化工原理-物料衡算和热量衡算

合集下载

化工中的物料衡算和能量衡算

化工中的物料衡算和能量衡算

化工中的物料衡算和能量衡算化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反”即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡算。

正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程学科的特点。

为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。

物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的基础。

一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。

绘制流程图时应注意:1.用简洁的长方形来表达一个单元,不必画蛇添足;2.每一条物质流线代表一个真实的流质流动情况;3.区别开放与封闭的物质流4.区别连续操作与分批操作(间歇生产)5.不必将太复杂的资料写在物质流线上确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。

合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种:1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。

2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb等。

3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。

4.干湿基准:水分算在内和不算在内是有区别的,惯例如下:烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基;奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。

化肥、农药常指湿基,而硝酸、盐酸等则指干基。

选取基准后,就要确定着眼物料了。

通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。

化工原理知识点提要

化工原理知识点提要

求化工原理知识点提要一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流-20 00-过渡-4000-湍流。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λlu2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

8.离心泵主要参数:流量、压头、效率、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

二、非均相机械分离1.颗粒的沉降:层流沉降速度Vt=(ρp-ρ)gdp2/18μ,(ρp-ρ:颗粒与流体密度差,μ:流体粘度);重力沉降(沉降室,H/v=L/u,多层;增稠器,以得到稠浆为目的的沉淀);离心沉降(旋风分离器)。

2.过滤:深层过滤和滤饼过滤(常用,助滤剂增加滤饼刚性和空隙率);分类:压滤、离心过滤,间歇、连续;滤速的康采尼方程:u=(Δp/Lμ)ε3/5a2(1-ε)2,(ε:滤饼空隙率;a:颗粒比表面积;L:层厚)。

三、传热1.传热方式:热传导(傅立叶定律)、对流传热(牛顿冷却定律)、辐射传热(四次方定律);热交换方式:间壁式传热、混合式传热、蓄热体传热(对蓄热体的周期性加热、冷却)。

化工原理-物料衡算和热量衡算

化工原理-物料衡算和热量衡算
I0cgt0IV0H0 I2cgt2IV2H2
I 2 I 0 c g t 2 t 0 I V 2 H 2 H 0
I 2 I 0 c g t 2 t 0 r 0 c 0 t 2 2 H 2 H 0 1 . 0 t 2 t 0 1 2 1 4 . 8 t 2 H 9 2 8 H 0 0
湿物料进出干燥器的焓分别为:
I1 cm1q1
I2 cm2q2
qq I2 I1 c m 2 1
QQpQD L I 2 I 0 G I 2 I 1 Q L L 1 .0 t2 1 t0 24 1 .8 9 t2 8 H 0 2 H 0
qq G m 2 c 1 Q L
四、干燥过程在湿焓图上的表达
1 典型干燥过程
将热量衡算式各项除以W:
G l(I2-I1)=Q D-W (I'2-I'1)-Q L
代入: l 1 H2 H1
ε=H I2 2--H I11=Q D-W G(I'2-I'1)-Q L
B
根据e 的值,把干燥器分成两大类: t2
C
(1)e 0,称为理想干燥器
单位时间内干燥系统消耗的总热量为
QQpQD L I 2 I 0 G I 2 I 1 Q L
(5-34) —— 连续干燥系统热量衡算的基本方程式
假设: a)新鲜干空气中水汽的焓等于离开干燥器废气中水汽的焓
IV0 IV2
b)湿物料进出干燥器时的比热取平均值 c m
湿空气进出干燥器时的焓分别为:
条状:马铃薯切条、刀豆、香肠等; 膏糊状:如麦乳精、巧克力浆等; 粉末状:淀粉、奶粉等;
液态:包括各种溶液、悬浮液和乳浊液如牛奶、蛋液、 果汁等。
湿物料按其物理化学性质不同粗略分为如下两大类:

化工原理下册 第三章塔设备-2

化工原理下册 第三章塔设备-2

xn1 yn (利用操作线方程)
(2)塔顶冷凝器的类型 (i)当塔顶为全凝器时,
y1 xd
则自第一块塔板下降的液相组成 x1 与 y1 成相平衡, 故可应用相平衡 方程由 y1 计算出 x1,自第二块塔板上升蒸汽组成 y2 与 x1 满足操作线方 程,由操作线方程以小 x1 计算得出 y2.
停留时间,即
A H
f T

