数学建模讲义ppt课件
合集下载
数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
数学建模宣导ppt课件
数学建模的软件工具
❖ 3.lingo的概况
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规 则(QP—QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变 量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO和 LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解 决的规划问题。
❖ Lingo的特色:模型建立语言和求解引擎的整合 A. Lingo是建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。 B. Lingo可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修 改。 C. LINGO建立的模型可以直接从数据库或工作表获取资料。同样地, LINGO可以将求 解结果直接输出到数据库或工作表。 D. LINGO内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和 整数最佳化。 E.LINGO提供完全互动的环境供您建立、求解和分析模型。LINGO也提供DLL和OLE界 面可供使用者由撰写的程序中呼叫。 F.LINGO提供的所有工具和文件可使你迅速入门和上手。LINGO使用者手册有详细的功 能定义。
Mathematica 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比
Matlab R13做得更快更好,提供业界最精确的数值运算结果。Mathematica不但
可以做数值计算,还提供最优秀的可设计的符号运算。
数学建模的软件工具
❖ B.丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函 数、数值分析、机率统计等等问题。 C.Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法, 结果呈现可视化。 4.Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成, 提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由 初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好 的兼容性。 D.可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高 级语言接口功能,使得程序开发更方便。 Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰 富的帮助功能,让使用者现学现卖。强大的功能,简单的操作,非常容易学习 特点,可以最有效的缩短研发时间。
《数学建模培训》PPT课件
数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。
数学建模讲座PPT_ppt课件
数学建模讲座 PPT
讲座内容
关于数学建模
80年代以来在发达国家兴起并引起巨大凡响的 数学建模竞赛是适应世界性高科技发展及人才需求 而出现的新生事物。 在国家教育部高教司的领导和支持下,提出在 全国普通高校开展数学建模竞赛,旨在“培养学生 解决时间问题的能力和创造精神,全面提高学生的 综合素质”。
不是开玩笑,这就是数学建模。从不同度思考一个 问题,想尽所有的可能,正所谓智者千虑,绝无一 失,这才是数学建模的高手。
数学建模的意义
1 体现了数学的应用价值 2 有利于学生理论联系实际能力的培养 3 有利于培养学生的科研素养 4 有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
数学建模的乐趣
论 文
数学建模论文的一般结构
• • • • • • • • • 摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模 问题的重述 基本假设与符号说明 问题的分析与模型的准备
论文的模块设计
模型的建立 模型的求解 模型的检验 模型的灵敏度与稳定性分析 模型的科学性及现实意义 模型的使用说明 模型的进一步讨论与改进 模型评价与推广
1.可以认识一群人; 2.可以消磨一下无聊的时光; 3.可以学会喝咖啡,提高生活品味;
获奖后: 1.加个奖励分拿个奖学金; 2.加个分,保个研; 3.各种其他好处。
数学建模需要能力????
1)分析题意的能力
2)超找资料的能力 3)建立数学模型的能力 4)问题的转化能力 5)现学现用的能力 6)编程能力 7)论文写作能力
论文的模块设计
参考文献 附录
数学建模竞赛网上资源
• 中国数学建模网: • 数学中国网: • 中国大学生数学建模竞赛网:
讲座内容
关于数学建模
80年代以来在发达国家兴起并引起巨大凡响的 数学建模竞赛是适应世界性高科技发展及人才需求 而出现的新生事物。 在国家教育部高教司的领导和支持下,提出在 全国普通高校开展数学建模竞赛,旨在“培养学生 解决时间问题的能力和创造精神,全面提高学生的 综合素质”。
不是开玩笑,这就是数学建模。从不同度思考一个 问题,想尽所有的可能,正所谓智者千虑,绝无一 失,这才是数学建模的高手。
数学建模的意义
1 体现了数学的应用价值 2 有利于学生理论联系实际能力的培养 3 有利于培养学生的科研素养 4 有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
数学建模的乐趣
论 文
数学建模论文的一般结构
• • • • • • • • • 摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模 问题的重述 基本假设与符号说明 问题的分析与模型的准备
论文的模块设计
模型的建立 模型的求解 模型的检验 模型的灵敏度与稳定性分析 模型的科学性及现实意义 模型的使用说明 模型的进一步讨论与改进 模型评价与推广
1.可以认识一群人; 2.可以消磨一下无聊的时光; 3.可以学会喝咖啡,提高生活品味;
获奖后: 1.加个奖励分拿个奖学金; 2.加个分,保个研; 3.各种其他好处。
数学建模需要能力????
