半导体材料与器件工作原理PPT课件
合集下载
半导体整套课件完整版电子教案最全PPT整本书课件全套教学教程
1.正向特性 图1-10所示曲线①部分为正向特性。在二极管两端加正向
电压较低时,由于外电场较弱,还不足以克服PN结内电场 对多数载流了扩散运动的阻力,所以正向电流很小,几乎为 零。此时二极管呈现出很大的电阻。
上一页 下一页 返回
1.2 半导体二极管
2.反向特性 图1-10所示曲线②部分为反向特性。二极管两端加上反向
电压时,由于少数载流子漂移而形成的反向电流很小,且在 一定的电压范围内基本上不随反向电压而变化,处于饱和状 态,所以这一段电流称为反向饱和电流IR。硅管的反向饱和 电流约在1μA至几十微安,锗管的反向饱和电流可达几百微 安,如图1-10的OC(OC’)段所示。 3.反向击穿特性 如图1-10中曲线③部分所示,当反向电压增加到一定数值 时,反向电流急剧增大,这种现象称为一极管的反向击穿。 此时对应的反向击穿电压用UBR表示。
1.4.2 晶体三极管的工作原理
三极管有两个按一定关系配置的PN结。由于两个PN结之间 的互相影响,使三极管表现出和单பைடு நூலகம்PN结不同的特性。三 极管最主要的特性是具有电流放大作用。下面以NPN型二极 管为例来分析。
1.电流放大作用的条件 三极管的电流放大作用,首先取决于其内部结构特点,即发
射区掺杂浓度高、集电结面积大,这样的结构有利于载流子 的发射和接收。而基区薄且掺杂浓度低,以保证来自发射区 的载流子顺利地流向集电区。其次要有合适的偏置。三极管 的发射结类似于二极管,应正向偏置,使发射结导通,以控 制发射区载流子的发射。而集电结则应反向偏置,以使集电 极具有吸收由发射区注入到基区的载流子的能力,从而形成 集电极电流。
1.1 半导体基础知识
1.1.1本征半导体
不含杂质且具有完整品体结构的半导体称为本征半导体。最 常用的本征半导体是锗和硅品体,它们都是四价元素,在其 原子结构模型的最外层轨道上各有四个价电子。在单品结构 中,由于原子排列的有序性,价电子为相邻的原子所共有, 形成了如图1-1所示的共价键结构,图中的+4表示四价元素 原子核和内层电子所具有的净电荷。本征半导体在温度 T=0K(热力学温度)目没有其他外部能量作用时,其共价键 中的价电子被束缚得很紧,不能成为自由电子,这时的半导 体不导电,在导电性能上相当于绝缘体。但是,当半导体的 温度升高或给半导体施加能量(如光照)时,就会使共价键中 的某些价电子获得足够的能量而挣脱共价键的束缚,成为自 由电子,同时在共价键中留下一个空位,这个现象称为本征 激发,如图1-2所示,自由电子是本征半导体中可以参与导 电的一种带电粒子,叫做载流子。
电压较低时,由于外电场较弱,还不足以克服PN结内电场 对多数载流了扩散运动的阻力,所以正向电流很小,几乎为 零。此时二极管呈现出很大的电阻。
上一页 下一页 返回
1.2 半导体二极管
2.反向特性 图1-10所示曲线②部分为反向特性。二极管两端加上反向
电压时,由于少数载流子漂移而形成的反向电流很小,且在 一定的电压范围内基本上不随反向电压而变化,处于饱和状 态,所以这一段电流称为反向饱和电流IR。硅管的反向饱和 电流约在1μA至几十微安,锗管的反向饱和电流可达几百微 安,如图1-10的OC(OC’)段所示。 3.反向击穿特性 如图1-10中曲线③部分所示,当反向电压增加到一定数值 时,反向电流急剧增大,这种现象称为一极管的反向击穿。 此时对应的反向击穿电压用UBR表示。
1.4.2 晶体三极管的工作原理
三极管有两个按一定关系配置的PN结。由于两个PN结之间 的互相影响,使三极管表现出和单பைடு நூலகம்PN结不同的特性。三 极管最主要的特性是具有电流放大作用。下面以NPN型二极 管为例来分析。
1.电流放大作用的条件 三极管的电流放大作用,首先取决于其内部结构特点,即发