LS
—液体在降液管中的停留时间,s
Af
(2).降液管底隙高度 为保证良好的液封,又不致使液流阻力太大,一般取为
hO
m3 —降液管截面积,
hO hW 0.006 ~ 0.012 , hO
m
也不易小于 0.02~0.025m,以免引起堵塞,产生液泛。
孔,以供停工时排液。
18
19
3.溢流堰
根据溢流堰在塔盘上的位置
可分为进口堰和出口堰。
当塔盘采用平形受液盘时, 为保证降液管的液封,使液体 均匀流入下层塔盘,并减少液 流沿水平方向的冲击,应在液
体进口处设置进口堰。
20
21
4、溢流堰(出口堰)的设计
(1).堰长 lW : 依据溢流型式及液体负荷决定堰长,单溢流型塔板堰 长 lW 一般取 为 (0.6 ~ 0.8)D ;双溢 流型塔 板,两 侧堰长 取为 (0.5 ~ 0.7)D,其中 D 为塔径 (2).堰上液层高度 OW : 堰上液层高度应适宜,太小则堰上的液体均布差,太大则塔板压 强增大,物沫夹带增加。对平直堰,设计时 hOW 一般应大于 0.006m, 若低于此值应改用齿形堰。 hOW 也不宜超过 0.06 ~ 0.07m ,否则可改 用双溢流型塔板。 平直堰的 hOW 按下式计算 式中

干燥过程中的物料衡算和热量衡算

干燥过程中的物料衡算和热量衡算

干燥过程中的物料衡算和热量衡算
式中qmw——水分的蒸发量,kg水分/s qmc——绝干物料 的质量流量,kg绝干料/s L——绝干空气的消耗量,kg绝干气/s H1,H2——分别为空气进出干燥器时的湿度,kg/kg绝干气; X1,X2——分别为湿物料进出干燥器的干基含水量,kg水分/kg
q′m1,q′m2——分别为湿物料进出干燥器的流量,kg物料/s。
Q=Qp+QD=L(I2-I0)+qmc (I′2-I′1)+QL
(9-24) (9-25)
(9-26)
干燥过程中的物料衡算和热量衡算
式中H0,H1,H2——湿空气进入预热器、离开预热器(即进 入干燥器)及离开干燥器时的湿度,kg/kg
I0,I1,I2——分别为湿空气进入预热器、离开预热器(即进 入干燥器)及离开干燥器时的焓,kg/kg
干燥过程中的物料衡算和热量衡算
图9-8 各流股进出逆流干燥器的示意图
干燥过程中的物料衡算和热量衡算
(1)对预热器进行热量衡算
LI0+Qp=LI1
(9-23)
在预热器中,空气的状态变化是等湿升温过程,即H1=H0,故预热器
Qp=L(I1-I0)=L(1.01+1088H0)(t1-t0) (2
QD=L(I2-I1)+qmc (I′ 2-I′1)+QL (3
干燥过程中的物料衡算和热量衡算
一般干燥过程,湿空气中水汽的量(H0)相对于绝干空气来 说,数值较小,同时湿物料进入干燥器的温度偏低。若忽略空气 中水汽进出干燥系统的焓变1.88H(t2-t0)和湿物料中水分带入干 燥系统的焓4.18Wθ1,则Q=Qp+QD=1.01L(t2-t0)+qmcM (θ2θ1)+qmw (2490+1.88t2)+QL (9-29)

化工原理1-2重要公式

化工原理1-2重要公式
0.83
Sc1 / 3
1 1 m 1 1 1 , , K x mK y K y ky kx K x k x mk y
G B Y1 Y2 Y G y1 y 2 y 1 2 , 1 2 G B Y1 Y1 Gy 1 y1
(2)全塔衡算: GB Y1 Y2 LS X 1 X 2 , G y1 y 2 Lx1 x 2
(3)操作线方程: Y
LS L L L ,y X Y2 S X 2 x x2 y 2 GB G G G B
GB Y1 Y2 , x1 x2 G y y 2 LS L
(4)出塔富液浓度: X 1 X 2
塔底重组分回收率: 2 (2)全塔衡算: 总物料衡算:
F DW
轻组分物料衡算: Fx F Dx D Wx W 馏出液采出率:
D xF xW F xD xW
(4)塔内气液相负荷(流量) :恒摩尔流假定 精馏段:
L RD V ( R 1) D
, 提馏段:
L RD qF V ( R 1) D (1 q ) F
(2)相对挥发度:
K A yA xA K B yB xB
(3)平衡关系: y
x 1 1x
p A A xA P
3、二元非理想溶液平衡关系: y A 二、传质速率 理论板假设 三、物料衡算 (1)塔顶轻组分回收率: 1
Dx D Fx F W 1 x W F 1 x F
化工原理 1-2 重要公式
第 8 章 吸收
一、气液平衡 1、平衡关系: y f ( x) ;亨利定律: p e Ex , p e Hc , y e mx 2、E 、H、m 的换算: m E / P , E Hc M 二、传质速率 1、分子扩散速率 (1)费克定律: J A DAB