1)分析题意的能力
2)超找资料的能力 3)建立数学模型的能力 4)问题的转化能力 5)现学现用的能力 6)编程能力 7)论文写作能力
论文的模块设计
参考文献 附录
数学建模竞赛网上资源
• 中国数学建模网: • 数学中国网: • 中国大学生数学建模竞赛网:
《数学建模》PPT课件
( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。
《数学建模讲义》PPT课件
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;
return
2. 可以直接使用函数fun.m
例如:计算 f(1,2), 只需在Matlab命令窗口键入命令:
x=[1 2];fun(x)
15
4.4 函数调用和参数传递
在MATLAB中,调用函数的常用形式是: [输出参数1,输出参数2,…] = 函数名(输入参数1,输入参数2, …)
14
M文件建立方法:
1. 在Matlab中点:File->New->M-file 2. 在编辑窗口中输入程序内容 3. 点:File->Save存盘,文件名必须函数名一致。
例:定义函数 f(x1,x2)=100(x2-x12)2+(1-x1)2 1.建立M文件:fun.m
function f=fun(x)
(5)使用方便,具有很好的扩张功能。 使用MATLAB语言编写的程序可以直接运行,无需编译。 可以M文件转变为独立于平台的EXE可执行文件。
MATLAB的应用接口程序API是MATLAB提供的十分重要 的组件 ,由 一系列接口指令组成 。用户就可在FORTRAN 或C中 , 把MATLAB当作计算引擎使用 。 (6)具有很好的帮助功能 提供十分详细的帮助文件(PDF 、HTML 、demo文件)。 联机查询指令:help指令(例:help elfun,help exp,help simulink),lookfor关键词(例: lookfor fourier )。 5
6
一、变量与函数
1、变量 MATLAB中变量的命名规则
(1)变量名必须是不含空格的单个词; (2)变量名区分大小写; (3) 变量名必须以字母打头,之后可以是任意字 母、数字或下划线,变量名中不允许使用标点符
第1讲 数学建模简介 PPT课件
什么是数学建模 数学建模步骤及分类 建模竞赛及其意义 建模实例讲解
什么是数学建模
什么是数学模型 一般意义上的“模型”
为了一定目的,对客观事物的一部分进行简缩、抽象、提 炼出来的原型的替代物。
水箱中的舰艇; 风洞中的飞机等;
实物模型
符号模型
物理模型
什么是数学建模
数学模型(mathematical model)
引例
第二块钢板的故事,来自一位将军。 诺曼底登陆时,美军101空降师副师长唐·普拉特准将
乘坐的是滑翔机。起飞前,有人自作聪明,在副师长的座 位下,装上厚厚的钢板,用来防弹。由于滑翔机自身没有 动力,与牵引的运输机脱钩后,必须保持平衡滑翔降落, 沉重的钢板却让滑翔机头重脚轻,一头扎向地面,普拉特 准将成为美军在当天阵亡的唯一将领。
什么是数学建模
数学建模(mathematical modeling)
“新”名词 你是什么时候开始知道有这个名词的?
