分数除法的意义与整数除法的意义
分数除法的意义和分数除以整数
分数除法的意义和分数除以整数教学内容:教科书第30~31页的例题和做一做,练习八的第1~5题。
教学目的:1.使学生理解分数除法的意义与整数除法的意义相同。
2.学会分数除以整数的计算方法。
教具准备:教师准备10个半块月饼的教具。
教学过程:一、复习1.举例说明整数除法的意义是什么?2.根据乘法算式13438=5092,写出相应的两个除法算式。
3.举例说明分数乘以整数的意义和一个数乘以分数乘法的意义各是什么?以上复习题可以指名回答。
二、新课1.教学分数除法的意义。
教师出示5个半块月饼的教具,提问:(1)每人吃半块月饼,5个人一共吃多少块月饼?怎样列式?得多少?(2)两块半月饼,平均分给5人,每人分得多少块月饼?教师出示两块半月饼,将它们平均分成5个半块月饼。
要求学生按照教具的演示过程列式、计算。
(3)两块半月饼分给每人半块,可以分给多少人?教师让学生到黑板前进行教具演示,再列式计算。
教师让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题:(1)第一个算式已知什么?求什么?用什么方法计算?(已知两个因数:和5,求出它们的积为;用乘法计算。
)(2)第二个算式呢?(已知积是和一个因数是5,求出另一个因数是 ,用除法计算。
)(3)第三个算式跟上面哪一个算式是类似的?(跟第二个算式是类似的,也是已知积是和一个因数是 ,求出另一个因数是5,用除法计算)教师:分数除法的意义是什么?它跟整数除法的意义一样不一样?(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
)2.做教科书第30页做一做中的题目。
教师让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的得数的?3.教学分数除以整数。
教师出示例1:把米铁丝平均分成2段,每段长多少米?教师:根据题意需要用什么运算来求出得数?并列出算式。
(应该用分数除法来做,算式是 2。
)教师:这个算式的含义是什么?米是几个米?应该怎样计算?试试看。
分数除法的意义和分数除以整数
“分数除法的意义和分数除以整数”说课稿吴海燕一、分析教材我说课的内容是:人教版数学六年级上册第三单元的分数除法第一课时例1和例2.,它是在学生理解了整数乘法的意义和掌握分数乘法的计算方法及倒数的基础上进行教学的,例1是认识分数除法的意义,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。
例2是分数除以整数的计算教学,意在通过让学生进行画图、验证,引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。
因此我根据教材的编排特点和学生的认知水平设计了如下教学目标:1、引导学生知道分数除法的意义与整数除法的意义是相同的;通过观察、猜测、实验、验证和归纳过程,让学生理解并掌握分数除以整数的计算方法。
2、在教学中渗透转化的数学思想,采用数形结合的策略,培养学生语言表达能力、思维能力、归纳概括能力。
3、让学生体会到学习数学的应用价值。
本节课的教学重点是理解分数除法的意义和分数除以整数的计算方法。
教学难点是除以一个整数(0除外),等于乘以这个整数倒数的推导过程。
除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。
所以本课的关键是如何引导学生在实验和验证中自主体验和感悟,真正理解为什么要乘以这个整数的倒数。
二、教法、学法。
为了达成以上教学目标,突破重难点,本课的教学以学生为主体,坚持启发与发现相结合的教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。
学习方法上强调以探究学习法为主。
认知结构理论告诉我们,学习是学生积极主动的内化过程。
只有通过主动参与获得的知识,才是有意义的,记忆也最深刻。
因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。
三、教学程序(一)教学分数除法的意义1.由“一盒饼干100克,3盒重多少克?”改编两道除法题目得到整数除法的意义。
六年级数学教案分数除法的意义和整数除以分数
六年级数学教案分数除法的意义和整数除以分数2、动手操作,通过直观认识使学生明白得整数除以分数,引导学生正确地总结出运算法则,能运用法则正确地进行运算。