化工原理基本知识点

化工原理基本知识点

第一章流体流动一、压强1、单位之间的换算关系:2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式二、牛顿粘性定律为速度梯度; 为流体的粘度;τ为剪应力;dudy粘度是流体的运动属性,单位为Pa·s;物理单位制单位为g/(cm·s),称为P(泊),其百分之一为厘泊cp液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hfρ∆∆∆++=-∑ 22u pgz E ρ++=称为流体的机械能单位重量流体的能量衡算方程:z :位压头(位头);22u g:动压头(速度头) ;p gρ:静压头(压力头)有效功率:Ne WeWs = 轴功率:NeN η=五、流动类型雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型(2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

即,由几个物理量组成的这种数称为准数。

六、流动阻力1、直管阻力——范宁公式(1)层流时的磨擦系数:64Reλ=,层流时阻力损失与速度的一次方成正比,层流区又称为阻力一次方区。

(2)湍流时的摩擦系数 ①(Re,)f d ελ=(莫狄图虚线以下):给定Re ,λ随dε增大而增大;给定dε,λ随Re 增大而减小。

化工原理-精馏过程的物料

化工原理-精馏过程的物料

加料板
L' IL'
(6)式变为:
FI F V IV LI L VIV LI L
V V IV FI F L LIL 将(5)式代入 F L LIV FI F L LIL FIV L LIV FI F L LIL F IV IF L LIV IL
令 q IV IF L L
V 1 qF V y L qF Lx Fx f
q 1Fy qFx Fx f
∴ y q x xf
q 1 q 1
q 1y qx x f
(13)
此式即为加料板的操作线方程,也叫q线方程,
它表示在加料板的上升蒸气组成和回流液组成之间的 关系。即y与x的关系。
6、提馏段操作线方程的另一种形式
R 1
精馏段操作线。
2、q线
y q x xf q 1 q 1
若x=xf 时,
y
q
q
1
x
f
xf q 1
xf
在y-x图上,q线通过对角线上y = x = xf一点,
q
斜率为 q 1 的直线,料液的进料状况不同, q线的斜率不同。
冷料
y
饱液
气液混合

-+ +-
饱气
x
过热
xf
14、进料热状况
进料状况 q值
(3)、各组分的气化潜热接近相等。
2、精馏段操作线方程
精馏段的作用:利用回流把上升蒸气中的重组分逐 步冷凝下来,同时把回流液中的轻组分气化,从而在 塔顶得到比较纯的轻组分。
精馏段的操作线方程 可以根据物料衡算导 出。按下图圈定的范 围(n+1板以上)作
物料衡算:
V
L
D

化工原理

化工原理

化工原理绪论部分1. 单元操作:根据化工生产的操作原理,可将其归纳为应用较广的数个基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、蒸发、结晶、吸收、蒸馏、萃取、吸附及干燥等,这些基本操作过程称为单元操作。

任何一种化工产品的生产过程都是由若干单元操作及化学反应过程组合而成的。

2.单元操作与“三传”过程:①动量传递过程。

③质量传递过程。

②热量传递过程。

3.单元操作计算:(1)物料衡算:它是以质量守恒定律为基础的计算:用来确定进、出单元设备(过程)的物料量和组成间的相互数量关系,了解过程中物料的分布与损耗情况,是进行单元设备的其它计算的依据。

(2)能量衡算:它是以热力学第一定律即能量守恒定律为基础的计算,用来确定进、出单元设备(过程)的各项能量间的相互数量关系,包括各种机械能形式的相互转化关系,为完成指定任务需要加入或移走的功量和热量、设备的热量损失、各项物流的焓值等。

第一章 流体流动1.流体:是由许多离散的彼此间有一定间隙的、作随机热运动的单个分子构成的。

通常是气体和液体的统称2.密度:单位体积流体所具有的质量称为流体的密度,单位为kg ,其表示式为 ρ=V/m 比容:单位质量流体所具有的体积,其单位为m 3/kg ,在数值上等于密度的倒数。

v=1/ρ 压强:垂直作用于单位面积上且方向指向此面积的力,称为压强,其表示式为 P=F/A3.等压面:在静止的、连续的同一液体内,处于同一水平面上的各点,因其深度相同,其压力亦相等。

