广东省汕头市潮南区2016-2017学年七年级上期末数学试卷含答案解析

合集下载

2016-2017学年新人教版七年级上期末数学试卷含答案解析

2016-2017学年新人教版七年级上期末数学试卷含答案解析

七年级(上)期末数学试卷(解析版)一、选择题1.﹣3的绝对值是()A.﹣3 B.﹣C.D.32.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A.两点之间线段最短 B.两点确定一条直线C.线段可以大小比较 D.线段有两个端点3.海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A.B.C. D.5.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是()A.12.26×104B.1.026×104C.1.026×105D.1.026×1066.与算式32+32+32的运算结果相等的是()A.33B.23C.36D.387.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.以上都不对8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20二、填空题(每题3分,共24分)9.计算:﹣1﹣2=______.10.已知|m﹣2|+|3﹣n|=0,则﹣n m=______.11.如图,是一个简单的数值运算程序当输入x的值为﹣1时,则输出的数值为______.12.方程2x+1=3和方程2x﹣a=0的解相同,则a=______.13.若(5x+3)与(﹣2x+9)互为相反数,则x=______.14.已知∠α的余角等于30°,则∠α的补角=______.15.按规律填数:,______,…16.已知∠AOB=50°,∠BOC=30°,则∠AOC=______.三、解答题(本大题共2小题,每题6分,共12分)17.计算:﹣14×[6﹣(﹣3)2].18.解方程:.四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款10805元.问成人票和学生票各售出多少张?20.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.五、解答题21.现有甲、乙两个瓷器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优惠方法是买一只茶壶送一只茶杯,乙店按总价的92%付款.学校办公室需要购买茶壶4只,茶杯若干只(不少于4只).(1)当购买多少只茶杯时,两店的优惠方法付款一样多?(2)当需要购买40只茶杯时,若让你去办这件事,你打算去哪家商店购买?为什么?22.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON;(2)∠AOB=α,∠BOC=β,求∠MON的度数.六、解答题(共1小题,共10分)23.(10分)(2014秋•信丰县期末)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?七年级(上)期末数学试卷参考答案与试题解析一、选择题1.﹣3的绝对值是()A.﹣3 B.﹣C.D.3【考点】绝对值.【分析】根据绝对值的定义直接解答即可.【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.【点评】本题考查了绝对值的定义,知道绝对值表示某点到原点的距离是解题的关键.2.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A.两点之间线段最短 B.两点确定一条直线C.线段可以大小比较 D.线段有两个端点【考点】线段的性质:两点之间线段最短.【分析】一条弯曲的公路改为直道,使两点之间接近线段,因为两点之间线段最短,所以可以缩短路程.【解答】解:由题意把弯曲的公路改为直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.故选A.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.3.海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°【考点】方向角.【分析】根据方向角的定义即可判断.【解答】解:海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的南偏西40°.故选B.【点评】本题主要考查了方向角的定义,正确理解定义是关键.4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A.B.C. D.【考点】简单几何体的三视图.【分析】分别根据几何体写出主视图即可.【解答】解:A、正方体从正面观察得到的平面图形是正方形,故此选项错误;B、圆锥从正面观察得到的平面图形是三角形,故此选项错误;C、圆柱从正面观察得到的平面图形是长方形,故此选项错误;D、球从正面观察得到的平面图形是圆,故此选项正确;故选:D.【点评】此题主要考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.5.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是()A.12.26×104B.1.026×104C.1.026×105D.1.026×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于102600有6位,所以可以确定n=6﹣1=5.【解答】解:102 600=1.026×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.6.与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【考点】有理数的乘方.【分析】32+32+32表示3个32相加.【解答】解:32+32+32=3×32=33.故选A.【点评】本题根据乘法的意义可知32+32+32=3×32,根据乘方的意义可知3×32=33.7.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.以上都不对【考点】余角和补角.【分析】根据∠1与∠2互补,∠2与∠3互余,先把∠1、∠3都用∠2来表示,再进行运算.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.【点评】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20【考点】由实际问题抽象出一元一次方程.【分析】根据售﹣进价=利润,求得售价,进一步列出方程解答即可.【解答】解:设这件夹克衫的成本是x元,由题意得(1+50%)x×80%﹣x=20也就是(1+50%)x×80%=x+20.故选:B.【点评】此题考查了由实际问题抽象出一元一次方程的知识,掌握销售问题中基本数量关系是解决问题的关键.二、填空题(每题3分,共24分)9.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.10.已知|m﹣2|+|3﹣n|=0,则﹣n m=﹣9.【考点】非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣2|+|3﹣n|=0,∴m﹣2=0,3﹣n=0,∴m=2,n=3.∴﹣n m=﹣9.故答案为:﹣9.【点评】本题考查的知识点是:两个绝对值的和为0,那么这两个绝对值里面的代数式均为0.11.如图,是一个简单的数值运算程序当输入x的值为﹣1时,则输出的数值为1.【考点】有理数的混合运算.【分析】根据题目中的式子可以求出当x=﹣1时的代数式的值.【解答】解:(﹣1)×(﹣3)﹣2=3﹣2=1,故答案为:1.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.12.方程2x+1=3和方程2x﹣a=0的解相同,则a=2.【考点】同解方程.【分析】由这两个方程的解相同,可以先解出方程2x+1=3的解x=1,再把x=1代入方程2x ﹣a=0,求出a=2.【解答】解:由2x+1=3得:2x=2,解得x=1,把x=1代入方程2x﹣a=0得:2﹣a=0,∴a=2.【点评】本题考查的是两个同解方程,由已知方程的解求出另一个未知数的值.13.若(5x+3)与(﹣2x+9)互为相反数,则x=﹣4.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:(5x+3)+(﹣2x+9)=0,去括号得:5x+3﹣2x+9=0,移项合并得:3x=﹣12,解得:x=﹣4.故答案为:﹣4【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.14.已知∠α的余角等于30°,则∠α的补角=120°.【考点】余角和补角.【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【解答】解:根据余角的定义,这个角的度数=90°﹣30°=60°,根据补角的定义,这个角的补角度数=180°﹣60°=120°,故答案为:120°.【点评】此题综合考查余角与补角,主要记住互为余角的两个角的和为90度,互为补角的两个角的和为180度.15.按规律填数:,,…【考点】规律型:数字的变化类.【分析】首先观察符号规律:第奇数个数是正数,第偶数个数是负数;且第n个数的分子是n,分母是对应的分子的平方加1,即n2+1,所以可直接写出第五个数.【解答】解:∵第n个数的分子是n,分母是n2+1,∴第五个数是.故答案为:.【点评】本题考查了数字的变化类,此类题应先找符号的规律,再分别找分子和分母的规律,先找到易找的规律,然后观察另一个和它是否有关系.16.已知∠AOB=50°,∠BOC=30°,则∠AOC=20°或80°.【考点】角的计算.【分析】本题是角的计算的多解问题,求解时要注意分情况讨论,可以根据OC与∠AOB 的位置关系分为OC在∠AOB的内部和外部两种情况求解.【解答】解:当OC在∠AOB内部,因为∠AOB=50°,∠BOC=30°,所以∠AOC为20°;当OC在∠AOB外部,因为∠AOB=50°,∠BOC=30°,所以∠AOC为80°;故∠AOC为20°或80°.【点评】本题只是说出了两个角的度数,而没有指出OC与∠AOB的位置关系,因此本题解题的关键是根据题意准确画出图形.三、解答题(本大题共2小题,每题6分,共12分)17.计算:﹣14×[6﹣(﹣3)2].【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣×(﹣3)=﹣1+1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解一元一次方程.【分析】本题方程含有分数,若直接进行通分,书写会比较麻烦,而方程左右两边同时乘以公分母6,则会使方程简单很多.【解答】解:去分母,得:2(2x+1)﹣(5x﹣1)=6去括号,得:4x+2﹣5x+1=6移项、合并同类项,得:﹣x=3方程两边同除以﹣1,得:x=﹣3.【点评】本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.而此类题目学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款10805元.问成人票和学生票各售出多少张?【考点】一元一次方程的应用.【分析】设成人票售出x张,则学生票售出(900﹣x)张,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设成人票售出x张,则学生票售出(900﹣x)张,根据题意得:15x+8(900﹣x)=10805,解得:x=515,则900﹣x=385,答:成人票515元,学生票385元.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.【考点】整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)将B的代数式代入A﹣2B中化简,即可得出A的式子;(2)根据非负数的性质解出a、b的值,再代入(1)式中计算.【解答】解:(1)∵A﹣2B=A﹣2(﹣4a2+6ab+7)=7a2﹣7ab,∴A=(7a2﹣7ab)+2(﹣4a2+6ab+7)=﹣a2+5ab+14;(2)依题意得:a+1=0,b﹣2=0,a=﹣1,b=2.原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.【点评】本题考查了非负数的性质和整式的化简,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.五、解答题21.现有甲、乙两个瓷器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优惠方法是买一只茶壶送一只茶杯,乙店按总价的92%付款.学校办公室需要购买茶壶4只,茶杯若干只(不少于4只).(1)当购买多少只茶杯时,两店的优惠方法付款一样多?(2)当需要购买40只茶杯时,若让你去办这件事,你打算去哪家商店购买?为什么?【考点】一元一次方程的应用.【分析】(1)设购买x只茶杯时,两店的优惠方法付款一样多,分别表示出两店需要的付款,运用方程思想求解;(2)分别求出在甲乙两店需要的花费,比较即可得出答案.【解答】解:(1)设购买x只茶杯时,两店的优惠方法付款一样多,根据题意得:92%(20×4+5x)=20×4+5(x﹣4),解得:x=34,答:购买34只茶杯时,两店的优惠方法付款一样多.(2)打算去乙店购买.因为需要购买40只茶杯时,在甲店需付款20×4+5×(40﹣4)=260(元);在乙店需付款92%×(20×4+5×40)=257.6(元);故乙店比甲店便宜.【点评】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,得出两家商店需要付款的表达式,难度一般.22.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON;(2)∠AOB=α,∠BOC=β,求∠MON的度数.【考点】角的计算;角平分线的定义.【分析】(1)根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可;(2)同理可得,∠MOC=,∠CON=,所以∠MON=∠MOC﹣∠CON==.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°.(2)同理可得,∠MOC=,∠CON=,∴∠MON=∠MOC﹣∠CON==.【点评】本题考查了角平分线的定义,属于基础题,解决本题的关键是熟记平分线的定义.六、解答题(共1小题,共10分)23.(10分)(2014秋•信丰县期末)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?【考点】一元一次方程的应用;数轴.【分析】(1)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t秒点P到点M,N的距离相等,得出(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),进而求出即可.【解答】解:(1)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.答:经过5秒点M与点N相距54个单位.(算术方法对应给分)(2)设经过t秒点P到点M,N的距离相等.(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),t+6=5t﹣8或t+6=8﹣5tt=或t=,答:经过或秒点P到点M,N的距离相等.【点评】此题主要考查了一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.xl;sd2011;马兴田;。