历史悠久 •《九章算术》— 最早的数学建模专著、 收集了246个应用题 • 以问题集形式出现: 一“问” —提出问题 二“答” —给出问题的数值答案 三“术” —讨论同类问题的普遍方法或算法 四“注” —说明“术”的理由,实质指证明或佐证
飞行员们一看就明白了,如果座舱中弹,飞行 员就完了;尾翼中弹,飞机失去平衡,就会坠落— ——这两处中弹,轰炸机多半回不来,难怪统计数 据是一片空白。
因此,结论很简单:只给这两个部位焊上钢板。
引例
• 第一块钢板是机智的飞行员用它挽救了自己 的生命。 • 第二块钢板则是教训,它是用宝贵的生命换 来的。 • 第三块钢板是升华,用科学的方法,从实战 经验中提炼出规律,这块讲科学的钢板,挽救 了众多飞行员的生命。
数学建模培训精品课件
深度学习与神经网络
介绍深度学习和神经网络的基本原理 ,以及在数学建模中的应用和挑战。
探讨机器学习算法如何与数学建模相 结合,实现数据分析和预测。
大数据时代的数学建模挑战与机遇
大数据的数学建模方法
介绍处理大规模数据集的数学建模方法和技巧,如分布式计算、 云计算等。
数据清洗与预处理
阐述数据预处理在数学建模中的重要性,以及如何进行数据清洗和 特征提取。
THANKS.
04
模型评估与改进技巧
误差分析
分析模型预测误差来源,提高模型预测精度 。
多目标优化
在满足多个约束条件下,优化模型目标函数 。
敏感性分析
评估模型参数对结果的影响程度,优化模型 参数。
模型集成
将多个模型组合起来,提高整体预测性能。
数学建模软件介绍
04
MATLAB的使用介绍
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析以及数
数学建模应用实例
02
微积分建模实例
总结词:微积分建模是数学建模中的基 础,通过实例可以更好地理解微积分的 实际应用。
经济学中的边际分析:通过微积分分析 经济活动中成本、收益和利润的变化, 为决策提供依据。
人口增长模型:利用微积分的知识,建 立人口增长模型,预测未来人口数量和 增长趋势。
详细描述
瞬时速度与加速度:通过分析物体运动 的速度和加速度,建立微积分模型,用 于预测物体的运动轨迹和时间。
模型验证:使用实际数据对模型进行 验证,评估模型的准确性和可靠性。
应用与优化:将模型应用于未来气候 预测中,根据反馈进行模型优化和调 整。
数学建模前沿动态
06
人工智能与数学建模的结合
数学建模讲座ppt课件
1. 多项式的创建法 poly([b0 , b1, , bn1, bn ]) 创建 (x b0 )(x b1) (x bn ) 生 成的多项式的系数向量 poly(A) 创建矩阵 A 的特征多项式。
2.多项式的常用函数
roots(p) %返回多项式的根向量 注1:多项式p是一个行向量,而poly(p)是一个
例1 求x,使 Ax b 其中:
1 0 1 1
A
2
1
0
b
2
3 2 5 1
解1 用逆阵法 >> A=[1,0,1 2,1,0 -3,2,-5]; >> b=[1,2,-1]'; >> x=inv(A)*b
解2 用左/2
1/3
1/3
1/4
c=
335/113
>> format compact
>> A,c
A=
1
1/2
1/2
1/3
1/3
1/4
c=
335/113
%要空行
1/3 1/4 1/5
%不要空行
1/3 1/4 1/5
二、矩阵运算与数组运算
1、矩阵运算
>> A(:,1:3) ans = 123 678 11 12 13 >> A([1,2],[1,3,5]) ans = 135 6 8 10
例2 将向量中满足不超过0.5的元素提取出来 先编写一个M-文件 rand('seed',0); x=rand(1,10); L=x<=0.5; x x=x(L) 用tiquyuansu.m为名存盘,然后回到MATLAB环
2.多项式的常用函数
roots(p) %返回多项式的根向量 注1:多项式p是一个行向量,而poly(p)是一个
例1 求x,使 Ax b 其中:
1 0 1 1
A
2
1
0
b
2
3 2 5 1
解1 用逆阵法 >> A=[1,0,1 2,1,0 -3,2,-5]; >> b=[1,2,-1]'; >> x=inv(A)*b
解2 用左/2
1/3
1/3
1/4
c=
335/113
>> format compact
>> A,c
A=
1
1/2
1/2
1/3
1/3
1/4
c=
335/113
