早期的Hyper-X( X-43A)项目,以验证高超声速飞行能力。

X-51A 设计速度在Ma = 4.5 ~6.5 左右,涉及到碳氢燃料超燃冲压发动机推进系统、高温材料、机体/发动机一体化等众多关键技术。

这次试验部分成功。

超燃冲压发动机在马赫数5左右工作了140 s( 原计划170 s,结束试验前30 s,密封圈失效,造成发动机推力减小) 。

2011 年6 月进行了第二次飞行试验,这次试验以失败告终。

助推器将X-51A 加速到马赫数5,但超燃冲压发动机未能启动,虽然此后地面人员多次试图重新启动,但最终未成功。

事后调查原因为进气道不启动,NASA 认为进气道前缘激波移动太远,引起气流偏移,最终导致超燃冲压发动机启动失败。

按照计划,未来预计X-51A 还将进行两次飞行测试,但波音公司认为飞行试验次数不足,即使四次预期的飞行试验都获得成功,还应至少再增加两次飞行测试。

HyFly
Hypersonics Flight Demonstration ( HyFly) 项目始于2002 年,面向美国未来海军需要,由美国海军和DARPA 以及波音公司共同承担。

HyFly 项目计划设计、建造和测试一种高超声速飞行器,为战术导弹提供技术验证,该飞行器巡航速度为Ma = 6、空射射程为740 km、地面发射射程为1 100 km。

HyFly 项目涉及到双模冲压发动机技术( DCR) 、轻质高温材料、制导控制等众多关键技术。

HyFly 项目原计划2007 年1 月进行首次飞行试验,双模冲压发动机的地面测试将之延迟到2007 年9 月,原计划准备测试双模冲压发动机的启动、燃油控制、爬升以及加速情况,但燃油系统存在的问题导致飞行器仅加速到马赫数3.5,飞行试验失败。

2008 年1 月,第二次飞行试验中,燃油泵出现了问题,导致双模冲压发动机未能启动,飞行试验失败。

2010 年7 月,HyFly 高超声速导弹验证机进行了第三次也是最后一次飞行试验,导弹的助推器并没能成功点火,DARPA 认为机载飞行软件发现内部电池电压过低,导致软件异常中断发动机点火。

双模冲压发动机的演示验证是HyFly 项目的研发重点,但三次飞行试验出现的问题都没有涉及到需要验证的双模冲压发动机推进技术,未能对双模冲压发动机技术进行验证。

HyFly 高超声速导弹模型风洞实验。

Falcon Hypersonic Technology Vehicle ( HTV) 演示验证项目是由美国空军和DARPA 共同承担研制的。

HTV 项目的目的是发展验证高超声速飞行器技术,以支撑快速全球到达任务,其发展的飞行器是可重复使用的类航空器外形的高超声速飞行器,能够在普通机场起飞和降落。

HTV 项目始于2003年,是美国全球快速打击计划的重要项目,计划演示验证三种飞行器: HTV-1、HTV-2 和HTV-3 。

HTV-3 飞行器由于2009 年美国国会削减财政预算而被迫搁浅,DARPA 只好转而开发HTV-2。

HTV 项目涉及到高升阻比气动外形技术、轻质高温材料技术、热管理技术、导航和自动飞行控制技术以及涡轮组合循环发动机( TBCC) 技术等众多关键技术。

HTV 项目原计划于2009 年3 月和8 月进行两次飞行试验,实际飞行试验分别被推迟至2010 年和2011 年。

2010 年 4 月,HTV-2 进行了首次发射,以飞行速度马赫数17 ~22 飞行了139 s,但结果并不完美。

技术数据显示,HTV-2 的起飞和与火箭分离都很顺利,但进入飞行试验9 min 后,遥测站与HTV-2 失去联系。

美国国防部称,当时由于系统侦测到飞行模式出现异常,因此,强制导引飞行器坠入海中。

2011 年8 月,HTV-2 飞行器在美国加州范登堡空军基地成功发射升空,但在太空边缘与火箭分离后,HTV-2 飞行器在独自飞行并返回地球时失去联系。

总结
美国已经进行了多次高超声速飞行试验,积累了大量的数据和经验,研究水平大幅领先于其它国家。

即便如此,按照美国高超声速项目发展现状,从试验走向使用还须假以时日。

2013 年,美国可能仍将进行大量的高超声速试飞试验,如令人瞩目的X-51A 第四次试飞以及与澳大利亚合作的HIFiRE项目试飞等。

未来,美国将围绕高超声速技术构建一种CPGS、高超声速巡航导弹、高超声速飞行器平台及空天飞行器平台组成的多元高超声速军用/民用体系,形成巨大的作战优势、威慑力以及政治、经济和科研优势。

相关文档
最新文档