高一数学上学期期末考试试题苏教版
2022-2023学年江苏省苏州中学高一年级上册学期期末模拟数学试题【含答案】
![2022-2023学年江苏省苏州中学高一年级上册学期期末模拟数学试题【含答案】](https://img.taocdn.com/s3/m/801b01c5afaad1f34693daef5ef7ba0d4a736da2.png)
2022-2023学年江苏省苏州中学高一上学期期末模拟数学试题一、单选题1.“是第四象限角”是“是第二或第四象限角”的( )α2αA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】由象限角的知识结合充分和必要条件的定义作出判断.【详解】当是第四象限角时,,则,即α3222,2k k k Zππαππ+<<+∈3,42k k k Z παπππ+<<+∈是第二或第四象限角.当为第二象限角,但不是第四象限角,故“是第四象限角”2α324απ=32πα=α是“是第二或第四象限角”的充分不必要条件.2α故选:A 2.已知集合,集合,若,则的取值范围是( ){}12A x x =->{}10B x mx =+<A B A ⋃=m A .B .C .D .1,03⎡⎤-⎢⎥⎣⎦1,13⎡⎤-⎢⎥⎣⎦[0,1]1,0(0,1]3⎡⎫-⎪⎢⎣⎭【答案】B【分析】将集合化简,根据条件可得,然后分,,讨论,化简集合,A B A ⊆0m =0m <0m >B 列出不等式求解,即可得到结果.【详解】因为或,解得或1212x x ->⇒->12x -<-3x >1x <-即,{}31A x x x =><-或因为,所以AB A ⋃=B A ⊆当时,,满足要求.0m =B =∅当时,则,由,0m >110mx x m +<⇒<-B A ⊆可得,即111m m -≤-⇒≤01m <≤当时,则,由,0m <110mx x m +<⇒>-B A ⊆可得,即1133m m-≥⇒≥-103m -≤<综上所述,1,13m ⎡⎤∈-⎢⎥⎣⎦故选:B.3.函数的零点所在的区间为( )()22log f x x x=-+A .B .C .D .()01,()12,()23,()34,【答案】B【分析】判断函数的单调性,计算区间端点处函数值,由局零点存在定理即可判断答案.【详解】函数,是单调递增函数,()22log f x x x =-+0x >当 时,,0x +→()f x →-∞,2(1)1,(2)10,(3)1log 30,(4)40f f f f =-=>=+>=>故(1)(2)0f f ⋅<故函数的零点所在的区间为,()12,故选:B4.已知,若是真命题,则实数的取值范围是( )2:R,40p x x x a ∃∈++=p a A .B .()0,4(],4∞-C .D .(),0∞-[)4,+∞【答案】B【分析】根据特称命题为真命题转化为方程有实数根,结合一元二次方程有实数解的条件即可求解.【详解】因为是真命题,2:R,40p x x x a ∃∈++=所以方程有实数根,240x x a ++=所以,解得,2440a ∆=-≥4a ≤故实数的取值范围为.a (],4∞-故选:B.5.牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体初始温度为,则经过一定时0T 间t (单位:分钟)后的温度满足,其中是环境温度,h 为常数,现有一T ()01e a ha tT T T T ⎛⎫-=- ⎪⎝⎭a T 杯80℃的热水用来泡茶,研究表明,此茶的最佳饮用口感会出现在55℃.经测量室温为25℃,茶水降至75℃大约用时一分钟,那么为了获得最佳饮用口感,从泡茶开始大约需要等待(参考数据:,,,.)( )lg 20.30≈lg 30.50≈lg 50.70≈lg11 1.04≈A .4分钟B .5分钟C .6分钟D .7分钟【答案】C【分析】根据已知条件求出参数的值,进而转化为解指数方程,利用对数的运算以及换底公式即h 可求出结果.【详解】根据题意可知,,,25C a T =︒080C T =︒()01e a ha tT T T T ⎛⎫-=- ⎪⎝⎭因为茶水降至75℃大约用时一分钟,即,,1t =75C T =︒所以,解得,则,()1175258025e h⎛⎫-=- ⎪⎝⎭11e e 15010log log 5511h==1e110log 11h =所以要使得该茶降至,即,则有,得,55C ︒55C T =︒()155258025e th⎛⎫-=- ⎪⎝⎭11e e 306log log 5511t h==故,1e1e 1e 66log lg 116lg 6lg11lg 2lg 3lg1111log 101011lg10lg111lg11log lg 1111t h -+-=⨯====--0.30.5 1.0461 1.04+-==-所以大约需要等待6分钟.故选:C.6.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,函数的图像大致是( )322--=-x xy x x A .B .C .D .【答案】A【分析】先判断函数的奇偶性,可排除D ;当时,,可排除C ;由01x <<()0f x <,可排除B.()()()238f f f ><【详解】函数,由,即且且,()()()3222211x x x xf x x x x x x ----==--+30x x -≠0x ≠1x ≠-1x ≠故函数的定义域为,()()()(),11,00,11,-∞-⋃-⋃⋃+∞由,()()332222x x x xx x x f x f x x ---+---===-所以函数为偶函数,其图象关于轴对称,可排除D ;()322x x f x x x --=-y 当时,,,所以,可排除C ;01x <<22x x ->3x x <()0f x <由,,,即,可排除B.()528f =()21364f =()21845843008f =()()()238f f f ><故选:A.7.已知函数的定义域为,且为偶函数,若,则()f x R ()()()112,2f x f x f x ++-=+()02f =( )1151()k f k ==∑A .116B .115C .114D .113【答案】C 【分析】由可得函数的周期为,()()112f x f x ++-=()f x 4再结合为偶函数,可得也为偶函数,通过周期性与对称性即可求解.()2f x +()f x 【详解】由,得,()()112f x f x ++-=()()22f x f x ++=即,()()22f x f x +=-所以,()()()()42222f x f x f x f x ⎡⎤+=-+=--=⎣⎦所以函数的周期为,()f x 4又为偶函数,()2f x +则,()()22f x f x -+=+所以,()()()4f x f x f x =-=-所以函数也为偶函数,()f x 又,()()112f x f x ++-=所以,,()()1+3=2f f ()()242f f +=所以,()()()()12344f f f f +++=又,即,所以,()()112f f +-=()212f =()11f =又,,()()022f f +=()02f =,()20f ∴=所以()()()()()()()()115112342812342820114k f k f f f f f f f =⎡⎤=+++⨯+++=⨯++=⎣⎦∑故选:.C 8.已知函数是定义在上的奇函数,且对任意的,成立,当时,()f x R 0x >()()22f x f x +=-[]0,2x ∈,若对任意的,都有,则的最大值是( )()22f x x x =-[](),0x m m m ∈->()13f x +≤m A .B .C .D .7292112132【答案】A 【分析】求出函数在区间、上的值域,然后在时解不等式,根()f x []2,4[]4,6[]4,6x ∈()3f x ≤据题意可得出关于实数的不等式组,即可解得实数的取值范围,即可得解.m m 【详解】令,其中,则,()()g x f x =x ∈R ()()()()()g x f x f x f x g x -=-=-==所以,函数为偶函数,()g x 当时,,[]0,2x ∈()[]20,12f x x x -∈=则当时,,[]2,4x ∈022x ≤-≤则,()()()()[]222222222680,2f x f x x x x x =-=---=-+-∈当时,,[]4,6x ∈042x ≤-≤则,()()()()[]22444244410240,4f x f x x x x x =-=---=-+-∈当时,由可得或,[]4,6x ∈()2410243f x x x =-+-≤942x ≤≤1162x ≤≤当时,,[](),0x m m m ∈->111m x m -≤+≤+由可得,解得.()13f x +≤9129120m m m ⎧+≤⎪⎪⎪-≥-⎨⎪>⎪⎪⎩702m <≤故选:A.二、多选题9.已知,则 ( )0a b >>A .B .11b a>11ab b a->-C .D ()33222a b a b ab ->->【答案】AC【分析】对A ,对两边同除ab 化简即可判断;a b >对B ,对不等式移项进行因式分解得,即可进一步判断的符号不确定,即()110a b ab ⎛⎫--> ⎪⎝⎭11ab -可判断;对C ,对不等式移项进行因式分解得,由即可判断;()()220ab a ab b --+>()222a b ab a b ab+-=-+对D >【详解】对A ,,A 正确;110a b a b ab ab b a >>⇒>⇒>对B ,,∵,∴,不()11111010a b a b a b b a a b ab ⎛⎫->-⇔-+->⇔--> ⎪⎝⎭0a b ->1101ab ab ->⇔>等式不一定成立,B 错误;对C ,,∵,∴()()()33222220a b a b ab a b a ab b ->-⇔--+>0a b ->,不等式成立,C 正确;()22200a b ab a b ab +->⇔-+>对D>⇔>,不等式不成立,D错误;>⇔>故选:AC .10.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用(图1),明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(图2).一半径为2米的筒车水轮如图3所示,水轮圆心O 距离水面1米,已知水轮每60秒逆时针匀速转动一圈,如果当水轮上点P 从水中浮现时(图中点)开始计时,则( )0P A .点P 再次进入水中时用时30秒B .当水轮转动50秒时,点P 处于最低点C .当水轮转动150秒时,点P 距离水面2米D .点P 第二次到达距水面米时用时25秒(1【答案】BCD【分析】以O 为原点,以与水平面平行的直线为x 轴建立平面直角坐标系,则点P 距离水面的高度,逐一分析各选项即可求解.2sin 1306H t ππ⎛⎫=-+ ⎪⎝⎭【详解】解:由题意,角速度弧度/秒,26030ππω==又由水轮的半径为2米,且圆心O 距离水面1米,可知半径与水面所成角为,点P 再次进入0OP 6π水中用时为秒,故A 错误;264030πππ+⨯=当水轮转动50秒时,半径转动了弧度,而,点P 正好处于最低点,0OP 550303ππ⨯=53362πππ-=故B 正确;以O 为原点,以与水平面平行的直线为x 轴建立平面直角坐标系,设点P 距离水面的高度,()sin (0,0)H A t B A ωϕω=++>>由,所以,max min 31H A B H A B =+=⎧⎨=-+=-⎩21A B =⎧⎨=⎩又角速度弧度/秒,时,,所以,,26030ππω==0=t 06xOP π∠=30πω=6πϕ=-所以点P 距离水面的高度,当水轮转动150秒时,将代入,得,2sin 1306H t ππ⎛⎫=-+ ⎪⎝⎭150t =2H =点P 距离水面2米,故C 正确;将中,得,或,即1H =+2sin 1306H t ππ⎛⎫=-+ ⎪⎝⎭23063t k ππππ-=+223063t k ππππ-=+,或.6015t k =+6025t k =+()k N ∈所以点P 第二次到达距水面米时用时25秒,故D 正确.(1故选:BCD .11.已知函数在区间上有且仅有4条对称轴,则下列四个结论正确()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭[]0,π的是( )A .在区间上有且仅有3个不同的零点()f x ()0,πB .的最小正周期可能是()f x π2C .的取值范围是ω1013,33⎡⎫⎪⎢⎣⎭D .在区间上单调递增()f x π0,12⎛⎫ ⎪⎝⎭【答案】BC 【分析】先根据在区间上对称轴的情况求得的取值范围,然后结合函数的零点、最小()f x []0,πω正周期、单调性等知识对选项进行分析,从而确定正确答案.【详解】由函数,令,,则,,()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭πππ62x k ω+=+Z k ∈()31π3k x ω+=Z k ∈函数在区间上有且仅有4条对称轴,()f x []0,π即有4个整数k 符合,()31π0π3k ω+≤≤由,得,()31π0π3k ω+≤≤()310103133k k ωω+⇒+≤≤≤≤则,即,,故C 正确;0,1,2,3k =1333134ω+⨯<+⨯≤101333ω≤<对于A ,,,∴,()0,πx ∈πππ,π666x ωω⎛+∈⎫+ ⎪⎝⎭π7π9ππ,622ω⎡⎫+∈⎪⎢⎣⎭当时,在区间上有且仅有3个不同的零点;π7ππ,4π62ω⎡⎤+∈⎢⎥⎣⎦()f x ()0,π当时,在区间上有且仅有4个不同的零点,故A 错误;π9ππ4π,62ω⎛⎫+∈ ⎪⎝⎭()f x ()0,π对于B ,周期,由,则,2πT ω=101333ω≤<3131310ω<≤∴,又,所以的最小正周期可能是,故B 正确;6π3π135T <≤π6π3π,2135⎛⎤∈ ⎥⎝⎦()f x π2对于D ,,∴,又,π0,12x ⎛⎫∈ ⎪⎝⎭ππππ,66126x ωω⎛⎫+∈+ ⎪⎝⎭101333ω≤<∴,又,ππ4π19π,126936ω⎡⎫+∈⎪⎢⎣⎭4ππ19ππ,92362<>所以在区间上不一定单调递增,故D 错误.()f x π0,12x ⎛⎫∈ ⎪⎝⎭故选:BC12.已知函数,则下列说法正确的是( )123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩A .若函数有4个零点,则实数k 的取值范围为()=-y f x kx 11,246⎛⎫⎪⎝⎭B .关于x 的方程有个不同的解*1()0()2n f x n N -=∈24n +C .对于实数,不等式恒成立[1,)x ∈+∞2()30xf x -≤D .当时,函数的图象与x 轴围成的图形的面积为11[2,2](*)n nx n N -∈∈()f x 【答案】AC【解析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断.【详解】当时,;当 时,;312x ≤≤()22f x x =-322x <≤()42f x x =-当,则,;23x <≤3122<≤x 1()1222⎛⎫==- ⎪⎝⎭x x f x f 当,则,;34x <≤3222<≤x 1()2222⎛⎫==- ⎪⎝⎭x x f x f 当,则, ;46x <≤232<≤x 11()2242⎛⎫==- ⎪⎝⎭x x f x f 当,则,;68x <≤342<≤x 1()1224⎛⎫==- ⎪⎝⎭x x f x f 依次类推,作出函数的图像:()f x对于A ,函数有4个零点,即与有4个交点,如图,直线的斜率()=-y f x kx ()y f x =y kx =y kx =应该在直线m , n 之间,又,,,故A 正确;16m k =124=n k 11,246⎛⎫∴∈ ⎪⎝⎭k 对于B ,当时,有3个交点,与不符合,故B 错误;1n =1()2f x =246+=n 对于C ,对于实数,不等式恒成立,即恒成立,由图知函数[1,)x ∈+∞2()30xf x -≤3()2≤f x x的每一个上顶点都在曲线上,故恒成立,故C 正确;()f x 32y x =3()2≤f x x 对于D , 取,,此时函数的图像与x 轴围成的图形的面积为,故D 错1n =[1,2]x ∈()f x 111122⨯⨯=误;故选:AC【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、填空题13.已知幂函数在上单调递增,则的解析式是_____.()2232(1)mm f x m x -+=-()0+∞,()f x 【答案】()2f x x =【分析】根据幂函数的定义和性质求解.【详解】解:是幂函数,()f x ,解得或,211m ∴-=2m =0m =若,则,在上不单调递减,不满足条件;2m =()0f x x =()0+∞,若,则,在上单调递增,满足条件;0m =()2f x x =()0+∞,即.()2f x x =故答案为:()2f x x =14.已知正实数,满足,则的最小值为______.x y 474x y +=2132x y x y +++【答案】94【分析】由,结合基本不等式求解即可.()()47232x y x y x y +=+++【详解】因为,474x y +=所以,()()2112123232432x y x y x y x y x y x y ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭所以,()()22211413242233x y x y x y x y x y x y ⎡⎤++=+++⎢⎥++⎣+++⎦因为为正实数,所以,,x y ()()220,02233x y yyx y x x +++>>+ 所以,当且仅当时等号成立,即()()4222233x y x y x y x y ++++≥=+32474x y x yx y +=+⎧⎨+=⎩时等号成立,84,1515x y ==所以,当且仅当时等号成立,()21194413244x y x y +≥++=++84,1515x y ==所以的最小值为,2132x y x y +++94故答案为:.9415.设函数,方程有四个不相等的实根,则2log ,02()(4),24x x f x f x x ⎧<<=⎨-<<⎩()f x m =(1,2,3,4)i x i =的取值范围是___________.22222341x x x x +++【答案】4120,2⎛⎫ ⎪⎝⎭【分析】根据函数对称性作出图象,结合图象,得到且,求得14234x x x x +=+=12ln ln x x -=,化简,结合换元法和二14322211,4,4x x x x x x ==-=-22222341x x x x +++(22222112828x x x x ⎫⎛⎫=+-++⎪ ⎪⎭⎝⎭次函数的性质,即可求解.【详解】当时,24x <<()()4f x f x =-所以在与上的图像关于对称.()f x ()2,4()0,22x =作出图象如下图所示,不防令,1234x x x x <<<可得且14234x x x x +=+=12ln ln x x -=所以,121=x x 14322211,4,4x x x x x x ==-=-所以.()2422222222123222222221111442828x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫+++=++-+-=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,令,则原式化为.()21,2x ∈22152,2t x x ⎛⎫=+∈ ⎪⎝⎭()252828,2,2h t t t t ⎛⎫=-+∈ ⎪⎝⎭因为其对称轴为,开口向上,所以在上单调递增2t =()h t 52,2⎛⎫⎪⎝⎭所以()41202h t <<所以的取值范围是.22222341x x x x +++4120,2⎛⎫ ⎪⎝⎭故答案为:.4120,2⎛⎫ ⎪⎝⎭【点睛】关键点睛:根据函数的对称性,作出函数的图象,结合函数的图象有()f x ,化简,利用换元法和二14322211,4,4x x x x x x ==-=-22222341x x x x +++(22222112828x x x x ⎫⎛⎫=+-++⎪ ⎪⎭⎝⎭次函数的性质求解是解答的关键.四、双空题16.调查显示,垃圾分类投放可以带来约元/千克的经济效益.为激励居民垃圾分类,某市准备0.34给每个家庭发放一张积分卡,每分类投放积分分,若一个家庭一个月内垃圾分类投放总量不1kg 1低于,则额外奖励分(为正整数).月底积分会按照元/分进行自动兑换.100kg x x 0.1①当时,若某家庭某月产生生活垃圾,该家庭该月积分卡能兑换_____元;10x =120kg ②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的%,则40的最大值为___________.x 【答案】 1336【分析】①计算出该家庭月底的积分,再拿积分乘以可得出该家庭该月积分卡能兑换的金额;0.1②设每个家庭每月产生的垃圾为,每个家庭月底月积分卡能兑换的金额为元,分kg t ()f t、两种情况讨论,计算的表达式,结合可求得的最大值.0100t ≤<100t ≥()f t ()0.340.4f t t ≤⨯x 【详解】①若某家庭某月产生生活垃圾,则该家庭月底的积分为分,120kg 12010130+=故该家庭该月积分卡能兑换元;1300.113⨯=②设每个家庭每月产生的垃圾为,每个家庭月底月积分卡能兑换的金额为元.kg t ()f t 若时,恒成立;0100t ≤<()0.10.340.40.136f t t t t=<⨯=若时,,可得.100t ≥()0.10.10.340.4f t t x t =+≤⨯()min 0.3636x t ≤=故的最大值为.x 36故答案为:①;②.1336五、解答题17.已知集合,,.{}|212A x a x a =-<<+{}02B x x =<≤U =R (1)若,求;12a =()U A B ∩ (2)若,求实数的取值范围.A B ⋂=∅a 【答案】(1);5|22x x ⎧⎫<<⎨⎬⎩⎭(2)或{2x x ≤-32x ⎫≥⎬⎭【分析】(1)由集合得到,将代入集合,最后通过交集运算即可得到答案;B U B 12a =A (2)分和两种情况进行分类讨论,即可求解A =∅A ≠∅【详解】(1)由可得或,{}02B x x =<≤{0U B x x =≤ }2x >因为,所以,12a =5|02A x x ⎧⎫=<<⎨⎬⎩⎭所以()5|22U A B x x ⎧⎫=<<⎨⎬⎩⎭∩ (2)当时,则,解得,此时满足;A =∅212-≥+a a 3a ≥AB ⋂=∅当时,要使,只需或,A ≠∅AB ⋂=∅21220a a a -<+⎧⎨+≤⎩212212a a a -<+⎧⎨-≥⎩解得或,2a ≤-332a ≤<综上所述,实数的取值范围为或a {2x x ≤-32x ⎫≥⎬⎭18.在平面直角坐标系中,角的始边为轴的正半轴,终边在第二象限与单位圆交于点,xOy θx P 点的横坐标为.P 35-(1)求的值;cos 3sin 3sin cos θθθθ+-(2)若将射线绕点逆时针旋转,得到角,求的值.OP O 2πα22sin sin cos cos αααα--【答案】(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得的值,再利用同角三角函数的基本tan α关系,计算求得所给式子的值.(2)由题意利用诱导公式求得,再将化为,即3tan 4α=22sin sin cos cos αααα--22tan tan 1tan 1ααα--+可求得答案.【详解】(1)在单位圆上,且点在第二象限,的横坐标为,可求得纵坐标为,P P P 35-45所以,则.434sin ,cos ,tan 553θθθ==-=-cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--(2)由题知,则,,则2παθ=+3sin(cos 5sin 2παθθ=+==-24cos cos()sin 5παθθ=+=-=- ,sin 3tan cos 4ααα==故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++.2233()443()1241951--==-+19.已知函数是偶函数.()()2log 21x f x kx=+-(1)求的值;k (2)若函数,且在区间上为增函数,求m 的取值范围.()()[]1224,1,2f x xx h x m x +=+⋅∈()h x [1,2]【答案】(1)12k =(2)1[,)8-+∞【分析】(1)根据偶函数的定义列出等式结合对数的运算即可求解;(2)根据指数函数的单调性,利用复合函数的单调性法则,利用换元方法转化为二次函数的单调性问题,进而根据二次函数的单调性即可求解.【详解】(1)由是偶函数可得, .()f x ()()0f x f x --=则,()()()22log 21log 210x x k x kx -+---++=即 ,2212log 21x x kx x-+==+所以恒成立,(21)0k x -=故.12102k k -=⇒=(2)由(1)得,()()21log 212x f x x =+-所以,()21()log (21)22424421xf x xx x x x h x m m m ++=+⋅=+⋅=⋅++令,则 .[]2,1,2x t x =∈[]21,2,4y mt t t =++∈为使为单调增函数,则()h x ①时显然满足题意;0m =②;00122m m m >⎧⎪⇒>⎨-≤⎪⎩③.0101842m m m <⎧⎪⇒-≤<⎨-≥⎪⎩综上:m 的范围为.1,8⎡⎫-+∞⎪⎢⎣⎭20.中国地大物博,大兴安岭的雪花还在飞舞,长江两岸的柳枝已经发芽,海南岛上盛开着鲜花.燕子每年秋天都要从北方飞向南方过冬,专家发现,某种两岁燕子在飞行时的耗氧量与飞行速度米秒之间满足关系:,其中表示燕子耗氧量的单位数.v (/)5102033vq v =⨯≤≤()q(1)当该燕子的耗氧量为个单位时,它的飞行速度大约是多少?720(2)若某只两岁燕子飞行时的耗氧量变为原来的倍,则它的飞行速度大约增加多少?参考数据:3(,lg20.3≈lg30.48≈)【答案】(1)(米/秒)31(2)(米/秒)8【分析】(1)由耗氧量和飞行速度的关系可将表示为对数,然后求出即可.5vv (2)记燕子原来的耗氧量为,飞行速度为,现在的耗氧量为,飞行速度为,则可得1q 1v 2q 2v ,然后化为对数运算即可.21523v v -=【详解】(1)当时,,即,720q =5720102v =⨯5272v =所以,22222lg 3log 72log 8log 932log 33 6.25lg 2v ==+=+=+≈所以,31v ≈即它的飞行速度大约是米秒.31(/)(2)记燕子原来的耗氧量为,飞行速度为,现在的耗氧量为,飞行速度为,1q 1v 2q 2v 则,即,213q q =21551023102v v ⨯=⨯⨯所以,,21523v v -=212log 35v v -=所以,212lg35log 358lg2v v ⎛⎫-==⨯≈ ⎪⎝⎭所以它的飞行速度大约增加米秒.8(/)21.已知在定义域内单调的函数满足恒成立.()12ln 213x f f x x ⎛⎫+-=⎪+⎝⎭(1)设,求实数的值;()1ln 21x f x x k +-=+k (2)解不等式;()()272ln e 21x x f x x +>-+-+(3)设,若对于任意的恒成立,求实数的取值范围,并指()()ln g x f x x=-()()2g x mg x ≥[]1,2x ∈m 出取等时的值.x 【答案】(1)1k =(2)7(,0)3-(3),当且仅当时等号成立,2m ≤2log 1)x =【分析】(1)由题意列方程求解,(2)由函数的单调性转化后求解,(3)参变分离后转化为最值问题,由换元法结合基本不等式求解,【详解】(1)由题意得,()1ln 21x f x x k =-++,12ln 213()k f k k k +=-+=由于在上单调递增,1ln 21k y k k=-++(0,)k ∈+∞观察得的解为,12ln 213k k k -+=+1k =(2)由于在定义域内单调,所以为常数,()f x ()1ln 21xf x x +-+由(1)得,在上单调递增,()1ln 121x f x x =-++()f x (0,)+∞,()12ln()1ln e 1(212)xx xf x x x ---+=---=++故原不等式可化为,()72()f x f x +>-由得,270027x x x x +>⎧⎪->⎨⎪+>-⎩703x -<<故原不等式的解集为7(,0)3-(3)121022)1(1xx x g x -=+=+>+可化为对恒成立,()()2g x mg x ≥241412112144242x x x x x x x x xx m ++-+≤⋅==++++[]1,2x ∈设,21[3,1]xt =-+∈--则,,22211242(1)1233x x x t t t t t t t t -+===+-+-+-+-[3,1]t ∈--由基本不等式得,当且仅当2t t +≤-t =故当,t =min 1()323t t =+-故,当且仅当时等号成立,2m ≤-2log 1)x =+22.对于函数.2()ln f x a x ⎛⎫=+ ⎪⎝⎭(1)若,且为奇函数,求a 的值;()(1)g x f x =-()g x (2)若方程恰有一个实根,求实数a 的取值范围;()ln[(6)28]f x a x a =-+-(3)设,若对任意,当时,满足,求实数a 的取值0a >1,14b ⎡⎤∈⎢⎥⎣⎦12,[,1]x x b b ∈+()()12ln 2f x f x -≤范围.【答案】(1);1a =-(2);{}(2,3]4,6⋃(3).245a ≥【分析】(1)利用奇函数的定义可得;(2)由题可得,分类讨论可得;2(6)2820a a x a x a x ⎧+=-+-⎪⎪⎨⎪+>⎪⎩①②(3)由题可得,进而可得对()()max min 22l l n n n l 21a f x a b f x b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭-=≤+()2220ab a b ++-≥任意的恒成立,然后求函数的最小值即得.1,14b ⎡⎤∈⎢⎥⎣⎦()()222h b ab a b =++-【详解】(1)∵,2()ln f x a x ⎛⎫=+ ⎪⎝⎭∴,又为奇函数,22()(1)ln ln11a ax g x f x a x x +-⎛⎫=-=+= ⎪--⎝⎭()g x ∴,()2222222()()ln ln ln 0111a a x a ax a axg x g x x x x +-+-+++-=+==-+-∴,对定义域内任意恒成立,()()2222110a a x +-+-=x ∴,解得,()2221010a a ⎧+-=⎪⎨-=⎪⎩1a =-此时,定义域为符合奇函数的条件,1()ln1xg x x +=-()1,1-所以;1a =-(2)方程,2ln ln[(6)28]a a x a x ⎛⎫+=-+- ⎪⎝⎭所以,2(6)2820a a x a x a x ⎧+=-+-⎪⎪⎨⎪+>⎪⎩①②由①可得,,即,()2(6)820a x a x -+--=[]()(6)210a x x --+=当时,方程有唯一解,满足②,6a ==1x -2260a x +=-+>所以符合条件;6a =当时,方程有两相等解,满足②,4a =216x a ==--2240a x +=-+>所以符合条件;4a =当且时,方程有两不等解,4a ≠6a ≠122,16x x a ==--若满足②,则,126x a =-12260a a x +=->3a >若满足②,则,21x =-2220a a x +=->2a >所以当时方程恰有一个实根;(2,3]a ∈综上,实数的取值范围为;a {}(2,3]4,6⋃(3)令,则在上为减函数,在上为增函数,2t a x =+2t a x =+()0,∞+ln y t =()0,∞+∴函数在上为减函数,2()ln f x a x ⎛⎫=+ ⎪⎝⎭[,1]b b +当时,满足,12,[,1]x x b b ∈+()()12ln 2f x f x -≤则,()()()()max min 22ln ln 1ln 21a f x f x f a b f b b b -=-+=≤+⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭∴,即对任意的恒成立,2122a a bb ⎛⎫+++ ⎝≤⎪⎭()2220ab a b ++-≥1,14b ⎡⎤∈⎢⎥⎣⎦设,又,所以函数在单调递增,()()222h b ab a b =++-0a >()()222h b ab a b =++-1,14⎡⎤⎢⎥⎣⎦所以,()min 12204164a a h b h +⎛⎫==+-≥ ⎪⎝⎭∴.245a ≥。