3、培养学生观看、比较、分析的能力和语言表达能力,提高运算能力。
教学重点:使学生明白得算理,正确总结、应用运算法则。
教学难点:使学生明白得整数除以分数的算理。
教学过程:一、复习1、复习整数除法的意义(1)引导学生回忆整数除法的运算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)依照已知的乘法算式:56=30,写出相关的两个除法算式。
(305=6,306=5)2、口算下面各题36二、新授1、教学例1(1)出示插图及乘法应用题,学生列式运算:1003=300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?3003=100(克)B、300克水果糖,每盒100克,能够装几盒?300100=3(盒)(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
3=(千克)3=(千克)3=3(盒)(4)引导学生通过整数题组和分数题组的对比,小组讨论后得出:分数除法的意义与整数除法相同,差不多上已知两个因数的积与其中一个因数,求另个一个因数。
差不多上乘法的逆运算。
2、巩固分数除法意义的练习:P28做一做3、教学例2(1)学生拿出课前预备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对比不同的折法,说出两种不同的运算方法。
A、2==,每份确实是2个。
B、2==,每份确实是的。
(4)假如把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行运算,通过操作对比,让学生发觉第二种方法适用的范畴更广。
4、引导学生观看2和3两个算式,概括出分数除以整数的运算法则:分数除以整数,等于乘上那个整数的倒数。
六年级数学分数除法的意义和分数除以整数
第2课时分数除法的意义和分数除以整数学习目标:1、在具体情境中.理解并掌握分数除以整数的计算方法能正确计算.并概括出分数除法的意义。
2、在推理过程中.培养思维能力.感受数形结合、转化等数学思想方法在数学学习中的重要作用。
学习重点:分数除法的意义.分数除以整数的计算方法。
学习难点:分数除以整数的算理。
使用说明与学法指导:自学课本P30页.通过独立思考及小组合作.能够理解理解分数除法的意义.掌握分数除以整数的计算方法。
学习小组讨论交流.让同学们进行展示.小组间互相点评.对于有疑问的题目教师点拨、拓展。
独立完成导学案。
带★的题可选做。
一、课前热身:想一想.填一填。
1)、35×()=175 ()×8=10 58×()=12)、已知一个因数是27.积是是81.另一个因数是()。
3)、56 ÷8表示把()平均分成()份。
二、自主学习:(初步理解分数除法的意义.感知分数与除法的关系。
)根据乘法算式直接写出除法算式的得数。
310×16=201( )÷( )=( ) ( )÷( )=( )小结:分数除法的意义与整数除法意义( ).都是( )。
三、合作探究:(动手折一折.感知分数除法的意义.归纳分数除以整数计算方法)。
例1、把一张纸的45 平均分成2份.每份是这张纸的几分之几?如果把这张纸的45平均分成3份.每份是这张纸的几分之几?(自己先试着折一折.再算一算。
) 讨论:有几种方法?试着做一做。
方法1:分一分:把一张纸平均分成5份.将其中的4份涂上颜色.就是这张纸的45(被除数)折一折:把这张纸的45 (4份)平均分成2份.每一份占5份中的2份.也就是这张纸的即:45 里面有( )个 15 .把( )个15 平均分成2份.每份是( )个15 .也就是把分子平均分成2份.( )不变。
方法2:折一折:把表示45 的纸沿与原来的折痕垂直的方向对折即:把45 平均分成2份.每份就是45 的( ).也就是45 ÷2 = 45 ×21 考考你:把这张纸的45 平均分成3份.每份是这张纸的几分之几?怎样算?45 ÷3中.用方法一算:4÷3得不到整数.不能计算出结果.就要用方法二计算。
分数除法的意义和分数除以整数
整数除法运算中,被除数除以除 数,商为整数或小数,余数可有 可无。
计算方法的比较
分数除法
分数除法的计算通常包括两个步骤, 首先将除数的倒数求出,然后将被除 数与这个倒数相乘。
整数除法
整数除法的计算通常是通过连续减法 或乘法逆元(如果存在)来实现的。
应用场景的比较
分数除法