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。

2016-2017七年级上期末数学试卷含答案解析

2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。

汕头市人教版七年级上册数学期末考试试卷及答案

汕头市人教版七年级上册数学期末考试试卷及答案
A. B. C. 或 D.无法确定
15.下列各数中,比 小的数是()
A. B. C. D.பைடு நூலகம்
二、填空题
16.已知x=3是方程 的解,则m的值为_____.
17.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.
18.如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=_____.
A.1个B.2个C.3个D.4个
6.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是( )
A. 或﹣1B.1或﹣1C. 或 D.5或
7.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()
(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t秒:
①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;
②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?
35.某商场在黄金周促销期间规定:商场内所有商品按标价的 打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:
19.化简: __________.
20.﹣2 的倒数为_____,﹣2 的相反数是_____.
21.当a=_____时,分式 的值为0.
22.若∠1=35°21′,则∠1的余角是__.
23.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣22.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠16.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣510.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+111.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=8713.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是.16.比较大小:﹣﹣(填“<”或“>”)17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=cm.三、解答题(本题共8道题,满分60分)19.(6分)计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).20.(6分)解方程:=.21.(6分)先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.22.(6分)已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D 是AC的中点,求BD的长.23.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.24.如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.25.(10分)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?26.(10分)如图,长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的B′处,得到折痕EC ,将点A 落在直线EF 上的点A′处,得到折痕EN .(1)若∠BEB′=110°,则∠BEC= °,∠AEN= °,∠BEC +∠AEN= °. (2)若∠BEB′=m°,则(1)中∠BEC +∠AEN 的值是否改变?请说明你的理由. (3)将∠ECF 对折,点E 刚好落在F 处,且折痕与B′C 重合,求∠DNA′.2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣2【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:实数﹣2的绝对值是2,故选:A.【点评】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.2.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数【考点】有理数.【分析】根据零的意义,可得答案.【解答】解:A、没有最小的有理数,故A错误;B、没有最小的整数,故B错误;C、0没有倒数,故C错误;D、0是最小的非负数,故D正确;故选:D.【点评】本题考查了有理数,零是自然数,是最小的非负数,是整数,注意零既不是正数也不是负数.3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,系数相加字母部分不变.4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】两点间的距离;直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短.【分析】根据直线、射线等相关的定义或定理分别判断得出答案即可.【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.【点评】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠1【考点】角的概念.【分析】先表示出各个角,再根据角的表示方法选出即可.【解答】解:图中的角有∠A、∠1、∠α、∠AEC,即表示方法不正确的有∠E,故选B.【点评】本题考查了对角的表示方法的应用,主要考查学生对角的表示方法的理解和掌握.6.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:21.54°=21°32.4′=21°32′24″.故选:D.【点评】本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣【考点】一元一次方程的解.【分析】把x=﹣2代入方程计算即可求出m的值.【解答】解:把x=﹣2代入方程得:﹣4+2m=5,解得:m=.故选C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°【考点】角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°,故选C.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣5【考点】代数式求值.【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:﹣8a﹣2b=﹣5,再将x=﹣2代入这个代数式中,最后整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,则8a+2b+1=6,8a+2b=5,∴﹣8a﹣2b=﹣5,则当x=﹣2时,ax3+bx+1=(﹣2)3a﹣2b+1=﹣8a﹣2b+1=﹣5+1=﹣4,故选B.【点评】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【考点】整式的加减.【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(3x2+4x﹣1)﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1,故选A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.11.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°【考点】余角和补角.【分析】根据补角和余角的定义关系式,然后消去∠α即可.【解答】解:∵∠α与∠β互补,∠α与∠γ互余,∴∠α+∠β=180°,∠α+∠γ=90°.∴∠β﹣∠γ=90°.故选:A.【点评】本题主要考查的是余角和补角的定义,根据余角和补角的定义列出关系式,然后再消去∠α是解题的关键.12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=87【考点】由实际问题抽象出一元一次方程.【分析】设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,根据两种笔共卖出87元,列方程即可.【解答】解:设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,由题意得,0.8×1.2x+0.9×2(60﹣x)=87.故选A.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断出a、b的符号,再去括号,合并同类项即可.【解答】解:∵由图可知,a<0<b,∴a﹣b<0,|a|=﹣a,∴原式=b﹣a+a=b.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108【考点】科学记数法—表示较大的数.【分析】首先利用已知求出奖金总数,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:设屠呦呦的奖金是x元,根据题意可得:2.25%•x×20%=13500,解得:x=3000000,将3000000用科学记数法表示为:3×106.故选:B.【点评】此题考查了一元一次方程的应用以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是5.【考点】单项式.【分析】根据所有字母的指数和叫做这个单项式的次数,可得答案.【解答】解:7πa2b3的次数是5,故答案为:5.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.比较大小:﹣<﹣(填“<”或“>”)【考点】有理数大小比较.【分析】根据负数的绝对值越大负数越小,可得答案.【解答】解:这是两个负数比较大小,先求他们的绝对值,|﹣|=,|﹣|=,∵>,∴﹣<﹣,故答案为:<.【点评】本题考查了有理数大小比较,利用负数的绝对值越大负数越小是解题关键.17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为90°.【考点】角的计算.【分析】根据已知条件“∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°”和平角的定义可以求得∠AOF=∠DOF=∠AOD=62°,∠DOE=∠BOE=28°;然后根据图形求得∠EOF=∠DOF+∠DOE=62°+28°=90°.【解答】解:∵∠DOE=∠BOE,∠BOE=28°,∴∠DOB=2∠BOE=56°;又∵∠AOD+∠BOD=180°,∴∠AOD=124°;∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD=62°,∴∠EOF=∠DOF+∠DOE=62°+28°=90°.故答案是:90°.【点评】本题考查了角的计算.解题时,注意利用隐含在题干中的已知条件“∠AOB=180°”.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=6或14cm.【考点】两点间的距离.【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况,结合图形计算即可.【解答】解:当点C在线段AB上时,AC=AB﹣BC=6cm,当点C在线段AB的延长线上时,AC=AB+BC=14cm,故答案为:6或14.【点评】本题考查的是两点间的距离的计算,灵活运用数形结合思想、分情况讨论思想是解题的关键.三、解答题(本题共8道题,满分60分)19.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【考点】有理数的加减混合运算.【分析】首先根据有理数减法法则,把算式进行化简,然后应用加法交换律和结合律,求出算式的值是多少即可.【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣17【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法.20.解方程:=.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4(2x﹣1)=3(x+2),去括号得:8x﹣4=3x+6,移项合并得:5x=10,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a﹣8a+2﹣3+4a=﹣a﹣1,当a=时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D是AC的中点,求BD的长.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D 是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.23.在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.【考点】整式的加减—化简求值.【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【解答】解:(1)根据题意得:S=2m•2n﹣m(2n﹣0.5n﹣n)=4mn﹣0.5mn=3.5mn;(2)∵(m﹣6)2+|n﹣5|=0,∴m=6,n=5,则S=3.5×6×5=105.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.(1)如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.【考点】角平分线的定义.【分析】(1)先由角平分线定义可得∠AOM=∠AOB=(∠BON+∠AON)=×68°=34°,再根据∠MON=∠AOM﹣∠AON,代入数据计算即可;(2)先由角平分线定义可得∠AOM=∠BOM,再根据∠AOM=∠AON+∠MON,∠MON=∠BON﹣∠MON即可解题.【解答】解:(1)∵OM 平分∠AOB ,∴∠AOM=∠AOB=(∠BON +∠AON )=×68°=34°,∴∠MON=∠AOM ﹣∠AON=34°﹣11°=23°;(2)∵OM 平分∠AOB ,∴∠AOM=∠BOM ,∵∠AON +∠MON=∠BON ﹣∠MON ,∴2∠MON=∠BON ﹣∠AON ,∴∠MON=(∠BON ﹣∠AON ),因此这个同学得出的关系式正确.【点评】本题考查了角平分线定义,角的和与差的计算,(2)中求得∠AON +∠MON=∠BON ﹣∠MON 是解题的关键.25.(10分)(2016秋•路北区期末)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?【考点】一元一次方程的应用.【分析】(1)首先得出16吨,应分两段交费,再利用已知表格中数据求出答案;(2)利用五月份交水费50元,可以判断得出应分3段交费,再利用已知表格中数据得出等式求出答案;(3)利用分类讨论利用①当a ≤12时,②当12<a ≤18时,③当a >18时,求出答案.【解答】解:(1)∵12<16<18,∴2×12+2.5×(16﹣12)=24+10=34(元),答:四月份用水量为16吨,需交水费为34元;(2)设五月份所用水量为x吨,依据题意可得:2×12+6×2.5+(x﹣18)×3=50,解得;x=21,答:五月份所有水量为21吨;(3)①当a≤12时,需交水费2a元;②当12<a≤18时,需交水费,2×12+(a﹣12)×2.5=(2.5a﹣6)元,③当a>18时,需交水费2×12+6×2.5+(a﹣18)×3=(3a﹣15)元.【点评】此题主要考查了一元一次方程的应用以及列代数式,正确利用分段表示出水费的总额是解题关键.26.(10分)(2016秋•路北区期末)如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=55°,∠AEN=35°,∠BEC+∠AEN=90°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质可求出∠BEC和∠AEN的度数,然后求出两角之和;(2)不变.根据折叠的性质可得∠BEC=∠B'EC,根据∠BEB′=m°,可得∠BEC=∠B'EC=∠BEB′=m°,然后求出∠AEN,最后求和进行判断;(3)根据折叠的性质可得∠B'CF=∠B'CE,∠B'CE=∠BCE,进而得出∠B'CF=∠B'CE=∠BCE,求出其度数,在Rt△BCE中,可知∠BEC与∠BCE互余,然后求出∠BEC 的度数,最后根据平角的性质和折叠的性质求解.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC=∠BEB′=55°,∠AEN=∠A'EN=∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=∠BEB′=m°,∠AEN=∠A'EN=∠AEA'=(180°﹣m°),∴∠BEC+∠AEN=m°+(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°。