2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷【答案版】
![2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷【答案版】](https://img.taocdn.com/s3/m/6ddd3a2332687e21af45b307e87101f69e31fba6.png)
2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知非空集合A ⊆{x ∈N |x 2﹣x ﹣2<0},则满足条件的集合A 的个数是( ) A .1B .2C .3D .42.已知扇形弧长为π3,圆心角为π6,则该扇形面积为 ( )A .π6B .π4C .π3D .π23.已知点P (﹣4,3)是角α终边上的一点,则cos α﹣sin α等于( ) A .75B .−75C .15D .−154.已知函数f(x)={2x (x ≤1)log 12x(x >1),则f (1﹣x )的图象是( )A .B .C .D .5.设a =log 52,e b =12,c =ln32,则( )A .c >a >bB ..c >b >aC ..a >b >cD ..a >c >b6.已知函数f (x )=(2m ﹣1)x m 为幂函数,若函数g (x )=lnx +2f (x )﹣6,则y =g (x )的零点所在区间为( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.已知a ∈Z ,关于x 的一元二次不等式x 2﹣8x +a ≤0的解集中有且仅有3个整数,则a 的值不可能是( ) A .13B .14C .15D .168.已知函数f (x )定义域为(0,+∞),f (1)=e ,对任意的x 1,x 2∈(0,+∞),当x 2>x 1时,有f(x 1)−f(x 2)x 1x 2>e x 2x 1−e x 1x 2.若f (lna )>2e ﹣alna ,则实数a 的取值范围是( )A .(﹣∞,e )B .(e ,+∞)C .(0,1)D .(1,e )二、多项选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
2022-2023年江苏苏州高一数学上学期期末试卷及答案
![2022-2023年江苏苏州高一数学上学期期末试卷及答案](https://img.taocdn.com/s3/m/f6ed7445b42acfc789eb172ded630b1c59ee9b21.png)
2022-2023年江苏苏州高一数学上学期期末试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知角,那么的终边在( ) 563α=︒αA. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】C2. 命题“”的否定为( ) 22,4x x ∀≥≥A. “” B. “”22,4x x ∀≤≥2002,4x x ∃<<C. “” D. “”22,4x x ∀≥<20024x x ∃≥<,【答案】D3. 已知一个面积为的扇形所对的弧长为,则该扇形圆心角的弧度数为( ) ππA. B.C. 2D.12π2π【答案】B4. 已知,,则“”是“”成立的( ) αR β∈αβ=sin sin αβ=A. 充分不必要条件 B. 必要不充分条件 C .充要条件D. 既不充分也不必要条件【答案】A5. 下列四个函数中,以为最小正周期,且在区间上单调递减的是( ) ππ,π2⎛⎫⎪⎝⎭A.B.C.D.sin y x =|sin |y x =cos 2y x =tan y x =【答案】B6. 已知A ,集合,若,则实数()f x ={12}B x ax =∈<<R ∣B A ⊆a 的取值范围是( )A.B.C.D.[2,1]-[1,1]-(,2][1,)-∞-+∞(,1][1,)∞∞--⋃+【答案】B7. 三个数, 之间的大小关系为( ) 220.81log 1.41a b ==,0.312c =A. B. b a c <<a b c <<C. D.a cb <<b<c<a 【答案】A8. 已知函数,若函数有两个零点,则实数1221,()log (1),1x x a f x x x a ⎧-≥⎪=⎨+-<<⎪⎩()()2g x f x =-a 的取值范围是( )A.B.C. D.21log 3a -<≤21log 3a -≤<23log 34a -≤< 23log 34a -<≤【答案】D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 设集合,集合,则下列对应关系中是从集合A 到集合B{}*2,A xx k k ==∈N ∣*B =N 的一个函数的有( ) A. B.C. D.12y x =2log y x =2x y =2y x =【答案】ACD10. 已知函数,则下列结论中正确的有( ) π()tan 23f x x ⎛⎫=- ⎪⎝⎭A. B. 的定义域为7π3π244f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭()f x π5π,Z 212k xx k ⎧⎫≠+∈⎨⎬⎩⎭∣C. 在区间上单调递增 D. 若,则()f x ππ,123⎛⎫-⎪⎝⎭()()1212,f x f x x x =≠的最小值为12x x -π【答案】BC11. 若a ,b 均为正数,且满足,则( ) 24a b +=A. 的最大值为2B. 的最小值为4 ab 11a b a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭C.的最小值是6 D. 的最小值为4aa b+22a b +165【答案】AD12. 已知指数函数(,且)与对数函数(,且)互为x y a =0a >1a ≠log ay x =0a >1a ≠反函数,它们的定义域和值域正好互换.若方程与的解分别为,e 2x x +=ln 2x x +=1x ,则( )2x A.B.C.D.122x x +=211x x ->1122e ln xx x x = 1212ln e x x x x =【答案】ABC三、填空题:本题共4小题,每小题5分,共20分.13. 求值:__________.22351lg 2lg 2822-⎛⎫+-+= ⎪⎝⎭【答案】114. 已知幂函数满足:①是偶函数;②在区间上单调递减,请写出一个这样的()f x (0,)+∞函数__________. ()=f x 【答案】(答案不唯一) 2x -15. 已知,则__________. 1sin cos ,(0,π)5ααα+=∈(sin 1)(cos 1)αα-+=【答案】 225-16. 我们知道,设函数的定义域为I ,如果对任意,都有,()f x x I ∈,a x I a x I +∈-∈且,那么函数的图象关于点成中心对称图()()2f a x f a x b ++-=()y f x =(,)P a b 形.若函数的图象关于点成中心对称图形,则实数c 的值为3()2e 1xcf x x =-++(0,1)__________;若,则实数t 的取值范围是__________.()2(56)2f tf t -++>【答案】 ①. 2 ②.()(),16,-∞-⋃+∞四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设集合. {}22216,05xx A x M B x x -⎧⎫=∈≤≤=<⎨⎬-⎩⎭∣∣(1)若,;M =N A B ⋂(2)若,.M =R (),A B A B R ð【答案】(1){}3,4A B = (2){}(){}5|12|1,A B x x A B x x =≤⋃=≤<≤R ð18. 已知.πsin(π)cos(π)cos 2()3πcos(2π)sin sin(π)2f ααααααα⎛⎫-++ ⎪⎝⎭=⎛⎫+--- ⎪⎝⎭(1)若角的终边过点,求; α(12,5)P -()f α(2)若,分别求和的值.()2f α=sin cos sin cos αααα-+24sin 3sin cos ααα-【答案】(1)512(2),sin cos 3sin cos αααα-=+2224sin 3sin cos 5ααα-=19. 某公司为了提升销售利润,准备制定一个激励销售人员的奖励方案.公司规定奖励方案中的总奖金额y (单位:万元)是销售利润x (单位:万元)的函数,并且满足如下条件:①图象接近图示;②销售利润x 为0万元时,总奖金y 为0万元;③销售利润x 为30万元时,总奖金y 为3万元.现有以下三个函数模型供公司选择:A .;B .;C .. (0)y kx b k =+> 1.5(0)x y k b k =⋅+>2log 2(0)15⎛⎫=++>⎪⎝⎭x y k n k (1)请你帮助该公司从中选择一个最合适的函数模型,并说明理由; (2)根据你在(1)中选择的函数模型,解决如下问题:①如果总奖金不少于9万元,则至少应完成销售利润多少万元? ②总奖金能否超过销售利润的五分之一? 【答案】(1)模型C,理由见解析 (2)①210万元; ②不会.20. 已知函数的图象经过点. ()3sin(2)(0π)f x x ϕϕ=+<<5π,38⎛⎫-⎪⎝⎭(1)求在区间上的最大值和最小值;()f x π0,2⎡⎤⎢⎥⎣⎦(2)记关于x 的方程在区间上的解从小到大依次为,π282x f ⎛⎫+=⎪⎝⎭25π0,6⎡⎤⎢⎥⎣⎦12,,,n x x x试确定正整数n 的值,并求的值. 1231222n n x x x x x -+++++【答案】(1)最大值为,最小值为 3(2),. 4n =12π21. 已知为奇函数. 24()1x af x x +=+(1)判断函数在区间上的单调性,并证明你的判断;()f x (0,)+∞(2)若关于x 的方程有8个不同的解,求实数m 的取值范22()(21)|()|0f x m f x m -++=围.【答案】(1)在单调递增,在上单调递减;证明见解析. ()f x (0,1)(1,)+∞(2)11(0,(,2)2222. 已知,分别为定义在上的奇函数和偶函数,且. ()f x ()g x R ()()2x f x g x +=(1)求和的解析式;()f x ()g x (2)若函数在上的值域为,求正实数a 的值; 2()log [(2)()]h x g x a f x =-⋅R [1,)-+∞(3)证明:对任意实数k ,曲线与曲线总存在公共点. ()()f x y g x =12y kx =+【答案】(1),()222x x f x --=()222x xg x -+=(2)2a =(3)由(1)知,所以 2222()4121()4141x x x xx x x f x y g x ---====-+-++与曲线总存在公共点, ()()f x y g x =12y kx =+即在有实数根,令, 210412x kx +-=+(),-∞+∞()21412x k G x x +=-+当时,易知为函数的零点, 0k =4log 3x =()G x 当时,易知函数在单调递减, 0k <()21412xk G x x +=-+(),-∞+∞又因为,,由零点存在性定理可知: ()1002G =>()11010G k =-<,使得成立.()00,1x ∃∈()00G x =当时,, 0k >()2113241222x kx G x kx kx +-<+-=++=又因为,,所以.()1002G =>223122G k k k ⎛⎫⎛⎫-<⋅-+=- ⎪ ⎪⎝⎭⎝⎭20G k ⎛⎫-< ⎪⎝⎭由零点存在性定理可知:,使得成立. 12,0x k ⎛⎫∃∈- ⎪⎝⎭()10G x =故对任意实数函数在有零点. k ()21412x k G x x +=-+(),-∞+∞即对任意实数曲线与曲线总存在公共点.k ()()f x y g x =12y kx =+。
2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】
![2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】](https://img.taocdn.com/s3/m/8eb29c9efbb069dc5022aaea998fcc22bdd14311.png)
2023-2024学年江苏省徐州市高一(上)期末数学试卷一、选择题。
本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|14<2x <4},B ={0,1,2},则A ∩B =( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}2.已知扇形的半径为2cm ,弧长为4cm ,则该扇形的面积为( ) A .1cm 2B .2cm 2C .4cm 2D .8cm 23.若命题“∃x ∈R ,x 2+4x +t <0“是假命题,则实数t 的最小值为( ) A .1B .2C .4D .84.已知a >b ,则下列不等式中,正确的是( ) A .a 2>b 2 B .|a |>|b |C .sin a >sin bD .2a >2b5.若α=4π3,则√1−sinα1+sinα+√1+sinα1−sinα=( ) A .4B .2C .4√33D .2√336.2023年12月30日,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功发射卫星互联网技术试验卫星.在不考虑空气阻力的情况下,火箭的最大速度v (单位:km /s )和燃料的质量M (单位:kg )、火箭(除燃料外)的质量m (单位:kg )的函数关系是v =alg(1+Mm)(a 是参数).当M =5000m 时,v 大约为( )(参考数据:1g 2≈0.3010) A .2.097aB .3.699aC .3.903aD .4.699a7.已知函数f(x)=1x 2+1−e 4x +1e2x ,若a =tan171°,b =tan188°,c =tan365°,则( )A .f (a )<f (b )<f (c )B .f (b )<f (a )<f (c )C .f (b )<f (c )<f (a )D .f (c )<f (b )<f (a )8.已知函数f (x )=x +1x −2,且关于x 的方程f (|e x ﹣1|)+2k|e x −1|−3k 2=0有三个不同的实数解,则实数k 的取值范围为( ) A .(0,23)B .(−12,0)∪(23,+∞)C .(1+√73,+∞) D .{−12}∪(1+√73,+∞)二、选择题。
江苏省苏州市常熟市2023届高一数学第一学期期末统考试题含解析
![江苏省苏州市常熟市2023届高一数学第一学期期末统考试题含解析](https://img.taocdn.com/s3/m/6d4bb800bc64783e0912a21614791711cd797943.png)
16.已知函数 , .
(1)若函数 的值域为R,求实数m的取值范围;
(2)若函数 是函数 的反函数,当 时,函数 的最小值为 ,求实数m的值;
(3)用 表示m,n中的最大值,设函数 , 有2个零点,求实数m的范围.
三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)
【详解】由解析式知: ,则 ,可得 ,
∴函数 定义域为 .
故答案为: .
14、①②④
【解析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.
【详解】对于①, ,所以两个函数的图象相同,所以①对;
对于②,
,所以 最小正周期是 ,所以②对;
对于③,因为 ,所以 , , ,
因为 ,所以函数 的图象不关于直线 对称,所以③错,
17.已知θ是第二象限角, ,求:
(1) ;
(2)
18.已知二次函数 满足
(1)求 的最小值;
(2)若 在 上有两个不同的零点,求 的取值范围
19.已知点 , , , .
(1)若 ,求 的值;
(2)若 ,求 的值.
20.将函数 ( 且 )的图象向左平移1个单位,再向上平移2个单位,得到函数 的图象,
8、B
【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.
【详解】过点 作 ,垂足为
则由已知可得四边形 为矩形, 为等腰直角三角形
,形, ,
且 ,
可得原四边形的面积为
故选:B.
9、D
【解析】
10、A
【解析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A
2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】
![2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】](https://img.taocdn.com/s3/m/b7363140cdbff121dd36a32d7375a417866fc1a4.png)
2023-2024学年江苏省南通市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为2rad,半径为1,则该扇形的面积为()A.12B.1C.2D.42.已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩(∁U B)=()A.{x|﹣1≤x≤3}B.{x|x≤3或x≥4}C.{x|﹣2≤x<﹣1}D.{x|﹣2≤x<4}3.函数f(x)=4x+9x+1,x∈(﹣1,+∞)的最小值为()A.6B.8C.10D.124.若角θ的终边经过点P(1,3),则sinθcosθ+cos2θ=()A.−65B.−25C.25D.655.函数f(x)=2log3x+2x﹣5的零点所在区间是()A.(0,1)B.(1,32)C.(32,2)D.(2,3)6.设函数f(x)=sin(ωx+π4)(ω>0)的最小正周期为T.若2π<T<3π,且对任意x∈R,f(x)+f(π3)≥0恒成立,则ω=()A.23B.34C.45D.567.已知函数f(x)的定义域为R,y=2f(x)﹣sin x是偶函数,y=f(x)﹣cos x是奇函数,则[f(x)]2+[f(π2+x)]2=()A.5B.2C.32D.548.已知函数f(x)=lg|x|﹣cos x,记a=f(log0.51.5),b=f(1.50.5),c=f(sin(1﹣π)),则()A.a<b<c B.a<c<b C.c<b<a D.c<a<b二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列各式中,计算结果为1的是()A.sin75°cos15°+cos75°sin15°B.cos222.5°﹣sin222.5°C.√3−tan15°1+√3tan15°D.tan22.5°1−tan222.5°10.若a>b>0,c>d>0,则()A .a ﹣c >b ﹣dB .a (a +c )>b (b +d )C .d a+d<c b+cD .b+d b+c<a+d a+c11.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x −23B .y =2|x |+1C .y =x 2﹣x ﹣2D .y =2x ﹣2﹣x12.如图,弹簧挂着的小球做上下振动,小球的最高点与最低点间的距离为10(单位:cm ),它在t (单位:s )时相对于平衡位置(静止时的位置)的高度hcm 由关系式ℎ=Asin(πt +π4)确定,其中A >0,t ≥0.则下列说法正确的是( )A .小球在往复振动一次的过程中,从最高点运动至最低点用时2sB .小球在往复振动一次的过程中,经过的路程为20cmC .小球从初始位置开始振动,重新回到初始位置时所用的最短时间为12sD .小球从初始位置开始振动,若经过最高点和最低点的次数均为10次,则所用时间的范围是[2014,2114)三、填空题:本题共4小题,每小题5分,共20分。
2021-2022学年江苏省苏州市高一上学期期末数学试题(解析版)
![2021-2022学年江苏省苏州市高一上学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/3b760b422f3f5727a5e9856a561252d380eb201f.png)
2021-2022学年江苏省苏州市高一上学期期末数学试题一、单选题1.命题“,sin 10x R x ∀∈+≥”的否定是 A .00,sin 10x R x ∃∈+< B .,sin 10x R x ∀∈+< C .00,sin 10x R x ∃∈+≥ D .,sin 10x R x ∀∈+≤【答案】A【分析】利用全称命题的否定方法求解,改变量词,否定结论. 【详解】因为,sin 10x R x ∀∈+≥的否定为00,sin 10x R x ∃∈+<, 所以选A.【点睛】本题主要考查含有量词的命题的否定,一般处理策略是:先改变量词,然后否定结论.2.已知集合M ={}|1x x <,N ={x |0≤x ≤4},则M ∩N =( ) A .(0,1] B .(1,4]C .[0,1)D .{1,4}【答案】C【分析】化简集合M ,利用交集定义求解.【详解】∵集合M ={}|1x x <={x |0≤x <1},N ={x |0≤x ≤4}, ∴M ∩N =[0,1). 故选:C.3.在三角形ABC 中,“6A π∠=”是“1sin 2A =”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A【解析】【详解】试题分析:由题意得,当,可得1sin 2A =,而在三角形ABC 中,当1sin 2A =时,或56A π∠=,所以“”是“1sin 2A =”的充分不必要条件.【解析】充分不必要条件的判定.4.若定义域为R 的奇函数f (x )在区间[0,+∞)上单调递增,则不等式f (2x ﹣1)﹣f (x )<0的解集为( ) A .(﹣∞,1)B .[0,1)C .[1,1)2D .(1,+∞)【答案】A【分析】由奇函数在对称区间上的单调性相同,可得到f (x )在R 上单调递增,将原不等式移项得f (2x ﹣1)<f (x ),脱“f ”,可解得原不等式的解集. 【详解】解:∵f (x )为R 上的奇函数, ∴f (0)=0;又f (x )在区间[0,+∞)上单调递增,奇函数在对称区间上单调性相同, ∴f (x )在R 上单调递增;∴由不等式f (2x ﹣1)﹣f (x )<0,得f (2x ﹣1)<f (x ), ∴2x ﹣1<x ,解得x <1,∴不等式f (2x ﹣1)﹣f (x )<0的解集为(﹣∞,1). 故选:A.5.若三个变量1y 、2y 、3y ,随着变量x 的变化情况如下表.则关于x 分别呈函数模型:log a y m x n =+、x y pa q =+、a y t kx =+变化的变量依次是( )A .1y 、2y 、3y B .3y 、2y 、1y C .1y 、3y 、2yD .3y 、1y 、2y【答案】B【分析】根据表中数据,结合函数的变化率,即可求解.【详解】解:由表可知,2y 随着x 的增大而迅速的增大,是指数函数型的变化, 3y 随着x 的增大而增大,但是变化缓慢,是对数函数型的变化,1y 相对于2y 的变化要慢一些,是幂函数型的变化.故选:B.6.已知a ,b >0,且a +2b =1,则12a b+的最小值为( )A .6B .8C .9D .10【答案】C【分析】利用“乘1法”与基本不等式的性质即可得出. 【详解】∵a +2b =1,∴1212()(2)a b a b a b +=++=22221452a b a b b a b a+++>+⨯=9, 当且仅当22a b b a=时即13a b ==时等号成立,故选:C.7.已知函数y =f (x )的部分图象如图所示,则函数f (x )的解析式最可能是( )A .y =x cos xB .y =sin x -x 2C .1cos 2xxy -=D .y =sin x +x【答案】A【分析】由图象判断函数的奇偶性,以及函数值的符号,运用排除法可得结论. 【详解】由f (x )的图象关于原点对称,可得f (x )为奇函数,对于选项B ,f (x )=sin x -x 2,f (-x )=-sin x -x 2≠-f (x ),f (x )不为奇函数,故排除B ;对于选项C ,f (x )=1cos 2xx-,f (-x )=1cos()2x x ---=2x (1-cos x )≠-f (x ),f (x )不为奇函数,故排除C ;对于选项D ,f (x )=x +sin x ,f (-x )=-sin x -x =-f (x ),可得f (x )为奇函数, 由f (x )=0,可得sin x =-x ,f (0)=0,由y =sin x 和y =-x 的图象可知它们只有一个交点,故排除D ;对于选项A ,f (x )=x cos x ,f (-x )=-x cos (-x )=-x cos x =-f (x ),可得f (x )为奇函数,且f (x )=0时,x =0或x =k π+2π(k ∈Z ),f (23π)<0,f (π)<0,故选项A 最可能正确. 故选:A.8.若函数2log 2,0()sin ,03x x x f x x x πωπ+>⎧⎪=⎨⎛⎫+- ⎪⎪⎝⎭⎩有4个零点,则ω的取值范围是( )A .47,33⎡⎫⎪⎢⎣⎭B .710,33⎡⎫⎪⎢⎣⎭C .47,33⎛⎤ ⎥⎝⎦D .710,33⎛⎤ ⎥⎝⎦【答案】B【分析】易知x >0时有一个零点,然后由﹣π≤x ≤0时有3个零点求解. 【详解】解:当x >0时,令2log 20x x +=, 解得:12x =, 又因为f (x )=0有4个根,所以当﹣π≤x ≤0时,f (x )有3个零点, 因为﹣π≤x ≤0, 所以333x ππππωω-++,所以323πππωπ-<-+-,解得:71033ω<, 故选:B. 二、多选题9.下列结果为1的是( ) A .111824e e e B .lg 2lg5+C .213289-D .234log 3log 4log 2⨯⨯【答案】BCD【分析】由对数运算及指数运算的性质化简即可.【详解】对于选项A ,11117118248824e e e e e 1++==≠,故A 错误; 对于选项B ,lg 2lg5lg101+==,故B 正确; 对于选项C ,213289431-=-=,故C 正确;对于选项D ,23424log 3log 4log 2log 4log 21⨯⨯=⨯=,故D 正确. 故选:BCD.10.已知a >b >c >0,下列结论中一定正确的是( ) A .ab >bc B .a ba cb c>-- C .tan a >tan b D .20222022a c b c a b --+>+【答案】AD【分析】直接利用不等式的性质判断A ,利用作差法判断B ,利用特例判断C ,构造函数判断D.【详解】对于A :由于a >b >c >0,所以ab >bc ,故A 正确; 对于B :()0()()a b b a c a c b c a c b c --=<----,故B 错误; 对于C :当04b a ππ<=<=时,tan 0tan 1a b =<=,故C 错误;对于D :设()2022c x x f x -=+,由于函数在(0,+∞)上单调递增,故当a >b >c >0,不等式20222022a c b c a b --+>+成立,故D 正确. 故选:AD.11.若关于x 的不等式e 0x a bx c ++<的解集为(-1,1),则( ) A .b >0 B .|a |<|c | C .a +b +c >0 D .8a +2b +c >0【答案】BD【分析】根据题意,分析可得方程e 0x a bx c ++=的两个根为-1和1,可得1ee 0a b c a b c ⎧⨯-+=⎪⎨⎪++=⎩,联立两式,用a 表示b 、c ,进而分析可得a >0,据此依次分析选项,综合可得答案.【详解】根据题意,关于x 的不等式e 0x a bx c ++<的解集为(-1,1), 则方程e 0x a bx c ++=的两个根为-1和1,则有1e e 0a b c a b c ⎧⨯-+=⎪⎨⎪++=⎩,联立可得:11e e e e ,22c a b a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=-=-, 又0∈(-1,1),则有0e e e 0021a b c a c a a ⎛⎫+ ⎪⎝⎭+⨯+=+=-<, 变形可得:12(e )e 2-+⋅a <0,则有a >0, 依次分析选项:对于A ,由于1e e 2b a ⎛⎫- ⎪⎝⎭=-,且a >0,则有1e e 2b a⎛⎫- ⎪⎝⎭=-<0,A 错误; 对于B ,由于1e e 2c a⎛⎫+ ⎪⎝⎭=-,则|c |=1e e 2+|a |>|a |,B 正确; 对于C ,a +b +c =a -1(e )e 2-a -1(e )e 2+a =(1-e)a <0,C 错误;对于D ,8a +2b +c =8a -(e -1e )a -1(e )e 2+a =(8-3e 2+12e )a >0,D 正确;故选:BD.12.记区间M =[a ,b ],集合N ={y |y =||||1k x x +,x ∈M },若满足M =N 成立的实数对(a ,b )有且只有1个,则实数k 可以取( ) A .﹣2 B .12C .1D .3【答案】AD【分析】分类讨论,对a ,b 的取值情况分类考虑,由集合与函数的性质进行分析,即可求出满足题意的k . 【详解】∵y =||||1k x x +,当x =0时,y =0, 当x ≠0时,y =11||kx +,可知函数为偶函数,若存在唯一实数对(a ,b )使M =N ,若x a =,y a =,x b =,y b =,即11k aa a kb b b ⎧=⎪+⎪⎨⎪=⎪+⎩,此时||||a b = ,若a b = ,不合题意,若 a b -=,则0,0a b <>,此时区间内含有0, 由x =0时,y =0时知,此时必有0a = ,或0b =,矛盾; 所以综上述只有当x =a 时,y =b ,当x =b 时,y =a , 即11k ab a k b ab ⎧=⎪+⎪⎨⎪=⎪+⎩,两式相乘得2|||(||1)(||1)k a b ab a b =++, ∴k 2=(|a |+1)(|b |+1)或k 2=﹣(|a |+1)(|b |+1), ∵k 2>0,∴k 2=(|a |+1)(|b |+1), 又∵|a |>0,∴|a |+1>1,同理|b |+1>1, ∴(|a |+1)(|b |+1)>1, 即k 2>1, k >1或k <﹣1,故满足条件的为AD , 故选:AD. 