%要空行
1/3 1/4 1/5
%不要空行
1/3 1/4 1/5
二、矩阵运算与数组运算
1、矩阵运算
>> A(:,1:3) ans = 123 678 11 12 13 >> A([1,2],[1,3,5]) ans = 135 6 8 10
例2 将向量中满足不超过0.5的元素提取出来 先编写一个M-文件 rand('seed',0); x=rand(1,10); L=x<=0.5; x x=x(L) 用tiquyuansu.m为名存盘,然后回到MATLAB环
数学建模课程教学ppt
2 •• • •
以行星为坐标原点建立活动架标, 以行星为坐标原点建立活动架标,其两个正交的单位向 量分别是
er = cosθ i + sinθ j , eθ = − sinθ • i + cosθ j • 由于2r w+ r w = 0 •• 因此得出
a = ( r − rw )er
2
再将椭圆方程 两边微分两次, 两边微分两次,得
p = r(1− e cosθ )
p 1 2 2 ( r − rw ) + 3 ( r w ) = 0 r r
2 ••
b2 2πab 2 和焦参数 p = 将前面得到的结果 r w = a T •• 4π 2a3 1 2 代入, • 2 代入,即得 r − rw = − 2 T r
也就是说行星的加速度为
研究课题的实际 人口模型、生 态系统模型 、交通 人口模型、 范畴 流模型、经 济模型、 基因模型等 流模型、 济模型、
§1.4 数学建模与能力的培养 仅最近几年里, 仅最近几年里,我校
学生都在只参加了半 年左右的学习和实践 锻炼, ①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 后,就在国际性的竞 调查研究阶段,需 要用到观察能力、分析能力和数据处理 调查研究阶段, 要用到观察能力、分析能力和 观察能力 赛(美国大学生数学 能力等 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 开设数学建模课的主要目的为了提高学 建模竞赛) 建模竞赛)中交出了 能力。 能力。 综合素质, 生的综合素质 生的综合素质,增强 应用数学知识 解决实际问 非常出色的研究论文, 非常出色的研究论文, 题的本领。 题的本领。 在真正开始自己的研究之前, ②在真正开始自己的研究之前,还应当尽可能先了解一下 夺得了特等奖兼 前人或别人的工作, 前人或别人的工作,使自己的工 作成为别人研究工作 的 INFORMS奖 INFORMS奖2项(1999 继续而不是别人工作的重复, 继续而不是别人工作的重复,你可以把某些已知的研究结 2003年各一项 年各一项)、 年、2003年各一项)、 果用作你的假设,去探索新的奥秘。 果用作你的假设,去探索新的奥秘。因此我们还应当学会 22项一等奖 18项二 项一等奖、 22项一等奖、18项二 在尽可能短的时间 内查到并学会我想应用的知识的本领。 查到并学会我想应用的知识的本领。 我想应用的知识的本领 等奖的好成绩。 等奖的好成绩。 创新的能力。 ③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。 有的,建模实践就为你提供了一个培养创新能力的机会。
以行星为坐标原点建立活动架标, 以行星为坐标原点建立活动架标,其两个正交的单位向 量分别是
er = cosθ i + sinθ j , eθ = − sinθ • i + cosθ j • 由于2r w+ r w = 0 •• 因此得出
a = ( r − rw )er
2
再将椭圆方程 两边微分两次, 两边微分两次,得
p = r(1− e cosθ )
p 1 2 2 ( r − rw ) + 3 ( r w ) = 0 r r
2 ••
b2 2πab 2 和焦参数 p = 将前面得到的结果 r w = a T •• 4π 2a3 1 2 代入, • 2 代入,即得 r − rw = − 2 T r
也就是说行星的加速度为
研究课题的实际 人口模型、生 态系统模型 、交通 人口模型、 范畴 流模型、经 济模型、 基因模型等 流模型、 济模型、
§1.4 数学建模与能力的培养 仅最近几年里, 仅最近几年里,我校