4.流量与流速:(一)流量<1>.体积流量:单位时间内流经通道某一截面的流体体积,用V s ,表示,其单位为m 3/s(或 m 3/h)。

<2>.质量流量:单位时间内流经通道某一截面的流体质量,用W s 表示,其单位为kg/s(或 kg/h)。

当流体密度为ρ时,体积流量y ,与质量流量W s 的关系为: Ws =V s ρ(二) 流速:单位时间内流体微团在流动方向上流过的距离,其单位为m/s 。

《化工原理》传热计算

《化工原理》传热计算
若不计热损失,则:热流体的放热量 = 冷流体的吸热量
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000

K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100

1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷

化工原理各章重点内容

化工原理各章重点内容

ζRet-1~ Ret K<2.62;K>69.1 Ar 18 + 0.6 Ar
Vs≤(n+1)Aut
5. 离心沉降: (1)分离性能:① 临界直径: d c = C1 − C2 ; C1 C1,i − C2,i C1, i
9µ B π N e ρs ui
② η0 =
η p ,i =
; η0 = ∑ xiη pi ;
ws = Vs ⋅ ρ
G = ws / A = ρ ⋅ u
d=
4Vs π ⋅u
6. Bernoulii 方程:
gz1 +
u12 p1 u2 p + + We = gz2 + 2 + 2 + ∑ h f 2 ρ 2 ρ du ρ ( Re ≤ 2000 µ ∆p f 8µ l Re ≥ 4000 2000 < Re < 4000 )
传热效率ε = 实际传热速率Q 最大可能传热速率Qmax
6 × 105 Re1.8
Qmax = (WcP )min (T1 − t1 )
εh =
T1 − T2 T1 − t1
εc =
t2 − t1 T1 − t1
传热单元数法的步骤: Wc ⋅ cpc 、 Wh ⋅ cph 、确定 Cmin Cmax ;
第六章 精馏
1. 气液相平衡 ① 拉乌尔定律: pA
= po A xA
o p − pB o po A − pB
② 气液平衡函数关系式: x = ③ t~x~y 图的识别↔x~y ④ 气液相平衡方程: y =
y=
po Ax p
αx 1+ (α −1) x
2. 简单蒸馏

化工设计物料衡算与能量衡算

化工设计物料衡算与能量衡算

• 1.求燃料气组成以C作联系组分,燃烧前后碳原子数不 变,所以CO2mol数等于CH4的mol数,即CH4= 8.12mol,
• 需要氧气量为2×8.12=16.24mol。
• 计算进料的空气量,以N2作联系组分,由烟道气中的N2 可得进料中的总氧气量:72.28×20.92/79=19.14mol,
Φ=
×100%
限制组分的消耗量
(5) 收率
生成目的产物所消耗限制组分的量
η=
×100%
限制组分的输入量
η =xA· Φ
“独立”的含义
对有化学反应的过程,应写独立的反应方
程式或独立反应数。例如碳与氧的燃烧过
程 :C O2 CO2 ①
C
1 2
O2
CO
② ③
CO
1 2
O2
CO2
CO2 C 2CO
湿纸浆 浆: 0.29 水: 0.71
干燥器
干燥纸浆 浆:? 水:?
水分
• 例:每小时将20kmol含乙醇40%的酒精水溶液进 行精馏,要求馏出液中含乙醇89%,残液中含乙醇 不大于3%(以上均为摩尔分数),试求每小时馏出 液量和残液量。
• 解:由全塔物料衡算式可得

20 = D + W
(1)
• 20×0.4 = 0.89D + 0.03W
化工设计物料衡算与能 量衡算
2021年7月13日星期二
化工基础数据
化工计算以及化工工艺和设备设计中,要 用到有关化合物的物性数据。例如,进行化 工过程物料与能量衡算时,需要用到密度或 比容、沸点、蒸汽压、焓、热容及生成热等 等的物性数据;设计一个反应器时,则需要 知道化学反应热的数据;计算传热过程时, 需要导热系数的数据等等。