广东汕头龙湖16-17学年七年级上期末--数学

广东汕头龙湖16-17学年七年级上期末--数学

2016~2017学年度第一学期期末教学质量监测试卷七年级数学把答案填在答题卷上说明:本卷满分120分,考试时间为100分钟一、选择题(本大题共10小题, 每小题3分, 共30分, 在每小题给出的四个选项中, 只有一项是符合题目要求的)1.-5的相反数等于( ) A. -5B. 5C. ±5D. 无法确定2.钓鱼岛自古以来是中国的领土,岛屿周围的海域面积约170000平方公里,这里的“170000”用科学记数法表示为( ) A. 1.7×104B. 17×104C. 0.17×106D. 1.7×1053.下列方程中,是一元一次方程的是( ) A. 243x x -=B. 0x =C. 23x y +=D. 11x x-=4.如图是一个长方体包装盒,则它的平面展开图是( )5. 下列运算正确的是( )A .3x+4y=7xyB .6y 2﹣y 2=5C .b 4+b 3=b 7D .4x ﹣x=3x6.甲、乙两人练习赛跑,甲每秒跑7m ,乙每秒跑6.5m ,甲让乙先跑5m ,设x 秒后甲可追上乙,则下列四个方程中不正确的是( )A. 7x =6.5x +5B. 7x +5=6.5xC. (7-6.5)x =5D. 6.5x =7x -57.下列说法正确的是( )A .平方等于它本身的数是0B .立方等于它本身的数是±1C .绝对值等于它本身的数是正数D .倒数等于它本身的数是±18.若∠1+∠2=180o , ∠1+∠3=90o , 则∠2与∠3的关系是( ) A. 互余B .互补C .相等D .∠2=90o +∠39.设有理数a 、b 在数轴上对应的位置如图所示,化简|a ﹣b|﹣|a|的结果是( )A .﹣2a+bB .2a+bC .﹣bD .b10.在平面内过O 点作三条射线OA 、OB 、OC, 已知∠AOB =50°, ∠BOC =20°,则∠AOC 的度数为( ) A. 70°B. 30°C. 70°或30°D. 无法确定二、填空题(每小题4分,共24分)11.计算:15÷(﹣3) .12.方程 x +5=2x ﹣3的解是 .13.已知∠A =30°,则∠A 的余角是 度. 14.若﹣5x 2y m 与x 2y 是同类项,m = . 15.如图,已知A 、B 、C 、D 四点在同一直线上,点D 是线段BC 的中点, 且BC=3AB ,如果AB=4cm ,则线段AD 的长度为 cm.16.如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.第1个第2个第3个则第 n 个图案需要 根火柴棒.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:31(2)4(5)2-⨯--÷18.化简:2(32)3(3)a b a b ---19.解方程:5(1)32(1)x x -=-+四、解答题(本大题共3小题,每小题7分,共21分)20.先化简,再求值:2254(21)3x x x x ⎡⎤----⎣⎦;其中x =3。

广东省汕头市潮南区2016-2017学年七年级上期中数学试卷(A)含答案解析

广东省汕头市潮南区2016-2017学年七年级上期中数学试卷(A)含答案解析

…○…………装…………○…学校:___________姓名:___________班级:…○…………装…………○…绝密★启用前广东省汕头市潮南区2016-2017学年七年级上期中数学试卷(A )含答案解析题号 一 二 三 得分注意事项:1.本试卷共XX 页,三个大题,满分117分,考试时间为1分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共30分)评卷人 得分1.﹣3的绝对值是( )(3分)A.B.C.D.2.下列化简,正确的是( )(3分) A. ﹣(﹣3)=﹣3 B. ﹣[﹣(﹣10)]=﹣10 C. ﹣(+5)=5 D. ﹣[﹣(+8)]=﹣83.在﹣(﹣8),|﹣7|,﹣|0|,﹣(﹣3)2这四个数中,负数有( )(3分)试卷第2页,总9页外………内……… A. 1个 B. 2个 C. 3个 D. 4个4.下列各式中,与a ﹣b ﹣c 的值不相等的是( )(3分) A. a+(﹣b)+(﹣c) B. a ﹣(+b)﹣(﹣c) C. a ﹣(+b)﹣(+c) D. a ﹣(+b)+(﹣c)5.冥王星围绕太阳公转的轨道半径长度约为5 900 000 000千米,这个数用科学记数法表示是( )(3分) A. 5.9×1010千米 B. 5.9×109千米 C. 59×108千米 D. 0.59×1010千米6.x 2y 3﹣3xy 2﹣2次数和项数分别是( )(3分) A. 5,3 B. 5,2 C. 2,3 D. 3,37. (3分)A. ﹣9B. ﹣25C. 7D. 23……○……………○…………装…………○…………订学校:___________姓名:___________班级:___________……○……………○…………装…………○…………订8.近似数8.1754精确百分位,正确的是( )(3分) A. 8.2 B. 8.17 C. 8.18 D. 8.1759.绝对值大于2且小于5的所有整数的和是( )(3分) A. 0 B. 7 C. 14 D. 2810. (3分)A.B.C.D.二、填空题(共15分)评卷人 得分11.(3分)试卷第4页,总9页…外………○…………装……………订…………○…………………○※※请※※不※※要※※在※※※※内※※答※※题※※…内………○…………装……………订…………○…………………○12.已知多项式a 2b |m|﹣2ab+b 9﹣2m +3为5次多项式,则m= .(3分)13. (3分)14.如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C 、若点C 表示的数为1,则点A 表示的数为 .(3分)15. (3分)三、解答题(共72分)评卷人 得分16. (8分)17.(8分)18.计算:(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn)(8分)19. (8分)20.若|a|=2,b=﹣3,c 是最大的负整数,求a+b ﹣c 的值.(8分)21.已知多项式A ,B ,其中A=x 2﹣2x+1,小马在计算A+B 时,由于粗心把A+B 看成了A ﹣B 求得结果为﹣3x 2﹣2x ﹣1,请你帮小马算出A+B 的正确结果.(8分)………装…_________姓名:………装…22.已知A=y 2﹣ay ﹣1,B=2y 2+3ay ﹣2y ﹣1,且多项式2A ﹣B 的值与字母y 的取值无关,求a 的值.(8分)23.出租车司机老黄每天下午都在东西走向的大道上载客营运,若规定向东为正,向西为负,这天下午行走里程(单位:千米)如下:﹣160,+100,﹣20,+50,﹣20,﹣10.(1)将最后一名乘客送到目的地时,老黄离下午出车时的出发点多远?此时在出车时间的东边还是西边?(2)若汽车每千米耗油0.25升,每升汽油5.5元,求:这天下午老黄开的车共耗油多少升?共花多少元油费?(8分)24.大客车上原有(3a ﹣b)人,中途下车一半人,又上车若干人,这时车上共有乘客(8a ﹣5b)人. (1)问:上车乘客有多少人?(2)在(1)的条件下,当a=12,b=10时,上车乘客是多少人?(8分)******答案及解析****** 一、单选题(共30分) 1.答案:D解析:2.答案:B解析:解:A 、∵﹣(﹣3)=3,∴错误; B 、∵﹣[﹣(﹣10)]=﹣10,∴正确; C 、∵﹣(+5)=﹣5,∴错误; D 、∵﹣[﹣(+8)]=8,∴错误. 3.答案:A解析:解:∵﹣(﹣8),|﹣7|=7,﹣|0|=0,﹣(﹣3)2=﹣9,∴﹣(﹣8),|﹣7|,﹣|0|,﹣(﹣3)2这四个数中,负数有1个:﹣(﹣3)2.。