学生都在只参加了半 年左右的学习和实践 锻炼, ①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 后,就在国际性的竞 调查研究阶段,需 要用到观察能力、分析能力和数据处理 调查研究阶段, 要用到观察能力、分析能力和 观察能力 赛(美国大学生数学 能力等 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 开设数学建模课的主要目的为了提高学 建模竞赛) 建模竞赛)中交出了 能力。 能力。 综合素质, 生的综合素质 生的综合素质,增强 应用数学知识 解决实际问 非常出色的研究论文, 非常出色的研究论文, 题的本领。 题的本领。 在真正开始自己的研究之前, ②在真正开始自己的研究之前,还应当尽可能先了解一下 夺得了特等奖兼 前人或别人的工作, 前人或别人的工作,使自己的工 作成为别人研究工作 的 INFORMS奖 INFORMS奖2项(1999 继续而不是别人工作的重复, 继续而不是别人工作的重复,你可以把某些已知的研究结 2003年各一项 年各一项)、 年、2003年各一项)、 果用作你的假设,去探索新的奥秘。 果用作你的假设,去探索新的奥秘。因此我们还应当学会 22项一等奖 18项二 项一等奖、 22项一等奖、18项二 在尽可能短的时间 内查到并学会我想应用的知识的本领。 查到并学会我想应用的知识的本领。 我想应用的知识的本领 等奖的好成绩。 等奖的好成绩。 创新的能力。 ③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。 有的,建模实践就为你提供了一个培养创新能力的机会。
数学建模培训精品课件ppt
03
数学建模基础知识
代数基础
代数基本概念:定义、性质、 分类等
代数运算:加法、减法、乘法、 除法等
代数方程:一元一次方程、一 元二次方程等
代数不等式:一元一次不等式、 一元二次不等式等
几何基础
空间点、线、 面
方向导数与梯 度
欧几里得距离 公式
曲线和曲面的 切线与法平面
概率统计基础
概率论基本概念:事件、概率、 独立性等
添加标题
添加标题
添加标题
添加标题
数学建模是一种将数学语言应用 于实际问题的过程
数学建模是一种将数学模型应用 于实际问题的过程
数学建模的应用领域
工程科学:机械工程、电子 工程、土木工程、化学工程 等
自然科学:物理学、化学、 生物学、地球科学等
社会科学:经济学、社会学、 政治学、历史学等
医学与健康:生物医学、临 床医学、预防医学等
数学建模培训精品 课件ppt
单击此处添加副标题
汇报人:XXX
目录
添加目录项标题 数学建模基础知识 数学建模案例分析 数学建模培训总结与展望
数学建模概述 数学建模方法与技巧 数学建模实践项目
01
添加章节标题
02
数学建模概述
数学建模的定义
数学建模是一种用数学方法解决 实际问题的手段
数学建模是一种将实际问题抽象 为数学模型的过程
统计推断方法:参数估计和假设 检验
添加标题
添加标题
添加标题
添加标题
随机变量及其分布:离散型和连 续型随机变量
回归分析:线性回归和非线性回 归模型
微积分基础
导数与微分
积分
微积分的应用
微积分与数学 建模的联系
《数学建模培训》课件
数中一些 重要的等式,如欧拉恒等 式、柯西恒等式等。
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
数学建模培训精品课件ppt
03
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
数学建模方法ppt课件
微
了很大作用。
分
方
应用实例:
程 模
单种群模型(Malthus Logistic )
型
两种群模型
传染病模型(SI SIS SIR)
作战模型
商品销售模型
回归分析是研究变量间统计规律的方法,属于”黑 箱“建模中常用的方法,根据自变量的数值和变化, 估计和预测因变量的相应数值和变化。有线性回归和 非线性回归。
点击添加文本
)点b2击添加文本
ax1m,1x点x21 ,击添a,m加x2nx文2本0 amnxn (, )bn
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
2.模型的求解:可利用Lin点go击软添件加进文行本求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会
min{D( p, k), D(q, k)}
点击添加文本
点击添加文本
步骤4:重复步骤2和步骤3,直至满足聚类为止。