化工原理_物料衡算和热量衡算

化工原理_物料衡算和热量衡算

(4)湿物料的焓I’
包括:绝干物料的焓(0C为基准)和
物料中水分的焓(0C、液态水为基准 )
二、物料衡算
新鲜空气
L, t0 , H0
预热
1 产品 量
G1 , w1( X1 )湿物料
热空气
L, t1 , H1
产品
干燥
G2 , w2( X 2 )
废气
L, t2 , H 2
G2
1 1
w1 w2
G1
(5-30)
四、干燥过程在湿焓图上的表达
1 典型干燥过程
将热量衡算式各项除以W:
G l( I2 - I1 ) = QD - W ( I'2 -I'1 ) - QL
代入: l 1 H2 H1
ε
=
I2 H2
-
I1 H1
=
QD
G W
(
I'2 -I'1
) - QL
B
根据e 的值,把干燥器分成两大类: t2
2 水分气化 量
绝干物料量
W G1 G2 G( X1 X 2) G = G1(1- w1 ) = G2(1-w2 )
单位!
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.7.2221.7.22T hursday, July 22, 2021
H0,t0,I0
预热
Qp
QL
L
H1,t1,I1
G1,w1, q1,I’1
干燥
L
H2,t2,I2
G2,w2, q2,I’2
QD
整个系统: 进入 离开
热空气 物料 加入 损失

化工原理内容总结(1)

化工原理内容总结(1)

化工原理内容总结绪论篇1.物料衡算、能量衡算步骤。

步骤:画出简单流程示意图,并用带箭头的简单线条表明物料的流入、流出关系,且标注已知流量和单位。

确定好衡算范围、衡算基准。

列出衡算式。

能量衡算的步骤:[1]列出已知条件,即物料衡算的量和选定的工艺参数[2]选定计算基准,一般以KJ/h 计[3]对输入、输出热量分项进行计算[4]列出热平衡方程式,求出传热介质的量[5]热量衡算式如下:Q1+Q2=Q3+Q4+Q5式中:Q1-所处理原料带入热量Q2-由加热剂(或制冷剂)传给设备(或物料)的热量Q3+-所处理的物料从设备中带走的热量Q4-消耗在设备上的热量Q5-设备向四周散发的热量(热损失)2.物料衡算式中,积累量等于0和积累量不等于0的情况判别?因为,输人物料的总和∑G i =输出物料的总和∑G0+累积的物料量∑G a积累量=0则:输人物料的总和=输出物料的总和属于稳态过程,一般连续不断的流水作业(即连续操作)为稳态过程,其特点是在设备的各个不同位置上,物料的流速、浓度、温度、压强等参数可各自不相同,但在同一位置上这些参数都不随时间而变。

积累量<>0,则属于非稳态过程,一般间歇操作(即分批操作)属于非稳态过程,在设备的同一位置上诸参数随时间而变。

3.国际单位制中的基本单位是哪七个?七个基本单位:长度(m)、质量(kg)、时间(s)、温度(k)、物质量(mol)、电流强度(A)、发光强度(烛光或坎德拉,cd)4.哪几个单元操作同时遵循传热和传质基本规律?哪几个遵循流体流动基本规律?各种单元操作依据不同的物理化学原理,采用相应的设备,达到各自的工艺目的。

对于单元操作,可从不同角度加以分类。

根据各单元操作所遵循的基本规律,将其划分为如下几种类型。

①遵循流体动力学基本规律的单元操作,包括流体输送、沉降、过滤、物料混合(搅拌)等。

②遵循热量传递基本规律的单元操作,包括加热、冷却、冷凝、蒸发等。

③遵循质量传递基本规律的单元操作,包括蒸馏、吸收、萃取、吸附、膜分离等。

化工原理下 第十二章 干燥

化工原理下 第十二章 干燥

湿空气的饱和湿度是温度的函数。
12.2.1 湿空气的性质
2.相对湿度 在一定总压下,湿空气中水汽分压p与同温度下纯水的饱 和蒸汽压ps之比,称为相对湿度,用 φ表示,即
相对湿度代表空气中水汽含量的相对大小。当p=0时,φ=0, 表示湿空气中不含水分,为绝干空气。当p=ps时,φ=1, 表示湿空气被水汽饱和,为饱和湿空气,这种湿空气不能用 作干燥介质。可见,φ越小,空气的吸湿能力越大。
12.2.1 湿空气的性质
一、湿空气中水蒸汽含量的表示方法 在干燥过程中,湿空气中水蒸汽含量的表示方法有两种: 1.湿度 又称湿含量,是湿空气中水汽的质量与绝干空气质量之比 (质量比),用H表示,单位kg水汽/kg干空气。
12.2.1 湿空气的性质