射区掺杂浓度高、集电结面积大,这样的结构有利于载流子 的发射和接收。而基区薄且掺杂浓度低,以保证来自发射区 的载流子顺利地流向集电区。其次要有合适的偏置。三极管 的发射结类似于二极管,应正向偏置,使发射结导通,以控 制发射区载流子的发射。而集电结则应反向偏置,以使集电 极具有吸收由发射区注入到基区的载流子的能力,从而形成 集电极电流。
1.1 半导体基础知识
1.1.1本征半导体
不含杂质且具有完整品体结构的半导体称为本征半导体。最 常用的本征半导体是锗和硅品体,它们都是四价元素,在其 原子结构模型的最外层轨道上各有四个价电子。在单品结构 中,由于原子排列的有序性,价电子为相邻的原子所共有, 形成了如图1-1所示的共价键结构,图中的+4表示四价元素 原子核和内层电子所具有的净电荷。本征半导体在温度 T=0K(热力学温度)目没有其他外部能量作用时,其共价键 中的价电子被束缚得很紧,不能成为自由电子,这时的半导 体不导电,在导电性能上相当于绝缘体。但是,当半导体的 温度升高或给半导体施加能量(如光照)时,就会使共价键中 的某些价电子获得足够的能量而挣脱共价键的束缚,成为自 由电子,同时在共价键中留下一个空位,这个现象称为本征 激发,如图1-2所示,自由电子是本征半导体中可以参与导 电的一种带电粒子,叫做载流子。
半导体器件基础课件(PPT-73页)精选全文完整版
有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术
半导体激光器工作原理及基本结构PPT课件
• 一定波长的受激光辐射在谐振腔内形成振荡的条件: 腔长=半波长的整数倍 L=m(λ/2n)
第5页/共15页
增益和阈值电流
• 增益:在注入电流的作用下,激活区受激辐射不断增强。 • 损耗:受激辐射在谐振腔中来回反射时的能量损耗。包括载流子吸收、缺
陷散射及端面透射损耗等。 • 阈值电流:增益等于损耗时的注入电流。
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射 光严格在pn结平面内传播,单色性较好,强度也较大,这种 光辐射叫做受激光辐射。
第4页/共15页
法布里-珀罗谐振腔 (形成相干光)
• 垂直于结面的两个平行的晶体解理面形成法布里-珀罗谐振腔 ,两个解理 面是谐振腔的反射镜面。在两个端面上分别镀上高反膜和增透膜,可以提 高激射效率.
2. 有源区工作时产生的热量能通过周围四个方向的无源区传 递而逸散,提高器件的散热性能;
3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。
第10页/共15页
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射 率波导条形激光器(掩埋条形、脊形波导)。
第3页/共15页
自发光辐射和受激光辐射
• 自发光辐射(发光二极管)
当给器件加正向偏压时,n区向p区注入电子,p区向n区注 入空穴,在激活区电子和空穴自发地复合形成电子-空穴对, 将多余的能量以光子的形式释放出来,所发射的光子相位和 方向各不相同,这种辐射叫做自发辐射。
• 受激光辐射(半导体激光器)
第13页/共15页
弱折射率波导条形激光器(脊形波导)
特点:在侧向对光波的有一定限制作用,在条形有源区上方腐蚀出一个脊(宽度大约 3~4um),腐蚀深度大概1.5~2um, 腐蚀一部分上限制层。由于腐蚀深度较深,在侧向 形成一定的折射率台阶,对侧向光波有较弱的限制作用。
第5页/共15页
增益和阈值电流
• 增益:在注入电流的作用下,激活区受激辐射不断增强。 • 损耗:受激辐射在谐振腔中来回反射时的能量损耗。包括载流子吸收、缺
陷散射及端面透射损耗等。 • 阈值电流:增益等于损耗时的注入电流。
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射 光严格在pn结平面内传播,单色性较好,强度也较大,这种 光辐射叫做受激光辐射。
第4页/共15页
法布里-珀罗谐振腔 (形成相干光)
• 垂直于结面的两个平行的晶体解理面形成法布里-珀罗谐振腔 ,两个解理 面是谐振腔的反射镜面。在两个端面上分别镀上高反膜和增透膜,可以提 高激射效率.