分数除法在解决涉及分数的问题时非常有用,如分配、比较大小、求解方程等。 它可以帮助我们更精确地表示和处理与分数相关的数量关系。
在未来的学习中,我们将继续深入学习分数的四则运算,包括加法、减法、乘法和除法。通过熟练掌握这些运算规则 ,我们将能够更灵活地运用分数来解决各种问题。
拓展到复杂数学问题
随着学习的深入,我们将接触到更复杂的数学问题,如分式方程、不等式等。这些问题将要求我们综合运用分数的知 识和技巧,提高我们的数学素养和解决问题的能力。
在分数除法中,被除数称为“分 子”,除数称为“分母”,运算结 果称为“商”。
分数除法与乘法的关系
分数除法可以转化为乘法运算,即被 除数除以除数等于被除数乘以除数的 倒数。
通过将除法转化为乘法,可以简化运 算过程,提高计算效率。
分数除法的运算规则
分数除以整数时,可以将整数看 作分母为1的分数,然后进行除
当分数除以整数时,可以将除法转化为乘法,即除以一个数等于乘以这个数的倒数。这样 ,我们就可以利用乘法运算来简化分数除法的计算过程。
分数除法的应用
分数除法在实际生活中有着广泛的应用,如计算平均分、求解比例问题等。掌握分数除法 的方法,有助于我们更好地理解和解决这些问题。
对未来学习的展望
深入学习分数运算
分数除法在求图形周长中的应用
对于一些由多个不同长度线段组成的图形,如多 边形、不规则图形等,可以通过分数除法来计算 某一线段与周长的比例。
分数除法的意义分数除以整数
在数学、科学和工程等领域,分数除 法是解决各种问题的基础。它有助于 理解分数的性质,比较大小,以及解 决与分数有关的实际问题,如分数的 加减、乘除等运算。
分数除以整数的计算方法和技巧
分数除以整数的计算方法
将分数除以整数,可以通过乘以整数的倒数来简化计算。例如,将分数a/b除以整数c,可以表示为(a/b) × (1/c)。
分数除以整数在数学题目中的应用
解决几何问题
在几何问题中,经常需要将分数除以整数来计算图形的面积 或周长。例如,计算一个矩形的面积,需要将长和宽相乘, 如果长和宽是用分数表示的,就需要用到分数除法。
解决代数问题
在代数问题中,经常需要将分数除以整数来计算表达式的值 。例如,解方程时需要将方程中的项相除或相乘,如果项是 用分数表示的,就需要用到分数除法。
03
分数除以整数的实例
分数除以整数的实际应用
分数在商业计算中的应用
在商业计算中,经常需要将分数除以整数来计算商品的比例或分配。例如,将 一块蛋糕分成若干等份,每份蛋糕所占的比例可以用分数表示,如果要将这个 比例分配给几个人,就需要将分数除以整数的数量。
分数在科学实验中的应用
在科学实验中,经常需要将分数除以整数来计算实验结果。例如,化学实验中 经常需要将溶液稀释成不同的比例,这时候就需要用到分数除法。
分数除以整数在日常生活中的应用
家庭理财
在家庭理财中,经常需要将分数除以整数来计算投资回报率或贷款利率。例如,如果一个家庭的月收入是1000元, 而每月的支出是800元,那么这个家庭每月的结余就是1000元 - 800元 = 200元,这个结余占月收入的 200/1000 = 1/5。
健康管理
在健康管理中,经常需要将分数除以整数来计算身体指标的正常范围。例如,如果一个成年人的血压是120/80毫 米汞柱,而正常血压范围是90/60毫米汞柱 - 140/90毫米汞柱,那么这个成年人的血压就是正常范围之内。
《分数除法的意义和分数除以整数的计算法则》分数除法
《分数除法的意义和分数除以整数的计算法则》分数除法分数除法是数学中重要的概念之一,它可以帮助我们解决很多实际问题。
在本文中,我将解释分数除法的意义以及分数除以整数的计算法则。
首先,让我们明确分数的含义。
分数是指一个数被另一个数除所得的商。
它由一个分子和一个分母组成,分子表示被除数,分母表示除数。
例如,对于分数2/3,2是分子,3是分母。
分数除法的意义是将一个分数除以另一个分数得到的商。
这样做的目的是在数学上解决实际问题,如比例比较、比例扩展、数字关系等。
分数除法的结果通常是一个新的分数,但在特定情况下,它也可以是一个整数,如1/2÷1/4=2当我们要计算一个分数除以一个整数时,有以下几个步骤:1.将整数转化为分数:将整数的分母设置为1,分子设置为整数的值。
例如,将整数3转化为分数3/12.将分数除法转化为乘法:将除法转化为乘法的方法是将被除数乘以除数的倒数。
例如,分数2/3除以整数3可以转化为2/3乘以1/3的倒数,即2/3×1/3=2/93.简化分数:如果结果是一个分数,我们可以进一步简化它。
简化分数的方法是找到分子和分母的最大公约数,并将它们都除以最大公约数。