对于不确定性问题,又可分为随机不确定性与模 糊不确定性两类。模糊数学就是研究属于不确定性, 而又具有模糊性量的变化规律的一种数学方法。
模
点击添加文本
糊
数 学
原理关键词: 模糊集 隶属函数 模糊关系 模糊矩阵
yi 0 1xi1 2 xi2 p xip , i 1,2,, n
其中, i 是随机误差,相互独立且满足E(i ) 0, var(i ) 2
一般非线性模型的形式: 其中, f 是一般的非线性函数, 是 p维参数向量, 是一随机 误差变量,E( ) 0, var( ) 2
,把 Gp 和 Gq 合并
步骤3:计算新类与其他类的距离 点击添加文本
D(r, k) min{d (r, k) r Gr , k Gk , k r} min{d ( j, k) j Gp Gq , k Gk , k j}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
97年 A题:零件参数设计(产品参数优化设计) 目标:产品总造价最低(产品质量损失费用 零件制造成本费用) 决策:零件参数的最佳水平组合方案
98年 A题:组合投资问题(风险决策优化问题) 目标(二目标):收益最大,风险最小 决策:组合投资方案 目标:生产工序的效益(费用最低)最大 决策:最佳检验间隔河刀具更换策略
99年 A题:自动化车床管理(排队-更新问题)
7
99年 B题:钻井布局问题(生产计划优化问题) 目标:最大限度利用初步、勘探时的旧井数 决策:在规定精度的前提下确定系统勘探时的最 佳网络分布
02年 A题:车灯线光源的优化设计 目标:线光源的功率最小 决策:在满足设计规范的条件下,计算线光源的长度 B题:彩票中的数学 目标:最大限度地吸引彩民积极购买彩票 决策:在保证彩民和彩票公司的利益上如何设置最 佳彩票方案
合理运行设备:设备的最有运行(维修)方案.
合理组合投资:追求最大受益、最小风险的投资组 合方案(Multiobjective programming)
4
(2)工程设计和控制中的非线性分析 (Non-linear programming and optimal control) 例如: 结构系统最优设计(人字架设计) 机械零件或部件的最优化设计(轮轴颈,凸轮设计) 化工设备最优设计(单件或连锁设备优化设计) 电力网络和水力网络的优化设计(平衡条件)
0.4
1.1
1.0
单位工件的加工费用 工件 1 工件 2 工件 3
13
9
10
可用台 时数
800
乙
0.5
1.2
1.3
11
12
8
900
16
解:设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3, 在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。
可建立以下线性规划模型:
min z 13 x1 9x2 10 x3 11x4 12 x5 8x6
件.清华大学出版社.
3
优化模型应用的广泛性
(1)系统分析,即生产计划和经营决策中的优 化问题。例如:
合理计划生产:运输,分配,布局,选址,指派, 下料、配料等优化问题(linear programming);
合理开发(或配置)资源:可再生资源的持续开 发,不可再生资源的优化配置(linear programming)
•可行解:满足约束条件的解 •最优解:取得最值的可行解 •次优解:一个较满意的可行解 •可行集(域):所有可行解组成的集合,
10
主要内容
线性规划(LP) 非线性规划(NLP) 整数规划(IP)
11
线性规划
1、两个引例。 2、线性规划模型 3、线性规划的性质。 4、线性规划的主要算法。 5、用数学软件包求解线性规划问题 6、建模案例选讲:投资的收益与风险
5
历届数模竞赛所涉及的优化问题:
• 94年 A题 逢山开路(工程设计优化问题) 目标:工程造价最低 决策:在若干约束下选择一条最佳线路
• 95年 B题:天车调度问题(生产操作优化问题) 目标:年钢产量最大 决策:天车调度的最优方案设计
96年 A题:最优捕鱼策略(开发资源优化问题) 目标:可持续捕捞的努力量及最大捕捞量 决策:在平衡条件下确定五年内最佳捕捞方案
约束条件为:
8 25 x1 8 15 x2 1800
8 8
25 15
x1 x2
1800 1800
x1 0, x2 0
14
线性规划模型: min z 40 x1 36 x2
5x1 3x2 45
s.t.