当湿空气中的水汽分压p等于该空气温度下纯水的饱和 蒸汽压ps时,湿空气再不能吸收水分,此时湿空气达到饱和 状态,其湿度称为饱和湿度,用Hs表示:
12.2.2 湿空气的湿度图
对于不饱和湿空气,组分数C为2,相数φ为1,根据相 率,可知其自由度:F = C-φ+2 = 2-1+2 = 3 在总压一定的条件下,只要再任意规定两个任意参数, 湿空气的状态即被唯一确定。这两个任意参数一般定为:湿 空气的温度和湿度。 湿度图包括五种线: 1、等干球温度线 3、等相对湿度线
12.1 概述
干燥法去湿的分类: 1、按供热方式分: (1)传导干燥 热能通过传热壁面以传导的方式传给物料,产生的湿分 蒸汽被气相(又称干燥介质)带走。如:纸制品铺在热滚筒上 进行干燥。 (2)辐射干燥 由辐射器产生的辐射能以电磁波的形式到达物料表面, 被物料吸收而重新变为热能,从而使湿份气化。如:红外线 干燥自行车表面油漆。 (3)介电加热干燥 将需要干燥的物料置于高频电场中,电能在物料中转变 成热能,使液体很快升温而气化。这种加热过程发生在物料 内部,故干燥速率较快。如:微波炉

化工原理(天大版)干燥过程的物料衡算与热量衡算

化工原理(天大版)干燥过程的物料衡算与热量衡算

8.3干燥过程的物料衡算与热量衡算干燥过程是热、质同时传递的过程。

进行干燥计算,必须解决干燥中湿物料去除的水分 量及所需的热空气量。

湿物料中的水分量如何表征呢?8.3.1湿物料中的含水量湿物料中的含水量有两种表示方法1 •湿基含水量W2.「基含水量Xv 湿物料中水分的质量f 一松綁 X =湿物料中绝干物料的质量kg 水傀绝F •物料3.二者关系 ⑷- XX- w 1 + X1-w 说明:干燥过程中,湿物料的质量是变化的,而绝干物料的质量是不变的。

因此,用干基含 水量计算较为方便。

832干燥过程的物料衡算图8.7 物料衡算符号说明:L :绝干空气流虽,kg 干气/h :G 】、G 2:进、岀干燥器的湿物料呈:,kg 湿料/h ;G c :湿物料中绝干物料量,kg 干料/h°湿物料中水分的质量湿物料总质量kg 水/kg 湿料产品Gi, wi, (Xi), 0\ Gz. W29 (X2),目的:通过干燥过程的物料衡算,可确定岀将湿物料干燥到指左的含水量所需除去的水分量及所需的空气量。

从而确左在给定干燥任务下所用的干燥器尺寸,并配备合适的风机。

1.湿物料的水分蒸发量W[kg水/h]通过干燥器的湿空气中绝干空气虽:是不变的,又因为湿物料中蒸发岀的水分被空气带走,故湿物料中水分的减少呈等于湿物料中水分汽化虽等于湿空气中水分增加量。

即:[G,-G2 = G, vv,-G2w2=G c(X i-X2)] = [W] = [L(H2 - H.)]14;— IV w— u*所以:W=G|—G2=G| __ =Gj __-1 - w2 1 - W]2•干空气用ML|kg干气/h][kg干气/kg水]/称为比空气用量, 即每汽化lkg的水所需干空气的崑因为空气在预热器中为等湿加热,所以瓯山右 Z与空气的初、终湿度有关,而与路径无关,是状态函数。

湿空气用量: L =厶(1 +乩))kg湿气/h或/ =/(l + H0) kg 湿气/kg 水湿空气体积: V v = L U H m?湿气/h 或V. = Iu H m3湿气/kg水8.3.3干燥过程热量衡算通过干燥器的热量衡算,可以确泄物料干燥所消耗的热疑或干燥器排出空气的状态。

化工原理主要知识点

化工原理主要知识点

化工原理(上)各章主要知识点三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算第一节 流体静止的基本方程一、密度1. 气体密度:RTpMV m ==ρ2. 液体均相混合物密度:nm a a a ρρρρn 22111+++=Λ (m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组分密度)3. 气体混合物密度:n n mρϕρϕρϕρ+++=Λ2211(m ρ—混合气体的密度,ϕ—各组分体积分数)4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显着的改变则称为可压缩流体(气体)。

二、.压力表示方法1、常见压力单位及其换算关系:mmHgO mH MPa kPa Pa atm 76033.101013.03.10110130012=====2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压三、流体静力学方程1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等;(2)静压力的方向垂直于任一通过该点的作用平面;(3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。