2. 有源区工作时产生的热量能通过周围四个方向的无源区传 递而逸散,提高器件的散热性能;
3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。
第10页/共15页
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射 率波导条形激光器(掩埋条形、脊形波导)。
第3页/共15页
自发光辐射和受激光辐射
• 自发光辐射(发光二极管)
当给器件加正向偏压时,n区向p区注入电子,p区向n区注 入空穴,在激活区电子和空穴自发地复合形成电子-空穴对, 将多余的能量以光子的形式释放出来,所发射的光子相位和 方向各不相同,这种辐射叫做自发辐射。
• 受激光辐射(半导体激光器)
第13页/共15页
弱折射率波导条形激光器(脊形波导)
特点:在侧向对光波的有一定限制作用,在条形有源区上方腐蚀出一个脊(宽度大约 3~4um),腐蚀深度大概1.5~2um, 腐蚀一部分上限制层。由于腐蚀深度较深,在侧向 形成一定的折射率台阶,对侧向光波有较弱的限制作用。
半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质
简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。
《半导体材料》课件
N型半导体
通过向半导体中掺入五价杂质,可以形成具有负 电荷的N型半导体。
PN结
PN结是由P型和N型半导体材料结合而成的结构, 具有重要的电子器件应用。
二极管
二极管是一种基本的半导体器件。它具有只允许 单向电流通过的特性。
4. 高级半导体器件
M Oபைடு நூலகம்FET
MOSFET是一种基于半导体材料 的重要集成电路组件,广泛应用 于电子设备中。
光电二极管
光电二极管是一种半导体器件, 可以将光能转换为电能,广泛用 于通信和光电领域。
激光二极管
激光二极管是利用半导体材料产 生激光的器件,应用于激光打印 机、激光通信等领域。
5. 应用领域
计算机芯片
半导体材料是计算机 芯片制造的基础,推 动了电子产品的快速 发展。
通信设备
半导体器件在无线通 信、移动通信等领域 中发挥着重要的作用。
光电子器件
光电子器件利用半导 体材料的特性,实现 光信号的检测和处理。
新能源领域
半导体材料在太阳能 电池、燃料电池等新 能源领域有着广泛的 应用。
6. 总结
半导体材料具有独特的电性能和广泛的应用。通过了解半导体的基本概念和器件原理,我们可以更好地理解现 代电子技术的发展和应用。期待未来半导体材料的更多突破和创新!
2. 基本概念
1 价带和导带
半导体中的价带和导带决定了电子的能量状态和传导性质。
2 禁带宽度
禁带宽度是指价带和导带之间的能量间隔,影响了半导体的导电性。
3 掺杂
通过掺杂杂质,可以改变半导体的导电性能,使其成为P型或N型半导体。
3. 掺杂与半导体器件
P型半导体
通过向半导体中掺入三价杂质,可以形成具有正 电荷的P型半导体。
半导体材料 ppt课件
1.2.3 固溶半导体
由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质, 就称为固溶半导体,简称固溶体或混晶。 因为不可能作出绝对纯的物质,材料经提纯后总要残留一定数量的杂质,而且半导 体材料还要有意地掺入一定的杂质,在这些情况下,杂质与本体材料也形成固溶体, 但因这些杂质的含量较低,在半导体材料的分类中不属于固溶半导体。 另一方面,固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比 所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及 有关性质也随之变化。 固溶体增加了材料的多样性,为应用提供了更多的选择性。 为了使固溶体具有半导体性质常常使两种半导体互溶,如Si1-xGex(其中x <1);也 可将化合物半导体中的一个元素或两个元素用其同族元素局部取代,如用Al来局部取 代GaAs中的Ga,即Ga1-xAlxAs,或用In局部取代Ga,用P局部取代As形成Ga1xInxAs1-yPy 等等。 固溶半导体可分为二元、三元、四元、多元固溶体;也可分为同族或非同族固溶体 等(见表1.1 )。