例如,对于分数2/9,最大公约数是1,所以它已经简化到最简分数。
除了上述基本步骤之外1.分母为0的情况:分数的分母不能为0,因为除以0是没有意义的。
2.两个分数相除:两个分数相除时,我们需要先求出它们的倒数,然后再进行乘法运算。
例如,分数3/4除以分数5/6可以转化为3/4乘以6/5的倒数,即3/4×6/5=18/20。
3.整数除以分数:整数除以分数时,我们需要将整数转化为分数,并按照上述步骤进行计算。
例如,将整数3除以分数2/3可以转化为3/1除以2/3,然后按照乘法的规则进行计算。
综上所述,分数除法是一种重要的数学运算方法,它可以帮助我们解决实际问题。
当我们计算分数除以整数时,可以将整数转化为分数,然后按照乘法的规则进行计算。
分数除法的意义和分数除以整数
分数除法的运算符号:÷
分数除法的运算性质:除以一 个数等于乘以这个数的倒数
分数除法与乘法的关系
分数除法可以转化为乘法运算 分数除以一个整数等于分数乘以这个整数的倒数 分数除法用于解决实际问题如分东西、计算百分比等 分数除法在数学中具有重要意义是进一步学习的基础
分数除它 可以用来解决各种 实际问题如计算面 积、体积、比例等。
题目:把一张纸 平均分成4份每 份是它的(1/4)如 果取3份就是 (3/4)。
题目:把一张纸 平均分成5份每 份是它的(1/5) 如果取4份就是 (4/5)。
题目:把一张纸 平均分成6份每 份是它的(1/6) 如果取5份就是 (5/6)。
题目:把一张纸 平均分成7份每 份是它的(1/7) 如果取6份就是 (6/7)。
分数除以整数在化学计算中的应用例如溶液的配制和反应速率的计算。 在物理学中分数除以整数可以用于计算各种物理量例如力、速度、加速度等。 在生物学中分数除以整数可以用于表示生物种群的数量变化和生长率。 在经济学中分数除以整数可以用于分析经济数据和预测市场趋势。
分数除以整数的练习题及解 析
第五章
练习题
● 答案:3/8 ● 解析:将一张纸的(3/4)平均分成2份每份是这张纸的(3/4)÷2=(3/4)×(1/2)=3/8。
● 题目:把一张纸的(7/8)平均分成5份每份是这张纸的几分之几? 答案:7/40 解析:将一张纸的(7/8)平均分成5份每份是 这张纸的(7/8)÷5=(7/8)×(1/5)=7/40。
数的实际应用。
分数除以整数在数学中的实例
分数除以整数可以用于解决实际问题例如计算时间和距离。 分数除以整数在数学中可以用于解决几何问题例如计算面积和周长。 分数除以整数在数学中可以用于解决分数运算问题例如计算分数的加减乘除。 分数除以整数在数学中可以用于解决比例问题例如计算比例和百分比。
最新六年级数学上册2.1分数除法的意义和分数除以整数北京课改版优选教学课件
判断:
(1)分数除法的意义与整数除法 的意义完全相同。( )
(2) 5 ÷2= 5 × 1
6
62
( )
(3) 5 ×2= 5 ×1 (×)
6
62
5 (4) 6
÷1= 5 × 1 ( ) 6
练一练: 14 ÷7 15
3 4
÷6
4 ÷8
11
8 ÷4 9
动脑筋
如果 a是一个不等于0的自然数,
(1)1 ÷a等于多少?
10.在花季结束的时候,采摘到最后一朵玫瑰。多情的人,最后一次恋情以最美的方式成为标本。 11.说话投机:有些迷乱豁然开朗,如同苗圃除尽了杂草;有些感觉处处共鸣,如同鲜花映照在清潭。
12.没有预谋的闲聊空谈,却生出实际漂亮的事情来。如同野游采摘到美味的山果。 13.一张好碟,自己单独看一次,和自己喜欢的人看一次。
蕊敏在街上看见叶小天,会跟了过去。也不打招呼,只是不远不近地跟着,看着那背影心里涩涩的。
三 怎么就变成左撇子了
是蕊敏在看蜡笔小新时,叶小天来敲的门。她开门的时候吓了一跳,看了一眼又“咚”的一声把门关上了。心蹦蹦跳,然后冲进洗手间理理头发,再去开门。 叶小天非常严肃地说,杨蕊敏同学你太伤人自尊了吧,上次当我是匪徒,这次又当我是小偷了吗?我不过是你妈妈请来给你补习数学的老师。忘记告诉你,小时候我们住在一个院子里,不过你太小,估计忘记了。
分数除法的意义和分数 除以整数
学习目标:
1. 使同学们理解分数除以整数的意义,并 初步掌握分数除以整数的计算方法,进行 计算。 2. 培养同学们的分析能力和概括能力。 3. 向同学们渗透事物间相互联系、转化的 辩证唯物主义的思想。
分数除法的意义
=
=
(1)每人吃半块月饼,4个人一共吃多少块月饼? (2)两块月饼,平均分给4人,每人分得多少块? (3)两块月饼,分给每人半块,可以分给几人?