三、填空题13.写出一个满足“对任意实数a ,b ,f (a +b )=f (a )f (b )”的增函数f (x )=______. 【答案】(1)x a a >(答案不唯一) 【分析】根据幂运算性质r s r s a a a +=⋅求解. 【详解】解:由幂运算性质r s r s a a a +=⋅知, 满足“对任意实数a ,b ,f (a +b )=f (a )f (b )”, 故满足条件的增函数可以为()(1)x f x a a =>, 故答案为:(1)x a a >(答案不唯一).14.若对任意a >0且a ≠1,函数1()1x f x a +=+的图象都过定点P ,且点P 在角θ的终边上,则tan θ=__. 【答案】-2【分析】利用指数函数的性质可得函数的图象经过定点的坐标,进而根据任意角的三角函数的定义即可求解.【详解】令x +1=0,求得x =-1,y =2,可得函数1()1x f x a +=+(a >0,a ≠1)的图象经过定点P (-1,2), 所以点P 在角θ的终边上,则tanθ=21-=-2. 故答案为:-2.15.若实数a 、b 满足22log 4aa b b ⋅=⋅=,则a 、b 的大小关系a __b (填“<”,“=”或“>”). 【答案】<【分析】画出指数函数,对数函数,反比例函数的图象求解即可.【详解】解:242log 42a aa b b a ⋅=⋅=⇔=,24log b b=, 则a 为函数2x y =与函数4y x =图象交点的横坐标,b 为函数2log y x =与函数4y x=图象交点的横坐标,在同一直角坐标系画出函数2x y =、2log y x =、4y x=的图象如下,由图知a b <, 故答案为:<. 四、双空题16.立德中学拟建一个扇环形状的花坛(如图),该扇环面是由以点O 为圆心的两个同心圆弧和延长后可通过点O 的两条直线段围成.按设计要求扇环而的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).当43θ=时,x =_____米.现要给花坛的边缘(实线部分)进行装饰,已知直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,则花坛每平方米的装饰费用M 最小为___元()M =总费用花坛总面积.【答案】 5103133【分析】由题意可得,30102(10)x x θθ=++-,当43θ=时,解得x =5,再结合换元法,以及基本不等式的公式,即可求解.【详解】由题意可得,30102(10)x x θθ=++-, 解得10210xxθ+=+, 当43θ=时,解得x =5, ()222 111010100550(010)222S x x x x x θθθ=⨯⨯⨯-⋅⋅=-=-++<<花,装饰费为9(10)2(10)49908(10)17010x x x x x θθθ++-⋅=++-=+ 故M =217010550x x x +-++=210(17)550x x x +---,令t =17+x ,17<t <27,则M =210(17)5(17)50t t t -----=21039324t t t --+=1032439t t --+,∵32436t t +>,当且仅当326t t =,即t =18时,等号成立,∴M 的最小值为101036493-=-,花坛每平方米的装饰费用M 最小为103元. 故答案为:5;103. 【点睛】本题主要考查函数的实际应用,掌握换元法,以及基本不等式的公式是解本题的关键. 五、解答题17.已知集合A ={x |x 2-5x ≤0},B ={x |(x -t )(x -t -6)≤0},其中t ∈R. (1)当t =1时,求A ∪B ; (2)若A ⊆B ,求t 的取值范围. 【答案】(1)[0,7]; (2)[-1,0].【分析】(1)根据一元二次不等式的解法求出集合A 和集合B ,然后根据并集的定义进行求解;(2)根据A ⊆B ,然后建立关系式,解之即可. (1)∵集合A ={x |x 2-5x ≤0}={x |0≤x ≤5},B ={x |(x -t )(x -t -6)≤0}={x |t ≤x ≤t +6}, 当t =1时,B =[1,7], 故A ∪B =[0,7]. (2)因为A ⊆B ,所以065t t ≤⎧⎨+≥⎩,解得-1≤t ≤0,所以t 的取值范围为[-1,0].18.已知1sin()25sin παα+-=,其中α为第二象限角.(1)求cos α﹣sin α的值;(2)求221sin tan cos ααα++的值.【答案】(1)75-.(2)299. 【分析】(1)由已知条件可得5s n 1os i c a α=-,利用同角三角函数基本关系式可得2112cos cos 0525αα--=,结合α在第二象限,解得cos α的值,利用同角三角函数基本关系式即可求解.(2)利用同角三角函数基本关系式可求tan α的值,进而即可求解. (1)解:由已知条件可得1sin cos 5αα+=,化简可得1sin cos 5αα=-,代入sin 2α+cos 2α=1,得2112cos cos 0525αα--=, 所以4cos 5α=或3cos 5α=-, 又α在第二象限,故cos α<0,所以3cos 5α=-,所以24sin 1cos 5αα, 所以347cos sin 555αα-=--=-.(2)解:由(1)得sin tan s 43co ααα==-, 所以2222221sin cos 2sin 29tan tan 12tan tan cos cos 9ααααααααα+++=+=++=. 所以221sin 29tan cos 9ααα++=. 19.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式和单调增区间; (2)将函数()f x 的图象向左平移4π个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,若关于x 的方程()20g x m -=在区间[]0,π上有两个不同的解1x 、2x ,求122x x g +⎛⎫⎪⎝⎭的值及实数m 的取值范围.【答案】(1)()24f x x π⎛⎫- ⎝=⎪⎭,增区间为()3,Z 88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)122x x g +⎛⎫= ⎪⎝⎭12m ⎡∈⎢⎣⎭. 【分析】(1)结合图象和2T πω=,求得ω的值,再根据38f A π⎛⎫= ⎪⎝⎭,()01f =-,求得()f x 的解析式,然后利用正弦函数的单调性,即可得解;(2)根据函数图象的变换法则写出()g x 的解析式,再结合正弦函数的对称性以及图象,即可得解. (1)解:设()f x 的最小正周期为T ,由图象可知73288T πππ⎛⎫=-=⎪⎝⎭,则22T πω==, 故()()sin 2f x A x ϕ=+, 又38f A π⎛⎫=⎪⎝⎭,所以3sin 4A A πϕ⎛⎫+= ⎪⎝⎭,即3sin 14πϕ⎛⎫+= ⎪⎝⎭, 所以()32Z 42k k ππϕπ+=+∈,所以()2Z 4k k πϕπ=-+∈,因为2πϕ≤,所以4πϕ=-,所以()0sin 142f A A π⎛⎫=-=-=- ⎪⎝⎭,所以A =所以()24f x x π⎛⎫- ⎝=⎪⎭,令()222Z 242k x k k πππππ-≤-≤+∈,则()3,Z 88x k k k ππππ⎡⎤∈-+∈⎢⎥⎣⎦, 故()f x 的单调增区间为()3,Z 88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)解:将函数()f x 的图象向左平移4π个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得()4g x x π⎛⎫=+ ⎪⎝⎭的图象,由()20g x m -=,知sin 4x π⎛⎫+= ⎪⎝⎭,由()Z 42x k k πππ+=+∈可得()Z 4x k k ππ=+∈,由[]0,x π∈可得4x π=,若关于x 的方程()20g x m -=在区间[]0,π上有两个不同的解1x 、2x , 则点()1,2x m 、()2,2x m 关于直线4x π=对称,故1224x x π+=,所以,2sin 242g ππ⎛⎫== ⎪⎝⎭,作出函数sin 4y x π⎛⎫=+ ⎪⎝⎭与函数2y m =在区间[]0,π上的图象如下图所示:221m ≤<时,即当122m ≤<函数sin 4y x π⎛⎫=+ ⎪⎝⎭与函数2y m =在区间[]0,π上的图象有两个交点.综上所述,1222x x g +⎛⎫= ⎪⎝⎭m 的取值范围是122⎡⎢⎣⎭. 20.已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【答案】(1)0(2)最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪>⎪⎩【分析】(1)利用f (x )为奇函数,通过f (﹣x )=﹣f (x ),求解m 值即可. (2)化简函数的解析式,利用函数的单调性,求解函数的最大值,推出结果即可. (1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0, 此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0. (2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,21111()()()2422f n f n n n n -=--=--,令214n n >+得,12n >12n >1()()2f n f >,2max ()f x n =.1n <≤1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,1421,2n n n n ⎧++⎪⎪⎨+⎪>⎪⎩. 21.已知函数1()1og ()a f x a x =+,其中实数a >0且a ≠1.(1)若关于x 的函数2()()log a g x f x x =+在13,24⎛⎫⎪⎝⎭上存在零点,求a 的取值范围;(2)求所有的正整数m 的值,使得存在a ∈(0,1),对任意x ∈[m ,7],均有不等式1()()|1|1xf f ax a>--成立. 【答案】(1)4(,1)(1,2)9⋃(2)6【分析】(1)求出g (x )的解析式,令g (x )=0,则ax 2+x =1,得到211()a x x =-,利用换元法求解函数的值域,得到a 的取值范围;(2)不等式转化为:1﹣a >x |ax ﹣1|,即a ﹣1<ax 2﹣x <1﹣a ,对任意x ∈[m ,7]成立,推出()2max4971ax xa a -=-<-恒成立,利用函数的最值转化求解m 的范围,然后可得答案. (1)2221()()log log ()log log ()a a a a g x f x x a x ax x x =+=++=+,令g (x )=0,则ax 2+x =1,由题意,13,24x ⎛⎫∃∈ ⎪⎝⎭,使得ax 2+x =1,所以211()a x x =-,令14(,2)3t x =∈,所以a =t 2﹣t ,在4(,2)3上单调递增,所以4(,2)9a ∈.所以a 的取值范围为4(,1)(1,2)9⋃(2)当a ∈(0,1)时,1()1og ()a f x a x=+在(0,+∞)上单调递增,而*10,,|1|m N a ax >∈-∈(0,1),x ∈[m ,7],01xa>-,所以1111|1|1x x f f ax a ax a ⎛⎫⎛⎫>⇔> ⎪ ⎪ ⎪----⎝⎭⎝⎭, 所以211a x ax ax x ->-=-,即a ﹣1<ax 2﹣x <1﹣a ,对任意x ∈[m ,7]成立,x =7时,a ﹣1<49a ﹣7<1﹣a ,所以14825a <<,所以函数y =ax 2﹣x 的对称轴方程为125(,4)28x a =∈, 所以14,,7]825[a x m <<∈时,()2max 74,49712m ax x a a +≥-=-<-恒成立, 当m ≤3时,()2min 114ax x a a-=->-, 则﹣1>4a 2﹣4a ,所以(2a ﹣1)2<0,不可能,舍去;当4≤m ≤6时,()22min1ax xam m a -=->-,所以a (1﹣m 2)<1﹣m ,即a (1+m )>1, 即a >11m +,而11m +425≤,所以214m ≥,又6m ≤所有m 的正整数的取值为6.22.悬索桥(如图)的外观大漂亮,悬索的形状是平面几何中的悬链线.1691年莱布尼兹和伯努利推导出某链线的方程为e e 2x xccc y ⎛⎫=+ ⎪⎝⎭,其中c 为参数.当1c =时,该方程就是双曲余弦函数()e e cosh 2x xx -+=,类似的我们有双曲正弦函数()e e sinh 2x x x --=.(1)从下列三个结论中选择一个进行证明,并求函数()()cosh 2sinh y x x =+的最小值; ①()()22cosh sinh 1x x -=⎡⎤⎡⎤⎣⎦⎣⎦; ②()()()sinh 22sinh cosh x x x =;③()()()22cosh 2cosh sinh x x x =+⎡⎤⎡⎤⎣⎦⎣⎦.(2)求证:,4x ππ⎡⎤∀∈-⎢⎥⎣⎦,()()cosh cos sinh sin x x >.【答案】(1)条件选择见解析,证明见解析,函数()()cosh 2sinh y x x =+的最小值为78; (2)证明见解析.【分析】(1)利用双曲正、余弦函数的定义,结合指数运算可证得①②③成立,令()e e sinh R 2x x t x --==∈,利用二次函数的基本性质可求得函数()()cosh 2sinh y x x =+的最小值;(2),4x ππ⎡⎤∀∈-⎢⎥⎣⎦,将所证不等式等价转化为cos cos sin sin e e e e x x x x --+>-,分[],0x π∈-、0,4x π⎛⎤∈ ⎥⎝⎦两种情况讨论,利用指数函数的单调性结合正余弦函数的性质可证得结论成立. (1)证明:选①,()()22222222c 1e e e 2osh sin e h e e 2e e 2244x x x x x x x x x x ----⎛⎫⎛⎫+-+-⎡⎤⎡⎤⎣⎦⎣⎦⎪++-=-=-= ⎪⎝⎭⎝⎭; 选②,()()()()()22e e e e e e sinh 222sinh cosh 222x x x x x x x x x ----+-==⨯=⨯;选③,()()()222222e e e e e e cosh 2cosh sinh 222x x x x x x x x x ---⎛⎫⎛⎫++-⎡⎤⎡⎤==+=+ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭. ()()22e e e e cosh 2sinh 22x x x xy x x --+-=+=+,令()e e sinh 2x x t x --==,因为函数e 2x y =、e 2xy -=-均为R 上的增函数,故函数()sinh y x =也为R 上的增函数,故()e e sinh R 2x x t x --==∈,则222e e 24x x t -+-=,所以()2cosh 221x t =+, 所以22177212488y t t t ⎛⎫=++=++≥ ⎪⎝⎭,当且仅当14t =-时取“=”,所以()()cosh 2sinh y x x =+的最小值为78.(2)证明:,4x ππ⎡⎤∀∈-⎢⎥⎣⎦,()()cos cos sin sin e e e ecosh cos sinh sin 22x x x xx x --+->⇔> cos cos sin sin e e e e x x x x --⇔+>-,当[],0x π∈-时,cos cos e e 0x x -+>,sin 0sin x x ≤≤-,所以sin sin e e x x -≤,所以sin sin e e 0x x --≤,所以cos cos sin sin e e e e x x x x --+>-成立;当0,4x π⎛⎤∈ ⎥⎝⎦时,则022x x ππ<≤-<,且正弦函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上为增函数,cos sin sin 2x x x π⎛⎫=-≥ ⎪⎝⎭,所以cos sin e e x x ≥,sin cos e 0e x x ---<<,所以cos cos sin sin e e e e x x x x --+>-成立,综上,,4x ππ⎡⎤∀∈-⎢⎥⎣⎦,()()cosh cos sinh sin x x >.。
2013-2014学年江苏省徐州市高一数学上学期期末考试试题(含解析)苏教版
![2013-2014学年江苏省徐州市高一数学上学期期末考试试题(含解析)苏教版](https://img.taocdn.com/s3/m/45f3942faf45b307e87197af.png)
江苏省徐州市2013-2014学年高一数学上学期期末考试试题(含解析)苏教版一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题纸相应位置上................ 1. 设},3,2,1{=M },4,3,2{=N 求=N M .2. 函数)62sin(π+=x y 最小正周期为 .3. ︒150sin 的值为 .4. 设},2{},1{,<=<==x x B x x A R U 则=B A C U )( .5. 圆心角为3π弧度,半径为6的扇形的面积为 .6. 函数42-=x y 的定义域为 .7. 已知向量),3,2(),4,2(-=-=k k 若,b a ⊥= .8. 已知函数⎩⎨⎧≤>-=,0,1,0,43)(2x x x x f ,则=))0((f f .9. 已知,31)125sin(=-︒α则)α+︒55sin(的值为 . 【答案】13【解析】试题分析:因为()()00012555180a a -++=,所以()()()00001sin 55sin 180125sin 1253a a a ⎡⎤+=--=-=⎣⎦.考点:凑角及诱导公式.10. 已知)32(log )(22--=x x x f 的单调增区间为.11. 若函数xxk k x f 212)(⋅+-=在其定义域上为奇函数,则实数=k.12. 若存在),2[+∞∈x ,使不等式121≥⋅+xx ax成立,则实数a 的最小值为.13. 如图,在ABC ∆中,,12,==⊥BD BC AB AD 则⋅的值为 . 【答案】2 【解析】试题分析:因为()..AC AD AB BC AD =+,.0AB AD =,所以()2..2.2.22AC AD BC AD BD AD AD AB AD AD ===-==考点:向量的数量积运算及线性运算.BADC第13题图14. 给出下列四个命题: ①函数)32sin(π-=x y 的图象可以由x y 2sin =的图象向右平移6π个单位长度得到;②函数x y 23⋅=的图象可以由函数x y 2=的图象向左或向右平移得到; ③设函数x x x f sin lg )(-=的零点个数为,n 则;6=n④已知函数e e e x g m x m x m x f x ()(),3)(2()(-=++-=是自然对数的底数),如果对于任意,R x ∈总有0)(<x f 或,0)(>x g 且存在),6,(--∞∈x 使得,0)()(<x g x f 则实数m 的取值范围是)3,4(--.则其中所有正确命题的序号是 .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.........内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)设D C B A ,,,为平面内的四点,且).1,4(),2,2(),3,1(C B A -(1)若,=求D 点的坐标;(2)设向量,,b a ==若b ka -与b a 3+平行,求实数k 的值.16. (本题满分14分) 已知.2tan =α (1)求ααααcos sin cos 2sin 3-+的值;(2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπαπ+-+-+-的值;(3)若α是第三象限角,求αcos 的值.17. (本题满分14分)设向量b a ,满足.53,1=-==b a b a (1)求b a 3+的值;(2)求b a -3与b a 3+夹角的正弦值.18. (本题满分16分)某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件 .经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示). (1)根据图象,求一次函数b kx y +=的表达式; (2)设公司获得的毛利润(毛利润=销售总价—成本总价)为S 元. 试用销售单价x 表示毛利润,S 并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?【答案】(1)()1000500800y x x =-+≤≤;(2)当750x =时,max 62500S =,此时250y =.200400600 700第18题19. (本题满分16分)已知函数),0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象的一个最高点为),2,12(π-与之相邻的与x 轴的一个交点为).0,6(π(1) 求函数)(x f y =的解析式;(2) 求函数)(x f y =的单调减区间和函数图象的对称轴方程; (3) 用“五点法”作出函数)(x f y =在长度为一个周期区间上的图象. 【答案】(1)()22sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()122k x k Z ππ=-+∈. 【解析】⑶ 1)列表…………13分2)描点画图x3π- 12π- 6π 125π 32π 223x π+2π π23π 2πy 0 2 2- 0 2……………………………………16分考点:1.求三角函数解析式;2.三角函数的性质;3.五点作图法.20. (本题满分16分)函数)(x f 定义在区间,),,0(R y ∈+∞都有),()(x yf x f y =且)(x f 不恒为零. (1) 求)1(f 的值;(2) 若,1>>>c b a 且,2ac b =求证:2)]([)()(b f c f a f <;(3) 若,0)21(<f 求证:)(x f 在),0(+∞上是增函数.()()()()()()()log log log y x x x f ac f x yf x ac f x a c f x ====+()()()()()()()()log log log log x x a c x x a f x c f x f x f x f a f c ===+++,……………5分11。
2020-2021学年江苏省淮安市高一(上)期末数学试卷 (解析版)
![2020-2021学年江苏省淮安市高一(上)期末数学试卷 (解析版)](https://img.taocdn.com/s3/m/e422a1e2b90d6c85ed3ac602.png)
2020-2021学年江苏省淮安市高一(上)期末数学试卷一、单项选择题(共8小题).1.已知集合M={1,2,3},N={2,3},则()A.M=N B.M∩N=∅C.M⊆N D.N⊆M2.设全集为R,函数的定义域为M,则∁R M为()A.[﹣1,1] B.(﹣1,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1]∪[1,+∞)3.已知a∈R,则“a>1”是“<1”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要4.函数y=tan(2x+)的最小正周期为()A.B.C.πD.2π5.设a=log0.50.6,b=log0.61.2,c=1.20.6,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.c<b<a6.要得到函数y=sin(2x+)的图象,需要把函数y=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.函数f(x)=x+x3,g(x)=x+3x,h(x)=x+log3x的零点分别是a,b,c,则它们的大小关系为()A.a>b>c B.a>c>b C.c>a>b D.c>b>a8.新冠肺炎疫情是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,其中指数增长率r≈0.38,据此,在新冠肺炎疫情初始阶段,累计感染病例数扩大到原来的10倍需要的时间约为()(ln10≈2.30)A.4天B.6天C.8天D.10天二、多项选择题(共4小题).9.下列各组函数中,f(x)与g(x)是同一函数的有()A.f(x)=x,g(x)=e lnxB.f(x)=|x﹣1|,g(x)=C.f(x)=x2,D.f(x)=x,10.下列命题为真命题的是()A.若a>b>0,则ac2>bc2B.若a<b<0,则C.若a<b<0,则a2<ab<b2D.若c>a>b>0,则11.下列函数中满足:对定义域中任意x1,x2,都有的有()A.f(x)=2x B.f(x)=lgx C.f(x)=x2D.f(x)=x 12.一般地,对任意角α,在平面直角坐标系中,设α的终边上异于原点的任意一点P的坐标为(x,y),它与原点的距离是r.我们规定:比值,,分别叫做角α的余切、余割、正割,分别记作cotα,cscα,secα,把y=cot x,y=csc x,y=sec x分别叫做余切函数、余割函数、正割函数,下列叙述正确的有()A.B.sinα•secα=1C.y=sec x的定义域为D.sec2α+sin2α+csc2α+cos2α≥5三、填空题(共4小题).13.命题“∃x∈R,x+1≥0”的否定为.14.求值:2lg5+lg4+=.15.已知α是第三象限角,且时,则tanα=;=.16.若函数f(x)为定义在R上的偶函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式sin x•f(x)>0,x∈[﹣π,π]的解集为.四、解答题:本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤.17.从①,②,③三个条件中任选一个,补充在下面问题中,并求解.问题:已知集合_____,集合B={x|﹣a﹣1≤x≤2a+1}.(1)当a=1时,求A∩B;(2)若A∪B=B,求实数a的取值范围.18.已知函数(其中a为常数).(1)求f(x)的单调减区间;(2)若时,f(x)的最小值为2,求a的值.19.已知关于x的不等式x2+mx﹣12<0的解集为(﹣6,n).(1)求实数m,n的值;(2)正实数a,b满足na+2mb=2.①求的最小值;②若2a+16b﹣t≥0恒成立,求实数t的取值范围.20.已知函数.(1)利用函数的单调性定义证明:f(x)在R上为单调增函数;(2)设,判断g(x)的奇偶性,并加以证明.21.如图,一个水轮的半径为4米,水轮圆心O距离水面2米,已知水轮每分钟逆时针转动1圈,当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)将点P距离水面的距离z(单位:米,在水面以下,则z为负数)表示为时间t(单位:秒)的函数;(2)在水轮转动1圈内,有多长时间点P位于水面上方?22.已知函数f(x)=2x,g(x)=f(x)+f(|x|).(1)解不等式:f(2x)﹣f(x+1)>3;(2)当x∈[﹣1,]时,求函数g(x)的值域;(3)若∀x1∈(0,+∞),∃x2∈[﹣1,0],使得g(2x1)+ag(x1)+2g(x2)>0成立,求实数a的取值范围.参考答案一、单项选择题(共8小题).1.已知集合M={1,2,3},N={2,3},则()A.M=N B.M∩N=∅C.M⊆N D.N⊆M 解:因为集合M={1,2,3},N={2,3},根据子集的定义可知,N⊆M.故选:D.2.设全集为R,函数的定义域为M,则∁R M为()A.[﹣1,1] B.(﹣1,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1]∪[1,+∞)解:由1﹣x2≥0,得﹣1≤x≤1,即M=[﹣1,1],又全集为R,所以∁R M=(﹣∞,﹣1)∪(1,+∞).故选:C.3.已知a∈R,则“a>1”是“<1”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要解:因为,即,解得a<0或a>1,故“a>1”是“<1”的充分不必要条件.故选:A.4.函数y=tan(2x+)的最小正周期为()A.B.C.πD.2π解:由正切函数的周期公式得:.故选:B.5.设a=log0.50.6,b=log0.61.2,c=1.20.6,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.b<c<a D.c<b<a解:0<a=log0.50.6<log0.50.5=1,b=log0.61.2<0,c=1.20.6>1,则a,b,c的大小关系为b<a<c.故选:B.6.要得到函数y=sin(2x+)的图象,需要把函数y=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位解:要得到函数y=sin(2x+)=sin2(x+)的图象,需要把函数y=sin2x的图象向左平移个单位,故选:C.7.函数f(x)=x+x3,g(x)=x+3x,h(x)=x+log3x的零点分别是a,b,c,则它们的大小关系为()A.a>b>c B.a>c>b C.c>a>b D.c>b>a解:因为函数f(x)=x+x3,g(x)=x+3x,h(x)=x+log3x的零点分别是a,b,c,所以y=﹣x与y=x3,y=3x,y=log3x的交点横坐标分别是a,b,c,作出四个函数图象如下图:由图可知b<a=0<c,故选:C.8.新冠肺炎疫情是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,其中指数增长率r≈0.38,据此,在新冠肺炎疫情初始阶段,累计感染病例数扩大到原来的10倍需要的时间约为()(ln10≈2.30)A.4天B.6天C.8天D.10天解:设所需时间为t1,则e,即e,所以0.38t1=ln10≈2.30,解得t,故选:B.二、多项选择题:本大题共4小题,每小题5分,共计20分.每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列各组函数中,f(x)与g(x)是同一函数的有()A.f(x)=x,g(x)=e lnxB.f(x)=|x﹣1|,g(x)=C.f(x)=x2,D.f(x)=x,解:A.f(x)的定义域是R,g(x)的定义域是(0,+∞),两个函数的定义域不相同,不是同一函数,B.f(x)=,两个函数的定义域都是R,是同一函数,C.g(x)=x2,两个函数的定义域都是R,是同一函数,D.g(x)=x,(x≠0),f(x)的定义域是R,两个函数的定义域不相同,不是同一函数.故选:BC.10.下列命题为真命题的是()A.若a>b>0,则ac2>bc2B.若a<b<0,则C.若a<b<0,则a2<ab<b2D.若c>a>b>0,则解:对于A,当c=0时,命题不真,所以A错;对于B,a<b<0⇒ab>0⇒⇒⇒,所以B对;对于C,a<b<0⇒aa<ab,ab<bb,⇔aa<ab<bb⇒a2<ab<b2,所以C对;对于D,当c>a>b>0时,⇔a(c﹣b)>b(c﹣a)⇔ac﹣ab>bc﹣ab⇔ac>bc⇔a>b,所以D对.