表1.1 半导体材料分类及其开发情况 * 此处所列子项只举其中重要者,并未完全列出。
1.2.1 元素半导体 已知有12个元素具有半导体性质,它们在元素周期表中的位置如图1.1所示。 从这里也可以看出半导体材料与物质结构的密切关系。
处于III-A族的只有硼,其熔点高(2300oC),制备单晶困难,而且其载流子迁移率 很低,对它研究的不多,未获实际应用。 IV-A 族中第一个是碳,它的同素异形体之一金刚石具有优良的半导体性质,但制 备单晶困难,是目前研究的重点;石墨是碳的另一个同素异形体,系层状结构,难 以获得单晶,故作为半导体材料未获得应用。 IV-A族的第二个元素是硅,具有优良的半导体性质,是现代最主要的半导体材料。 再往下是锗,它具有良好的半导体的性质,是重要的半导体材料之一。 锡在常温下的同素异形体为b-Sn,属六方晶系,但在13.2oC以下 可变为立方晶 系灰锡(a-Sn)。灰锡具有半导体性质,属立方晶系。在从b-Sn转化为a-Sn 的过 程中,体积增大并变粉末,故难以在实际中应用。
《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
《半导体基础》课件
在温度升高或电场加强时,电 子和空穴的输运能力增强。
掺杂可以改变半导体的导电性 能,增加载流子的数量。
半导体中的热传导
01 热传导是热量在半导体中传递的过程。
02 热传导主要通过晶格振动和自由载流子传 递。
03
半导体的热传导系数受到温度、掺杂浓度 和材料类型的影响。
04
在高温或高掺杂浓度下,热传导系数会增 加。
模拟电路和数字电路中均有广泛应用。
场效应晶体管
总结词
场效应晶体管是一种电压控制型器件,利用电场效应来控制导电沟道的通断。
详细描述
场效应晶体管可分为N沟道和P沟道两种类型,通过调整栅极电压来控制源极和漏极之 间的电流。场效应晶体管具有低噪声、高输入阻抗和低功耗等优点,广泛应用于放大器
和逻辑电路中。
集成电路基础
掺杂半导体
N型半导体
通过掺入施主杂质,增加自由电子数量,提高导电能力。
P型半导体
通过掺入受主杂质,增加自由空穴数量,提高导电能力。
宽禁带半导体
碳化硅(SiC)
具有宽禁带、高临界击穿场强等特点, 适用于制造高温、高频、大功率的电子 器件。
VS
氮化镓(GaN)
具有宽禁带、高电子迁移率等特点,适用 于制造蓝光、紫外线的光电器件。
详细描述
二极管由一个PN结和两个电极组成,其单 向导电性是由于PN结的正向导通和反向截 止特性。根据结构不同,二极管可分为点接 触型、肖特基型和隧道二极管等。
双极晶体管
总结词
双极晶体管是一种电流控制型器件,具有放 大信号的功能。
详细描述
双极晶体管由三个电极和两个PN结组成, 通过调整基极电流来控制集电极和发射极之 间的电流,实现信号的放大。双极晶体管在
半导体材料最新ppt课件[文字可编辑]
1.2.2 化合物半导体:
?化合物半导体材料的种类繁多,性能各异,因此用途也就多种多样。 ?化合物半导体按其构成的元素数量可分为二元、三元、四元等。 ?按其构成元素在元素周期表中的位置可分为III-V 族、II-IV-V族等等。 ?如果要问哪些化合物是半导体,哪些不是,有没有规律性?应该回答说,规律性 是有的,但还没有找到一个严密的公式可以毫无例外地判断某个化合物是否属于半 导体。 ?常用的方法是先找到一个已知的化合物半导体,然后按元素周期表的规律进行替 换(参照图1.1) 。
1.2.3 固溶半导体
?由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质, 就称为固溶半导体,简称固溶体或混晶。 ?因为不可能作出绝对纯的物质,材料经提纯后总要残留一定数量的杂质,而且半导 体材料还要有意地掺入一定的杂质,在这些情况下,杂质与本体材料也形成固溶体, 但因这些杂质的含量较低,在半导体材料的分类中不属于固溶半导体。 ?另一方面,固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比 所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及 有关性质也随之变化。 ?固溶体增加了材料的多样性,为应用提供了更多的选择性。 ?为了使固溶体具有半导体性质常常使两种半导体互溶,如Si1-xGex(其中x <1);也 可将化合物半导体中的一个元素或两个元素用其同族元素局部取代,如用Al来局部取 代GaAs中的Ga,即Ga1-xAlxAs,或用In局部取代Ga,用P局部取代As形成Ga1xInxAs1-yPy 等等。 ?固溶半导体可分为二元、三元、四元、多元固溶体;也可分为同族或非同族固溶体 等(见表1.1 )。