分数除法知识点总结
分数除法知识点总结分数除法知识点总结在平日的学习中,大家最熟悉的就是知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
相信很多人都在为知识点发愁,以下是小编帮大家整理的分数除法知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c(a≠0)②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a (a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混合运算运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的`形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
《分数除法的意义和分数除以整数》教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分数除法的意义、分数除以整数的计算方法及其在实际生活中的应用。通过实践活动和小组讨论,我们加深了对分数除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我发现学生们对分数除法的意义和分数除以整数的计算方法掌握得还不错。通过引入日常生活中的实例,他们能够更好地理解分数除法的实际应用。然而,我也注意到在讲解过程中,有几个地方需要我在今后的教学中加以改进。
首先,对于分数除法意义的理解,尽管我用了生活中的例子进行解释,但仍有一部分学生显得有些迷茫。我意识到,可能需要寻找更多贴近他们生活实际的例子,或者通过动画、实物操作等方式,让他们更直观地感受到分数除法的意义。
例:区分“平均分”和“每份多少”的问题,引导学生运用分数除法来解决。
四、教学流程ห้องสมุดไป่ตู้
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分数除法的意义和分数除以整数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要把一块蛋糕平均分给几个人的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分数除法的奥秘。
三、教学难点与重点
1.教学重点
-分数除法的概念及其在实际问题中的应用:通过实例让学生理解分数除法的意义,掌握分数除法的核心内容。
-分数除以整数的计算方法:重点讲解分子是整数、分母是整数,以及分子、分母都不是整数的情况下的计算法则,确保学生能够熟练掌握。
分数除法的意义和分数除以整数
分数除法的意义和分数除以整数说教材:本教材位于小学数学第十一册第三单元分数除法的起始课。
通过这一内容的学习可以为学生以后的学习打下坚实的基础。
说教学目的:1.使学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
2.学会分数除以整数的计算法则。
培养学生分析、迁移和语言表达能力说教学重点难点:理解分数除以整数的计算法则,并能正确地进行计算。
说教学设想在设计本课教学时,我也思考了很多,计算教学究竟是以关注计算还是结合计算关注发展。
势必前者毫无议义,学生掌握扎实。
而后者必定是争议众多。
在组织教学<分数除法的意义和分数除以整数>时,我也作了一些思考:或许关注学生发展,提倡计算方法多样化,让学生从不同的题目令会不同的解法,从不同的题目不同的解法中体会归纳出分数除以整数的普遍法则,可能会因为提倡算法多样化,释放了学生的创新思维。
但也会使那些学困生会因多样化的算法而成了"雾里看花"?或许会因没有刻意强调计算法则,而影响学生对计算方法的掌握,从而导致计算正确率的下降?但我还是选择了后者,并在设计本课时主要突出以下几点:⒈在注重算理和算法教学的同时,体现估算。