故选:BCD.11.下列函数中满足:对定义域中任意x1,x2,都有的有()A.f(x)=2x B.f(x)=lgx C.f(x)=x2D.f(x)=x解:∵对定义域中任意x1,x2,都有,∴f(x)是凹函数,且f(x)=2x和f(x)=x2都是凹函数.故选:AC.12.一般地,对任意角α,在平面直角坐标系中,设α的终边上异于原点的任意一点P的坐标为(x,y),它与原点的距离是r.我们规定:比值,,分别叫做角α的余切、余割、正割,分别记作cotα,cscα,secα,把y=cot x,y=csc x,y=sec x分别叫做余切函数、余割函数、正割函数,下列叙述正确的有()A.B.sinα•secα=1C.y=sec x的定义域为D.sec2α+sin2α+csc2α+cos2α≥5解:对于A:,故A正确;对于B:,故B错误;对于C:y=sec x=,故函数的定义域为,故C正确;对于D:利用三角函数和对勾函数的性质,sec2α+sin2α+csc2α+cos2α==1+=(当且仅当sin2α=1),等号成立;故D正确;故选:ACD.三、填空题:本大题共4小题,每小题5分,共计20分.13.命题“∃x∈R,x+1≥0”的否定为∀x∈R,x+1<0.解:∵“特称命题”的否定一定是“全称命题”,∴命题“∃x∈R,x+l≥0”的否定是:∀x∈R,x+1<0.故答案为∀x∈R,x+1<0.14.求值:2lg5+lg4+=6.解:2lg5+lg4+=lg(52×4)+4=6.故答案为:6.15.已知α是第三象限角,且时,则tanα=;=﹣.解:因为α是第三象限角,且=﹣sinα,所以sinα=﹣,cosα=﹣=﹣,则tanα==,==cosα=﹣.故答案为:,﹣.16.若函数f(x)为定义在R上的偶函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式sin x•f(x)>0,x∈[﹣π,π]的解集为(2,π)∪(﹣2,0).解:函数f(x)为定义在R上的偶函数,且在(0,+∞)内是增函数,又f(2)=0,∴f(x)在(﹣∞,0)上是减函数,且f(﹣2)=0,则f(x)对应的图象如图:f(0)不确定,当x=0时,不等式sin x•f(x)>0不成立,则当x≠0时,不等式sin x•f(x)>0等价为当x∈[﹣π,π]时,或,即或,即2<x<π或﹣2<x<0,即不等式的解集为(2,π)∪(﹣2,0),故答案为:(2,π)∪(﹣2,0).四、解答题:本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤.17.从①,②,③三个条件中任选一个,补充在下面问题中,并求解.问题:已知集合_____,集合B={x|﹣a﹣1≤x≤2a+1}.(1)当a=1时,求A∩B;(2)若A∪B=B,求实数a的取值范围.解:若选①:因为,所以,所以,故0<x+1≤4,解得﹣1<x≤3,故A={x|﹣1<x≤3};若选②:因为,所以,所以﹣1<x≤3,故A={x|﹣1<x≤3};若选③:因为,所以,解得﹣1<x≤3,故A={x|﹣1<x≤3};(1)当a=1时,B={x|﹣2≤x≤3},由A={x|﹣1<x≤3},所以A∩B={x|﹣1<x≤3};(2)因为A∪B=B,所以A⊆B,故B≠∅,所以,解得a≥1,故实数a的取值范围为[1,+∞).18.已知函数(其中a为常数).(1)求f(x)的单调减区间;(2)若时,f(x)的最小值为2,求a的值.解:(1)由题意,令,解得,即f(x)的单调减区间为,k∈Z.(2),则∈,y=sin x在上增,在上减,又sin=,sin=,sin =1,∴sin()∈,∴∈[+a,],又若时,f(x)的最小值为2,可得+a=2,解得a=.19.已知关于x的不等式x2+mx﹣12<0的解集为(﹣6,n).(1)求实数m,n的值;(2)正实数a,b满足na+2mb=2.①求的最小值;②若2a+16b﹣t≥0恒成立,求实数t的取值范围.解:(1)由题意可得﹣6和n是方程x2+mx﹣12=0的两个根,由根与系数的关系可得,解得m=4,n=2.(2)由(1)可得2a+8b=2,即a+4b=1,①=()(a+4b)=5++≥5+2=9,当且仅当=,即a=2b=时等号成立,所以的最小值为9.②若2a+16b﹣t≥0恒成立,即t≤2a+16b恒成立,因为2a+16b≥2=2=2,当且仅当2a=16b,即a=4b=时等号成立,所以t≤2,即实数t的取值范围是(﹣∞,2].20.已知函数.(1)利用函数的单调性定义证明:f(x)在R上为单调增函数;(2)设,判断g(x)的奇偶性,并加以证明.解:(1)证明:设任意x1<x2∈R,则f(x1)﹣f(x2)=log﹣log=log,因为x1<x2,所以4,则,所以log,即f(x1)<f(x2),所以函数f(x)在R上是单调递增函数;(2)因为g(x)=log=log=log=log=log,显然定义域为R,关于原点对称,函数在R上为偶函数,证明如下:因为g(﹣x)=log=g(x),所以函数是R上的偶函数.21.如图,一个水轮的半径为4米,水轮圆心O距离水面2米,已知水轮每分钟逆时针转动1圈,当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)将点P距离水面的距离z(单位:米,在水面以下,则z为负数)表示为时间t(单位:秒)的函数;(2)在水轮转动1圈内,有多长时间点P位于水面上方?解:(1)设z=A sin(ωx+φ)+B,依题意可知z的最大值为6,最小为﹣2,∵,可得,∵OP每秒钟内所转过的角为()=,得z=4sin(t+φ)+2,∴当t=0时,z=0,sinφ==﹣,∴φ=﹣,∴函数的表达式为z=4sin(t﹣)+2;(2)令z>0,得sin(t﹣)>﹣,所以﹣+2kπ<t﹣<+2kπ,k∈Z,解得:60k<t<60k+40,k∈Z,又0≤t≤60,所以0<t<40,即在水轮旋转一圈内,有40秒时间点P位于水面上方.22.已知函数f(x)=2x,g(x)=f(x)+f(|x|).(1)解不等式:f(2x)﹣f(x+1)>3;(2)当x∈[﹣1,]时,求函数g(x)的值域;(3)若∀x1∈(0,+∞),∃x2∈[﹣1,0],使得g(2x1)+ag(x1)+2g(x2)>0成立,求实数a的取值范围.解:(1)∵f(x)=2x,f(2x)﹣f(x+1)>3,∴22x﹣2x+1>3,∴(2x﹣3)(2x+1)>0,∴2x>3,∴x>log23,∴不等式的解集为{x|x>log23}.(2),当x∈[﹣1,0]时,∴g(x)在[﹣1,0]上单调递减,又,∴;当时,,综上,当时,g(x)的值域为.(3)当x1>0,x2∈[﹣1,0]时,∀x1>0,∃x2∈[﹣1,0],使得g(2x1)+ag(x1)+2g(x2)>0成立,即g(2x1)+ag(x1)+2g(x2)max>0,由(2)知,,则g(2x1)+ag(x1)+5>0,,令,则∀x>1,不等式恒成立,∵,当且仅当,即时取等号,∴,∴,∴a的取值范围为.。
2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】
![2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】](https://img.taocdn.com/s3/m/fbceec04dcccda38376baf1ffc4ffe473268fd03.png)
2023-2024学年江苏省南京市高一(上)期末数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 1.已知集合M ={﹣1,0,1},N ={0,1,2},则M ∪N =( ) A .{﹣1,0,1,2} B .{﹣1,0,1} C .{﹣1,0,2}D .{0,1}2.命题“∀x ∈R ,x +2≤0”的否定是( ) A .∃x ∈R ,x +2>0 B .∃x ∈R ,x +2≤0 C .∀x ∈R ,x +2>0D .∀x ∉R ,x +2>0 3.若函数f (x )=x 2﹣mx +3在区间(﹣∞,2)上单调递减,则实数m 的取值范围是( ) A .(﹣∞,2]B .[2,+∞)C .(﹣∞,4]D .[4,+∞)4.已知角θ的终边经过点P (x ,﹣5),且tanθ=512,则x 的值是( ) A .﹣13B .﹣12C .12D .135.已知a =log 0.32,b =log 0.33,c =log 32,则下列结论正确的是( ) A .a <b <cB .a <c <bC .c <a <bD .b <a <c6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣17.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√328.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( )A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab10.已知关于x 的不等式ax 2+bx +c >0的解集是{x |1<x <3},则( ) A .a <0B .a +b +c =0C .4a +2b +c <0D .不等式cx 2﹣bx +a <0的解集是{x |x <﹣1或x >−13}11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f (x )=cot x ,其中cotx =tan(π2−x),则下列关于余切函数的说法正确的是( )A .定义域为{x |x ≠k π,k ∈Z }B .在区间(π2,π)上单调递增C .与正切函数有相同的对称中心D .将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =cot x 的图象12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 . 14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 .15.已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数,若f (lgx )<f (1),则实数x 的取值范围是 .16.已知函数f(x)=log 9x +12x −1的零点为x 1.若x 1∈(k ,k +1)(k ∈Z ),则k 的值是 ;若函数g (x )=3x +x ﹣2的零点为x 2,则x 1+x 2的值是 .四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明, 17.(10分)(1)已知a +a﹣1=3,求a 12+a−12的值;(2)求值:e ln 2+(lg 5)2+lg 5lg 2+lg 20.18.(12分)设全集U =R ,已知集合A ={x |x 2﹣5x +4≤0},B ={x |m ≤x ≤m +1}. (1)若A ∩B =∅,求实数m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分条件,求实数m 的取值范围.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值; (2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.2023-2024学年江苏省南京市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符1.已知集合M={﹣1,0,1},N={0,1,2},则M∪N=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{﹣1,0,2}D.{0,1}解:因为集合M={﹣1,0,1},N={0,1,2},所以M∪N={﹣1,0,1,2},故选:A.2.命题“∀x∈R,x+2≤0”的否定是()A.∃x∈R,x+2>0B.∃x∈R,x+2≤0C.∀x∈R,x+2>0D.∀x∉R,x+2>0解:命题为全称命题,则命题的否定为“∃x∈R,x+2>0”.故选:A.3.若函数f(x)=x2﹣mx+3在区间(﹣∞,2)上单调递减,则实数m的取值范围是()A.(﹣∞,2]B.[2,+∞)C.(﹣∞,4]D.[4,+∞)解:函数f(x)=x2﹣mx+3开口向上,对称轴方程为x=m 2,所以函数的单调递减区间为(﹣∞,m2 ],要使在区间(﹣∞,2)上单调递减,则m2≥2,解得m≥4.即m的范围为[4,+∞).故选:D.4.已知角θ的终边经过点P(x,﹣5),且tanθ=512,则x的值是()A.﹣13B.﹣12C.12D.13解:由题意得,tanθ=512=−5x,故x=﹣12.故选:B.5.已知a=log0.32,b=log0.33,c=log32,则下列结论正确的是()A.a<b<c B.a<c<b C.c<a<b D.b<a<c解:∵log0.33<log0.32<log0.31=0,∴b<a<0,∵log32>log31=0,∴c>0,∴b<a<c.故选:D.6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣1解:由题意知火箭的最大速度v 达到10km /s ,故10=2ln(1+M m ),即1+Mm =e 5,∴M m =e 5−1. 故选:B .7.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√32解:定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)=f(83π)=f(5π3)=f(2π3)=f(−π3)=cos(−π3)=12. 故选:C .8.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)解:因为x y =10,(x >0且x ≠1),所以lgx y =lg 10=1,即ylgx =1, 所以y =f (x )=1lgx,所以函数f (x )在(0,1),(1,+∞)上单调递减, 若f (m 2)>f (2m ),则0<m 2<2m <1,或1<m 2<2m ,解得0<m <12或1<m <2.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( ) A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab解:对于A ,由a <b ,两边都加上c ,可得a +c <b +c ,故A 正确; 对于B ,a <b <0,两边都乘以b ,可得ab >b 2,故B 不正确; 对于C ,a <b <0,则1a −1b =b−a ab >0,可知1a >1b,故C 不正确;对于D,a<b<0,则ba −ab=b2−a2ab=(b+a)(b−a)ab<0,可得ba<ab,故D正确.故选:AD.10.已知关于x的不等式ax2+bx+c>0的解集是{x|1<x<3},则()A.a<0B.a+b+c=0C.4a+2b+c<0D.不等式cx2﹣bx+a<0的解集是{x|x<﹣1或x>−13}解:因为不等式ax2+bx+c>0的解集是{x|1<x<3},所以a<0且1,3为方程ax2+bx+c=0的两根,A正确;故{1+3=−ba1×3=ca,所以b=﹣4a,c=3a,所以a+b+c=a﹣4a+3a=0,B正确;4a+2b+c=4a﹣8a+3a=﹣a>0,C错误;由不等式cx2﹣bx+a=3ax2+4ax+a<0可得3x2+4x+1>0,解得x<﹣1或x>−13,D正确.故选:ABD.11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f(x)=cot x,其中cotx=tan(π2−x),则下列关于余切函数的说法正确的是()A.定义域为{x|x≠kπ,k∈Z}B.在区间(π2,π)上单调递增C.与正切函数有相同的对称中心D.将函数y=﹣tan x的图象向右平移π2个单位可得到函数y=cot x的图象解:根据cotx=tan(π2−x),所以余切函数的图象如图所示:对于A:函数的定义域为{x|x≠kπ,k∈Z},故A正确;对于B:在区间(π2,π)上单调递减,故B错误;对于C :与正切函数有相同的对称中心,都为(kπ2,0)(k ∈Z ),故C 正确;对于D :将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =﹣tan (x −π2)=cot x 的图象,故D 正确. 故选:ACD .12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12解:因为扇形的半径为r ,弧长为l ,所以扇形的周长为2r +l ,面积为12lr ;因为2r +l =2×12lr ,所以l =2rr−1,且r >1;所以扇形的面积为S =12×2r r−1×r =r 2r−1=(r−1)2+2(r−1)+1r−1=(r ﹣1)+1r−1+2≥2√(r −1)⋅1r−1+2=4,当且仅当r ﹣1=1r−1,即r =2时取等号,所以选项A 错误; 扇形的周长为L =2r +2r r−1=2(r ﹣1)+2r−1+4≥2√2(r −1)⋅2r−1+4=8, 当且仅当2(r ﹣1)=2r−1,即r =2时取等号,此时圆心角为|α|=l r =42=2,α=±2,选项B 错误; r +2l =r +4r r−1=r +4+4r−1=(r ﹣1)+4r−1+5≥2√(r −1)⋅4r−1+5=9, 当且仅当r ﹣1=4r−1,即r =3时取等号,选项C 正确; 1r 2+4l 2=1r 2+(r−1)2r 2=1−2r +2r 2=2(1r −12)2+14]≥12,当r =2时取等号,所以选项D 正确.故选:CD .三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 2√2 . 解:根据幂函数f (x )=x α的图象经过点(9,3),可得9α=3,求得α=12,故f (x )=x 12=√x .故f (8)=√8=2√2.故答案为:2√2.14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 89 .解:∵cos (π3−x )=sin(x +π6)=13,∴sin2(π3−x)=1﹣cos2(π3−x)=1−19=89.故答案为:8 9.15.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是110<x<10.解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数∴f(x)中(﹣∞,0)上是减函数又f(lgx)<f(1)∴﹣1<lgx<1∴110<x<10故答案为:110<x<1016.已知函数f(x)=log9x+12x−1的零点为x1.若x1∈(k,k+1)(k∈Z),则k的值是1;若函数g (x)=3x+x﹣2的零点为x2,则x1+x2的值是2.解:函数f(x)=log9x+12x−1是增函数,f(1)=−12<0,f(2)=log92>0,满足f(1)f(2)<0,所以函数的零点x1∈(1,2),所以k的值为1.函数f(x)=log9x+12x−1=12(log3x+x﹣2),函数的零点是y=log3x与y=2﹣x两个函数的图象的交点的横坐标x1,函数g(x)=3x+x﹣2的零点为x2,是函数y=3x与y=2﹣x图象交点的横坐标,由于y=log3x与y=3x是反函数,关于y=x对称,并且y=2﹣x与y=x垂直,交点坐标(1,1),所以x1+x2的值是2.故答案为:1;2.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,17.(10分)(1)已知a+a﹣1=3,求a 12+a−12的值;(2)求值:e ln2+(lg5)2+lg5lg2+lg20.解:(1)因为(a 12+a−12)2=a+a﹣1+2=3+2=5,又因为a 12+a−12>0,所以a12+a−12=√5;(2)e ln2+(lg5)2+lg5lg2+lg20=2+1g5(lg5+1g2)+1g2+1=2+1g5+1g2+1=2+1+1=4.18.(12分)设全集U=R,已知集合A={x|x2﹣5x+4≤0},B={x|m≤x≤m+1}.(1)若A∩B=∅,求实数m的取值范围;(2)若“x∈B”是“x∈A”的充分条件,求实数m的取值范围.解:(1)由x 2﹣5x +4≤0,解得1≤x ≤4,所以A ={x |1≤x ≤4}. 因为A ∩B =∅,且B ≠∅,所以m +1<1或m >4,得m <0或m >4, 所以实数m 的取值范围是{m |m <0或m >4}.(2)因为“x ∈B ”是“x ∈A ”的充分条件,所以B ⊆A , 所以{m ≥1m +1≤4,解得1≤m ≤3,所以实数m 的取值范围是{m |1≤m ≤3}.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.解:(1)由图可知A =2,T =4×(π3−π12)=π,所以ω=2πT=2.∵f (x )=2sin (2x +φ)的图象经过点(π12,2), ∴π6+φ=π2+2kπ,k ∈Z ,即φ=π3+2kπ,k ∈Z .∵0<φ<π,所以φ=π3,∴f(x)=2sin(2x +π3).(2)令π2+2kπ≤2x +π3≤3π2+2kπ,k ∈Z ,解得π12+kπ≤x ≤7π12+kπ,k ∈Z ,∴f(x)=2sin(2x +π3)的减区间为[π12+kπ,7π12+kπ],k ∈Z ,∴f(x)=2sin(2x +π3)在[﹣π,0]上的减区间为[−11π12,−5π12].20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.解:(1)由 f (0)=0,得a =1,此时f(x)=2x−12x +1.因为f(−x)=2−x−12−x +1=1−2x1+2x =−f(x),所以f (x )为奇函数,故a =1. 证明:(2)当a =3时,f(x)=3⋅2x−12x +1=3−42x +1.任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=42x 2+1−42x 1+1=4(2x1−2x2)(1+2x 1)(1+2x 2), 因为x 1<x 2,所以2x 1<2x 2,2x 1+1>0,2x 2+1>0, 所以4(2x 1−2x 2)(1+2x 1)(1+2x 2)<0,即f (x 1)<f (x 2),所以函数f(x)=a⋅2x−12x +1在R 上单调递增.解:(3)y =f (x )﹣2x 有两个不同的零点,等价于(2x )2+(1﹣a )2x +1=0有两个不同的实数解. 令t =2x (t >0),则t 2+(1﹣a )t +1=0在(0,+∞)有两个不同的实数解, 所以{(1−a)2−4>0a −1>0,解得a >3.所以a 的取值范围为(3,+∞).21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.解:由题可得,AB =ℎ2sinα,AC =ℎ1cosα. (1)当α=30°时,AB =2h 2,AC =2√31, 所以S △ABC =12AB ⋅AC =2√31ℎ2,又因为h 1+h 2=30,h 1,h 2≥0, 所以S △ABC =√31ℎ2≤√3(ℎ1+ℎ22)2=150√3,当且仅当h 1=h 2=15时取等号.所以荷花种植区域面积的最大值为150√3m 2.(2)因为h 1+h 2=30,h 2=4h 1,所以h 1=6,h 2=24,故AB =24sinα,AC =6cosα,α∈(0,π2), 从而S △ABC =12AB ⋅AC =72sinαcosα=150, 所以sinαcosα=1225,① 所以(sinα+cosα)2=1+2sinαcosα=4925. 又因为α∈[0,π2],所以sinα+cosα=75,② 由①②解得:sinα=35或45. 22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值;(2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.解:(1)由f (x )=2x 是(a ,1)型函数,得f (x )•f (2a ﹣x )=2x •22a ﹣x =1,即22a =1,所以a =0. (2)由g(x)=e 1x是(a ,b )型函数,得g(x)⋅g(2a −x)=e 1x ⋅e 12ax −x =b ,则1x +12a−x =lnb ,因此x 2lnb ﹣2axlnb +2a =0对定义域{x |x ≠0}内任意x 恒成立,于是{lnb =02alnb =02a =0,解得a =0,b =1,所以a =0,b =1.(3)由h (x )是(1,4)型函数,得h (x )•h (2﹣x )=4,(1)当x =1时,h (1)•h (1)=4,而h (x )>0,则h (1)=2,满足h (x )≥1;(2)当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2≥1恒成立,令log 2x =t ,则当t ∈(0,2]时,﹣t 2+mt +2≥1恒成立,于是m ≥t −1t 恒成立,而函数y =t −1t在(0,2]单调递增,则t −1t ≤32,当且仅当t =2时取等号,因此m ≥32; (3)当x ∈[﹣2,1)时,2﹣x ∈(1,4],则ℎ(x)=4ℎ(2−x)=4−[log 2(2−x)]2+m⋅log 2(2−x)+2,由h (x )≥1,得0<−[log 2(2−x)]2+m ⋅log 2(2−x)+2≤4,令log 2(2﹣x )=u ,则当u ∈(0,2]时,0<﹣u 2+mu +2≤4,由(2)知﹣u 2+mu +2≥1,则只需u ∈(0,2]时,﹣u 2+mu +2≤4恒成立,即m ≤2u +u 恒成立,又u +2u≥2√u ⋅2u =2√2,当且仅当u =√2时取等号,因此m ≤2√2, 所以实数m 的取值范围是:[32,2√2].。
2023-2024学年江苏省连云港市高一(上)期末数学试卷【答案版】
![2023-2024学年江苏省连云港市高一(上)期末数学试卷【答案版】](https://img.taocdn.com/s3/m/f77a917c11a6f524ccbff121dd36a32d7375c7a4.png)
2023-2024学年江苏省连云港市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |﹣1<x ≤1},B ={x |0≤x <2},则A ∩B =( ) A .{0,1}B .{﹣1,2}C .(﹣1,2)D .[0,1]2.sin210°=( ) A .−12B .12C .−√32D .√323.“|a |>|b |”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.人的心脏跳动时,血压在增加或减少.若某人的血压满足函数式p (t )=110+20sin (140πt ),其中p (t )为血压(单位:mmHg ),t 为时间(单位:min ),则此人每分钟心跳的次数为( ) A .50B .70C .90D .1305.在△ABC 中,∠ACB =90°,BC =a ,AC =b ,且1a +2b=1,则△ABC 的面积的最小值为( )A .3+√2B .2C .4D .86.设a 为实数,已知函数f(x)=a −13x−1的图象关于原点对称,则a 的值为( ) A .−12B .12C .2D .﹣27.已知函数f(x)={−log 2x ,x ≥1,2−x ,x <1,若f (2+a 2)<f (6a ﹣3),则实数a 的取值范围是( )A .1<a <5B .a >5或a <1C .2<a <3D .a >3或a <28.已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图,则函数f (x )( )A .图象关于直线x =−π3对称B .图象关于点(π6,3)对称C .在区间(2π3,5π6)上单调递减 D .在区间(−5π12,π12)上的值域为(1,3) 二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列不等式成立的有( )A .1.212>0.812B .cos4π7<cos 5π8C .1.20.8>0.81.2D .log 520>log 2510.要得到函数f(x)=sin(2x −π3)的图象,只要把( )A .函数y =sin2x 的图象向右平移π6个单位长度B .函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变)C .函数y =sin2x 的图象向左平移5π6个单位长度D .函数y =cos2x 的图象向右平移5π12个单位长度11.已知函数f (x )=lgx ,任意的x 1,x 2∈(0,+∞),下列结论正确的是( ) A .f(x 1)−f(x 2)=f(x 1x 2)B .若x 1≠x 2,则f(x 1)+f(x 2)2>f(x 1+x 22)C .y =f(1−x1+x)是奇函数D .若|f (x 1)|=|f (x 2)|,且x 1≠x 2,则x 1+x 2>212.已知函数f (x )=2|cos x |﹣cos|x |,则( ) A .函数f (x )的最大值为3B .函数f (x )的最小正周期为πC .函数f (x )的图象关于直线x =π对称D .函数f (x )在(2π3,3π2)上单调递减 三、填空题:本题共4小题,每小题5分,共20分. 13.求值:log 48= .14.已知cos α<0,且tan α>0,则角α是第 象限角.15.已知函数f (x )=sin (ωx )在[−π3,π4]上单调递增,则ω的最大值是 .16.已知函数f (x )是R 上的偶函数,f (x +1)为奇函数,则函数f (x )的最小正周期为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知tan α=2,计算: (1)sinα+cosα5cosα−2sinα;(2)cos αsin α.18.(12分)设a 为实数,函数f (x )=ax 2﹣(a ﹣1)x +a .(1)若函数f(x)有且只有一个零点,求a的值;(2)若不等式f(x)>0的解集为空集,求a的取值范围.19.(12分)已知函数f(x)=2sin(2x+π6).(1)用“五点法”画出函数f(x)在一个周期内的简图;(2)若关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,求t的取值范围.20.(12分)如图1,有一块半径为2(单位:cm)的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在圆周上.为了求出等腰梯形ABCD的周长y(单位:cm)的最大值,小明和小亮两位同学分别给出了如下两种方案:(1)小明的方案:设梯形的腰长为x(单位:cm),请你帮他求y与x之间的函数关系式,并求出梯形周长的最大值;(2)小亮的方案:如图2,连接AC,设∠BAC=θ,请你帮他求y与θ之间的函数关系式,并求出梯形周长的最大值.21.(12分)已知函数f(x)=log2(4x﹣a•2x+a+2)(a∈R).(1)若a=5,解不等式f(x)>0;(2)若函数f(x)在区间[﹣1,+∞)上的最小值为﹣1,求a的值.22.