汕头市潮南区2016-2017学年七年级下期末数学试卷含答案解析

汕头市潮南区2016-2017学年七年级下期末数学试卷含答案解析
2.如图,与∠1 是同旁内角的是( )
A.∠2 B.∠3 C.∠4 D.∠5 【考点】J6:同位角、内错角、同旁内角. 【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可. 【解答】解:A、∠1 和∠2 是对顶角,不是同旁内角,故本选项错误; B、∠1 和∠3 是同位角,不是同旁内角,故本选项错误; C、∠1 和∠4 是内错角,不是同旁内角,故本选项错误; D、∠1 和∠5 是同旁内角,故本选项正确; 故选 D.
20
75
55
150
一般
23
5
17
45
不关心
57
20
28
105
(1)请将频数分布直方图补充完整;
(2)此次共调查了多少人?并求出一般在扇形统计图中所占圆心角的度数. (3)用您学过的统计知识来说明哪个村的调査结果更能反映市民对“创文”的态
度,请写出一句“创文”的宣传语.
24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°. (1)求证:AB∥CD; (2)求∠C 的度数.
25.暑期中,哥哥和弟弟二人分别编织 28 个中国结,已知弟弟单独编织一周 (7 天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟 多编 2 个. 求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)
(2)若弟弟先工作 2 天,哥哥才开始工作,那么哥哥工作几天,两人所编 中国结数量相同?
2016-2017 学年广东省汕头市潮南区七年级(下)期末 数学试卷
参考答案与试题解析
一、选择題(每小题 3 分,共 30 分) 1.下列实数是无理数的是( ) A. B. C.﹣ D.0 【考点】26:无理数. 【分析】根据无理数、有理数的定义即可判定选择项. 【解答】解: , ,0 是有理数, ﹣ 是无理数, 故选:C.