x1 x2
9 15
x1 0, x2 0
15
例2 :任务分配问题
解: 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
8 4 x1 8 3 x2 32x1 24x2
因检验员错检而造成的损失为:
(8 25 2% x1 815 5% x2 ) 2 8x1 12x2
13
故目标函数为:
min z (32 x1 24 x2) (8x1 12 x2 ) 40 x1 36 x2
某车间有甲、乙两台机床,可用于加工三种工件。假定这两 台车床的可用台时数分别为800和900,三种工件的数量分别 为400、600和500,且已知用三种不同车床加工单位数量不同 工件所需的台时数和加工费用如下表。问怎样分配车床的加 工任务,才能既满足加工工件的要求,又使加工费用最低?
车床 类型
甲
单位工件所需加工台时数 工件 1 工件 2 工件 3
max(min) z cT x s.t. Ax (, )b x ()0,或无限制
线性规划的标准形式:
目标函数: min 约束变量: 变量符号: 0
12
例1:某厂每日8小时的产量不低于1800件。为了进行质量控
制,计划聘请两种不同水平的检验员。一级检验员的标准为: 速度25件/小时,正确率98%,计时工资4元/小时;二级检验员 的标准为:速度15小时/件,正确率95%,计时工资3元/小时。 检验员每错检一次,工厂要损失2元。为使总检验费用最省, 该工厂应聘一级、二级检验员各几名?
8
04年 A题:奥运会馆超市设计问题 05年 B题:DVD租赁业务 06年 A题:书号分配方法
9
优化模型的一般形式
min(或max) z f (x), x (x1,L x n)T s.t. gi (x) 0, i 1, 2,L m
x:决策变量 f(x):目标函数 gi(x)0:约束条件
x1 x4 400
x2
x5
600
s.t.
0x.34x1x6
50.2x5 1.3x6 900 xi 0,i 1,2, ,6
17
2. 线性规划的模型
线性规划的模型结构:
目标函数: max, min 约束变量: , , 变量符号: 0, 0
数学建模讲义
主讲人:穆学文
西安电子科技大学数学系 Email:mxw1334@
1
数学建模专题讲座
最优化模型 ---线性规划
2
参考书目
1.薛定宇,陈阳泉。高等应用数学问题的matlab 求解。清华大学出版社。
2. 陈宝林。最优化理论与算法。清华大学出版社. 3. 谢金星,薛毅。优化建模与lindo/lingo优化软
97年 A题:零件参数设计(产品参数优化设计) 目标:产品总造价最低(产品质量损失费用 零件制造成本费用) 决策:零件参数的最佳水平组合方案
98年 A题:组合投资问题(风险决策优化问题) 目标(二目标):收益最大,风险最小 决策:组合投资方案 目标:生产工序的效益(费用最低)最大 决策:最佳检验间隔河刀具更换策略
99年 A题:自动化车床管理(排队-更新问题)
7
99年 B题:钻井布局问题(生产计划优化问题) 目标:最大限度利用初步、勘探时的旧井数 决策:在规定精度的前提下确定系统勘探时的最 佳网络分布
02年 A题:车灯线光源的优化设计 目标:线光源的功率最小 决策:在满足设计规范的条件下,计算线光源的长度 B题:彩票中的数学 目标:最大限度地吸引彩民积极购买彩票 决策:在保证彩民和彩票公司的利益上如何设置最 佳彩票方案
合理运行设备:设备的最有运行(维修)方案.
合理组合投资:追求最大受益、最小风险的投资组 合方案(Multiobjective programming)
4
(2)工程设计和控制中的非线性分析 (Non-linear programming and optimal control) 例如: 结构系统最优设计(人字架设计) 机械零件或部件的最优化设计(轮轴颈,凸轮设计) 化工设备最优设计(单件或连锁设备优化设计) 电力网络和水力网络的优化设计(平衡条件)
0.4
1.1
1.0
单位工件的加工费用 工件 1 工件 2 工件 3
13
9
10
可用台 时数
800
乙
0.5
1.2
1.3
11
12
8
900
16
解:设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3, 在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。
可建立以下线性规划模型:
min z 13 x1 9x2 10 x3 11x4 12 x5 8x6
件.清华大学出版社.