(12分)设m,t为实数,函数f(x)=lnx+x+m和g(x)=x2﹣tx﹣1.(1)若函数f(x)在区间(2,e)上存在零点,求m的取值范围;(2)设x1∈{x|F(x)=0},x2∈{x|G(x)=0},若存在x1,x2,使得|x1﹣x2|≤1,则称F(x)和G(x)“零点贴近”.当m=﹣1时,函数f(x)与g(x)“零点贴近”,求t的取值范围.2023-2024学年江苏省连云港市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<x≤1},B={x|0≤x<2},则A∩B=()A.{0,1}B.{﹣1,2}C.(﹣1,2)D.[0,1]解:∵集合A={x|﹣1<x≤1},B={x|0≤x<2},∴A∩B={x|0≤x≤1}.故选:D.2.sin210°=()A.−12B.12C.−√32D.√32解:sin210°=sin(180°+30°)=﹣sin30°=−1 2,故选:A.3.“|a|>|b|”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解:设a=﹣2,b=0,此时满足|a|>|b|,但不满足a>b,充分性不成立,设a=2,b=﹣3,此时满足a>b,但不满足|a|>|b|,必要性不成立,故|a|>|b|是a>b的既不充分也不必要条件.故选:D.4.人的心脏跳动时,血压在增加或减少.若某人的血压满足函数式p(t)=110+20sin(140πt),其中p(t)为血压(单位:mmHg),t为时间(单位:min),则此人每分钟心跳的次数为()A.50B.70C.90D.130解:因为函数p(t)=110+20sin(140πt)的周期为T=2π140π=170(min),所以此人每分钟心跳的次数f=1T=70.故选:B.5.在△ABC中,∠ACB=90°,BC=a,AC=b,且1a+2b=1,则△ABC的面积的最小值为()A.3+√2B.2C.4D.8解:因为a>0,b>0,可得1a>0,2b>0,则1a+2b≥2√1a⋅2b=2√2ab,当且仅当1a =2b 时,即a =2,b =4时,等号成立,所以√2ab ≤1,解得ab ≥8,所以△ABC 的面积的最小值为S =12ab ≥4.故选:C .6.设a 为实数,已知函数f(x)=a −13x−1的图象关于原点对称,则a 的值为( ) A .−12B .12C .2D .﹣2解:因为f(x)=a −13x−1的图象关于原点对称,所以f (x )为奇函数,所以f (﹣x )+f (x )=0, 即a −13x −1+a −13−x −1=2a −13x −1+3x3x −1=2a +1=0,所以a =−12.故选:A .7.已知函数f(x)={−log 2x ,x ≥1,2−x ,x <1,若f (2+a 2)<f (6a ﹣3),则实数a 的取值范围是( )A .1<a <5B .a >5或a <1C .2<a <3D .a >3或a <2解:因为函数f(x)={−log 2x ,x ≥1,2−x,x <1,,当x ≥1时,f (x )=﹣log 2x 单调递减,且最大值为f (1)=0, 当x <1时,f (x )=2﹣x单调递减,且最小值y >2﹣1=12,故函数f(x)={−log 2x ,x ≥1,2−x,x <1,单调递减f (2+a 2)<f (6a ﹣3),则2+a 2>6a ﹣3,可得a 2﹣6a +5>0,解得a >5或a <1. 故选:B .8.已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图,则函数f (x )( )A .图象关于直线x =−π3对称B .图象关于点(π6,3)对称C .在区间(2π3,5π6)上单调递减 D .在区间(−5π12,π12)上的值域为(1,3) 解:由图象可得A =12(5﹣1)=2,则f (x )=2sin (ωx +φ)+B ,f (x )的最大值为2+B =5,∴B =3, ∴f (x )=2sin (ωx +φ)+3,f (x )过点(0,2),∴f (0)=2sin φ+3=2,∴sin φ=−12,∵|φ|<π2,∴φ=−π6,∴f (x )=2sin (ωx −π6)+3,∵f (x )过点(−π6,1),∴f (−π6)=2sin (−π6ω−π6)+3=1,可得sin (π6ω+π6)=1,∴π6ω+π6=2k π+π2,k ∈Z ,可得ω=2+12k ,k ∈Z ,由图象可知T 4>π6,∴T >2π3,即2πω>2π3,∴0<ω<3,∴ω=2, ∴f (x )=2sin (2x −π6)+3,对于A :f (−π3)=2sin (−5π6)+3=2,不是最值,则f (x )的图象不关于直线x =−π3对称,错误;对于B :f (π6)=2sin π6+3=4≠3,错误;对于C :2k π+π2≤2x −π6≤2k π+3π2,k ∈Z , ∴k π+π3≤x ≤k π+5π6,k ∈Z , ∴f (x )的单调递减区间为[k π+π3,k π+5π6],k ∈Z .k =0时,f (x )在[π3,5π6]上单调递减,(2π3,5π6)⊆[π3,5π6],正确;对于D :∵x ∈(−5π12,π12), ∴2x −π6∈(﹣π,0),可得sin (2x −π6)∈[﹣1,0),∴f (x )∈[1,3),D 错误. 故选:C .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列不等式成立的有( )A .1.212>0.812B .cos4π7<cos 5π8C .1.20.8>0.81.2D .log 520>log 25解:对于A .因为幂函数y =√x 在定义域上单调递增,所以1.212>0.812成立,故A 正确;对于B ,因为函数y =cos x 在(0,π)上单调递减,且0<4π7<5π8<π, 所以cos4π7>cos 5π8,故B 错误; 对于C ,1.20.8>1.20>1,0.81.2<0.80<1,所以1.20.8>0.81.2,故C 正确; 对于D ,log 520<log 525=2,log 25>log 24=2,所以log 520<log 25,故D 错误. 故选:AC .10.要得到函数f(x)=sin(2x −π3)的图象,只要把( )A .函数y =sin2x 的图象向右平移π6个单位长度B .函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变)C .函数y =sin2x 的图象向左平移5π6个单位长度D .函数y =cos2x 的图象向右平移5π12个单位长度 解:函数y =sin2x 的图象向右平移π6个单位长度得f (x )=sin[2(x −π6)]=sin(2x −π3),故A 正确;对于B ,函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得y =sin(12x −π3),故B 错误;对于C ,函数y =sin2x 的图象向左平移5π6个单位长度得;f (x )=sin[2(x +5π6)]=sin(2x +5π3)=sin(2x −π3),故C 正确; 对于D ,函数y =cos2x 的图象向右平移5π12个单位长度得:f (x )=cos[2(x −5π12)]=cos(2x −5π6)=cos(2x −π3−π2)=sin(2x −π3),故D 正确. 故选:ACD .11.已知函数f (x )=lgx ,任意的x 1,x 2∈(0,+∞),下列结论正确的是( ) A .f(x 1)−f(x 2)=f(x1x 2)B .若x 1≠x 2,则f(x 1)+f(x 2)2>f(x 1+x 22)C .y =f(1−x1+x)是奇函数D .若|f (x 1)|=|f (x 2)|,且x 1≠x 2,则x 1+x 2>2解:对于A ,f (x 1)﹣f (x 2)=lgx 1﹣lgx 2=lg x 1x 2,故A 正确;对于B ,因为f (x )=lgx 在(0,+∞)上是增函数,且x 1≠x 2,所以f(x 1)+f(x 2)2=lg √x 1x 2,f (x 1+x 22)=lg x 1+x 22,x 1+x 22>√x 1x 2,故B 错误;对于C ,f (1−x 1+x )=lg 1−x 1+x ,f (1+x 1−x )=lg 1+x 1−x ,因为f (1−x 1+x )+f (1+x 1−x )=lg 1−x 1+x +lg 1+x 1−x =lg [1−x 1+x ⋅1+x1−x ]=lg 1=0,故y =f (1−x1+x)是奇函数,故C 正确;对于D ,由x 1≠x 2得f (x 1)=﹣f (x 2),即lgx 1+lgx 2=0,即lg (x 1x 2)=0,所以x 1x 2=1,由基本不等式得x 1+x 2⩾2×1=2,因为x 1≠x 2,所以等号取不到,所以x 1+x 2>2,故D 正确. 故选:ACD .12.已知函数f (x )=2|cos x |﹣cos|x |,则( ) A .函数f (x )的最大值为3B .函数f (x )的最小正周期为πC .函数f (x )的图象关于直线x =π对称D .函数f (x )在(2π3,3π2)上单调递减 解:对于A ,根据余弦函数的性质,可知当x =π时,f (x )=2|cos π|﹣cos|π|=2+1=3,达最大值,故A 正确; 对于B ,因为f (π3)=12,f (4π3)=32,可得f(π3)≠f(π3+π),故函数f (x )的最小正周期不是π,B 项不正确;对于C ,因为cos|(2π﹣x )|=cos (2π﹣x )=cos x =cos|x |, 所以f (2π﹣x )=2|cos (2π﹣x )|﹣cos|(2π﹣x )|=2|cos x |﹣cos|x |,可得f (2π﹣x )=f (x ),所以f (x )的图象关于直线x =π对称,故C 正确; 对于D ,因为在(2π3,3π2)上f (x )有最大值f (π)=2, 所以f (x )在(2π3,3π2)上先增后减,故D 不正确. 故选:AC .三、填空题:本题共4小题,每小题5分,共20分. 13.求值:log 48=32. 解:log 48=lo g 2223=32.故答案为:32.14.已知cos α<0,且tan α>0,则角α是第 三 象限角.解:∵cos α<0,∴角α是第二三象限的角或者在x 轴的非正半轴上,∵tan α>0,∴角α是第一三象限的角,则角α是第三象限的角. 故答案为:三.15.已知函数f (x )=sin (ωx )在[−π3,π4]上单调递增,则ω的最大值是 32 .解:∵函数f (x )=sin (ωx )在[−π3,π4]上单调递增,∴−π3•ω≥−π2 且π4•ω≤π2,求得ω≤32,则ω的最大值为32,故答案为:32.16.已知函数f (x )是R 上的偶函数,f (x +1)为奇函数,则函数f (x )的最小正周期为 4 . 解:因为函数f (x )是R 上的偶函数,所以f (﹣x )=f (x ), 因为f (x +1)为奇函数,所以f (x )的图象关于(1,0)对称,即f (2﹣x )+f (x )=0, 所以f (2+x )+f (﹣x )=f (2+x )+f (x )=0, 所以f (2+x )=﹣f (x ),所以f (4+x )=f (x ),则函数f (x )的最小正周期为4. 故答案为:4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知tan α=2,计算: (1)sinα+cosα5cosα−2sinα;(2)cos αsin α.解:(1)因为tan α=2,所以sinα+cosα5cosα−2sinα=tanα+15−2tanα=2+15−2×2=3;(2)cos αsin α=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=222+1=25. 18.(12分)设a 为实数,函数f (x )=ax 2﹣(a ﹣1)x +a . (1)若函数f (x )有且只有一个零点,求a 的值; (2)若不等式f (x )>0的解集为空集,求a 的取值范围. 解:(1)根据题意,f (x )=ax 2﹣(a ﹣1)x +a , 当a =0时,f (x )=x ,有且只有一个零点,符合题意,当a ≠0时,若f (x )有且只有一个零点,即方程ax 2﹣(a ﹣1)x +a =0有且只有1个根, 则有Δ=(a ﹣1)2﹣4a 2=0,解可得a =﹣1或13,综合可得:a =0或﹣1或13;(2)f(x)>0即ax2﹣(a﹣1)x+a>0,当a=0时,f(x)>0即x>0,其解集不是空集,不符合题意;当a≠0时,f(x)>0即ax2﹣(a﹣1)x+a>0,若其解集为∅,必有{a>0Δ=(a−1)2−4a2≤0,解可得a≤﹣1,即a的取值范围为(﹣∞,﹣1].19.(12分)已知函数f(x)=2sin(2x+π6).(1)用“五点法”画出函数f(x)在一个周期内的简图;(2)若关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,求t的取值范围.解:(1)列表:描点,连线,画出f(x)在[0,π]上的大致图像如图:;(2)由于x∈[0,π2],所以2x+π6∈[π6,7π6],所以f(x)=2sin(2x+π6)∈[−12,1],由于关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,所以t∈[−12,12).20.(12分)如图1,有一块半径为2(单位:cm)的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在圆周上.为了求出等腰梯形ABCD的周长y(单位:cm)的最大值,小明和小亮两位同学分别给出了如下两种方案:(1)小明的方案:设梯形的腰长为x(单位:cm),请你帮他求y与x之间的函数关系式,并求出梯形周长的最大值;(2)小亮的方案:如图2,连接AC,设∠BAC=θ,请你帮他求y与θ之间的函数关系式,并求出梯形周长的最大值.解:(1)作DE⊥AB于E,连接BD,因为AB为直径,所以∠ADB=90°,在Rt△ADB与Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,所以Rt△ADB∽Rt△AED,所以ADAB=AEAD,即AE=AD2AB;又AD =x ,AB =4,所以AE =x 24;所以CD =AB ﹣2AE =4﹣2×x 24=4−x 22, 于是y =AB +BC +CD +AD =4+x +4−x 22+x =−12x 2+2x +8, 由于AD >0,AE >0,CD >0,所以x >0,x 24>0,4−x 22>0,解得0<x <2√2;所以函数为y =−12x 2+2x +8,x ∈(0,2√2).当x =−22×(−12)=2时,y 取得最大值为−12×4+2×2+8=10.(2)过点C 作CF 垂直于AB 于点F ,因为AB 是半圆的直径,所以∠ACB =90°,AB =4, 所以BC =AB sin θ=4sin θ,又因为∠BCF =∠CAB =θ,所以BF =BC sin θ=4sin 2θ, 所以CD =AB ﹣2BF =4﹣8sin 2θ,所以梯形ABCD 的周长为y =AB +CD +2BC =4+4﹣8sin 2θ+8sin θ=﹣8sin 2θ+8sin θ+8,且θ∈(0,π4),即y =﹣8sin 2θ+8sin θ+8,θ∈(0,π4);设t =sin θ,则t ∈(0,√22),所以y =﹣8t 2+8t +8,当t =12时,y 取得最大值为﹣8×14+8×12+8=10,即当θ=π6时,y 取得最大值10.21.(12分)已知函数f (x )=log 2(4x ﹣a •2x +a +2)(a ∈R ). (1)若a =5,解不等式f (x )>0;(2)若函数f (x )在区间[﹣1,+∞)上的最小值为﹣1,求a 的值. 解:(1)当a =5时,f(x)=log 2(4x −5⋅2x +7),不等式为log 2(4x −5⋅2x +7)>0,则4x ﹣5•2x +7>1,即4x ﹣5•2x +6>0, 设t =2x >0,不等式化为t 2﹣5t +6>0,解得0<t <2或t >3,故x <1或x >log 23, 故不等式的解集为(﹣∞,1)∪(log 23,+∞). (2)设g (x )=4x ﹣a •2x +a +2,根据题意知,当x∈[﹣1,+∞)时,g(x)min=1 2,设t=2x≥12,函数化为h(t)=t2﹣at+a+2,其对称轴为t=a2,当a2≤12,即a≤1时,ℎ(t)min=ℎ(12)=94+12a=12,解得a=−72,符合题意;当a2>12,即a>1时,ℎ(t)min=ℎ(a2)=a+2−a24=12,解得a=2+√10或a=2−√10(舍),故a值为−72或2+√10.22.(12分)设m,t为实数,函数f(x)=lnx+x+m和g(x)=x2﹣tx﹣1.(1)若函数f(x)在区间(2,e)上存在零点,求m的取值范围;(2)设x1∈{x|F(x)=0},x2∈{x|G(x)=0},若存在x1,x2,使得|x1﹣x2|≤1,则称F(x)和G(x)“零点贴近”.当m=﹣1时,函数f(x)与g(x)“零点贴近”,求t的取值范围.解:(1)令f(x)=0,即f(x)=lnx+x+m=0,得m=﹣(lnx+x).令h(x)=﹣(lnx+x),易知g(x)在(0,+∞)上单调递减,h(2)=﹣(ln2+2),h(e)=﹣(lne+e)=﹣(1+e),所以h(x)在(2,e)上的值域为(﹣1﹣e,﹣ln2﹣2),所以m的取值范围(﹣1﹣e,﹣ln2﹣2).(2)当m=﹣1时,f(x)=lnx+x﹣1,易知函数f(x)在(0,+∞)上单调递增,令f(x)=lnx+x﹣1=0,易知f(1)=ln1+1﹣1=0,所以x1=1.由|x1﹣x2|≤1,得|1﹣x2|≤1,解得0≤x2≤2,即x2∈[0,2].要使函数f(x)与g(x)“零点贴近”,则函数g(x)在[0,2]上有零点,对于g(x)=x2﹣tx﹣1,Δ=t2+4>0,所以g(x)=0有两个零点,而g(0)=﹣1<0,所以g(2)≥0,即22﹣2t﹣1≥0,解得t≤3 2.故实数t的取值范围是(−∞,32 ].。
江苏省扬州市2020-2021学年高一上学期期末数学试题【含答案解析】
![江苏省扬州市2020-2021学年高一上学期期末数学试题【含答案解析】](https://img.taocdn.com/s3/m/3f1a3fae01f69e31433294f8.png)
高一数学(全卷满分150分,考试时间120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合要求).1.设集合U = {0,1,2,3}, A = {0」,3}, 8 = {1,2},则40(。
,3)=()A. VxeR, x<0B. VxeR > x>0C. eR , x<0D. R , x>033 .己知 sin(7r-a) =二,,则 coso=( )3 3 A, - B. 一一 C5 54 .若方程/ 一 _ =0的解在区间伙,A + l ](AeZ )内,则k 的值是( \2)A. -1B. 0C. 1D. 26 .设函数/(x ) = sin 2x-—,将函数的图象向左平移9(°>0)个单位长度,得到函数g (x )的k 6)图象,若g")为偶函数,则。
的最小值是(7 .计算器是如何计算sinx, cosx,犬,Inx, «等函数值的?计算器使用的是数值计算法,其中一种 方法是用容2020-2021学年度第 学期期末检测试 A. {0,3} B. {1,3}C.{1}D.{0}2.命题 “3xwR, x<0M的否定是(2020.1-iB.A. D.5.函数/(刈=不产”一在[-巴4]的图象大致为( 2*+cosx易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如v3 V5 r7V2/ asinx = x-- + 一—一 + ・・・,cosx = 1-- + ——一十・・,,,其中〃! = Ix2x3x・・・x〃・英国数学家 3! 5! 7! 2! 4! 6!泰勒(B. Taylor, 1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的sinx和cosx 的值也就越精确.运用上述思想,可得到COS1的近似值为( )A. 0.50B. 0.52C. 0.54D. 0.568.在必修第一册教材”8. 2. 1几个函数模型的比较”一节的例2中,我们得到如下结论:当0<x<2或C . n-cos—x>4时,2v>x2;当2cx<4时,T <x2,请比较“nlogQ, /? = sin-. c = 2 3 的大小关系( )A. a>b>cB. b>a>cC. c>a>bD. b>c>a二、多项选择题(本大题共4小题,每小题5分,共如分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得。
2023-2024学年江苏省南通市海安市高一(上)期末数学试卷【答案版】
![2023-2024学年江苏省南通市海安市高一(上)期末数学试卷【答案版】](https://img.taocdn.com/s3/m/57e1526191c69ec3d5bbfd0a79563c1ec5dad790.png)
2023-2024学年江苏省南通市海安市高一(上)期末数学试卷一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x=2k﹣1,k∈Z},B={﹣1,0,1},则A∩B=()A.{﹣1,1}B.{1}C.{0,1}D.{﹣1,0,1}2.命题:“∃x∈R,x2+2x≤0”的否定是()A.∀x∈R,x2+2x≤0B.∃x∈R,x2+2x≥0C.∀x∈R,x2+2x>0D.∃x∈R,x2+2x>03.若α的终边与−π6的终边垂直,且0<α<π,则cosα=()A.−12B.12C.−√32D.√324.已知某种放射性元素在一升液体中的放射量c(单位:Bq/L)与时间t(单位:年)近似满足关系式c=k•a−t12(a>0且a≠1).已知当t=12时,c=100;当t=36时,c=25,则据此估计,这种放射性元素在一升液体中的放射量c为10时,t大约为()(参考数据:log25=2.32)A.50B.52C.54D.56 5.函数y=|x﹣2|+|2x﹣2|的最小值为()A.0B.1C.32D.26.已知函数f(x)在R上的图象不间断,则“∀x∈(0,+∞),f(x)>f(0)”是“f(x)在(0,+∞)上是增函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7.已知a=sin1,b=cos1,c=tan1,d=1,则()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.b<a<d<c8.已知函数y=f(x)+x2为偶函数,y=f(x)﹣2x为奇函数,则f(log23)=()A.53B.98C.32D.3二、选择题:本大题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.函数y=lgx−12x+1的零点所在的区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.已知x >0,则( ) A .x (2﹣x )的最大值为1 B .3−x −1x的最大值为1C .2√x 2+4的最小值为2D .x +4x+1的最小值为3 11.将函数y =cos2x 的图象沿x 轴向右平移π4个单位长度,再向上平移12个单位长度,得到函数g (x )的图象,则( )A .函数y =g (x )的周期为πB .g (x )在(0,π2)上单调递增C .g (x )的图象关于直线x =3π4对称 D .g (x )的图象关于点(0,12)中心对称12.设定义在R 上的函数f (x )满足:①当x <0时,f (x )<1;②f (x )+f (y )=f (x +y )+1,则( ) A .f (0)=1B .f (x )为减函数C .f (x )+f (﹣x )=2D .f (2x )+f (2﹣x )≥2f (1)三、填空题:本大题共4小题,每小题5分,共20分。
江苏省南京高一上学期期末数学试题(解析版)
![江苏省南京高一上学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/5b90510e82c4bb4cf7ec4afe04a1b0717fd5b32d.png)
一、单选题1.已知,则( ){}R,{13},2U A x x B x x ==-<<=≤∣∣()U A B ⋃=ðA . B . (](),12,-∞-+∞ ()[),12,-∞-⋃+∞C . D .[)3,+∞()3,+∞【答案】C【分析】由并集和补集的概念即可得出结果.【详解】∵ {}R,{13},2U A xx B x x ==-<<=≤∣∣∴,则, ),3(A B ⋃=-∞,()[)3U A B ⋃=+∞ð故选:C.2.已知,则( ) 22log 3,log 5a b ==18log 15=A .B .21a ba +-12a ba++C . D .1a b -+-1a b +-【答案】B【分析】利用对数的换底公式和对数的运算性质进行运算求解即可. 【详解】,2221822log 15log 3log 5log 15log 1812log 312a ba++===++故选:B .3.设为实数,且,则“”是“的( ) a b c d ,,,c d <a b <”a c b d -<-A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】根据充分条件、必要条件的定义判断即可.【详解】解:由不能推出,如,,,, a b <a c b d -<-2a =3b =0c =1d =满足,但是,故充分性不成立;a b <a c b d -=-当时,又,可得,即,故必要性成立; a c b d -<-c d <a c c b d d -+<-+a b <所以“”是“的必要不充分条件. a b <”a c b d -<-故选:B.4.函数的零点所在的大致区间为( )()3ln f x x x=-A . B . C . D .()0,1()1,2()2,e ()e,3【答案】D【分析】由题意可知在递增,且,由零点存在性定理即可得出答案. ()f x ()0,∞+()()e 0,30f f 【详解】易判断在递增,. ()f x ()0,∞+()()3e lne 0,3ln310ef f =-=-由零点存在性定理知,函数的零点所在的大致区间为.()3ln f x x x=-()e,3故选:D.5.已知,则的值是( )π1sin 63x ⎛⎫+= ⎪⎝⎭25πsin()2cos (6π3x x -+-A .B .C .D 59-1959【答案】C 【分析】令,代入所求式子,结合诱导公式化简即可得出结果. π6t x =+【详解】令,则,, π6t x =+π6=-x t 1sin 3t =则. 2225π125sin()2cos ()sin(π)2cos ()sin 2sin 63399ππ2x x t t t t -+-=-+-=+=+=故选:C.6.将函数的图象向右平移个单位长度,在纵坐标不变的情况下,再把平移()π2sin 43⎛⎫=- ⎪⎝⎭f x x π3后的函数图象上每个点的横坐标变为原来的2倍,得到函数的图象,则函数所具有的性()g x ()g x 质是( ) A .图象关于直线对称3x π=B .图象关于点成中心对称π,06⎛⎫⎪⎝⎭C .的一个单调递增区间为()g x 5ππ,44⎡⎤-⎢⎥⎣⎦D .曲线与直线 ()g x y =π6【答案】D【分析】先利用题意得到,然后利用正弦函数的性质对每个选项进行判断即可()π2sin 23⎛⎫=+ ⎪⎝⎭g x x 【详解】函数的图象向右平移个单位长度得到()f x π3,ππ5ππ2sin 42sin 42sin 43333⎛⎫⎛⎫⎛⎫⎛⎫=--=-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭y x x x 纵坐标不变,横坐标变为原来的2倍得到,()π2sin 23⎛⎫=+ ⎪⎝⎭g x x对于A ,因为ππsin 2sin π01,33⎛⎫⨯+==≠± ⎪⎝⎭所以直线不是的对称轴,故错误;3x π=()g x A对于B , ππ2πsin 2sin0,633⎛⎫⨯+==≠ ⎪⎝⎭所以图象不关于点成中心对称,故错误;π,06⎛⎫⎪⎝⎭B 对于C ,当,则, 5ππ,44⎡⎤∈-⎢⎥⎣⎦x π13π5π2,366⎡⎤+∈-⎢⎥⎣⎦x 因为正弦函数在不单调,故不是的一个单调递增区间,故错sin y x =13π5π,66⎡⎤-⎢⎥⎣⎦5ππ,44⎡⎤-⎢⎥⎣⎦()g x C 误;对于D ,当则或, ()g x =sin 23⎛⎫+=⎪⎝⎭x πππ22π33+=+x k 2π2π,Z 3+∈k k 则或,则相邻交点距离最小值为,故D 正确πx k =Z π6,+∈k k ππ6故选:D. 7.函数的图象大致为( ) ()22cos 1x xf x x =+A . B .C .D .【答案】D【分析】利用函数的奇偶性及在上的函数值正负逐个选项判断即可.()f x π0,2⎛⎫⎪⎝⎭【详解】因为,定义域为R , ()22cos 1x xf x x =+所以, ()222()cos()2cos ()()11x x x xf x f x x x ---==-=--++所以为奇函数,又因为时,所以由图象知D 选项正确,()f x π0,2x ⎛⎫∈ ⎪⎝⎭()0f x >故选D .8.高斯是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设,用x ∈R 表示不超过的最大整数,则称为高斯函数.例如:.已知函数[]x x []y x =][3.64,3.63⎡⎤-=-=⎣⎦,则函数的值域是( ) ()1e 21e xxf x =-+()()y f x f x =+⎡⎤⎣-⎡⎤⎦⎣⎦A . B .C .D .{}1,0-{}0{}0,1{}1,0,1-【答案】A【分析】依题意可得,再根据指数函数的性质讨论,和时,函数()1121e x f x =-++0x >0x =0x <的单调性与值域,即可得出答案.【详解】因为,定义域为, ()1e 11e 11111121e 21e 21e 21e x x x x xx f x +-⎛⎫=-=-=--=-+⎪++++⎝⎭R 因为在定义域上单调递增,则在定义域上单调递减, 1e x y =+11e xy =+所以在定义域上单调递减,()1121e xf x =-++R 时,, 0x <()()()111e 0,1,,1,0,,01e 22xx f x f x ⎛⎫⎛⎫⎡⎤∈∈∈= ⎪ ⎪⎣⎦+⎝⎭⎝⎭()00f ⎡⎤=⎣⎦时,; 0x >()()()111e 1,,0,,,0,11e 22xx f x f x ∞⎛⎫⎛⎫⎡⎤∈+∈∈-=- ⎪ ⎪⎣⎦+⎝⎭⎝⎭则时,0x >()()101,f x f x ⎡⎤⎡⎤+-=-+=-⎣⎦⎣⎦时,,0x <()()()011f x f x ⎡⎤⎡⎤+-=+-=-⎣⎦⎣⎦时,.0x =()()000f x f x ⎡⎤⎡⎤+-=+=⎣⎦⎣⎦故选:A.【点睛】关键点睛:本题解题关键在于理解题中高斯函数的定义,才能通过研究的性质来研()f x 究的值域,突破难点. ()()y f x f x =+⎡⎤⎣-⎡⎤⎦⎣⎦二、多选题9.下列说法正确的是( ) A .若为正整数,则 ,a b n >n n a b >B .若,则0,0b a m >>>a m ab m b+>+C .22222a ba b++≥D .若,则0απ<<0sin 1α<<【分析】利用不等式性质、基本不等式及正弦函数的图象性质逐个选项判断即可得到答案. 