《数学课程标准》对计算教学有明确的要求,即淡化笔算、重视口算、加强估算。
分数除以整数是学生继续学习的重要基础,在教材中占有重要的地位,但在现行教材中对估算意识的培养还未凸显出来。
针对这一现象,我力求把培养学生的估算意识,发展学生的估算能力融入教学,在课堂上形成具体的教学行为,从而加以体现。
⒉以探索为主线,鼓励学生算法多样化。
学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。
从问题的提出,就让学生主动参与到探索和交流的数学活动中来。
在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。
第三单元 分数除法——分数除法的意义及分数除以整数(教师版)
第三单元分数除法3.2.1分数除法的意义及分数除以整数1.理解分数除法的意义,并掌握分数除法的计算方法,能正确计算分数除以整数。
2.理解分数除以整数的意义,引导学生总结出正确的计算法则,并能运用法则进行计算。
【引入】(1)根据乘法算式5×6=30,写出两道除法算式,并说一说依据是什么。
30÷5=6,30÷6=5依据:整数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
(2)40÷5表示什么意思?。
表示把40平均分成5份,求其中的一份是多少。
(通过回顾就知识引入新知识的学习)整数除法的意义是已知两个因数的积与其中一个因数,求另一个因数的运算。
那么分数除法的意义又是什么呢?接下来我们一起来探究分数除法的意义。
(一)把一张纸的45平均分成2份,每份是这张纸的几分之几?【分析】用图来分析由题意。
一张纸的45,是指把一张纸平均分成5份,取其中的4份。
如下图所示:方法一:把一张纸的45平均分成2份,如下图所示:利用整数除法的意义,转化为整数除法计算,即把一张纸的平均分成5份,取其中4份,再把这4份平均分成2份,求其中的一份是多少,平均分的问题用除法计算,因为把其中的4份平均分成2份,所以只让分子除以2即可,分母不变,用算式表达:45÷2=4÷25=25方法二:把一张纸的45平均分成2份,如下图所示:利用分数乘法的意义:一个数的几分之几是多少,用乘法计算。
转化为分数乘法计算,用算式表达:45÷2=45×12=4×15×2=410=25发现:则分数除法可以转化为分数乘法计算,除号变为乘号,除数变为它的倒数,2的倒数是12,而被除数不变。
(二)把这张纸的45平均分成3份,每份是这张纸的多少?方法一:用计算45÷2的方法计算,则算式表达:45÷3=4÷35,但4÷3得不到整数,所以不能用此方法,说明方法一只适用于分子能被正数整除的情况。
41 分数除法的意义和分数除以整数的计算法则
我2小时可铺客厅
地面的
2 5
。
我3小时可铺客厅
地面的
2 3
。
甲
乙
甲师傅平均每小时铺客厅地面的几分之几? 乙师傅平均每小时铺客厅地面的几分之几?
3袋水果糖重300g,每袋有多重?
3003100(g)
300g水果糖,每袋装100g,可以装几袋?
3001003(袋 )
每袋水果糖重 1 kg,3袋有多重?
1
10
3
3
(kg)
10 10
3袋水果糖重3 kg,每袋有多重?
3
10
3
1
(kg)
3 kg水果1糖0,每袋1装01 kg,可以装几袋?
10
3
1
10
算式的得数吗?
24 8 3 7 21
8 4 2
21 7 3
8 2 4
21 3 7
把一张长方形纸的
4 5
平均分成2份,
每份是这张纸的几分之几?
4 2 5
把一张长方形纸的 4 平均分成2份,
5
每份是这张纸的几分之几?
4 2 5
把一张长方形纸的
4 5
平均分成2份,
每份是这张纸的几分之几?
把一张长方形纸的
1、回忆:整数除法的意义
已知两个因数的积与其中的一 个因数,求另一个因数的运算。
2、根据下面的乘法算式, 说出两道除法算式:
5630
3056 3065
口算: 1 3
5 38 83
1 6 12
32 43 43 94
5 1 11 5
每袋水果糖重100g,3袋有多重?