3
优化模型应用的广泛性
(1)系统分析,即生产计划和经营决策中的优 化问题。例如:
合理计划生产:运输,分配,布局,选址,指派, 下料、配料等优化问题(linear programming);
合理开发(或配置)资源:可再生资源的持续开 发,不可再生资源的优化配置(linear programming)
•可行解:满足约束条件的解 •最优解:取得最值的可行解 •次优解:一个较满意的可行解 •可行集(域):所有可行解组成的集合,
10
主要内容
线性规划(LP) 非线性规划(NLP) 整数规划(IP)
11
线性规划
1、两个引例。 2、线性规划模型 3、线性规划的性质。 4、线性规划的主要算法。 5、用数学软件包求解线性规划问题 6、建模案例选讲:投资的收益与风险
5
历届数模竞赛所涉及的优化问题:
• 94年 A题 逢山开路(工程设计优化问题) 目标:工程造价最低 决策:在若干约束下选择一条最佳线路
• 95年 B题:天车调度问题(生产操作优化问题) 目标:年钢产量最大 决策:天车调度的最优方案设计
96年 A题:最优捕鱼策略(开发资源优化问题) 目标:可持续捕捞的努力量及最大捕捞量 决策:在平衡条件下确定五年内最佳捕捞方案
约束条件为:
8 25 x1 8 15 x2 1800
8 8
25 15
x1 x2
1800 1800
x1 0, x2 0
14
线性规划模型: min z 40 x1 36 x2
5x1 3x2 45
s.t.
x1 x2
9 15
x1 0, x2 0
15
例2 :任务分配问题
解: 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
8 4 x1 8 3 x2 32x1 24x2
因检验员错检而造成的损失为:
(8 25 2% x1 815 5% x2 ) 2 8x1 12x2
13
故目标函数为:
min z (32 x1 24 x2) (8x1 12 x2 ) 40 x1 36 x2
某车间有甲、乙两台机床,可用于加工三种工件。假定这两 台车床的可用台时数分别为800和900,三种工件的数量分别 为400、600和500,且已知用三种不同车床加工单位数量不同 工件所需的台时数和加工费用如下表。问怎样分配车床的加 工任务,才能既满足加工工件的要求,又使加工费用最低?
车床 类型
甲
单位工件所需加工台时数 工件 1 工件 2 工件 3
max(min) z cT x s.t. Ax (, )b x ()0,或无限制
线性规划的标准形式:
目标函数: min 约束变量: 变量符号: 0
12
例1:某厂每日8小时的产量不低于1800件。为了进行质量控
制,计划聘请两种不同水平的检验员。一级检验员的标准为: 速度25件/小时,正确率98%,计时工资4元/小时;二级检验员 的标准为:速度15小时/件,正确率95%,计时工资3元/小时。 检验员每错检一次,工厂要损失2元。为使总检验费用最省, 该工厂应聘一级、二级检验员各几名?
8
04年 A题:奥运会馆超市设计问题 05年 B题:DVD租赁业务 06年 A题:书号分配方法
9
优化模型的一般形式
min(或max) z f (x), x (x1,L x n)T s.t. gi (x) 0, i 1, 2,L m
x:决策变量 f(x):目标函数 gi(x)0:约束条件
x1 x4 400
x2
x5
600
s.t.
0x.34x1x6
50.2x5 1.3x6 900 xi 0,i 1,2, ,6
17
2. 线性规划的模型
线性规划的模型结构:
目标函数: max, min 约束变量: , , 变量符号: 0, 0
数学建模讲义
主讲人:穆学文
西安电子科技大学数学系 Email:mxw1334@
1
数学建模专题讲座
最优化模型 ---线性规划
2
参考书目
1.薛定宇,陈阳泉。高等应用数学问题的matlab 求解。清华大学出版社。
2. 陈宝林。最优化理论与算法。清华大学出版社. 3. 谢金星,薛毅。优化建模与lindo/lingo优化软