【详解】对于A ,若,则,故A 错误; 1,1,2a b n ==-=n n a b =对于B ,时,,故B 正确; 0,0b a m >>>a m aab bm ab am b a b m b+>⇔+>+⇔>+对于C ,由,则,当且仅当时取等号,故C 正确;20,20a b >>22222a b a b ++≥=⨯a b =对于D ,当时,,故D 错误; π2α=πsin 12=故选:BC .10.设为实数,已知关于的方程,则下列说法正确的是( )m x ()2310mx m x +-+=A .当时,方程的两个实数根之和为0 3m =B .方程无实数根的一个必要条件是1m >C .方程有两个不相等的正根的充要条件是 01m <<D .方程有一个正根和一个负根的充要条件是 0m <【答案】BCD【分析】逐项分析每个选项方程根的情况对应的参数m 满足的不等式,解出m 的范围,判断正误. 【详解】对于A 选项,时无实根,A 错误;3m =2310x +=对于B 选项,当时方程有实根,当时,方程无实根则,解得0m =0m ≠2(3)40m m --<19m <<,一个必要条件是,B 正确;1m >对于C 选项,方程有两个不等正根,则,,,,解得; 0m ≠0∆>30mm ->10m>01m <<对于D 选项,方程有一个正根和一个负根,则,,解得,D 正确; 0m ≠10m<0m <故选:BCD.11.设,已知 ) 0,0a b >>22,a b M N ab +=A .有最小值 B .没有最大值M MC .D .N N 【答案】ABD【分析】由均值不等式分别求出的最值,即可得出答案. ,M N 【详解】时正确, ,0a b >()[)10,,2,AB b b a t M t a a b t∞∞=∈+=+=+∈+,时错误,D 正确; 0,0a b >>2a b +C ≥12.设为正实数,为实数,已知函数,则下列结论正确的是( ) ωa ()()4sin f x x a ωϕ=++A .若函数的最大值为2,则()f x 2a =-B .若对于任意的,都有成立,则 x ∈R ()()πf x f x +=2ω=C .当时,若在区间上单调递增,则的取值范围是 π3ϕ=()f x ππ,62⎡⎤-⎢⎥⎣⎦ω10,3⎛⎤ ⎥⎝⎦D .当,函数在区间上至少有两个零点,则的取值a =-ϕ∈R ()f x π0,2⎡⎤⎢⎥⎣⎦ω范围是 [)4,+∞【答案】ACD【分析】对A :根据正弦函数的有界性分析判断;对B :利用函数的周期的定义分析判断;对C :以为整体,结合正弦函数的单调性分析判断;对D :以为整体,结合正弦函数的性质x ωϕ+x ωϕ+分析判断.【详解】A 选项,由题意,则,A 正确; 42a +=2a =-B 选项,若,则的周期为, ()()πf x f x +=()f x π设的最小正周期为,则, ()f x T ()*2π=πkT kk ωN =Î解得,B 错误;()*2ωk k N =ÎC 选项,当时, π3ϕ=∵,则,ππ,62x ⎡⎤∈-⎢⎥⎣⎦πππππ,36323x ωωω⎡⎤+∈-++⎢⎥⎣⎦若在区间上单调递增,则,()f x ππ,62⎡⎤-⎢⎥⎣⎦0πππ632πππ232ωωω⎧⎪>⎪⎪-+≥-⎨⎪⎪+≤⎪⎩解得,C 正确;10,3ω⎛⎤∈ ⎥⎝⎦选项,由题意可得,对,在上至少两个零点,D ()sin x ωϕ+=ϕ∀∈R π0,2⎡⎤⎢⎥⎣⎦∵,则,π0,2x ⎡⎤∈⎢⎥⎣⎦π,2x ωϕϕωϕ⎡⎤+∈+⎢⎥⎣⎦若对,在上至少两个零点,则,解得,D 正确;ϕ∀∈R π0,2⎡⎤⎢⎥⎣⎦π2π2ωϕϕ⎛⎫+-≥ ⎪⎝⎭4ω≥【点睛】方法点睛:求解函数y =A sin(ωx +φ)的性质问题的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式.(2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解. ①令ωx +φ=k π+(k ∈Z ),可求得对称轴方程. π2②令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标.③将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. (3)讨论意识:当A 为参数时,求最值应分情况讨论A >0,A <0.三、填空题13.命题“”的否定是__________. 21,20x x ∃≥-<【答案】21,20x x ∀≥-≥【分析】根据特称命题的否定,可得答案. 【详解】由题意,则其否定为. 21,20x x ∀≥-≥故答案为:. 21,20x x ∀≥-≥14.已知,则__________.2212sin cos 2sin cos θθθθ+=-tan θ=【答案】3【分析】将已知式中分子,再分子分母同时除以,解方程即可得出答案.221sin cos θθ=+2cos θ【详解】由题意,222222sin 2sin cos cos tan 2tan 12sin cos tan 1θθθθθθθθθ++++==--即,则. tan 12tan 1θθ+=-tan 3θ=故答案为:3.15.设函数,则满足的的取值范围是__________.21,0()3,0x x x f x x +≤⎧=⎨>⎩3()()32f x f x +->x 【答案】()1,+∞【分析】结合函数解析式,对分三种情况讨论,分别计算可得.x 【详解】当时,,则在0x ≤()33212141122f x f x x x x ⎛⎫⎛⎫+-=++-+=-≤- ⎪ ⎪⎝⎭⎝⎭()332f x f x ⎛⎫+-> ⎪⎝⎭当时,,在单调递增,时302x <≤()3332132222x x f x f x x x ⎛⎫⎛⎫+-=+-+=+- ⎪ ⎪⎝⎭⎝⎭R 1x =,则的解集为;132123+⨯-=()332f x f x ⎛⎫+-> ⎪⎝⎭31,2⎛⎤⎥⎝⎦当时,,则在时恒成立;32x >()33022*******x x f x f x -⎛⎫+-=+>+> ⎪⎝⎭()332f x f x ⎛⎫+-> ⎪⎝⎭32x >综上,的解集为.()332f x f x ⎛⎫+-> ⎪⎝⎭()1,+∞故答案为:.()1,+∞16.已知函数是定义在上不恒为零的偶函数,且对于任意实数都有()f x R x ()1()(1)x f x xf x -=-成立,则__________.7(())2f f =【答案】0【分析】根据解析式求出,进而得到若,则,从而求出.102f ⎛⎫= ⎪⎝⎭()10f x -=()0f x =7(())02f f =【详解】由,令可得,今可得,()1()(1)x f x xf x -=-0x =()00f =12x =11112222f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭由是偶函数可得,则, ()f x 1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭102f ⎛⎫= ⎪⎝⎭时,若,则,0,1x ≠()10f x -=()0f x =则,135702222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则.7(((0)02f f f ==故答案为:0.四、解答题17.设,已知集合. m ∈R (){}2321,2201x A xB x x m x m x +⎧⎫=<=+--<⎨⎬-⎩⎭∣∣(1)当时,求;1m =A B ⋃(2)若“”是“”的必要条件,求的取值范围.x B ∈x A ∈m 【答案】(1)3,12⎛⎫- ⎪⎝⎭(2) [)3,+∞【分析】(1)求出集合,由并集的定义即可得出答案.,A B(2)由“”是“”的必要条件可得,则,解不等式即可得出答案. x B ∈x A ∈A B ⊆322m -≤-【详解】(1)由可得,即,则, 3211x x +<-2301x x +<-()()1230x x -+<3,12A ⎛⎫=- ⎪⎝⎭时,.()(){210},1B x x m x m =+-<=∣13,1,,122B A B ⎛⎫⎛⎫=-⋃=- ⎪ ⎪⎝⎭⎝⎭(2)由“”是“”的必要条件可得, x B ∈x A ∈A B ⊆则,则,实数的取值范围是. 322m -≤-3m ≥m [)3,+∞18.设,计算下列各式的值: tan 2α=(1);2sin cos 3sin cos αααα+-(2).22sin sin cos ααα-【答案】(1)1 (2)5【分析】(1)所求表达式分子分母同时除以,代入求解即可;cos α(2)将分子看成,所求表达式分子分母同时除以,代入求解即可;2()222sin cos αα+2cos α【详解】(1)原式;2tan 122113tan 1321αα+⨯+===-⨯-(2)原式. ()22222222sin cos 2tan 22225sin sin cos tan tan 22αααααααα++⨯+====---19.设函数和的定义域为,若是偶函数,是奇函数,且()f x ()g x ()1,1-()f x ()g x .()()2lg(1)f x g x x -=-(1)求函数和的解析式;()f x ()g x (2)判断在上的单调性,并给出证明.()f x ()0,1【答案】(1), ()lg(1)lg(1)f x x x =-++()()()lg 1lg 1g x x x =+--(2)单调递减,证明见解析【分析】(1)根据函数奇偶性构造关于和得方程组,进而求出它们的解析式; ()f x ()g x (2)根据函数单调性定义进行证明.【详解】(1)由,可得,()()2lg(1)f x g x x -=-()()2lg(1)f x g x x ---=+由为偶函数,为奇函数,可得, ()f x ()g x ()()2lg(1)f x g x x +=+则,;()lg(1)lg(1)f x x x =-++()()()lg 1lg 1g x x x =+--(2)由(1)得()2lg(1)f x x =-在单调递减,证明如下: ()f x ()0,1取任意,1212,(0,1),x x x x Î< ()()22211212221lg(1)lg(1)lg 1x f x f x x x x --=---=-由,可得,则, 1201x x <<<2212110x x ->->2122111x x ->-则, ()()2112221lg 01x f x f x x --=>-则,则在单调递减.()()12fx f x >()f x ()0,120.如图所示,有一条“L ”,河道均足够长.现过点修建一条长为的栈道,开辟出直角三角形区域(图中)养殖观赏鱼,且D m l ABOAB A .点在线段上,且.线段将养殖区域分为两部分,其中上方养殖金OAB θ∠=H AB OH AB ⊥OH OH 鱼,下方养殖锦鲤.OH(1)当养殖观赏鱼的面积最小时,求的长度;l (2)若游客可以在河岸与栈道上投喂金鱼,在栈道上投喂锦鲤,且希望投喂锦鲤的道路OA AH HB ,求的取值范围. 1θ【答案】(1)(2). ππ,42⎡⎫⎪⎢⎣⎭【分析】(1)过作垂直于,求得,从而得出养殖观赏D ,DM DN ,OAOB AM BN θ=鱼的面积,利用基本不等式可求得最小时的值,进而113tan 2tan OAB S OA OB θθ=⋅=+A OAB S A θ求得的长度;l (2)由,可得,则,由题意π2AOB OHA ∠=∠=BOH θ∠=,,tan sin tan OH OH OA AH BH OH θθθ===,则,化切为弦可得即可求得1BH OA AH -+tan 111sin tan θθθ≥+1cos θ≥π0,2θ⎛⎫∈ ⎪⎝⎭结果.【详解】(1)过作垂直于,垂足分别为,D,DM DN ,OA OB ,M N则DM ON DN OM ====,tan tan DM AMBN DN θθθ====养殖观赏鱼的面积, )1113tan 22tan OAB S OA OB θθθ=⋅==+A 由可得,则,当且仅当时取等号, π0,2θ⎛⎫∈ ⎪⎝⎭tan 0θ>13tan tanθθ+≥tanθ=π6θ=则最小时,,此时l 的长度为; OAB S A π6θ=sin cos DM DN l θθ=+==(2)由,可得,π2AOB OHA ∠=∠=BOH θ∠=则,,,tan sin tan OH OH OA AH BH OH θθθ===由题意,则, 1BH OA AH ≥+tan 111sin tan θθθ≥-+而, ()()22sin tan sin 1cos 1cos 1111cos cos 1cos cos 1cos cos sin tan sin θθθθθθθθθθθθθθ-====-++++则可得,则. 1cos θ≥π0,2θ⎛⎫∈ ⎪⎝⎭cos 0θ>cos θ≤ππ,42θ⎡⎫∈⎪⎢⎣⎭21.设为实数,已知函数,. a ()122x x f x =-()()ln ln 2g x x x a =⋅-+(1)若函数和的定义域为,记的最小值为,的最小值为.当()f x ()g x [)1,+∞()f x 1M ()g x 2M 时,求的取值范围;21M M ≤a (2)设为正实数,当恒成立时,关于的方程是否存在实数解?若存在,x ()0g x >x ()()0f g x a +=求出此方程的解;若不存在,请说明理由.【答案】(1) 5,2⎛⎤-∞ ⎥⎝⎦(2)不存在,理由见解析【分析】(1)利用指数函数的单调性及二次函数的性质,分别求出和的最小值,()f x ()g x 12,M M 然后解不等式即可;(2)利用二次函数的性质,求得的最小值为,由题意可得,当时,()g x 1a -1a >()0g x >()21g x >,,可得,即可得出结论. ()112g x <()()0f g x a +>【详解】(1)当时,函数和均单调递增,所以函数单调递增,故1x ≥2x y =12x y =-()122x x f x =-当时,取最小值,则; 1x =()f x 32132M =当时,,,1x ≥ln 0x ≥()()2ln 11g x x a =-+-则当,即时,取最小值,即,ln 10x -=e x =()g x 1a -21M a =-由题意得,则,即的取值范围是; 312a -≤52a ≤a 5,2⎛⎤-∞ ⎥⎝⎦(2)当时,,,0x >ln R x ∈()()2ln 11g x x a =-+-则当,即时,取最小值为,ln 10x -=e x =()g x 1a -则恒成立时,有,即,()0g x >10a ->1a >当时,,, ()0g x >()21g x >()112g x <则,则,()()()()1202g x g x f g x =->()()0f g x a +>故关于的方程不存在实数解.x ()()0f g x a +=22.设,函数. a ∈R ()2πsin cos ,,π2f x x x a x ⎛⎫=-+∈ ⎪⎝⎭(1)讨论函数的零点个数;()f x (2)若函数有两个零点,求证:. ()f x 12,x x 123π2x x +<【答案】(1)答案见解析(2)证明见解析【分析】(1)利用分离参数法分类讨论函数的零点个数;()f x (2)利用根与系数关系和三角函数单调性证明. 123π2x x +<【详解】(1), ()2cos cos 1f x x x a =--++令,即,()0f x =2cos cos 1x x a +=+时,即, π,π2x ⎛⎫∈ ⎪⎝⎭()()21cos 1,0,,0,04t x t t f x ⎡⎫=∈-+∈-=⎪⎢⎣⎭21t t a +=+或即时,无解; 10a +≥114a +<-[)5,1,4a ∞∞⎛⎫∈--⋃-+ ⎪⎝⎭21t t a +=+即时,仅有一解,此时仅有一解; 114a +=-54a =-21t t a +=+12t =-x 2π3即时,有两解, 1104a -<+<514a -<<-21t t a +=+12t =-有两个零点; 1cos 2x =-()f x 综上,时,无零点, [)5,1,4a ∞∞⎛⎫∈--⋃-+ ⎪⎝⎭()f x 时,有一个零点, 54a =-()f x 时,有两个零点; 5,14a ⎛⎫∈-- ⎪⎝⎭()f x (2)有两个零点时,令,则为两解,()f x 1122cos ,cos t x t x ==12,t t 21t t a +=+则,则,121t t +=-12cos cos 1x x +=-则,221122cos 2cos cos cos 1x x x x ++=由可得, 12π,,π2x x ⎛⎫∈ ⎪⎝⎭12cos 0,cos 0x x <<则,则,122cos cos 0x x >2212cos cos 1x x +<则, 2221223πcos sin cos 2x x x ⎛⎫<=- ⎪⎝⎭由可得, 2π,π2x ⎛⎫∈ ⎪⎝⎭223ππ3π,π,cos 0222x x ⎛⎫⎛⎫-∈-< ⎪ ⎪⎝⎭⎝⎭则,由在递减, 123πcos cos 2x x ⎛⎫>- ⎪⎝⎭cos y x =π,π2⎛⎫ ⎪⎝⎭可得,则. 123π2x x <-123π2x x +<【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.。
江苏省南京市高一上学期期末数学试题(解析版)
![江苏省南京市高一上学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/e9e11f19580102020740be1e650e52ea5518ce0c.png)
一、单选题1.函数的定义域为( ) ()ln 1y x =+A . B . ()1,+∞()1,-+∞C . D .[)1,-+∞(),1-∞-【答案】B【分析】根据对数的真数大于零可得出关于x 的不等式,即可解得函数的定义域. ()ln 1y x =+【详解】令,解得, 10x +>1x >-故函数的定义域为. ()ln 1y x =+()1,-+∞故选:B.2.“”是“”的( ) 1x >21x >A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据充分条件与必要条件的定义判断即可.【详解】解:因为,则,但是不一定有,所以“”是“”成立的充分不1x >21x >21x >1x >1x >21x >必要条件. 故选:A .3.在某个物理实验中,测得变量x 和变量y 的几组数据,如下表: x0.500.99 2.01 3.98y 0.99-0.010.982.00则下列选项中对x ,y 最适合的拟合函数是( )A . B . C .2y x =21y x =-22y x =-D .2log y x =【答案】D【分析】根据所给数据,代入各函数,计算验证可得结论. 【详解】解:根据,,代入计算,可以排除; 0.50x =0.99y =-A 根据,,代入计算,可以排除、; 2.01x =0.98y =B C 将各数据代入检验,函数最接近,可知满足题意 2log y x =故选:.D【点睛】本题考查了函数关系式的确定,考查学生的计算能力,属于基础题.4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形天地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为( )(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A .4B .5C .6D .7【答案】C【分析】设中周的半径是,外周的半径是,圆心角为,根据中周九十二步,外周一百二十1R 2R α二步,径五步,列关系式即可.【详解】设中周的半径是,外周的半径是,圆心角为,,解得.1R 2R α1221921225R R R R αα=⎧⎪=⎨⎪-=⎩6α=故选:C5.已知函数,则的值为( )()12cos ,0,0x x f x x x <⎧⎪=⎨⎪≥⎩π3f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦ABC .4D .14【答案】B【分析】根据分段函数运算求解.【详解】由题意可得:,故πππ1cos cos 3332f ⎛⎫⎛⎫-=-== ⎪ ⎪⎝⎭⎝⎭12π11322f f f ⎡⎤⎛⎫⎛⎫⎛⎫-==== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:B.6.函数的图像大致为( )()2sin f x x x =A .B .C .D .【答案】A【分析】根据函数是奇函数,且函数在时函数值的正负,从而得出结论.()2sin f x x x =()0,πx ∈【详解】由函数定义域为,,故()2sin f x x x =R ()()()()22sin sin f x x x x x f x -=--=-=-()2sin f x x x=为奇函数,故它的图像关于原点对称,可以排除C 和D ;又函数在时,函数,可以排除B ,所以只有A 符合.()2sin f x x x =()0,πx ∈()2sin 0f x x x =>故选:A .7.在科学技术中,常常使用以为底的对数,这种对数称为自然对数.若取,e 2.71828...=3e 20≈,则( )7e 1100≈ln 55≈A .B .C .4D .673113【答案】C【分析】根据题意结合指、对数运算求解.【详解】由题意可得:.7431100e ln 55ln ln ln e 420e =≈==故选:C.8.函数的零点为,函数的零点为,若()2log 4f x x x =+-1x ()()()log 151a g x x x a =+-->2x ,则实数的取值范围是( ) 211x x ->aA .B .C .D .(()1,2)+∞()2,+∞【答案】D【分析】根据函数单调性,再由确定范围,即可确定实数的取值范围. 211x x ->a 【详解】已知,, ()2log 4f x x x =+-()()()log 151a g x x x a =+-->函数的零点为,()2log 4f x x x =+-1x函数的零点为, ()()()log 151a g x x x a =+-->2x 则()12122log 4log 150a x x x x +-=+--=()12122log 41log 14a x x x x +-=-+--()12122log 1log 1a x x x x +=-+-121x x <-又因为,这两函数均单调递增, 2log y x x =+()()log 111a y x x a =+-->当时,,解得. 121x x <-()212log >log 1a x x -2a >故选:D.二、多选题9.已知角的终边经过点,则( ) θ()()2,0P a a a >A .B .sin θ=cos θ=C .D .1tan 2θ=tan 2θ=【答案】AC【分析】根据三角函数的定义计算即可.【详解】因为角的终边经过点, θ()()2,0P a a a >所以,故A 正确;sin θ=B 错误;cos θ==,故C 正确,D 错误. 1tan 22a a θ==故选:AC.10.若,则( ) 01m a b <<<<A . B . a b m m <m m a b <C .D .log log m m a b >b aa mb m>++【答案】BCD【分析】对于A :构造函数,利用单调性判断;对于B :构造函数,利用单调()x f x m =()mg x x =性判断;对于C :构造函数,利用单调性判断;对于D :利用作差法比较大小.()log m h x x =【详解】对于A :因为,所以单调递减.01m <<()xf x m =因为,所以.故A 错误;a b <a b m m >对于B :因为,所以单调递增.01m <<()mg x x =因为,所以.故B 正确;a b <m m a b <对于C :因为,所以单调递减. 01m <<()log m h x x =因为,所以.故C 正确;a b <log log m m a b >对于D :因为,所以.故D 正()()()()()()220b a b a m b a b bm a am a m b m a m b m a m b m -+-+---==>++++++b aa mb m>++确. 故选:BCD11.已知函数,则( ) ()1tan tan f x x x=+A .的最小正周期为B .的图象关于轴对称()f x π()f x y C .的最小值为2 D .在上为增函数()f x ()f x ππ,42⎛⎫⎪⎝⎭【答案】AD【分析】先利用三角函数基本关系式化简得,再利用周期函数的定义与诱导公式即可()2sin 2f x x=判断A 正确;举反例即可排除B ;取特殊值计算即可判断C 错误;利用三角函数的单调性与复合函数的单调性即可判断D 正确.【详解】对于A ,因为, ()221sin cos sin cos 2tan tan cos sin sin cos sin 2x x x x f x x x x x x x x+=+=+==设的正周期为,则,即, ()f x T ()()f x T f x +=()22sin 2sin 2T x x =+所以,()sin 22sin 2T x x +=由诱导公式可得,即, 22π,Z T k k =∈π,Z T k k =∈又,故,即,则,故, 0T >π0k >0k >1k ≥ππT k =≥所以的最小值为,即的最小正周期为,故A 正确;T π()f x π对于B ,因为, ππ1ππ1tan 2,tan 2ππ4444tan tan 44f f ⎛⎫⎛⎫⎛⎫-=-+=-=+= ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎝⎭又与不关于轴对称, π,24⎛⎫-- ⎪⎝⎭π,24⎛⎫⎪⎝⎭y 所以的图象关于轴对称,故B 错误;()f x y 对于C ,因为,所以2不是的最小值,故C 错误;π24f ⎛⎫-=- ⎪⎝⎭()f x 对于D ,因为,所以,故在上单调递减,且,ππ42x <<π2π2x <<sin 2y x =ππ,42⎛⎫⎪⎝⎭sin 20x >又在上单调递减, 2y x=()0,∞+所以在单调递增,故D 正确. ()2sin 2f x x =ππ,42⎛⎫⎪⎝⎭故选:AD.12.已知函数,对于任意,,则( ) ()y f x =,R x y ∈()()()f x f x y f y =-A . B .()01f =()()22f x f x =C . D .()0f x >()()22f x f y x y f ++⎛⎫⎪⎝⎭≥【答案】ACD【分析】通过赋值法,取具体函数,基本不等式等结合已知条件分选项逐个判断即可. 【详解】令,故A 正确; ()()()()001f x x y f f f x =⇒=⇒=由已知,① ()()()()()()()()()f x f x y f x f y f x y f x y f x f y f y =-⇒=-⇒+=令满足题干要求,则,故B 错()()(),0,11,x f x a a =∈+∞ ()()2222,,x xf x a f x a ==()()22f x f x ≠误;由①可知,令,则,2x x y ==()2222x x x f x f f f ⎡⎤⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦又因为,则,所以,故C 正确; ()()()f x f x y f y =-02x f ⎛⎫≠ ⎪⎝⎭()202x f x f ⎡⎤⎛⎫=> ⎪⎢⎥⎝⎭⎣⎦因为,所以,()0f x>()()f x f y +≥=又由①,令,则, 2x y x y +==()2222x y x y x y f x y f f f ⎡⎤+++⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦所以,故D 正确.()()22f x f y x y f ++⎛⎫⎪⎝⎭≥故选:ACD.三、填空题13.函数的图象关于点_________中心对称.(写出一个正确的点坐标即可) 2cos y x =【答案】(答案不唯一)π,02⎛⎫⎪⎝⎭【分析】对称中心的横坐标满足,取得到2cos y x =ππ,Z 2x k k =+Î0k =【详解】对称中心的横坐标满足:,取得到对称中心为.2cos y x =ππ,Z 2x k k =+Î0k =π,02⎛⎫⎪⎝⎭故答案为:π,02⎛⎫⎪⎝⎭14.已知关于的不等式的解集为,则关于的不等式的解集为x 0ax b +>()3,-+∞x 20ax bx +<_________. 【答案】()3,0-【分析】先根据不等式的解集可得的关系及的符号,再根据一元二次不等式的解法即可得解. ,a b a 【详解】由的解集为, 0ax b +>()3,-+∞可得,且方程的解为, 0a >0ax b +=3-所以,则, 3ba-=-3b a =所以,()222303030ax bx a x x x x x +=+<⇒+<⇒-<<即关于的不等式的解集为. x 20ax bx +<()3,0-故答案为:.()3,0-15.已知定义在上的函数满足,且当时,,若R ()f x ()()4f x f x +=[)0,4x ∈()2xf x m =+,则___________.()()202331f f =m =【答案】1【分析】由题意可得函数的周期为4,根据题意结合周期性可得答案.【详解】由可得的函数周期为4,则, ()()4f x f x +=()f x ()()()20235054338f f f m =⨯+==+由,则,解得.()()202331f f =()832m m +=+1m =故答案为:1.四、双空题16.对于非空集合,定义,若,是两个非空集合,且,则M ()0,Φ1,x Mx x M ∉⎧=⎨∈⎩A B A B ⊆___________;若,,且存在,()()1A B x x Φ-Φ=⎡⎤⎣⎦1sin 2A x x ⎧⎫=≥⎨⎬⎩⎭(),2B a a =x R ∈,则实数的取值范围是_______________.()()2A B x x Φ+Φ=a 【答案】 0513,,12612πππ⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】第一空分,和且三种情况来研究,第二空根据已知分析出a 的大致x A ∈x B ∉x A ∉x B ∈范围,最后列出不等式求解即可.【详解】即则一定有,所以分三段研究:A B ⊆x A ∈x B ∈时,,,即; x A ∈()1A x Φ=()1B x Φ=()()10A B x x Φ-Φ=⎡⎤⎣⎦时,,,即; x B ∉()0A x Φ=()0B x Φ=()()10A B x x Φ-Φ=⎡⎤⎣⎦且时,,,即.x A ∉x B ∈()0A x Φ=()1B x Φ=()()10A B x x Φ-Φ=⎡⎤⎣⎦综上所述,;()()10A B x x Φ-Φ=⎡⎤⎣⎦由已知()()()()21A B A B x x x x Φ+Φ=⇒Φ=Φ=且, 522,66A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭(),20B a a a =⇒>要满足题意则,此时区间长度时一定满足,故下研究时,(其中A B ⋂≠∅43a π≥403a π<<,即为集合的补集中一段的区间长) 452366ππππ=+-A 此时,因此满足题意的反面情况有或,8023a a π<<<026a a π<<≤513266a a ππ<≤≤解得或,因此满足题意的范围为. 012a π<≤513612a ππ≤≤a 513,,12612πππ⎛⎫⎛⎫⋃+∞ ⎪⎪⎝⎭⎝⎭五、解答题17.求下列各式的值:(1); 6213222⎛⎫⋅ ⎪⎝⎭(2).ln3213log 8log 9e -+【答案】(1)128 (2)8【分析】(1)根据指数幂的运算求解; (2)根据对数和指数的运算性质求解.【详解】(1).612216723322222128⎛⎫+ ⎪⎝⎭⎛⎫⋅=== ⎪⎝⎭(2). ln3213log 8log 9e 3238-+=++=18.