2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体))(2112z z g p p -+=ρ)(2121z z g pg p -+=ρρ p z gp=ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头)上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。

四、流体静力学方程的应用 1、U 形管压差计指示液要与被测流体不互溶,且其密度比被测流体的大。

测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体:gR p p 021ρ=-2、双液体U 形管压差计gR p p )(1221ρρ-=-第二节 流体流动的基本方程一、基本概念1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IV 0 IV 2
b)湿物料进出干燥器时的比热取平均值 cm
湿空气进出干燥器时的焓分别为:
I0 cgt0 IV 0H0 I2 cgt2 IV 2H2
I2 I0 cg t2 t0 IV 2 H2 H0
I2 I0 cg t2 t0 r0 c02t2 H2 H0 1.01t2 t0 2490 1.88t2 H2 H0
单位时间内向干燥器补充的热量为
QD LI2 I1 GI2 I1 QL
(5-33)
单位时间内干燥系统消耗的总热量为
Q Qp QD LI2 I0 GI2 I1 QL
(5-34) —— 连续干燥系统热量衡算的基本方程式
假设: a)新鲜干空气中水汽的焓等于离开干燥器废气中水汽的焓
废气 B
C A
目的:降低干燥推动力。适用于干燥太快时易翘曲、开裂、 变形的物料。
作业:
讲课内容教材部分复习; P294: 第3, 4, 5题 5月5日交。
Gcm q2 q1 QL
L W
W
H 2 H1 H 2 H 0
Q

1.01Lt2

t0

W H2
H0
2490
1.88t2
H 2

H0

Gcmq2 q1 QL
(5-36)
1.01Lt2 t0 W 2490 1.88t2 Gcmq2 q1 QL
LI1 I0 < LI2 I0
I1 < I2
c)操作线为过B点的等温线 向干燥器补充的热量足够多,恰使干燥过程在等温下进行 。
例:某种湿物料在常压气流干燥器中进行干燥,湿物料的 流量为1kg/s,初始湿基含水量为3.5%,干燥产品的湿基含 水量为0.5%。空气状况为:初始温度为25℃,湿度为 0.005kg/kg干空气,经预热后进干燥器的温度为140℃,若 离开干燥器的温度选定为60℃和40℃,试分别计算需要的 空气消耗量及预热器的传热速率。
又若空气在干燥器的后续设备中温度下降了10℃,试分 析以上两种情况下物料是否返潮?假设干燥器为理想干燥 器。
解:因在干燥器内经历等焓过程,IH1 IH 2
1.011.88H1t1 2490H1 1.011.88H2 t2 2490H2
t1 140℃ H1 H0 0.005kg / kg干空气
条状:马铃薯切条、刀豆、香肠等; 膏糊状:如麦乳精、巧克力浆等; 粉末状:淀粉、奶粉等;
液态:包括各种溶液、悬浮液和乳浊液如牛奶、蛋液、 果汁等。
湿物料按其物理化学性质不同粗略分为如下两大类:
(1)含水分的液体
溶液:如葡萄糖、味精等的水溶液及食品的浸出液。 胶体溶液:如蛋白体溶液、果胶溶液等。
(2) 含水分的固体
t2 60 ℃
H2

1.011.88 0.005140
1.88 60 2490

2490 0.005 1.01 60 1.88 60 2490
0.0363kg / kg干空气
绝干物料量: G = G1(1- ω1) 1 1 0.035 0.965kg / s
可见,向干燥系统输入的热量用于:加热空气、加热物 料、蒸发水分、热损失。
cm = cs + Xcw
干燥系统的热效率
蒸发水分所需的热量
向干燥系统输入的总热量 100%
?
蒸发水分所需的热量为
QV W 2490 1.88t2 4.187q1W
忽略物料中水分带入的焓
QV W 2490 1.88t2
结晶质的固体:如糖和食盐等。 胶质分散系:如明胶、淀粉质物料等。
其中,后一类是多见的。胶质固体又可分为三类。 弹性胶体是典型的胶质固体,如明胶、洋胶、洋菜、面团 等。当除去水分后,这种物体将收缩,但保持其弹性。脆 性胶体除去水分后变脆,干燥后可能变化为粉末,如木炭、 陶质物料。第三类是胶质毛细孔物料,如面包、谷物,其 毛细管壁具有弹性,干燥时收缩,干燥后变脆。
学号 请回答!
W 2490 1.88t2 100%
Q
W (2490 1.88t2 ) 100 %
Qp QD
一般地,废气温度低而湿度高时, 就高。但t2应
比tas高20~50ºC,以保证在干燥后不致返潮。
0:示意图 1:W 2:L0 3:V”(体积流量)
4:Qp 5:Q 6: QD 7:
G1
(5-30)
2 水分气化 量
绝干物料量
W G1 G2 G( X1 X 2) G = G1(1- w1 ) = G2(1-w2 )
单位!
3 干空气消耗量
由: 得:
LH1+GX1=LH2+GX2
L G(X1 X2) W H2 H1 H2 H1
或:
L
1
l
W H2 H1
湿物料进出干燥器的焓分别为:
I1 cm1q1
I2 cm2q2
I2 I1 cm q2 q1
Q Qp QD LI2 I0 GI2 I1 QL
L1.01t2 t0 2490 1.88t2 H2 H0
p2