初中数学广东省汕头市潮南区七年级上期末数学考试卷(C)含答案解析

初中数学广东省汕头市潮南区七年级上期末数学考试卷(C)含答案解析

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在﹣5,0,,2.5这四个数中,绝对值最大的数是( )A.﹣5 B.0 C. D.2.5试题2:下列计算正确的是( )A.a+a=a2 B.3a2﹣2a3=1 C.3a3﹣2a2=a D.﹣a2+2a2=a2试题3:下面说法错误的是( )A.两点确定一条直线 B.射线AB也可以写作射线BAC.等角的余角相等 D.同角的补角相等试题4:方程2x﹣3=5的解是( )A.x=1 B.x=4 C.x=﹣1 D.x=﹣4试题5:下列说法正确的是( )A.数字0也是单项式 B.﹣x2的系数是1C.﹣2πx2的系数是﹣2 D.x2+1是二次单项式试题6:在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )A.南偏西40度方向 B.南偏西50度方向C.北偏东50度方向 D.北偏东40度方向试题7:将数据36000000用科学记数法表示是( )A.3.6×107 B.0.36×108 C.36×107 D.3.6×106试题8:如果单项式﹣5x a+1y4与2y b x3是同类项,那么a、b的值分别是( )A.a=1,b=4 B.a=1,b=3 C.a=2,b=4 D.a=2,b=3试题9:已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长( )A.2 B.4 C.8 D.8或4试题10:如图是一个小正方形的展开图,把展开图折叠成小正方形后,相对两个面上的数字之和的最大值是( )A.11 B.9 C.7 D.5试题11:化简:﹣a﹣a=__________.试题12:单项式﹣的系数是__________,请写出它的一个同类项:__________.试题13:如果+30m表示向东走30m,那么向西走40m表示为__________.试题14:如果x=1是方程2x+m=3的解,那么m的值为__________.试题15:数轴上点A表示的数是2,那么与点A相距5个单位长度的点表示的数是__________.试题16:已知∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD的度数为__________.试题17:计算:.试题18:化简:4a2+2(3ab﹣2a2)﹣(5ab﹣1)试题19:解方程:10﹣3y=5y﹣6.试题20:先化简,再求值:5(3a2﹣b)﹣4(3a2﹣b),其中a=﹣1,b=6.试题21:如图,点C在线段AB上,AC=3,BC=5,点M是AC的中点,点N是BC的中点,求线段MN的长度.试题22:某校班际篮球联赛中,每场比赛都要分胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中得48分,那么这个班胜了多少场?试题23:如图,将一副直角三角板叠放在一起,使直角顶点重合于点O.(1)若OC平分∠AOB,求∠DOB的度数.(2)求∠AOD+∠BOC的值.试题24:某社区小型便利超市第一次用3000元购进甲、乙两种商品,两种商品都销售完以后获利500元,其进价和售价如下表:甲乙进价(元/件)15 20售价(元/件)17 24(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的2倍;乙种商品按第一次的售价销售,而甲种商品降价销售.若第二次两种商品都销售完以后获利700元,求甲种商品第二次的售价.试题25:已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数.(2)当点P以每秒5个单位长度的速度从O点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A、点B的距离相等?试题1答案:A【考点】绝对值.【专题】数形结合.【分析】利用绝对值的定义求解.【解答】解:在﹣5,0,,2.5这四个数中,﹣5离原点最远,所以绝对值最大的数为﹣5.故选A.【点评】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了数轴.试题2答案:D【考点】合并同类项.【分析】直接利用合并同类项法则化简,进而判断得出答案.【解答】解:A、a+a=2a,故此选项错误;B、3a2﹣2a3,无法计算,故此选项错误;C、3a3﹣2a2,无法计算,故此选项错误;D、﹣a2+2a2=a2,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.试题3答案:B【考点】直线的性质:两点确定一条直线;直线、射线、线段;余角和补角.【分析】分别利用直线的性质以及射线的性质和余角与补角的性质分析得出答案.【解答】解:A、两点确定一条直线,正确,不合题意;B、射线AB也可以写作射线BA,错误,符合题意;C、等角的余角相等,正确,不合题意;D、同角的补角相等,正确,不合题意;故选:B.【点评】此题主要考查了直线的性质以及射线的性质和余角与补角的性质,正确把握相关性质是解题关键.试题4答案:B【考点】解一元一次方程.【专题】计算题.【分析】此题比较简单,首先移项,合并同类项,然后化系数为1即可求出方程的解.【解答】解:2x﹣3=5,移项得:2x=8,∴x=4.故选B.【点评】此题比较简单,考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项.试题5答案:A【考点】单项式;多项式.【分析】根据单项式的系数是数字因数,次数是字母指数和,可得答案.【解答】解:A、单独一个数或一个字母也是单项式,故A正确;B、﹣x2的系数是﹣1,次数是1,故B错误;C、﹣2πx2的系数是﹣2π,故C错误;D、x2+1是多项式,故D错误;故选:A.【点评】本题考查了单项式,注意单独一个数或一个字母也是单项式.试题6答案:A【考点】方向角.【专题】应用题.【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义就可以解决.【解答】解:灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的南偏西40度的方向.故选A.【点评】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.试题7答案:A【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36 000 000=3.6×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题8答案:C【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得a和b的值.【解答】解:∵单项式﹣5x a+1y4与2y b x3是同类项,∴a+1=3,b=4,∴a=2,b=4,故选C.【点评】本题考查了同类项,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.试题9答案:D【考点】两点间的距离.【专题】分类讨论.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB 的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.试题10答案:B【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“6”是相对面,“3”与“2”是相对面,“5”与“4”是相对面,所以,相对两个面上的数字之和的最大值是5+4=9.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.试题11答案:﹣2a.【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:﹣a﹣a=﹣2a,故答案为:﹣2a.【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.试题12答案:3x2y.【考点】单项式;同类项.【专题】开放型.【分析】根据单项式的系数的定义以及同类项的定义即可求解.【解答】解:单项式﹣的系数是﹣,请写出它的一个同类项:3x2y.﹣,3x2y.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.试题13答案:﹣40m.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:如果+30m表示向东走30m,那么向西走40m表示为﹣40m,故答案为:﹣40m.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.试题14答案:1.【考点】一元一次方程的解.【专题】计算题.【分析】把x=1代入方程计算即可求出m的值.【解答】解:把x=1代入方程得:2+m=3,解得:m=1,故答案为:1.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.试题15答案:7或﹣3.【考点】数轴.【分析】此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【解答】解:与点A相距5个单位长度的点表示的数有2个,分别是2+5=7或2﹣5=﹣3.故答案为:7或﹣3.【点评】此题考查了数轴的有关知识,要求掌握数轴上的两点间距离公式的运用.在数轴上求到已知点的距离为一个定值的点有两个.试题16答案:150°或30°.【考点】角的计算.【专题】计算题.【分析】由于∠AOC和∠BOD都是直角,如果∠AOB=150°,画出图根据图解答本题.【解答】解:∵∠BOD=90°,∠AOB=150°,∴∠AOD=60°,又∵∠AOC=90°,∴∠COD=30°,∵∠BOD=90°,∠A0C=90°,∠AOB=150°,∴∠AOD=60°,∴∠COD=150°,故答案为30°或150°.【点评】本题主要考查角的比较与运算以及直角的定义,画出图图形结合,比较简单.试题17答案:【考点】有理数的混合运算.【分析】先算乘方,再算乘法和除法,最后算加法,由此顺序计算即可.【解答】解:原式=﹣8×+×25=﹣2+5=3.【点评】此题考查有理数的混合运算,注意运算顺序与符号的判定.试题18答案:【考点】整式的加减.【专题】计算题;整式.【分析】原式去括号合并即可得到结果.【解答】解:原式=4a2+6ab﹣4a2﹣5ab+1=ab+1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.试题19答案:【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把y系数化为1,即可求出解.【解答】解:移项合并得:﹣8y=﹣16,解得:y=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.试题20答案:【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2﹣5b﹣12a2+4b=3a2﹣b,当a=﹣1,b=6时,原式=3﹣6=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.试题21答案:【考点】两点间的距离.【分析】根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案.【解答】解:点M、N分别是AC、BC的中点,AC=3,BC=5,MC=AC÷2=3÷2=1.5,NC=CB÷2=5÷2=2.5,由线段的和差,得MN=MC+NC=1.5+2.5=4.答:线段MN的长是4.【点评】本题考查了两点间的距离,先算出MC、NC的长,再算出MN的长.试题22答案:【考点】一元一次方程的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出方程,解方程即可求解.【解答】解:设这个班胜了x场,则负(28﹣x)场,由题意得,3x+(28﹣x)=48,解得:x=10.答:这个班胜了10场.【点评】本题考查了一元一次方程的应用;难度一般,解答本题的关键是表示出胜场得分和输场得分并列出方程.试题23答案:【考点】角的计算;角平分线的定义.【分析】(1)根据角平分线的定义求出∠COB,再根据∠DOB=∠COD﹣∠COB代入数据进行计算即可得解;(2)表示出∠AOD,再根据图形可知∠DOB+∠BOC=∠DOC=90°,然后计算即可得解.【解答】解:(1)∵OC平分∠AOB,∠AOB=90°,∴∠COB=∠AOB=45°,∵∠COB+∠BOD=∠COD=90°,∴∠DOB=∠COD﹣∠COB=45°;(2)∵∠AOD=∠AOB+∠DOB=90°+∠DOB,∴∠AOD+∠BOC=90°+∠DOB+∠BOC,=90°+∠DOC,=90°+90°,=180°.【点评】本题考查了角的计算,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.试题24答案:【考点】一元一次方程的应用.【分析】(1)设第一次购进甲种商品x件,则乙种商品的件数是,根据题意列出方程求出其解就可以;(2)设第二次甲种商品的售价为每件y元,则甲种商品的利润为100(y﹣15)元,乙种商品的利润为(24﹣20)×75×2元,由题意建立方程求出其解即可.【解答】解:(1)设第一次购进甲种商品x件,由题意得:.解得 x=100.则.故第一次购进甲种商品100件,乙种商品75件.(2)设第二次甲种商品的售价为每件y元,由题意得:(y﹣15)•100+(24﹣20)×75×2=700.解得:y=16.则甲种商品第二次的售价为每件16元.【点评】本题考查了利润=售价﹣进价的运用,列一元一次方程解实际问题的运用及一元一次方程的解法的运用.解答时根据题意建立方程是关键.试题25答案:【考点】一元一次方程的应用.【专题】几何动点问题.【分析】(1)由点P到点A、点B的距离相等得点P是线段AB的中点,得出方程,解方程即可;(2)分两种情况:①当P点在AB之间时;②当P点在AB右侧时,此时A、B重合;分别得出方程,解方程即可.【解答】解:(1)∵点P到点A、点B的距离相等,∴点P是线段AB的中点,∴x+1=3﹣x,∴点P对应的数x==1;(2)分两种情况:①当P点在AB之间时,则4x+3﹣5x=1,解得:x=2;②当P点在AB右侧时,此时A、B重合,则4x+4=5x,解得:x=4;综上所述:它们同时出发,2秒或4秒后P到点A、点B的距离相等.【点评】此题考查了一元一次方程的应用;题目比较复杂,读题是难点,所以解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。

汕头市潮南区2016-2017学年七年级下期末数学试卷(有答案)

汕头市潮南区2016-2017学年七年级下期末数学试卷(有答案)