若.()π5sin 4sin cos π12ααα⎛⎫++=++ ⎪⎝⎭(1)求的值; sin cos αα⋅(2)若,求的值. ()0,πα∈tan α【答案】(1) 12sin cos 25αα=-(2)43-【分析】(1)化简得到,平方得到,得到答案. 1sin cos 5αα+=112sin cos 25αα+=(2)根据得到,解得,得到答案.12sin cos 025αα=-<7sin cos 5αα-=4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩【详解】(1),则,()π5sin 4sin cos π12ααα⎛⎫++=++ ⎪⎝⎭5sin 4cos cos 1ααα+=-+,,,则;1sin cos 5αα+=()21sin cos 25αα+=112sin cos 25αα+=12sin cos 25αα=-(2),所以,即,, 12sin cos 025αα=-<2απ<<πsin 0α>cos 0α<. 7sin cos 5αα-===,解得, 7sin cos 51sin cos 5αααα⎧-=⎪⎪⎨⎪+=⎪⎩4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩sin tan s 43co ααα==-19.已知集合,. 14x A xx ⎧⎫=>⎨⎬+⎩⎭()(){}230B x x m x m =---<(1)若,求;3m =-A B ⋃(2)在①,②这两个条件中任选一个,补充在下面问题中,并解答该问题.若A B B = A B ⋂=∅_________,求实数的取值范围.m 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1);(),0A B ⋃=-∞(2)选①;若选②. (]{},73-∞-⋃[)2,-+∞【分析】(1)代入的值,求出集合B ,用并集的运算性质计算即可.m (2)若选①,即,则对的值进行分类讨论,根据集合包含关系即可得到的取值A B B = B A ⊆m m 范围.若选②,对的值进行分类讨论,依次根据,求实数的取值范围. m A B ⋂=∅m 【详解】(1),即, ()36060m x x x =-⇒+<⇒-<<()6,0B =-而,即,所以; 441004444x x x x x x x -->⇒>⇒<⇒<-+++(),4A =-∞-(),0A B ⋃=-∞(2)若选①即A B B = B A ⊆时,,即,要满足题意则,与前提矛盾,舍; 3m >23m m >+()3,2B m m =+24m ≤-时,,即,符合题意;3m =23m m =+B =∅时,,即,要满足题意则,即.3m <23m m <+()2,3B m m =+34m +≤-7m ≤-综上所述,实数的取值范围是. m (]{},73-∞-⋃若选②,若,A B ⋂=∅时,,即,要满足题意则,则满足,解得3m >23m m >+()3,2B m m =+A B ⋂=∅34m +≥-,则;7m ≥-3m >若时,,即,满足;3m =23m m =+B =∅A B ⋂=∅时,,即,要满足题意则解得,即;3m <23m m <+()2,3B m m =+24,m ≥-2m ≥-23m -≤<综上,实数的取值范围是.m [)2,-+∞20.函数(,)在一个周期内的图象如图所示.()()sin f x A x =+ωϕ0,0A ω>>0πϕ<<(1)求的解析式; ()f x (2)将的图象向右平移个单位长度后得到函数的图象,设,证明:()f x 2π3()g x ()()()h x f x g x =-为偶函数.()h x 【答案】(1)()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭(2)证明见解析【分析】(1)由图得到,求得,代入点,求得,2,πA T ==2ω=π,212⎛⎫- ⎪⎝⎭()ππ2π62k k ϕ-+=+∈Z 结合题意得到,即可求得函数的解析式;23ϕπ=(2)由三角函数的图象变换求得,根据偶函数的定义证明即可.()2π2sin 23g x x ⎛⎫=- ⎪⎝⎭【详解】(1)由最值得, 2A =由相邻两条对称轴距离得,则,即,5πππ212122T ⎛⎫=--= ⎪⎝⎭2ππT ω==2ω=此时,()()2sin 2f x x ϕ=+代入点得:,π,212⎛⎫- ⎪⎝⎭πsin 16ϕ⎛⎫-+= ⎪⎝⎭则,即, ()ππ2π62k k ϕ-+=+∈Z ()2π2π3k k ϕ=+∈Z 又因为,所以, 0πϕ<<230,k πϕ==故.()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭(2)由题意得, ()2π2π2π2sin 22sin 2333g x x x ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则, ()2π2π2sin 22sin 233h x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭因为, ()()2π2π2π2π2sin 22sin 22sin 22sin 23333h x x x x x h x ⎛⎫⎛⎫⎛⎫⎛⎫-=-+---=--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以为偶函数.()h x 21.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费(单x C 位:万元)与设备占地面积之间的函数关系为.将该企业的净水设备购置费与x ()()2005C x x x =>+安装后4年需缴水费之和合计为(单位:万元). y (1)要使不超过7.2万元,求设备占地面积的取值范围; y x (2)设备占地面积为多少时,的值最小? x y 【答案】(1)[]11,20(2)设备占地面积为时,的值最小. 215m y【分析】(1)由题意解不等式,即可求得; 800.27.25x x ++≤(2)利用基本不等式即可求解. 【详解】(1)由题意得. ()800.205y x x x =+>+要满足题意,则, 7.2y ≤即,解得:. 800.27.25x x ++≤1120x ≤≤即设备占地面积的取值范围为.x []11,20(2), 805800.21117555x y x x x +=+=+--=++≥=当且仅当时等号成立. 5801555x x x +=⇒=+所以设备占地面积为时,的值最小. 215m y 22.已知函数,. ()()1222x x f x -=+()()1222x x g x -=-(1)利用函数单调性的定义,证明:在区间上是增函数; ()f x [)0,∞(2)已知,其中是大于1的实数,当时,,求实()()()2449F x fx mf x =-+m []20,log x m ∈()0F x ≥数的取值范围; m (3)当,判断与的大小,并注明你的结论. 0a ≥()()g x f x ()()1af x a +-【答案】(1)证明见解析 (2)(]1,3(3) ()()()()1g x af x a f x <+-【分析】按照函数单调性的定义的证明步骤:设值,作差,变形,定号,下结论,即可证明;(2)先换元,再分离常数,最后再利用基本不等式即可求出实数的取值范围; m (3)采用作差法,结合基本不等式和指数函数的值域即可比较出大小. 【详解】(1)解:, 120x x ∀>≥()()()()11221211222222x x x x f x f x ---=+-+ 2112121212121222222222221212222x x x x x x x x x x x x x x --++--+-+--⎛⎫===- ⎪⎝⎭因为,所以,,所以, 120x x >≥12220x x ->1221x x +>()()120f x f x ->即在上是增函数.()f x [)0,∞+(2)解:由已知 ()2222244922x x x xF x m --⎛⎫⎛⎫++=⋅-⋅+ ⎪⎪⎝⎭⎝⎭设,由(1)得在上单调递增,即,222xxt -+=()f x []20,log m 11,2m m t ⎡⎤+⎢⎥∈⎢⎥⎢⎥⎣⎦所以, ()229044904494F x t mt mt t m t t⇔-+⇔+⇔+≥≥≤≤①时,,即,当且仅当时取等, m 1322m m +≥934t t+=≥32t =此时要满足恒成立,即;94m t t +≤min 934m t t ⎛⎫+= ⎪⎝⎭≤3m ≤②,此时在上单调递减, 1m <<1322m m +<94y t t =+11,2m m ⎡⎤+⎢⎥⎢⎥⎢⎥⎣⎦即, min119,1222m m m m t ym m ++==+⎛⎫+ ⎪⎝⎭此时要满足恒成立,即,化简得, 94m t t+≤min 1991422m m m t t m m +⎛⎫+=+⎪⎛⎫⎝⎭+ ⎪⎝⎭≤42910m m --≤此时因为,此时恒成立211m m <<⇒<<42910m m --≤综上所述,实数的取值范围是.m (]1,3(3)解:()()()()112222111222x xx x xxg x af x a a a f x -+---=-⋅-++ 2112222222111222222x xxxxx xxxx a a a ⎛⎫++ ⎪=--⋅=--⎪⎪++⎝⎭因为(当且仅当时取等),所以,即, 1222xx +≥0x =12212x x +≥122102x x+-≤由已知,所以, 0a ≥122102xx a ⎛⎫+ ⎪- ⎪⎪⎝⎭≤又因为,所以,即,20x >220122xxx>+220122xxx-<+因此,所以. ()()()()122221101222xx x x x g x af x a a f x ⎛⎫+ ⎪---=--< ⎪⎪+⎝⎭()()()()1g x af x a f x <+-。
2020-2021学年江苏省苏州市高一(上)期末数学试卷 (解析版)
![2020-2021学年江苏省苏州市高一(上)期末数学试卷 (解析版)](https://img.taocdn.com/s3/m/92714556b9d528ea80c77909.png)
2020-2021学年江苏省苏州市高一(上)期末数学试卷一、选择题(共8小题).1.设有下面四个命题:p1:∃x∈R,x2+1<0;p2:∀x∈R,x+|x|>0;p3:∀x∈Z,|x|∈N;p4:∃x∈R,x2﹣2x+3=0.其中真命题为()A.p1B.p2C.p3D.p42.已知角α终边上一点P的坐标为(﹣1,2),则cosα的值为()A.﹣B.﹣C.D.3.对于集合A,B,我们把集合{x|x∈A且x∉B}叫作集合A与B的差集,记作A﹣B.若A ={x|lnx≤2ln},B={x|x≥1},则A﹣B为()A.{x|x<1}B.{x|0<x<1}C.{x|1≤x<3}D.{x|1≤x≤3} 4.下列四个函数中,以π为最小正周期且在区间(,π)上单调递增的函数是()A.y=sin2x B.y=cos x C.y=tan x D.y=cos5.“双十一”期间,甲、乙两个网购平台对原价相同的某种商品进行打折促销活动,各进行了两次降价.甲平台第一次降价a%,第二次降价b%;乙平台两次都降价%(其中0<a<b<20),则两个平台的降价力度()A.甲大B.乙大C.一样大D.大小不能确定6.已知函数f(x)的图象如图所示,则函数y=xf(x)的图象可能是()A.B.C.D.7.若θ为第二象限角,则﹣化简为()A.2tanθB.C.﹣2tanθD.﹣8.已知函数f(x)=,若函数y=f(f(x))﹣k有3个不同的零点,则实数k的取值范围是()A.(1,4)B.(1,4]C.[1,4)D.[1,4]二、多项选择题(共4小题).9.已知幂函数f(x)的图象经过点(3,),则()A.f(x)的定义域为[0,+∞)B.f(x)的值域为[0,+∞)C.f(x)是偶函数D.f(x)的单调增区间为[0,+∞)10.为了得到函数y=cos(2x+)的图象,只要把函数y=cos x图象上所有的点()A.向左平移个单位长度,再将横坐标变为原来的2倍B.向左平移个单位长度,再将横坐标变为原来的倍C.横坐标变为原来的倍,再向左平移个单位长度D.横坐标变为原来的倍,再向左平移个单位长度11.已知实数a,b,c满足0<a<1<b<c,则()A.b a<c a B.log b a>log c aC.<D.sin b<sin c12.高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如[﹣2.1]=﹣3,[2.1]=2.已知函数f(x)=sin|x|+|sin x|,函数g(x)=[f(x)],则()A.函数g(x)的值域是{0,1,2}B.函数g(x)是周期函数C.函数g(x)的图象关于x=对称D.方程•g(x)=x只有一个实数根三、填空题(共4小题).13.函数f(x)=+lg(2﹣x)的定义域为.14.关于x的方程sin x+x﹣3=0的唯一解在区间(k﹣,k+)(k∈Z)内,则k的值为.15.已知a,b为正实数,且ab+a+3b=9,则a+3b的最小值为.16.当生物死亡后,它机体内原有的碳14含量会按定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若生物体内原有的碳14含量为A,按照上述变化规律,生物体内碳14含量y与死亡年数x的函数关系式是,考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的62.5%,则可以推测该生物的死亡时间距今约年.(参考数据:lg2≈0.3)四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在条件①=;②4sin2A=4cos A+1;③sin A cos A tan A=中任选一个,补充在下面的问题中,并求解.已知角A为锐角,_____.(1)求角A的大小;(2)求sin(π+A)cos(﹣A)的值.18.(12分)已知集合A={x|x2﹣2x﹣3<0},B={x||x﹣a|<1}.(1)当a=3时,求A∪B;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.19.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象经过点(,),其最大值与最小值的差为4,且相邻两个零点之间的距离为.(1)求f(x)的解析式;(2)求f(x)在[0,π]上的单调增区间.20.(12分)已知定义在R上的函数f(x)=2x+k•2﹣x(k∈R).(1)若f(x)是奇函数,求函数y=f(x)+f(2x)的零点;(2)是否存在实数k,使f(x)在(﹣∞,﹣1)上调递减且在(2,+∞)上单调递增?若存在,求出k的取值范围;若不存在,请说明理由.21.(12分)经多次实验得到某种型号的汽车每小时耗油量Q(单位:L)、百公里耗油量W(单位:L)与速度v(单位:km/h)(40≤v≤120)的数据关系如表:v406090100120Q 5.268.3251015.6W139.25为描述Q与v的关系,现有以下三种模型供选择Q(v)=0.5v+a,Q(v)=av+b,Q(v)=av3+bv2+cv.(1)请填写表格空白处的数据,选出你认为最符合实际的函数模型,并求出相应的函数解析式;(2)已知某高速公路共有三个车道,分别是外侧车道、中间车道和内侧车道,车速范围分别是[60,90),[90,110),[110,120](单位:km/h),问:该型号汽车应在哪个车道以什么速度行驶时W最小?22.(12分)已知函数f(x)和g(x)的定义域分别为D1和D2,若足对任意x0∈D1,恰好存在n个不同的实数x1,x2…,x n∈D2,使得g(x i)=f(x0)(其中i=1,2,……,n,n∈N*),则称g(x)为f(x)的“n重覆盖函数.”(1)判断g(x)=|x﹣1|(x∈[0,4])是否为f(x)=x+2(x∈[0,1])的“n重覆盖函数”,如果是,求出n的值;如果不是,说明理由.(2)若g(x)=为f(x)=的“2重覆盖函数”,求实数a的取值范围;(3)若g(x)=sin(ωx﹣)(x∈[0,2π])为f(x)=的“2k+1重覆盖函数”(其中k∈N),请直接写出正实数ω的取值范围(用k表示)(无需解答过程).参考答案一、单项选择题(共8小题).1.设有下面四个命题:p1:∃x∈R,x2+1<0;p2:∀x∈R,x+|x|>0;p3:∀x∈Z,|x|∈N;p4:∃x∈R,x2﹣2x+3=0.其中真命题为()A.p1B.p2C.p3D.p4解:设有下面四个命题:对于p1:∃x∈R,x2+1<0不成立,故该命题为假命题;p2:∀x∈R,当x<0时,x+|x|=0,故该命题为假命题;p3:∀x∈Z,|x|∈N,该命题为真命题;p4:∃x∈R,由于x2﹣2x+3=0中△=4﹣12=﹣8<0,故不存在实根,故该命题为假命题;故选:C.2.已知角α终边上一点P的坐标为(﹣1,2),则cosα的值为()A.﹣B.﹣C.D.解:由题意,点(﹣1,2)到原点的距离是,=故cosα==﹣故选:B.3.对于集合A,B,我们把集合{x|x∈A且x∉B}叫作集合A与B的差集,记作A﹣B.若A ={x|lnx≤2ln},B={x|x≥1},则A﹣B为()A.{x|x<1}B.{x|0<x<1}C.{x|1≤x<3}D.{x|1≤x≤3}解:集合A={x|lnx≤2ln}={x|0<x≤3},B={x|x≥1},A﹣B={x|0<x<1}.故选:B.4.下列四个函数中,以π为最小正周期且在区间(,π)上单调递增的函数是()A.y=sin2x B.y=cos x C.y=tan x D.y=cos解:函数y=sin2x的周期为,又x∈(,π),则2x∈(π,2π),所以y=sin2x在区间(,π)上不是单调递增,故选项A错误;函数y=cos x的周期为2π,故选项B错误;函数y=tan x的周期为π,且在区间(,π)上单调递增,故选项C正确;函数的周期为,故选项D错误.故选:C.5.“双十一”期间,甲、乙两个网购平台对原价相同的某种商品进行打折促销活动,各进行了两次降价.甲平台第一次降价a%,第二次降价b%;乙平台两次都降价%(其中0<a<b<20),则两个平台的降价力度()A.甲大B.乙大C.一样大D.大小不能确定解:由题意可知,甲平台的降价力度为:1﹣(1﹣a%)(1﹣b%),乙平台的降价力度为:1﹣(1﹣%)2,作差得:[1﹣(1﹣a%)(1﹣b%)]﹣[1﹣(1﹣%)2]=(%)2﹣a%•b%=﹣2<0,所以乙平台的降价力度大,故选:B.6.已知函数f(x)的图象如图所示,则函数y=xf(x)的图象可能是()A.B.C.D.解:由图象可知,函数f(x)是偶函数,则y=xf(x)为奇函数,则图象关于原点对称,排除C,D,在原点的右侧,函数值为先负后正,故排除B,故选:A.7.若θ为第二象限角,则﹣化简为()A.2tanθB.C.﹣2tanθD.﹣解:∵θ为第二象限角,∴sinθ>0,∴原式=﹣=﹣==﹣.故选:D.8.已知函数f(x)=,若函数y=f(f(x))﹣k有3个不同的零点,则实数k的取值范围是()A.(1,4)B.(1,4]C.[1,4)D.[1,4]解:函数f(x)=,当x时,f(f(x))=(x2﹣3)2﹣3,当时,f(f(x))=﹣(x2﹣3)+1,当x<0时,f(f(x))=(﹣x+1)2﹣3,作出函数f(f(x))的图象可知,当1<k≤4时,函数y=f(f(x))﹣k有3个不同的零点.∴k∈(1,4].故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知幂函数f(x)的图象经过点(3,),则()A.f(x)的定义域为[0,+∞)B.f(x)的值域为[0,+∞)C.f(x)是偶函数D.f(x)的单调增区间为[0,+∞)解:设幂函数f(x)=x a,∵f(x)过点(3,),∴3a=,a=,∴f(x)=,故函数的定义域是[0,+∞),A正确,C错误,值域是[0,+∞),B正确,D正确,故选:ABD.10.为了得到函数y=cos(2x+)的图象,只要把函数y=cos x图象上所有的点()A.向左平移个单位长度,再将横坐标变为原来的2倍B.向左平移个单位长度,再将横坐标变为原来的倍C.横坐标变为原来的倍,再向左平移个单位长度D.横坐标变为原来的倍,再向左平移个单位长度解:把函数y=cos x图象上所有的点向左平移个单位长度,可得y=cos(x+)的图象;再将横坐标变为原来的倍,可得y=cos(2x+)的图象.或把函数y=cos x图象上所有的点横坐标变为原来的倍,得到y=cos2x的图象;再向左平移个单位长度,可得y=cos(2x+)的图象.故选:BC.11.已知实数a,b,c满足0<a<1<b<c,则()A.b a<c a B.log b a>log c aC.<D.sin b<sin c解:因为实数a,b,c满足0<a<1<b<c,则函数y=x a为单调递增函数,所以b a<c a,故选项A正确;不妨取,则log b a=,log c a=,所以log b a<log c a,故选项B错误;不妨取,则,,所以,故选项C正确;因为b和c所对应的角是哪一个象限角不确定,故sin b和sin c无法比较大小,故选项D 错误.故选:AC.12.高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如[﹣2.1]=﹣3,[2.1]=2.已知函数f(x)=sin|x|+|sin x|,函数g(x)=[f(x)],则()A.函数g(x)的值域是{0,1,2}B.函数g(x)是周期函数C.函数g(x)的图象关于x=对称D.方程•g(x)=x只有一个实数根解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x),所以f(x)是偶函数,而sin|x|不是周期函数,|sin x|为周期函数,对于x>0,当2kπ<x<π+2kπ时,f(x)=2sin x,当π+2kπ<x<2π+2kπ时,f(x)=0,所以g(x)=,k=0,±1,±2,…,故A正确,由f(x)是偶函数,则g(x)为偶函数,x>0时,f(x)成周期性,但起点为x=0,所以g(x)在(﹣∞,+∞)上不是周期函数,故B不正确;函数g(x)的图象关于x=0对称,不关于x=对称,故C不正确;,当x=0时,g(0)=0,当x=时,g()=1,与g(x)只有(0,0)交点即方程•g(x)=x只有一个实数根,故D正确.故选:AD.三、填空题(共4小题).13.函数f(x)=+lg(2﹣x)的定义域为[1,2).解:要使函数的解析式有意义,自变量x须满足:解得:1≤x<2.故函数的定义域为[1,2)故答案为[1,2)14.关于x的方程sin x+x﹣3=0的唯一解在区间(k﹣,k+)(k∈Z)内,则k的值为2.解:设f(x)=sin x+x﹣3,f()=sin+﹣3=sin﹣<0,f()=sin+﹣3=sin﹣=sin﹣sin >0,(,所以sin>sin).由零点定理知,f(x)在区间(,)内一定有零点,所以k=2.故答案为:2.15.已知a,b为正实数,且ab+a+3b=9,则a+3b的最小值为6.解:因为a,b为正实数,且ab+a+3b=9,所以a+3b=9﹣ab=9﹣,当且仅当a=3b时取等号,解得,a+3b≥6或a+3b≤﹣18(舍),则a+3b的最小值为6.故答案为:6.16.当生物死亡后,它机体内原有的碳14含量会按定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若生物体内原有的碳14含量为A,按照上述变化规律,生物体内碳14含量y与死亡年数x的函数关系式是y=A•,考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的62.5%,则可以推测该生物的死亡时间距今约3820年.(参考数据:lg2≈0.3)解:由题意知,y=A•,当y=62.5%A时,有62.5%A=A•,即=,∴===log28﹣log25=3﹣=3﹣≈,∴x=3820,∴可以推测该生物的死亡时间距今约3820年.故答案为:y=A•;3820.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在条件①=;②4sin2A=4cos A+1;③sin A cos A tan A=中任选一个,补充在下面的问题中,并求解.已知角A为锐角,_____.(1)求角A的大小;(2)求sin(π+A)cos(﹣A)的值.解:若选择条件①,(1)由于=,可得14sin A﹣7cos A=3sin A+4cos A,可得sin A=cos A,即tan A=1,因为A为锐角,可得A=;(2)sin(π+A)cos(﹣A)=(﹣sin A)cos(1010π+﹣A)=﹣sin2A=﹣.若选择②,(1)由于4sin2A=4cos A+1,4(1﹣cos2A)=4cos A+1,可得4cos2A+4cos x﹣3=0,解得cos A=,或﹣(舍去),因为A为锐角,可得A=.(2)sin(π+A)cos(﹣A)=(﹣sin A)cos(1010π+﹣A)=﹣sin2A=﹣.若选择③,(1)因为sin A cos A tan A=sin2A=,可得sin A=,或﹣,因为A为锐角,sin A>0,可得sin A=,可得A=;(2)sin(π+A)cos(﹣A)=(﹣sin A)cos(1010π+﹣A)=﹣sin2A=﹣.18.(12分)已知集合A={x|x2﹣2x﹣3<0},B={x||x﹣a|<1}.(1)当a=3时,求A∪B;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.解:由题意得,A={x|﹣1<x<3},B={x|a﹣1<x<a+1}.(1)a=3时,B={x|2<x<4},∴A∪B={x|﹣1<x<4}=(﹣1,4).(2)因为p:x∈A,q:x∈B,若p是q的必要不充分条件,则A⫋B,所以(等号不能同时成立),经验证a≠2,解之得0≤a<2,所以实数a的取值范围是[0,2).19.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象经过点(,),其最大值与最小值的差为4,且相邻两个零点之间的距离为.(1)求f(x)的解析式;(2)求f(x)在[0,π]上的单调增区间.解:(1)由题意可得A=2,T=π,所以ω==2,所以f(x)=2sin(2x+φ),又图象经过点(,),所以f()=2sin(2×+φ)=,即sin(+φ)=,因为|φ|<,所以φ=,所以f(x)=2sin(2x+).(2)令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,再根据x∈[0,π],可得函数的单调增区间为[0,],[,π].20.(12分)已知定义在R上的函数f(x)=2x+k•2﹣x(k∈R).(1)若f(x)是奇函数,求函数y=f(x)+f(2x)的零点;(2)是否存在实数k,使f(x)在(﹣∞,﹣1)上调递减且在(2,+∞)上单调递增?若存在,求出k的取值范围;若不存在,请说明理由.解:(1)因为f(x)是奇函数,所以f(﹣x)=﹣f(x),即2﹣x+k•2x=﹣2x﹣k•2﹣x,可得k=﹣1,所以f(x)=2x﹣2﹣x,令y=f(x)+f(2x)=2x﹣2﹣x+22x﹣2﹣2x=0,即(2x﹣2﹣x)(1+2x+2﹣x)=0,所以2x﹣2﹣x=0,解得x=0,即函数y=f(x)+f(2x)的零点为x=0.(2)当k≤0时,函数f(x)=2x+k•2﹣x在R上单调递增,不符合题意;当k>0时,令t=2x,当x∈(﹣∞,﹣1)时,t∈(0,),当x∈(2,+∞)时,t∈(4,+∞),因为f(x)在(﹣∞,﹣1)上单调递减且在(2,+∞)上单调递增,所以g(t)=t+在(0,)上单调递减且在(4,+∞)上单调递增,所以≤≤4,解得≤k≤16,故存在实数k∈[,16]使f(x)在(﹣∞,﹣1)上单调递减且在(2,+∞)上单调递增.21.(12分)经多次实验得到某种型号的汽车每小时耗油量Q(单位:L)、百公里耗油量W(单位:L)与速度v(单位:km/h)(40≤v≤120)的数据关系如表:v406090100120Q 5.268.3251015.6W139.25为描述Q与v的关系,现有以下三种模型供选择Q(v)=0.5v+a,Q(v)=av+b,Q(v)=av3+bv2+cv.(1)请填写表格空白处的数据,选出你认为最符合实际的函数模型,并求出相应的函数解析式;(2)已知某高速公路共有三个车道,分别是外侧车道、中间车道和内侧车道,车速范围分别是[60,90),[90,110),[110,120](单位:km/h),问:该型号汽车应在哪个车道以什么速度行驶时W最小?解:(1)填表如下:v406090100120Q 5.268.3251015.6W13109.251013由题意可得符合的函数模型需满足在40≤v≤120时,v都可取,三种模型都满足,且该函数模型应为增函数,所以第一种函数模型不符合,若选择第二种模型,代入(40,5.2),(60,6),得,解得,则Q(v)=0.04v+3.6,此时Q(90)=7.2,Q(100)=7.6,Q(120)=8.4,与实际数据相差较大,所以第二种模型不符合,经观察,第三种函数模型最符合实际,代入(40,5.2),(60,6),(100,10),则,解得,∴Q(v)=0.000025v3﹣0.004v2+0.25v.(2)∵W==0.0025v2﹣0.4v+25=0.0025(v﹣80)2+9,∴当v=80时,W取得最小值9,所以该型号汽车应在外侧车道以80km/h的速度行驶时W最小.22.(12分)已知函数f(x)和g(x)的定义域分别为D1和D2,若足对任意x0∈D1,恰好存在n个不同的实数x1,x2…,x n∈D2,使得g(x i)=f(x0)(其中i=1,2,……,n,n∈N*),则称g(x)为f(x)的“n重覆盖函数.”(1)判断g(x)=|x﹣1|(x∈[0,4])是否为f(x)=x+2(x∈[0,1])的“n重覆盖函数”,如果是,求出n的值;如果不是,说明理由.(2)若g(x)=为f(x)=的“2重覆盖函数”,求实数a的取值范围;(3)若g(x)=sin(ωx﹣)(x∈[0,2π])为f(x)=的“2k+1重覆盖函数”(其中k∈N),请直接写出正实数ω的取值范围(用k表示)(无需解答过程).解:(1)因为g(x)=|x﹣1|(x∈[0,4]),f(x)=x+2(x∈[0,1]),则对∀x0∈[0,1],∃n个不同的实数x1,x2…,x n∈[0,4),使得g(x i)=f(x0)(i=1,2,…,n),即|x i﹣1|=x0+2∈[2,3],则x i∈[3,4],所以对于∀x0∈[0,1],都能找到一个x1,使|x1﹣1|=x0+2,所以g(x)是f(x)的“n重覆盖函数”,故n=1;(2)因为f(x)=,其定义域为(0,+∞),即对∀x0∈(0,+∞),存在2个不同的实数x1,x2∈R,使得g(x i)=f(x0)(i=1,2),即∈(0,+∞),即对任意k>0,g(x)=k要有两个实根,当x>1时,g(x)=log2x=k已有一个根,故只需x<1时,g(x)=k仅有一个根,①当a=0时,g(x)=1,不符合题意;②当a>0时,则必须满足g(1)=a+2a﹣3+1≤0,解得;③当a<0时,抛物线开口向下,存在最大值,故不符合题意;综上可得,实数a的取值范围为.;(3)正实数ω的取值范围为.。
2020-2021学年江苏省南京市高一(上)期末数学试卷 (解析版)
![2020-2021学年江苏省南京市高一(上)期末数学试卷 (解析版)](https://img.taocdn.com/s3/m/1a0f3f8e3b3567ec112d8a1d.png)