1003300(g)
分数除法的意义和分数除以整数-张希凤
代数运算
分数除法是代数运算中的基本运算 之一,掌握好分数除法的运算法则 是学习代数的基础。
分数的深入理解
通过分数除法可以更深入地理解分 数的概念和性质,例如分数的加减 法和乘法都可以通过分数除法来推 导和理解。
分数除法的意义和分数除以整数
目 录
• 分数除法的意义 • 分数除以整数的计算方法 • 分数除以整数的实际应用 • 分数除法与乘法的联系
01 分数除法的意义
分数除法的定义
01
分数除法是指将一个分数除以另一 个数的运算。具体来说,分数a除 以b表示为a/b,其中a是被除数, b是除数。
02
分数除法可以通过乘法来计算,即 a/b=a*b^(-1),其中b^(-1)表示b 的倒数。
在解决几何问题时,常常需要计算图形的面积、体积等,这 时可以使用分数除法来计算。例如,计算一个长方形的面积 ,可以将长除以宽来得到面积。
解决代数问题
在解决代数问题时,有时需要将一个数除以另一个数来得到 结果,这时可以使用分数除法来表示。例如,计算一个数的 倒数,可以将该数除以1来得到结果。
分数除以整数在科学计算中的应用
化学计算
在化学计算中,常常需要将一个物质的量分成若干等份,这时可以使用分数除法来计算每一份的量。 例如,计算一定量的溶液中含有多少溶质,可以将溶液的总量除以溶质的浓度来得到结果。
生物计算
在生物学中,有时需要将一个生物体的某一部分分成若干等份,这时可以使用分数除法来计算每一份 的大小。例如,计算一个动物的心脏每分钟跳动的次数,可以将心脏的总跳动次数除以总时间来得到 结果。
分数除以整数的计算步骤
分数除法的意义和分数除以整数
分数除法的意义和分数除以整数1. 分数除法的意义分数除法是数学中的一个重要概念,用于计算两个分数之间的商,表示为$\\frac{a}{b} \\div \\frac{c}{d}$,其中a,b,c,d分别为整数。
分数除法的意义在于解决了两个重要的问题:比例和部分。
1.1 比例分数除法可以用来解决比例的问题。
比例是指两个或多个数量之间的关系。
例如,有10个苹果和5个梨,比例为10:5。
如果想要计算每个苹果对应多少个梨,可以使用分数除法。
假设每个苹果对应的梨的数量为x,则 $\\frac{10}{1} : \\frac{5}{x}$。
通过将分数除法转化为乘法,可以得到等式 $\\frac{10}{1} \\times \\frac{x}{5} =\\frac{10x}{5} = 2x$。
因此,每个苹果对应2个梨。
1.2 部分分数除法还可以用来解决部分的问题。
部分是指整体中的一部分。
例如,如果有60个苹果,想要计算其中的一半是多少个苹果,同样可以使用分数除法。
假设一半苹果的数量为x,则 $\\frac{x}{60} = \\frac{1}{2}$。
通过乘以60两边,可以得到等式 $x = \\frac{1}{2} \\times 60 = 30$。
因此,一半苹果的数量为30个。
2. 分数除以整数分数除以整数是指一个分数除以一个整数,例如 $\\frac{a}{b} \\div c$。
在计算分数除以整数时,可以将整数视为分子为该整数,分母为1的分数,即$\\frac{c}{1}$。
计算分数除以整数的方法与分数除法类似。
首先,将分数除法转化为乘法,即$\\frac{a}{b} \\div \\frac{c}{1} = \\frac{a}{b} \\times \\frac{1}{c}$。
然后,进行分数的乘法运算,得到最终的结果。
举例来说,假设要计算 $\\frac{3}{4} \\div 2$。
可以将2转化为分数,即$\\frac{2}{1}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数除法的意义与整数除法的意义
教学内容:
人教版小学数学六年级上册第28——29页及练习八的第1-3题
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解分数除以整数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:使学生理解算理,正确总结、应用计算法则。
教学难点:使学生理解分数除以整数的算理。
教具学具:多媒体课件、长方体纸片若干张
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
(30÷5=6,30÷6=5)
2、口算下面各题
2/3×3 6/7×5/9 3/4×5/6 2/5×5/7 3/7×14 5/8×6 2/7×3 2/5×1/4
二、探究新知
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
100×3=300 (千克) 300 ÷3= 100(千克) 300 ÷ 100=3(盒)(设计意图:通过将单位“克”转化成“千克”,让学生在整数乘除法之间的关系上自然得出分数乘除法之间的关系,从而感知分数除法的意义和整数除法的意义相同,突出本节课的一个教学重点。
)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。
都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、4/5÷2=4÷2/5=2/5 ,每份就是2个1/5。
B、4/5÷2=4/5×1/2=2/5 ,每份就是4/5 的1/2 。
(设计意图:通过折一折、涂一涂、算一算,引导学生数形结合,对照不同的折法,说出两种不同的计算方法,培养学生的学习能力和探究能力。
)
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察4/5÷2和4/5÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘以这个整数的倒数。
三、巩固练习
1、计算。
3/5÷2=3/8÷3=2/9÷6=4/7÷15=
2、完成课本第32页1、2两题。
3、看谁算的又对又快。
2/7÷3=7/8÷5=3/4÷7=2/9÷12=
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
五、作业
作业:课本P32 第2、3题。