2016-2017学年广东省汕头市潮南区七年级(下)期末数学试卷一、选择題(每小题3分,共30分)1.下列实数是无理数的是()A.B.C.﹣D.02.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠53.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.投篮时的篮球运动C.急刹车时汽车在地面上的滑动D.随风飘动的树叶在空中的运动4.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE5.某不等式组的解集在数轴上表示如图所示,则这个不等式组可能是()A. B. C. D.6.已知点P(2﹣a,3)到两坐标轴距离相等,则a的值为()A.3 B.﹣1 C.﹣1 或5 D.﹣37.已知是方程2mx﹣y=10的解,则m的值为()A.2 B.4 C.6 D.108.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()A.46°B.44°C.36°D.22°9.在平面直角坐标系中,若点A (a,﹣b)在第一象限内,则点B (a,b﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.关于x的不等式组的解集为x>1,则a的取值范围是()A.a>1 B.a<1 C.a≥1 D.a≤1二、填空题(每小题4分,共24分)11.在平面直角坐标系中,点(﹣4,4)在第象限.12.要了解5000件商品的质量问题,从中任意抽取40件商品进行试验,在这个问题中,样本容量是.13.某正数的平方根是n+l和n﹣5,则这个数为.14.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=.15.不等式5x﹣3<3x+5的最大整数解是.16.已知(3x+2y﹣5)2与|4x﹣2y﹣9|互为相反数,则xy=.三、解答題(一)(每小题6分,共18分)17.计算:﹣12017﹣+.18.x取哪些非负整数时,的值大于与1的差.19.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.四、解答题(二)(每小题7分,共21分)20.解方程组.21.如图:(1)将△ABO向右平移4个单位,请画出平移后的三角形A'B'O',并写出点A'、B'的坐标.(2)求△ABO的面积.22.如果AB∥CF,DE∥CF,∠DCB=40°,∠D=30°,求∠B的度数.五、解答题(三)(每小题9分,共27分)23.为了了解市民对“汕头市创建全国文明城市”的态度,某一天,小明等同学在本市的甲、乙和丙三个村的村民进行了一次随机调査,结果如图表:(2)此次共调查了多少人?并求出一般在扇形统计图中所占圆心角的度数.(3)用您学过的统计知识来说明哪个村的调査结果更能反映市民对“创文”的态度,请写出一句“创文”的宣传语.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.25.暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?2016-2017学年广东省汕头市潮南区七年级(下)期末数学试卷参考答案与试题解析一、选择題(每小题3分,共30分)1.下列实数是无理数的是()A.B.C.﹣D.0【考点】26:无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,,0是有理数,﹣是无理数,故选:C.2.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠5【考点】J6:同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项错误;B、∠1和∠3是同位角,不是同旁内角,故本选项错误;C、∠1和∠4是内错角,不是同旁内角,故本选项错误;D、∠1和∠5是同旁内角,故本选项正确;故选D.3.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.投篮时的篮球运动C.急刹车时汽车在地面上的滑动D.随风飘动的树叶在空中的运动【考点】Q1:生活中的平移现象.【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【解答】解:A、冷水加热过程中小气泡上升成为大气泡有大小变化,不符合平移定义,故错误;B、投篮时的篮球不沿直线运动,故错误;C、急刹车时汽车在地面上的滑动是平移,故正确;D、随风飘动的树叶在空中不沿直线运动,故错误.故选:C.4.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE【考点】J9:平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、BC、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.5.某不等式组的解集在数轴上表示如图所示,则这个不等式组可能是()A. B. C. D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先根据数轴得出不等式组的解集,再求出每个选项中不等式组的解集,即可得出答案.【解答】解:从数轴可知:不等式组的解集为﹣1≤x<4,A、不等式组的解集为空集,故本选项不符合题意;B、不等式组的解集为﹣1≤x<4,故本选项符合题意;C、不等式组的解集为x>4,故本选项不符合题意;D、不等式组的解集为﹣1<x≤4,故本选项不符合题意;故选B.6.已知点P(2﹣a,3)到两坐标轴距离相等,则a的值为()A.3 B.﹣1 C.﹣1 或5 D.﹣3【考点】D1:点的坐标.【分析】根据到两坐标的距离相等,可得关于a的方程,根据解方程,可得答案.【解答】解:由题意,得2﹣a=3或2﹣a=﹣3,解得a=﹣1或a=5,故选:C.7.已知是方程2mx﹣y=10的解,则m的值为()A.2 B.4 C.6 D.10【考点】92:二元一次方程的解;86:解一元一次方程.【分析】把x=1,y=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解:把x=1,y=2代入方程2mx﹣y=10得:2m﹣2=10,解得:m=6,故选:C.8.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()A.46°B.44°C.36°D.22°【考点】JA:平行线的性质.【分析】由l1∥l2,可得:∠1=∠3=44°,由l3⊥l4,可得:∠2+∠3=90°,进而可得∠2的度数.【解答】解:如图,∵l1∥l2,∴∠1=∠3=44°,∵l3⊥l4,∴∠2+∠3=90°,∴∠2=90°﹣44°=46°.故选:A.9.在平面直角坐标系中,若点A (a,﹣b)在第一象限内,则点B (a,b﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由题意,得a>0,﹣b>0,b<0.b﹣3<﹣3,点B (a,b﹣3)所在的象限是第四象限,故选:D.10.关于x的不等式组的解集为x>1,则a的取值范围是()A.a>1 B.a<1 C.a≥1 D.a≤1【考点】C3:不等式的解集.【分析】解两个不等式后,根据其解集得出关于a的不等式,解答即可.【解答】解:因为不等式组的解集为x>1,所以可得a≤1,故选D二、填空题(每小题4分,共24分)11.在平面直角坐标系中,点(﹣4,4)在第二象限.【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣4,4)在第二象限.故答案为:二.12.要了解5000件商品的质量问题,从中任意抽取40件商品进行试验,在这个问题中,样本容量是40.【考点】V3:总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:要了解5000件商品的质量问题,从中任意抽取40件商品进行试验,在这个问题中,样本容量是40,故答案为:40.13.某正数的平方根是n+l和n﹣5,则这个数为9.【考点】21:平方根.【分析】依据正数的两个平方根互为相反数求解即可.【解答】解:∵某正数的平方根是n+l和n﹣5,∴n+1+n﹣5=0,解得n=2.∴这个正数=32=9.故答案为:9.14.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=105°.【考点】IH:方向角.【分析】过点C作CD∥AE,从而可证明CD∥BF,然后由平行线的性质可知∠DCA=∠CAE,∠DCB=∠CBF,从而可求得∠ACB的度数.【解答】解:过点C作CD∥AE.∵CD∥AE,BF∥AE,∴CD∥BF.∵CD∥AE,∴∠DCA=∠CAE=60°,同理:∠DCB=∠CBF=45°.∴∠ACB=∠ACD+∠BCD=105°.15.不等式5x﹣3<3x+5的最大整数解是3.【考点】C7:一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式5x﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.16.已知(3x+2y﹣5)2与|4x﹣2y﹣9|互为相反数,则xy=﹣1.【考点】98:解二元一次方程组;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可求出xy的值.【解答】解:∵(3x+2y﹣5)2与|4x﹣2y﹣9|互为相反数,∴(3x+2y﹣5)2+|4x﹣2y﹣9|=0,∴,①+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣,则xy=﹣1,故答案为:﹣1三、解答題(一)(每小题6分,共18分)17.计算:﹣12017﹣+.【考点】2C:实数的运算.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣12017﹣+=﹣1+2+5=618.x取哪些非负整数时,的值大于与1的差.【考点】C7:一元一次不等式的整数解.【分析】根据题意列出不等式,解不等式后再求出x的非负整数值.【解答】解:由题意得:>﹣1,解得x<4,∴x取0,1,2,3.19.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.【考点】J9:平行线的判定.【分析】先根据题意得出∠1+∠3=∠2+∠E,再由∠2+∠E=∠5可知,∠1+∠3=∠5,即∠ADC=∠5,据此可得出结论.【解答】证明:∵∠1=∠2,∠3=∠E,∴∠1+∠3=∠2+∠E.∵∠2+∠E=∠5,∴∠1+∠3=∠5,∴∠ADC=∠5,∴AD∥BE.四、解答题(二)(每小题7分,共21分)20.解方程组.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,②×2,得2x﹣4y=8③,由①﹣③得7y=﹣7,即y=﹣1,把y=﹣1代入②中,得x+2=4,即x=2,则方程组的解为.21.如图:(1)将△ABO向右平移4个单位,请画出平移后的三角形A'B'O',并写出点A'、B'的坐标.(2)求△ABO的面积.【考点】Q4:作图﹣平移变换.【分析】(1)画出A、B、O三点平移后的对应点A′、B′、O′即可解决问题;(2)利用分割法求三角形的面积即可;【解答】解:(1)平移后的三角形A'B'O',如图所示.A′(2,2),B′(6,4).=4×4﹣×2×4﹣×2×2﹣×2×4=16﹣4﹣2﹣4=6.(2)S△AOB22.如果AB∥CF,DE∥CF,∠DCB=40°,∠D=30°,求∠B的度数.【考点】JA:平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:∵DE∥CF,∠D=30°,∴∠DCF=∠D=30°,∴∠BCF=∠DCF+∠BCD=30°+40°=70°,又∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=180°﹣70°=110°.五、解答题(三)(每小题9分,共27分)23.为了了解市民对“汕头市创建全国文明城市”的态度,某一天,小明等同学在本市的甲、乙和丙三个村的村民进行了一次随机调査,结果如图表:(2)此次共调查了多少人?并求出一般在扇形统计图中所占圆心角的度数.(3)用您学过的统计知识来说明哪个村的调査结果更能反映市民对“创文”的态度,请写出一句“创文”的宣传语.【考点】V8:频数(率)分布直方图;VB:扇形统计图.【分析】(1)根据统计表中的数据可以将直方图补充完整;(2)根据统计表中的数据可以求得本次调查的总人数,由扇形统计图可以求得一般在扇形统计图中所占圆心角的度数;(3)根据统计图中的数据可以得到哪个村的调査结果更能反映市民对“创文”的态度,对于宣传语只要积极向上合理即可.【解答】解:(1)补全的频数分布直方图,如右图所示;(2)由题意可得,此次调查的人有:150+45+105=300(人),一般在扇形统计图中所占圆心角的度数是:360°×15%=54°;(3)由统计图可以看出乙村反映市民对“创文”的态度比较积极,“创文”的宣传语是:创文与我们每个人息息相关,让我大家一起携手共创文明城市.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【考点】JB:平行线的判定与性质.【分析】(1)求出AE∥GF,求出∠2=∠A=∠1,根据平行线的判定推出即可;(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,求出∠3,根据平行线的性质求出∠C即可.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【分析】(1)设弟弟每天编x个中国结,根据弟弟单独工作一周(7天)不能完成,得7x<28;根据哥哥单独工作不到一周就已完成,得7(x+2)>28,列不等式组进行求解;(2)设哥哥工作m天,两人所编中国结数量相同,结合(1)中求得的结果,列方程求解.【解答】解:(1)设弟弟每天编x个中国结,则哥哥每天编(x+2)个中国结.依题意得:,解得:2<x<4.∵x取正整数,∴x=3;x+2=5,答:弟弟每天编3个中国结,哥哥每天编5个中国结.(2)设哥哥工作m天,两人所编中国结数量相同,依题意得:3(m+2)=5m,解得:m=3.答:弟弟每天编3个中国结;若弟弟先工作2天,哥哥才开始工作,那么哥哥工作3天,两人所编中国结数量相同.。