101.33 0.0447 0.622 0.0447

6.79kPa
t=30℃时,饱和蒸汽压ps=4.25kPa, p2 > ps 物料可能返潮。
2 中间加热干燥过程
新鲜空气 预热
干燥
加热
废气 干燥
B
C A
目的:降低热空气温度。 适用于热敏性物料。
3 部分废气循环干燥过程
预热
干燥
新鲜空气
热空气 物料 加入 损失
LI0 LI2 GI′1 GI′2 Qp+QD
QL
忽略预热器的热损I0 Qp LI1 (5-31/32)
预热器: Qp=L(I1-I0) kW
对干燥器列焓衡算,以1s为基准
LI1 GI1 QD LI2 GI2 QL
X1

1 1 1
3.5 0.0363kg水 / kg绝干料 96.5
X2

0.5 1 0.5

0.00503kg水
/
kg绝干料
绝干空气量:
L GC X 2 X 2 0.9650.0363 0.00503 0.964kg / s
H2 H1
0.0363 0.005
C
(1)e 0,称为理想干燥器
t1 A
或等焓干燥器 (P260文字说明) t0
(2)e 0,非等焓干燥过程
H0 H2
又分e <0 (I2 < I1)和e >0 两种情况
Q: 哪一个e <0 ?
B
t2
C’
t1 A C t0
B
t2
C
C’
t1 A t0
H0 H2
H0
H2
a)操作线在过B点等焓线下方 条件: • 不向干燥器补充热量QD=0; • 不能忽略干燥器向周围散失的热量 QL≠0;
l 比空气用量:每蒸发1kg水所需干空气的量,与空气 的初、终温度有关。


需H

0


:l


l (1

H0
)
(5-28)
G
X
G1
w1
G2
w2
三、热量衡算
L
H0,t0,I0
预热
Qp
QL
L
H1,t1,I1
G1,w1, q1,I’1
干燥
L
H2,t2,I2
G2,w2, q2,I’2
QD
整个系统: 进入 离开
2 物料湿含量的表示方法(P254)
(1)湿基含水量w 定义:水分在湿物料中的质量百分数
(2)干基含水量X 定义:水分质量与绝干物料质量之比
X=w/(1-w) (5-23)
w=X/(1+X) (5-22)
(3)湿物料的比热容 cm
cm = cs + X cw = cs + X·4.187
(5-24)
• 物料进出干燥器时的焓不相等 GI2 I1 0
I
LI1 I0 > LI2 I0 t1
I1 > I2
t2
C3
B
I1

I2 C
C2
C1
H
b)操作线在过点B的等焓线上方 向干燥器补充的热量大于损失的热量和加热物料
消耗的热量之总和。
QD > GI2 I1 QL
(4)湿物料的焓I’
包括:绝干物料的焓(0C为基准)和
物料中水分的焓(0C、液态水为基准 )
二、物料衡算
新鲜空气
L, t0 , H0
预热
1 产品 量
G1 , w1( X1 )湿物料
热空气
L, t1, H1
产品
干燥
G2 , w2( X2 )
废气
L, t2 , H 2
G2

1 w1 1 w2
第二节 物料衡算和热量衡算 p254
一、湿物料的性质 二、物料衡算 三、热量衡算 四、干燥过程在湿焓图上的表达
一、湿物料的形态和含水量表示
1 湿物料的形态
湿物料按其外观形态的不同二分为下列几种:
散粒状:如谷物、各种油料种籽; 晶体:经过滤分离后的各种晶体,如葡萄糖、柠 檬酸、盐等; 块状:如马铃薯、胡萝卜、面包等; 片状:如果蔬、肉片、葱、蒜片、饼干等;
预热器的传热速率:
Qp LcH (t1 t0 )
相关文档
最新文档