2020-2021学年江苏省南京市高一(上)期末数学试卷一、选择题(共8小题).1.若角α的终边经过点P(3,a)(a≠0),则()A.sinα>0B.sinα<0C.cosα>0D.cosα<02.设函数y=的定义域为A,函数y=ln(x﹣1)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(﹣2,1)D.[﹣2,1)3.设实数x满足x>0,函数y=2+3x+的最小值为()A.4﹣1B.4+2C.4+1D.64.已知a,b,m都是负数,且a<b,则()A.<B.<C.a+m>b+m D.>5.有一组实验数据如表所示:t 1.9 3.0 4.0 5.1 6.1v 1.5 4.07.512.018.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A.v=2t﹣2B.v=C.v=log0.5t D.v=log3t6.若函数f(x)=sin2x与g(x)=2cos x都在区间(a,b)上单调递减,则b﹣a的最大值是()A.B.C.D.7.函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.8.若函数f(x)同时满足:①定义域内存在实数x,使得f(x)•f(﹣x)<0;②对于定义域内任意x1,x2,当x1≠x2时,恒有(x1﹣x2)•[f(x1)﹣f(x2)]>0;则称函数f(x)为“DM函数”.下列函数中是“DM函数”的为()A.f(x)=x3B.f(x)=sin x C.f(x)=e x﹣1D.f(x)=lnx二、多项选择题(共4小题).9.关于函数f(x)=tan2x,下列说法中正确的是()A.最小正周期是B.图象关于点(,0)对称C.图象关于直线x=对称D.在区间(﹣,)上单调递增10.已知曲线C1:y=sin x,C2:y=sin(2x+),下列说法中正确的是()A.把C1向左平移个单位长度,再将所有点的横坐标变为原来的2倍,得到C2B.把C1向左平移个单位长度,再将所有点的横坐标变为原来的倍,得到C2C.把C1上所有点的横坐标变为原来的倍,再向左平移个单位长度,得到C2D.把C1上所有点的横坐标变为原来的倍,再向左平移个单位长度,得到C211.我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A={x|x∈S,且x∉A}.类似地,对于集合A,B,我们把集合{x|x∈A,且x∉B}叫作集合A与B的差集,记作A﹣B.据此,下列说法中正确的是()A.若A⊆B,则A﹣B=∅B.若B⊆A,则A﹣B=AC.若A∩B=∅,则A﹣B=A D.若A∩B=C,则A﹣B=A﹣C12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x∈R,用[x]表示不超过x的最大整数,y=[x]也被称为“高斯函数”,例如:[﹣3.5]=﹣4,[2.1]=2.已知函数f(x)=[x+1]﹣x,下列说法中正确的是()A.f(x)是周期函数B.f(x)的值域是(0,1]C.f(x)在(0,1)上是增函数D.∀x∈R,[f(x)]=0三、填空题(共4小题).13.已知幂函数y=xα的图象过点,则实数α的值是.14.已知函数f(x)=,若f(f(0))=3a,则a的值为15.已知sin(α+)=,则sin(﹣α)+sin2(﹣α)的值为.16.地震震级是根据地震仪记录的地震波振幅来测定的,一般采用里氏震级标准.震级(M)是用据震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示的.里氏震级的计算公式为M=lgA﹣lgA0,其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).根据该公式可知,7.5级地震的最大振幅是6级地震的最大振幅的倍(精确到1).四、解答题(共6小题,满分70分)17.(10分)已知集合A={x|<1},B={x|2x2+(m﹣2)x﹣m<0}.(1)当m=1时,求A∪B;(2)已知“x∈A”是“x∈B”的必要条件,求实数m的取值范围.18.(12分)已知sin(π+α)cos(π﹣α)=,且0<α<.(1)求cosα+cos(+α)的值;(2)求tanα的值.19.(12分)(1)计算:2+(0.125)+log9;(2)已知a=log0.43,b=log43,求证:ab<a+b<0.20.(12分)已知函数f(x)=x|x﹣a|为R上的奇函数.(1)求实数a的值;(2)若不等式f(sin2x)+f(t﹣2cos x)≥0对任意x∈[,]恒成立,求实数t的最小值.21.(12分)如图,弹簧挂着的小球做上下振动,它在t(单位:s)时相对于平衡位置(静止时的位置)的高度h(单位:cm)由关系式h=A sin(ωt+)确定,其中A>0,ω>0,t∈[0,+∞).在一次振动中,小球从最高点运动至最低点所用时间为1s.且最高点与最低点间的距离为10cm.(1)求小球相对平衡位置的高度h(单位:cm)和时间t(单位:s)之间的函数关系;(2)小球在t0s内经过最高点的次数恰为50次,求t0的取值范围.22.(12分)对于定义在D上的函数f(x),如果存在实数x0,使得f(x0)=x0,那么称x0是函数f(x)的一个不动点.已知f(x)=ax2+1.(1)当a=﹣2时,求f(x)的不动点;(2)若函数f(x)有两个不动点x1,x2,且x1<2<x2.①求实数a的取值范围;②设g(x)=log a[f(x)﹣x],求证:g(x)在(a,+∞)上至少有两个不动点.参考答案一、单项选择题(共8小题).1.若角α的终边经过点P(3,a)(a≠0),则()A.sinα>0B.sinα<0C.cosα>0D.cosα<0【分析】三角函数的定义可知:sinα=符号不确定,cosα=,由此能求出结果.解:∵角α的终边经过点P(3,a)(a≠0),∴由三角函数的定义可知:sinα=符号不确定,故A,B圴错误;cosα=,故C正确,D错误.故选:C.2.设函数y=的定义域为A,函数y=ln(x﹣1)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(﹣2,1)D.[﹣2,1)【分析】利用函数的定义域分别求出集合A,B,由此能求出A∩B.解:函数y=的定义域为A,函数y=ln(x﹣1)的定义域为B,∴A={x|4﹣x2≥0}={x|﹣2≤x≤2},B={x|x﹣1>0}={x|x>1}.∴A∩B={x|1<x≤2}=(1,2].故选:B.3.设实数x满足x>0,函数y=2+3x+的最小值为()A.4﹣1B.4+2C.4+1D.6【分析】可看出x+1>0,从而可得出,这样即可求出原函数的最小值.解:∵x>0,∴x+1>0,∴y=2+3x+==,当且仅当,即时等号成立,∴函数y=2+3x+的最小值为4﹣1.故选:A.4.已知a,b,m都是负数,且a<b,则()A.<B.<C.a+m>b+m D.>【分析】根据不等式的性质,逐项判断即可.解:对于A,由题意a<b<0,则>,选项A错误;对于B,由a<b,不等式两边同除ab,可得,即<,选项B错误;对于C,由不等式的可加性可知,由a<b,可得a+m<b+m,选项C错误;对于D,由,所以>,选项D正确.故选:D.5.有一组实验数据如表所示:t 1.9 3.0 4.0 5.1 6.1v 1.5 4.07.512.018.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A.v=2t﹣2B.v=C.v=log0.5t D.v=log3t【分析】法一、由表格中的数据分析函数的单调性,然后逐一核对四个选项得答案;法二、取t=4验证,即可得到最符合椭圆的函数解析式.解:法一、从图表数据可知,随着t的变大,v变大,则函数为单调递增,且增加速度越来越快,∵A选项为线性增加的函数,C选项为递减函数,D选项为比线性增加较为缓慢的函数,∴排除选项A、C、D.故选:B.法二、取t=4,对于A选项,v=2×4﹣2=6,故选项A错误;对于B选项,v==7.5,故选项B可能正确;对于C选项,v=log0.5t=﹣2,故选项C错误;对于D选项,v=log3t=log34,故选项D错误.以上只有B选项最接近,故选:B.6.若函数f(x)=sin2x与g(x)=2cos x都在区间(a,b)上单调递减,则b﹣a的最大值是()A.B.C.D.【分析】由正弦函数、余弦函数的图象与性质求解即可.解:由题意函数f(x)=sin2x在(,)上单调递减,函数g(x)=2cos x在(0,π)上单调递减,则,,所以b﹣a的最大值为,故选:C.7.函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.【分析】由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.解:∵f(x)=,x∈[﹣π,π],∴f(﹣x)==﹣=﹣f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(π)=,因此排除B,C;故选:D.8.若函数f(x)同时满足:①定义域内存在实数x,使得f(x)•f(﹣x)<0;②对于定义域内任意x1,x2,当x1≠x2时,恒有(x1﹣x2)•[f(x1)﹣f(x2)]>0;则称函数f(x)为“DM函数”.下列函数中是“DM函数”的为()A.f(x)=x3B.f(x)=sin x C.f(x)=e x﹣1D.f(x)=lnx【分析】推导出“DM函数”的定义域内需有正有负,函数值有正有负,函数单调递增,由此利用排队法即可得到答案.解:∵由①定义域内存在实数x,使得f(x)•f(﹣x)<0的限制可知,定义域内需有正有负,且函数值有正有负,由②的限制可知,函数单调递增,对于A,f(x)=x3的定义域内有正有负,函数值有正有负,函数单调递增,故A成立;对于B,f(x)=sin x不是单调增函数,故B不成立;对于C,f(x)=e x﹣1的值域中没有负数,故C不成立;对于D,f(x)=lnx的定义域中没有负数,故D不成立.故选:A.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得3分,不选或有选错的得0分.9.关于函数f(x)=tan2x,下列说法中正确的是()A.最小正周期是B.图象关于点(,0)对称C.图象关于直线x=对称D.在区间(﹣,)上单调递增【分析】求出函数的周期判断A;求出函数值判断B;利用正切函数的对称性判断C;函数的单调区间判断D.解:由题意函数f(x)=tan2x的最小正周期为,故选项A正确;由f()=0,故选项B正确;因为函数f(x)=tan2x不存在对称轴,故选项C错误;因为x∈(﹣,),所以2x∈(﹣π,π),此区间不是函数y=tan x的单调递增区间,故选项D错误;故选:AB.10.已知曲线C1:y=sin x,C2:y=sin(2x+),下列说法中正确的是()A.把C1向左平移个单位长度,再将所有点的横坐标变为原来的2倍,得到C2 B.把C1向左平移个单位长度,再将所有点的横坐标变为原来的倍,得到C2 C.把C1上所有点的横坐标变为原来的倍,再向左平移个单位长度,得到C2 D.把C1上所有点的横坐标变为原来的倍,再向左平移个单位长度,得到C2【分析】由三角函数两种变换方法即可求解.解:变换方式一:由函数y=sin x的图象可向左平移个单位长度,再将所有点的横坐标变为原来的倍,得到y=sin(2x+);变换方式二:因为,所以由函数y=sin x的图象上所有点的横坐标变为原来的倍,再向左平移个单位长度,得到y=sin(2x+).故选:BD.11.我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A={x|x∈S,且x∉A}.类似地,对于集合A,B,我们把集合{x|x∈A,且x∉B}叫作集合A与B的差集,记作A﹣B.据此,下列说法中正确的是()A.若A⊆B,则A﹣B=∅B.若B⊆A,则A﹣B=AC.若A∩B=∅,则A﹣B=A D.若A∩B=C,则A﹣B=A﹣C【分析】利用集合间的关系以及差集的定义对应各个选项逐个判断即可求解.解:由差集的定义可知,对于选项A,若A⊆B,则A中的元素均在B中,则A﹣B=∅,故选项A正确;对于选项B,若B⊆A,则B中的元素均在A中,则A﹣B=∁A B≠A,故选项B错误;对于选项C,若A∩B=∅,则A、B无公共元素,则A﹣B=A,故选项C正确;对于选项D,若A∩B=C,则A﹣B=∁A C=A﹣C,故选项D正确;故选:ACD.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x∈R,用[x]表示不超过x的最大整数,y=[x]也被称为“高斯函数”,例如:[﹣3.5]=﹣4,[2.1]=2.已知函数f(x)=[x+1]﹣x,下列说法中正确的是()A.f(x)是周期函数B.f(x)的值域是(0,1]C.f(x)在(0,1)上是增函数D.∀x∈R,[f(x)]=0【分析】直接利用定义性函数和函数的性质的应用判断A、B、C、D的结论.解:由题意[x+1]=,所以f(x)=[x+1]﹣x=,可得到函数f(x)是周期为1的函数,且值域为(0,1],在(0,1)上单调递减,故选项A、B正确,C错误;对于选项D,[f(x)]=1,所以选项D错误,故选:AB.三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.13.已知幂函数y=xα的图象过点,则实数α的值是.【分析】把点的坐标代入幂函数解析式中求得α的值.解:幂函数y=xα的图象过点,则2α=,α=.故答案为:.14.已知函数f(x)=,若f(f(0))=3a,则a的值为4【分析】由分段函数求得f(0),再由分段函数解a的方程,可得a的值.解:f(x)=,f(f(0))=f(20+1)=f(2)=4+2a=3a,解得a=4,故答案为:4.15.已知sin(α+)=,则sin(﹣α)+sin2(﹣α)的值为.【分析】由诱导公式对已知进行化简,sin[]+sin2[]=sin (α+),代入即可求解.解:∵=sin[]+sin2[]=sin(α+)==,故答案为:.16.地震震级是根据地震仪记录的地震波振幅来测定的,一般采用里氏震级标准.震级(M)是用据震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示的.里氏震级的计算公式为M=lgA﹣lgA0,其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).根据该公式可知,7.5级地震的最大振幅是6级地震的最大振幅的32倍(精确到1).【分析】由题意可得,分别令M=7.5,M=6求出对应的最大振幅,从而求出结果.解:由题意可得M=lgA﹣lgA0=,即,所以,当M=7.5时,地震的最大振幅为;当M=6时,地震的最大振幅为,所以=,故答案为:32.四、解答题(共6小题,满分70分)17.(10分)已知集合A={x|<1},B={x|2x2+(m﹣2)x﹣m<0}.(1)当m=1时,求A∪B;(2)已知“x∈A”是“x∈B”的必要条件,求实数m的取值范围.【分析】(1)根据分式不等式的解法求出集合A,然后利用一元二次不等式的解法求出集合B,最后利用交集的定义进行求解即可.(2)根据“x∈A”是“x∈B”的必要条件,所以B⊆A,讨论m的范围,看是否满足条件,从而可求出所求.解:(1)由<1,得<0,所以A={x|﹣2<x<1}.B={x|2x2+(m﹣2)x﹣m<0}={x|(x﹣1)(2x+m)<0}.当m=1时,B={x|﹣<x<1}.所以A∪B={x|﹣2<x<1}.(2)因为“x∈A”是“x∈B”的必要条件,所以B⊆A.若﹣>1,不符合题意;若﹣=1即m=﹣2时,B=∅,符合题意;若﹣<1,则B={x|﹣<x<1},所以﹣2≤﹣<1,解得﹣2<m≤4.综上,m∈[﹣2,4].18.(12分)已知sin(π+α)cos(π﹣α)=,且0<α<.(1)求cosα+cos(+α)的值;(2)求tanα的值.【分析】(1)推导出sinαcosα=,从而(cosα﹣sinα)2=1﹣2sinαcosα=,进而cosα﹣sinα=,由此能求出cosα+cos(+α).(2)法一:由sinαcosα=,sin2α+cos2α=1,得=,从而=,即tan2α﹣8tanα+1=0,由此能求出tanα.法二:推导出从而,再由tanα=,能求出结果.解:(1)因为sin(π+α)cos(π﹣α)=sinαcosα,且sin(π+α)cos(π﹣α)=,所以sinαcosα=.(2分)故(cosα﹣sinα)2=cos2α﹣2sinαcosα+sin2α=1﹣2sinαcosα=1﹣2×=.(4分)又因为0<α<,所以cosα>sinα,即cosα﹣sinα>0,所以cosα﹣sinα=.所以cosα+cos(+α)=cosα﹣sinα=.(6分)(2)法一:由(1)知sinαcosα=,又因为sin2α+cos2α=1,所以=.因为0<α<,cosα≠0,所以=,即tan2α﹣8tanα+1=0,(9分)解得tanα=4﹣或tanα=4+.(10分)因为0<α<,所以0<tanα<1,所以tanα=4﹣.(12分)法二:由(1)知因为0<α<,所以cosα>sinα>0,故,(10分)所以tanα==4﹣.(12分)19.(12分)(1)计算:2+(0.125)+log9;(2)已知a=log0.43,b=log43,求证:ab<a+b<0.【分析】(1)利用对数的运算性质求解.(2)由函数y=log0.4x的单调性可得ab<0,由函数y=log4x的单调性可得0<+<1,进一步得到ab<a+b<0.解:(1)原式=5+[(2)﹣3]+log()4=5+4+4=13.(2)证明:因为y=log0.4x在(0,+∞)上递减,y=log4x在(0,+∞)上递增,所以a=log0.43<log0.41=0,b=log43>log41=0,所以ab<0,因为+=log30.4+log34=log3(0.4×4)=log31.6,且y=log3x在(0,+∞)递增,所以0=log31<log31.6<log33=1,即0<+<1,所以0>ab(+)>ab,即ab<a+b<0.20.(12分)已知函数f(x)=x|x﹣a|为R上的奇函数.(1)求实数a的值;(2)若不等式f(sin2x)+f(t﹣2cos x)≥0对任意x∈[,]恒成立,求实数t的最小值.【分析】(1)由奇函数的定义可得f(﹣x)=﹣f(x),化简整理,结合恒等式的性质可得所求值;(2)求得求得f(x)是R上的单调增函数,原不等式化为t≥2cos x﹣sin2x对任意x∈[,]恒成立,令m=cos x,结合余弦函数和二次函数的单调性,可得最值,即可得到所求最小值.解:(1)因为函数f(x)=x|x﹣a|为R上的奇函数,所以f(﹣x)=﹣f(x)对任意x∈R成立,即(﹣x)•|﹣x﹣a|=﹣x•|x﹣a|对任意x∈R成立,所以|﹣x﹣a|=|x﹣a|,所以a=0.(2)由f(sin2x)+f(t﹣2cos x)≥0得f(sin2x)≥﹣f(t﹣2cos x),因为函数f(x)为R上的奇函数,所以f(sin2x)≥f(2cos x﹣t).由(1)得,f(x)=x|x|=是R上的单调增函数,故sin2x≥2cos x﹣t对任意x∈[,]恒成立,所以t≥2cos x﹣sin2x对任意x∈[,]恒成立.因为2cos x﹣sin2x=cos2x+2cos x﹣1=(cos x+1)2﹣2,令m=cos x,由x∈[,],得cos x∈[﹣1,],即m∈[﹣1,],所以y=(m+1)2﹣2在[﹣1,]递增,可得最大值为,故t≥,即t的最小值为.21.(12分)如图,弹簧挂着的小球做上下振动,它在t(单位:s)时相对于平衡位置(静止时的位置)的高度h(单位:cm)由关系式h=A sin(ωt+)确定,其中A>0,ω>0,t∈[0,+∞).在一次振动中,小球从最高点运动至最低点所用时间为1s.且最高点与最低点间的距离为10cm.(1)求小球相对平衡位置的高度h(单位:cm)和时间t(单位:s)之间的函数关系;(2)小球在t0s内经过最高点的次数恰为50次,求t0的取值范围.【分析】(1)根据题意可求得A=5,T=2,由周期公式可求得ω,从而可得函数关系式;(2)由函数解析式可得当t=时,小球第一次到达最高点,再由已知及函数的周期可得t0的取值范围.解:(1)因为小球振动过程中最高点与最低点的距离为10 cm,所以A==5.因为在一次振动中,小球从最高点运动至最低点所用时间为1s,所以周期为2,即T=2=,所以ω=π.所以h=5sin(πt+),t≥0.(2)由题意,当t=时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在t0 s内经过最高点的次数恰为50次,所以+49T≤t0<+50T.因为T=2,所以98≤t<100,所以t0的取值范围为[98,100).(注:t0的取值范围不考虑开闭)22.(12分)对于定义在D上的函数f(x),如果存在实数x0,使得f(x0)=x0,那么称x0是函数f(x)的一个不动点.已知f(x)=ax2+1.(1)当a=﹣2时,求f(x)的不动点;(2)若函数f(x)有两个不动点x1,x2,且x1<2<x2.①求实数a的取值范围;②设g(x)=log a[f(x)﹣x],求证:g(x)在(a,+∞)上至少有两个不动点.【分析】(1)方程f(x)=x可化为2x2+x﹣1=0,求解即可.(2)①因为函数f(x)有两个不动点x1,x2,说明方程f(x)=x,即ax2﹣x+1=0的两个实数根为x1,x2,记p(x)=ax2﹣x+1,则p(x)的零点为x1和x2,利用零点判定定理推出a(4a﹣1)<0,求解即可.②说明p(x)=0有两个不相等的实数根.设p(x)=ax2﹣x+1=0的两个实数根为m,n,不妨设m<n.推出1<m<<n<.记h(x)=a x﹣(ax2﹣x+1),判断1是g (x)的一个不动点.说明h(x)的图象在[n,]上的图象是不间断曲线,利用函数的单调性,推出g(x)在(a,+∞)上至少有两个不动点.解:(1)当a=﹣2时,f(x)=﹣2x2+1.方程f(x)=x可化为2x2+x﹣1=0,解得x=﹣1或x=,所以f(x)的不动点为﹣1和.(2分)(2)①因为函数f(x)有两个不动点x1,x2,所以方程f(x)=x,即ax2﹣x+1=0的两个实数根为x1,x2,记p(x)=ax2﹣x+1,则p(x)的零点为x1和x2,因为x1<2<x2,所以a•p(2)<0,即a(4a﹣1)<0,解得0<a<.所以实数a的取值范围为(0,).(6分)②因为g(x)=log a[f(x)﹣x]=log a(ax2﹣x+1).方程g(x)=x可化为log a(ax2﹣x+1)=x,即因为0<a<,△=1﹣4a>0,所以p(x)=0有两个不相等的实数根.设p(x)=ax2﹣x+1=0的两个实数根为m,n,不妨设m<n.因为函数p(x)=ax2﹣x+1图象的对称轴为直线x=,p(1)=a>0,>1,p()=1>0,所以1<m<<n<.记h(x)=a x﹣(ax2﹣x+1),因为h(1)=0,且p(1)=a>0,所以x=1是方程g(x)=x的实数根,所以1是g(x)的一个不动点.(8分)h(n)=a n﹣(an2﹣n+1)=a n>0,因为0<a<,所以>4,h()=a﹣1<a4﹣1<0,且h(x)的图象在[n,]上的图象是不间断曲线,所以∃x0∈(n,),使得h(x0)=0,(10分)又因为p(x)在(n,)上单调递增,所以p(x0)>p(n)=0,所以x0是g(x)的一个不动点,综上,g(x)在(a,+∞)上至少有两个不动点.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省清江中学 高一上学期期末考试数学试题
时间:120分钟 满分:160分
一.填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.)
1.集合{}a A ,2,0=,{}2
,1a B =,若{}0,1,2,3,9A
B =,则a 的值为 .
2.函数()⎪⎭
⎫
⎝
⎛+
=3sin 2πωx x f (0>ω)的最小正周期为π,则=ω__________. 3. 已知α是第二象限角且4
sin 5
α=,则tan α= .
4.若函数12
()log (21)f x x =-的定义域是 .
5. 已知向量a =(2,1),b =(0,-1).若(a +λb )⊥a ,则实数λ= .
6.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=3x
,则f (sin 6
π
)的值为 7. 已知定义域为R 的函数121
()2x x f x a
+-+=+是奇函数,则a = .
8.
44sin 22.5cos 22.5︒-︒= 9.已知(0,)2πα∈,若1
sin()33
πα-=,sin α的值为 .
10.设向量)3,(k OA =,)2,0(k OB -=,OA ,OB 的夹角为︒120,
则实数=k .
11.设函数2sin (0)y x x π=≤≤的图象为曲线C ,动点(,)A x y 在曲线C 上,过A 且平行于x 轴的直线交曲线C 于点(B A B 、可以重合),设线段AB 的长为()f x ,则函数()f x 单调递增区间 .
12.如图, 在等腰三角形ABC 中, 底边2=BC ,
DC AD =,12AE EB =
, 若1
2
BD AC ⋅=-, 则AB CE ⋅= 13. 已知)2sin ,2(),sin ,1(2x b x a ==,其中()0,x π∈,若
a b a b ⋅=⋅,则tan x =
14.已知直线x=a(0<a<π
2)与函数f(x)=sinx 和函数g (x )=cos x 的图象分别交于M ,N 两点,若
MN= 1
5 ,则线段MN 的中点纵坐标为_______.
O
2
π
π x
y A
B
二. 解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.
15.(1)设α为第四象限角,其终边上一个点为()
5,-x ,且x 4
2
cos =
α,求αsin ;
(2)若cos 2sin αα+=求αtan 的值.
16. 函数()sin()4
f x A x π
ω=+
(其中0,0A ω>>)的振幅为2,周期为π.
(1)求()f x 的解析式并写出()f x 的单调增区间;
(2)将()f x 的图像先左移4
π
个单位,再将每个点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图像,求()g x 解析式和对称中心(m ,0),[0,]m π∈。
17.已知:(3,2),(1,2),(4,1)a b c ==-=
(1)求3a b c +-;(2)求满足条件a mb nc =+的实数,m n 。
(3)若向量d 满足()//()d c a b -+,且1d c -=求d .
18. 已知函数33cos sin 4)(+⎪⎭⎫ ⎝
⎛
+
=πx x x f . (1))(x f 在区间⎥⎦
⎤
⎢⎣⎡-6,4ππ上的最大值和最小值及取得最值时x 的值.
(2)若方程()t 0f x -=在[,]42
x ππ
∈-上有唯一解,求实数t 的取值范围.
19.已知函数2
()2cos 1f x x x θ=++
,1[]22
x ∈- (1)当3
π
θ=
时,求()f x 的最大值和最小值. (2)若()f x
在1
[,]22
x ∈-
上是单调函数,且[0,2)θπ∈,求θ的取值范围. (3)若sin ,cos αα是方程1()cos 4
f x θ=+的两个实根,求2tan 1
tan αα+的值.
20. 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f(x)=2
|()|23
g x a a -++
,x ∈[0,24],其中1sin()[0,2]24
()1(2,24]
x x g x x x
π⎧∈⎪⎪=⎨
⎪∈⎪⎩,a 是与气象有关的参数,且a ∈⎣⎢⎡⎦
⎥⎤0,12,若用每天f(x)的
最大值为当天的综合放射性污染指数,并记作M (a ).
(1)令t =()g x ,求t 的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
江苏省清江中学第一学期期末考试
高一数学答题纸
一.填空题
1. 2. 3. 4. 5.
6. 7. 8. 9. 10.
11. 12. 13. 14.
二. 解答题:本大题共6小题,计90分.写出必要的文字说明,证明过程或演算步骤.
江苏省清江中学 第一学期期末考试 高一数学参考答案
15. (1)10
sin 4
α=-; ………7分(2)tan 2α=. ……………14分 16.解:⑴由题可知:2A =且244
T T π
πω=∴=∴=
()2sin(2)4
f x x π
∴=+;………………………5分 令32222
4
2
88
k x k k x k π
π
π
ππ
ππππ-
+≤+
≤
+∴-
+≤≤+ (k Z ∈) ()f x ∴的单调增区间为3[,]88
k k ππ
ππ-
++ (k Z ∈);………… 10分 (2) 3()2sin()4
g x x π
∴=+ 对称中心(,04π) ……………14分
17.解:(1)33(3,2)(1,2)(4,1)a b c +-=+--(4,7)=………………3分
2234765a b c ∴+-=
+=…………………………5分
(2)由a mb nc =+得(3,2)(1,2)(4,1)(4,2)m n m n m n =-+=-++…6分
4322m n m n -+=⎧∴⎨+=⎩……………8分59
8
9m n ⎧
=⎪⎪∴⎨⎪=⎪⎩
………………10分
(3)(2,4),()//()a b d c a b +=-+
)(2,4d c a b λλλ∴-=+=()()R λ∈………………11分
22(2)(4)1d c λλ∴-=+=
5
λ∴=…………………………14分 552(2,44151055d c λλ∴==+=++)(), 552(2,44155
d c λλ==+=)()。
…………15分 18.解:(1)()2
4sin cos cos sin sin 32sin cos 23333f x x x x x x x ππ⎛⎫=-- ⎪⎝
⎭sin 232x x =+2sin 23x π⎛
⎫=+ ⎪⎝
⎭ …………5分
因为46x π
π
-
≤≤
,所以2263
3
x π
π
π
-
≤+
≤
所以1sin 2123x π⎛
⎫-≤+≤ ⎪⎝⎭,所以()12f x -≤≤,当2,
36x ππ+=- 即4
x π=-时,()min 1f x =-, 当2,3
2
x ππ+=即12
x π=时,()min 2f x =, ……9分
(2)因为4
12x π
π-
≤≤
时, 26
32x πππ
-≤+≤ ,12sin 22,3x π⎛
⎫
-≤+≤ ⎪⎝⎭
且单调递增,12
2
x π
π
≤≤
时,
422
3
3x π
π
π≤+
≤
所以32sin 223x π⎛
⎫-≤+≤ ⎪⎝
⎭,且单调
递减,
所以()f x t =,有唯一解时对应t 的范围为t [3,1)∈--或t=2 ……15分
20.解 (1)当0<x ≤24时,t 的取值范围是⎣⎢⎡⎦
⎥⎤0,12. ……5分
(2)当a ∈⎣⎢⎡⎦
⎥⎤0,12时,记g (t )=|t -a |+2a +23, 则g (t )=⎩⎪⎨⎪⎧
-t +3a +2
3
,0≤t ≤a ,t +a +23,a <t ≤1
2
,……8分
∵g (t )在[0,a ]上单调递减,在⎝ ⎛⎦
⎥⎤a ,12上单调递增,
且g (0)=3a +23,g ⎝ ⎛⎭⎪⎫12=a +76,g (0)-g ⎝ ⎛⎭⎪⎫12=2⎝ ⎛⎭
⎪⎫a -14.
- 11 - 故M (a )=⎩⎪⎨⎪⎧ g ⎝ ⎛⎭⎪⎫12,0≤a ≤14,g 0,14<a ≤12,=⎩⎪⎨⎪⎧ a +76,0≤a ≤14,3a +23,14<a ≤12, ∴当且仅当a ≤49
时,M (a )≤2. 故当0≤a ≤49时不超标,当49<a ≤12
时超标. ……16分。