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

2016-2017学年七年级(上)期末数学试卷两套汇编附答案解析

2016-2017学年七年级(上)期末数学试卷两套汇编附答案解析

2016-2017学年七年级(上)期末数学试卷两套汇编附答案解析2016-2017学年七年级(上)期末数学试卷一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.|﹣2|等于()A.﹣2 B.﹣ C.2 D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚 B.2枚 C.3枚 D.任意枚3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D. +y=24.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与15.下列各组单项式中,为同类项的是()A.a3与a2B.a2与2a2C.2xy与2x D.﹣3与a6.下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.7.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105° D.120°8.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141° D.159°9.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.﹣3的倒数是.12.单项式﹣xy2的系数是.13.若x=2是方程8﹣2x=ax的解,则a=.14.计算:15°37′+42°51′=.15.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.16.已知a﹣b=2,那么2a﹣2b+5=.17.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.18.已知点B为线段AC上的一点(B在A、C两点之间),AB=8cm,AC=18cm,P、Q分别是AB、AC的中点,则PQ=.19.已知y1=x+3,y2=2﹣x,当x=时,y1比y2大5.20.根据图提供的信息,可知一个杯子的价格是元.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分).21.计算:(﹣1)3﹣×[2﹣(﹣3)2].22.一个角的余角比这个角的少30°,请你计算出这个角的大小.23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.24.解方程:﹣=1.25.一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.26.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.27.小明爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一小时看到的里程碑上的数字情况如下:12:00时,这是两位数,它的两个数字之和为7,13:00时,十位与个位数字与12:00时看到的正好颠倒了;14:00时,比12:00时看到的两位数中间多了个0,请你求出小明在12:00时看到的里程碑上的数字.28.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案与试题解析一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.|﹣2|等于()A.﹣2 B.﹣ C.2 D.【考点】绝对值.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚 B.2枚 C.3枚 D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.4.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.5.下列各组单项式中,为同类项的是()A.a3与a2B.a2与2a2C.2xy与2x D.﹣3与a【考点】合并同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同的项不是同类项,故C错误;D、字母不同的项不是同类项,故D错误;故选:B.6.下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.【考点】几何体的展开图.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.7.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105° D.120°【考点】角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°.故选D.8.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141° D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.9.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【考点】规律型:数字的变化类.【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解.【解答】解:根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选B.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.﹣3的倒数是﹣.【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.12.单项式﹣xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.13.若x=2是方程8﹣2x=ax的解,则a=2.【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.14.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.15.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.16.已知a﹣b=2,那么2a﹣2b+5=9.【考点】代数式求值.【分析】原式变形后,把a﹣b的值代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=2(a﹣b)+5=4+5=9,故答案为:917.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.18.已知点B为线段AC上的一点(B在A、C两点之间),AB=8cm,AC=18cm,P、Q分别是AB、AC的中点,则PQ=5cm.【考点】两点间的距离.【分析】AB=8cm,AC=18cm,P、Q分别是AB、AC的中点,根据线段中点的性质求出AP,AQ,再根据线段的和差关系计算即可.【解答】解:∵AB=8cm,AC=18cm,P、Q分别是AB、AC的中点,∴AP=4cm,AQ=9cm,∴PQ=AP﹣AQ=9﹣4=5cm.故答案为:5cm.19.已知y1=x+3,y2=2﹣x,当x=2时,y1比y2大5.【考点】解一元一次方程.【分析】根据题意列出关于x的方程,求出方程的解即可得到x的值.【解答】解:根据题意得:(x+3)﹣(2﹣x)=5,去括号得:x+3﹣2+x=5,移项合并得:2x=4,解得:x=2,则当x=2时,y1比y2大5.故答案为:220.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分).21.计算:(﹣1)3﹣×[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】先算乘方,再算括号里面的减法,再算乘法,最后算减法.【解答】解:原式=﹣1﹣×(2﹣9)=﹣1+=.22.一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.【考点】整式的加减—化简求值.【分析】先去括号,然后合并同类项使整式化为最简,再将x的值代入即可得出答案.【解答】解:原式=﹣x2+x﹣2﹣x+1=﹣x2﹣1,将x=代入得:﹣x2﹣1=﹣.故原式的值为:﹣.24.解方程:﹣=1.【考点】解一元一次方程.【分析】先去分母,再移项,合并同类项,最后化系数为1,从而得到方程的解.【解答】解:去分母得:2×(5x+1)﹣(2x﹣1)=6,去括号得,10x+2﹣2x+1=6移项、合并同类项得,8x=3系数化为1得,x=.25.一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…(1)写出第一次移动后这个点在数轴上表示的数为3;(2)写出第二次移动结果这个点在数轴上表示的数为4;(3)写出第五次移动后这个点在数轴上表示的数为7;(4)写出第n次移动结果这个点在数轴上表示的数为n+2;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.【考点】规律型:数字的变化类;数轴.【分析】(1)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位,实际上点A最后向左移动了1个单位,则第一次后这个点表示的数为1+2=3;(2)第二次先向左移动3个单位,再向右移动4个单位,实际上点A最后向左移动了1个单位,则第二次后这个点表示的数为2+2=4;(3)根据前面的规律得到第五次移动后这个点在数轴上表示的数是5+2=7;(4)第n次移动后这个点在数轴上表示的数是n+2;(5)由(4)得到第m次移动后这个点在数轴上表示的数为m+2,则m+2=56,然后解方程即可.【解答】解:(1)第一次移动后这个点在数轴上表示的数是3;(2)第二次移动后这个点在数轴上表示的数是4;(3)第五次移动后这个点在数轴上表示的数是7;(4)第n次移动后这个点在数轴上表示的数是n+2;(5)m+2=56,解得m=54.故答案为3,4,7,n+2,54.26.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【考点】角平分线的定义.【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE∴∠DOE=15°∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°故答案为75°.27.小明爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一小时看到的里程碑上的数字情况如下:12:00时,这是两位数,它的两个数字之和为7,13:00时,十位与个位数字与12:00时看到的正好颠倒了;14:00时,比12:00时看到的两位数中间多了个0,请你求出小明在12:00时看到的里程碑上的数字.【考点】一元一次方程的应用.【分析】设12:00看到的个位数是x,则十位数=7﹣x,据此可得出12:00和13:00时的数值,列出方程,求出x的值即可.【解答】解:设12:00看到的个位数是x,则十位数=7﹣x,则:12:00是看到的是10×(7﹣x)+x,13:00时看到的是10x+(7﹣x),14:00时看到的是100×(7﹣x)+x,根据题意列方程得:(10x+(7﹣x))﹣(10×(7﹣x)+x)=+x)﹣(10x+(7﹣x)),解得x=6,则7﹣x=7﹣6=1.答:12点整看到的数是16.28.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为2或6元.【考点】二元一次方程的应用;一元一次方程的应用.【分析】(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.根据买钢笔30支,毛笔45支,共用了1755元建立方程,求出其解即可;(2)①根据第一问的结论设单价为21元的钢笔为y支,所以单价为25元的毛笔则为支,求出方程的解不是整数则说明算错了;②设单价为21元的钢笔为z支,单价为25元的毛笔则为支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x=21,∴毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y支,所以单价为25元的毛笔则为支.根据题意,得21y+25=2447.解之得:y=44.5 (不符合题意).∴陈老师肯定搞错了.②设单价为21元的钢笔为z支,签字笔的单价为a元,则根据题意,得21z+25=2447﹣a.∴4z=178+a,∵a、z都是整数,∴178+a应被4整除,∴a为偶数,又因为a为小于10元的整数,∴a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为:2元或6元.2016-2017学年七年级(上)期末数学试卷一、选择题:将正确答案序号填入下表相应的空格内,每小题2分,共20分.1.下列四个数在﹣2和1之间的数是()A.0 B.﹣3 C.2 D.32.下列各组单项式中,不是同类项的是()A.1与﹣6 B.a3b与2ba3C.﹣2x2y3与y3x2D.2xy2与x2y3.下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.4.下列说法正确的是()A.有理数包括正数、零和负数B.﹣a2一定是负数C.34.37°=34°22′12″D.两个有理数的和一定大于每一个加数5.由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.6.把一条弯曲的公路改直,可以缩短行程,这样做的依据是()A.线段可以比较大小B.线段有两个端点C.两点确定一条直线D.两点之间线段最短7.将1299万人用科学记数法表示为()A.1.299×105人B.1.299×107人C.12.99×102万人D.1.299×104万人8.小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y﹣=y﹣■怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=﹣,很快补好了这个常数,你能补出这个常数吗?它应是()A.1 B.2 C.3 D.49.实数a、b在数轴上的位置如图所示,则化简|a+b|﹣a的结果为()A.2a+b B.b C.﹣2a﹣b D.﹣b10.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,于是每人可少摊3元,设原来这组学生人数为x人,则有方程为()A.120x=(x+2)x B.C.D.二、填空题:每题2分,共16分.11.若2x+1是﹣9的相反数,则x=.12.已知∠A的余角是35°,则∠A的补角的度数是.13.在数轴上距原点3个单位长度的点表示的数是.14.若关于x的一元一次方程的解是x=﹣1,则k的值是.15.当m﹣2n=4,求代数式(m﹣2n)2+2(2n﹣m)﹣1的值为.16.近似数1.5×106精确到位.17.若关于x、y的多项式x2y﹣7mxy+y3+6xy化简后不含二次项,则m=.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,…,则第n个数应表示为.三、解答题:每小题8分,共16分.19.计算:(1)42×(﹣)÷﹣(﹣12)÷(﹣4);(2)(﹣2)3+(﹣﹣+)×(﹣24).20.(1)先化简再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中x=﹣;(2)解方程=﹣1.四、解答题:每题6分,共18分.21.已知:如图,线段a,请按下列步骤画图(用圆规、三角板或量角器画图,不写画法,保留作图痕迹)(1)画线段AB=a;(2)画线段AB的中点O,以O为顶点起画出表示东西南北的十字线,再画出表示北偏西30°的射线OC;(3)求出(1)题所画的图形中∠BOC的度数.22.如果一个角的余角是它的补角的,求这个角的度数.23.定义新运算:对于任意有理数a、b,都有a⊕b=a(a﹣b)+1,等式的右边是通常的有理数运算,例如2⊕5=2(2﹣5)+1=2×(﹣3)+1.(1)求(﹣2)⊕3.(2)若3⊕x=﹣5,求x的值.五、解答题:每题7分,共14分.24.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?25.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=2cm.(1)图中共有多少条线段?(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.六、解答题:每题8分,共16分.26.现在,某商场进行元旦促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?27.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C、E、F在直线AB的同侧(如图1所示)①若∠COF=25°,则∠BOE=.②猜想∠COF与∠BOE的数量关系是.(2)当点C与点E、F在直线AB的两旁(如图2所示)时,(1)中第②式的结论是否仍然成立?请给出你的结论并说明理由.参考答案与试题解析一、选择题:将正确答案序号填入下表相应的空格内,每小题2分,共20分.1.下列四个数在﹣2和1之间的数是()A.0 B.﹣3 C.2 D.3【考点】有理数大小比较.【分析】首先根据选项可知﹣3,2,3均不在﹣2和1之间,故易得出0为正确答案.【解答】解:在﹣2和1之间的数必然大于﹣2,小于1,四个答案中只有0符合条件.故选A.2.下列各组单项式中,不是同类项的是()A.1与﹣6 B.a3b与2ba3C.﹣2x2y3与y3x2D.2xy2与x2y【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.【解答】解:A、常数项与常数项是同类项,即1与﹣6是同类项;B、a3b与2ba3所含字母相同都是a与b,相同字母的指数也相同,故两单项式为同类项;C、﹣2x2y3与y3x2所含字母相同都是x与y,相同字母的指数也相同,故两单项式为同类项;D、2xy2与x2y所含字母相同都是x与y,但相同字母的指数不相同,故两单项式不是同类项;故选:D.3.下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.【考点】角的概念.【分析】根据角的表示方法,可得答案.【解答】解:能用∠1、∠AOB、∠O三种方法表示同一个角的图形是A中的图,B,C,D中的图都不能用∠1、∠AOB、∠O三种方法表示同一个角的图形,故选:A.4.下列说法正确的是()A.有理数包括正数、零和负数B.﹣a2一定是负数C.34.37°=34°22′12″D.两个有理数的和一定大于每一个加数【考点】度分秒的换算;正数和负数;有理数;有理数的加法.【分析】根据有理数的分类,平方数非负数,度分秒的换算,以及有理数的加法运算法则对各选项分析判断即可得解.【解答】解:A、应为:有理数包括正有理数、零和负有理数,故本选项错误;B、﹣a2一定是负数错误,a=0时,﹣a2=0,0既不是正数也不是负数,故本选项错误;C、∵0.37×60=22.2,0.2×60=12,∴34.37°=34°22′12″,故本选项正确;D、两个有理数的和一定大于每一个加数,错误,故本选项错误.故选C.5.由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,2,3个正方形.【解答】解:由俯视图中的数字可得:主视图右3列,从左到右分别是1,2,3个正方形.故选B.6.把一条弯曲的公路改直,可以缩短行程,这样做的依据是()A.线段可以比较大小B.线段有两个端点C.两点确定一条直线D.两点之间线段最短【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质:两点之间线段最短即可得出答案.【解答】解:根据线段的性质:两点之间线段最短可得:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何的知识解释应是两点之间线段最短.故选:D.7.将1299万人用科学记数法表示为()A.1.299×105人B.1.299×107人C.12.99×102万人D.1.299×104万人【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1299万用科学记数法表示为:1299万=12990000=1.299×107.故选:B.8.小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y﹣=y﹣■怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=﹣,很快补好了这个常数,你能补出这个常数吗?它应是()A.1 B.2 C.3 D.4【考点】一元一次方程的解.【分析】设这个常数为x,已知此方程的解是y=﹣,将之代入二元一次方程2y ﹣=y﹣x,即可得这个常数的值.【解答】解:设被污染的常数为x,则:2y﹣=y﹣x,∵此方程的解是y=﹣,∴将此解代入方程,方程成立∴2×(﹣)﹣=×(﹣)﹣x.解此一元一次方程可得:x=3∴这个常数是3.故选:C.9.实数a、b在数轴上的位置如图所示,则化简|a+b|﹣a的结果为()A.2a+b B.b C.﹣2a﹣b D.﹣b【考点】数轴;绝对值.【分析】本题需先根据实数a、b在数轴上的位置确定出a+b的符号,然后即可求出结果.【解答】解:根据实数a、b在数轴上的位置可得,a+b>0,∴|a+b|﹣a,=a+b﹣a,=b.故选:B.10.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,于是每人可少摊3元,设原来这组学生人数为x人,则有方程为()A.120x=(x+2)x B.C.D.【考点】由实际问题抽象出一元一次方程.【分析】要列方程,首先要理解题意找出题中存在的等量关系:未增加人前每人摊的费用﹣增加人后每人摊的费用=3元,根据此等量关系再列方程就变得容易多了.【解答】解:设原来这组学生人数为x人,那么原来这组学生每人可摊费用是,又有2人参加进来,总费用降下来的钱数是,根据题意可列方程故选C.二、填空题:每题2分,共16分.11.若2x+1是﹣9的相反数,则x=4.【考点】相反数.【分析】先依据相反数的定义得到2x+1=9,解关于x的方程即可.【解答】解:∵2x+1是﹣9的相反数,∴2x+1=﹣9.解得:x=4.故答案为:4.12.已知∠A的余角是35°,则∠A的补角的度数是125°.【考点】余角和补角.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年广东省汕头市潮南区七年级(上)期末数学试卷
一、精心选一选(每小题3分,满分30分)
1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.6℃B.﹣6℃C.10℃D.﹣10℃
2.下列各数中,绝对值最大的数是()
A.﹣3 B.﹣2 C.0 D.1
3.下列运算中,准确的是()
A.3x+2y=5xy B.4x﹣3x=1 C.ab﹣2ab=﹣ab D.2a+a=2a2
4.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为()
A.0.358×105B.3.58×104C.35.8×103D.358×102
5.已知a﹣b=1,则代数式2a﹣2b﹣3的值是()
A.﹣5 B.﹣1 C.1 D.5
6.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于()
A.0.5 B.1 C.1.5 D.2
7.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()
A.120元B.100元C.80元D.60元
8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是()
A.文B.明C.城D.市
9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°
的方向,则∠AOB的大小为()
A.69°B.111°C.159° D.141°
10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()
A.M或N B.M或R C.N或P D.P或R
二、耐心填一填(每小题4分,共24分)
11.如果a的相反数是1,那么a2017等于.
12.若a x﹣3b3与﹣3ab2y﹣1是同类项,则x y= .
13.若∠1=35°21′,则∠1的余角是.
14.如果x=6是方程2x+3a=6x的解,那么a的值是.
15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB= 度.
16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为.
三、细心解一解(每小题6分,满分18分)
17.计算:.
18.解方程:4x﹣6=2(3x﹣1)
19.一个角的余角比它的补角的大15°,求这个角的度数.
四、专心试一试(每小题7分,满分21分)
20.某校对七年级男生实行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:
2﹣103﹣2﹣310
(1)这8名男生的达标率是百分之几?
(2)这8名男生共做了多少个俯卧撑?
21.已知A=2a2﹣a,B=﹣5a+1.
(1)化简:3A﹣2B+2;
(2)当时,求3A﹣2B+2的值.
22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.
五、综合使用(每小题9分,满分27分)
23.找规律.
一张长方形桌子可坐6人,按如图方式把桌子拼在一起.
(1)2张桌子拼在一起可坐人;
3张桌子拼在一起可坐人;
n张桌子拼在一起可坐人.
(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.
24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.。

相关文档
最新文档