薄膜在半导体材料中占有重要的地位。 ?在熔体生长单晶的方法出现不久,就开始了汽相生长薄膜的工作。但直到硅晶 体管的平面工艺出现以后,硅的外延生长才被提上了日程,因为这种器件要求 在一个有一定的厚度的低电阻率的硅片上,有一较高电阻率单晶的薄层。 ?发展起来的化学汽相外延法,一直到今天仍旧是生产硅外延片的唯一的方法。 外延技术给化合物半导体解决了一系列晶体制备的难题,包括提高纯度、降低 缺陷、改善化学配比、制作固溶体或异质结等。 ?一些微波二极管、激光管、发光管、探测器等,都是在外延片上作成的。 ?除采用化汽相外延法外,又于1963年开发成功了液相外延,不久又出现了金 属有机化学汽相外延等。 ?1969年在美国工作的江畸玲于奈和朱肇祥首先提出了超晶格的概念,用当时 的晶体生长与外延技术是生长不出这种材料的,因为它要求材料有原子级的精 度。 ?为此研究成功了分子束外延,用此方法于1972年生长出超晶格材料。 从此开始了半导体的性能在微观尺度上的可剪裁阶段。
《半导体材料》课件
解决策略
解决可靠性问题需要从材料的设计、制备、封装、测试等各个环节入手,加强质量控制和可靠性评估。
半导体材料的环境影响与可持续发展
环境影响
半导体材料的生产和使用过程中会对环境产生一定的影响,如能源消耗、废弃物处理等。
可持续发展
为了实现可持续发展,需要发展环保型的半导体材料和生产技术,降低能源消耗和废弃物排放,同时 加强废弃物的回收和再利用。
《半导体材料》ppt 课件
目录
CONTENTS
• 半导体材料简介 • 半导体材料的物理性质 • 常见半导体材料 • 半导体材料的制备与加工 • 半导体材料的发展趋势与挑战
01
半导体材料简介
半导体的定义与特性
总结词
半导体的导电能力介于导体和绝缘体 之间,其电阻率受温度、光照、电场 等因材料的制备技术
制备技术
为了获得高性能的半导体材料,需要 发展先进的制备技术。这包括化学气 相沉积、分子束外延、离子注入等。
技术挑战
制备技术面临的挑战是如何实现大规 模生产,同时保持材料的性能和均匀 性。
半导体材料的可靠性问题
可靠性问题
随着半导体材料的广泛应用,其可靠性问题越来越突出。这包括材料的稳定性、寿命、可靠性等方面的问题。
VS
电阻率
电阻率是衡量材料导电能力的物理量。半 导体的电阻率可以通过掺杂等方式进行调 控,从而实现对其导电性能的优化。
光吸收与发光特性
光吸收
半导体具有吸收光子的能力,当光子能量大于其能带间隙时,电子从价带跃迁至导带, 产生光电流。
发光特性
某些半导体在受到激发后可以发出特定波长的光,这一特性使得半导体在发光器件、激 光器等领域具有广泛应用。
离子束刻蚀
利用离子束对材料进行刻蚀,实现纳米级加工。
解决可靠性问题需要从材料的设计、制备、封装、测试等各个环节入手,加强质量控制和可靠性评估。
半导体材料的环境影响与可持续发展
环境影响
半导体材料的生产和使用过程中会对环境产生一定的影响,如能源消耗、废弃物处理等。
可持续发展
为了实现可持续发展,需要发展环保型的半导体材料和生产技术,降低能源消耗和废弃物排放,同时 加强废弃物的回收和再利用。
《半导体材料》ppt 课件
目录
CONTENTS
• 半导体材料简介 • 半导体材料的物理性质 • 常见半导体材料 • 半导体材料的制备与加工 • 半导体材料的发展趋势与挑战
01
半导体材料简介
半导体的定义与特性
总结词
半导体的导电能力介于导体和绝缘体 之间,其电阻率受温度、光照、电场 等因材料的制备技术
制备技术
为了获得高性能的半导体材料,需要 发展先进的制备技术。这包括化学气 相沉积、分子束外延、离子注入等。
技术挑战
制备技术面临的挑战是如何实现大规 模生产,同时保持材料的性能和均匀 性。
半导体材料的可靠性问题
可靠性问题
随着半导体材料的广泛应用,其可靠性问题越来越突出。这包括材料的稳定性、寿命、可靠性等方面的问题。
VS
电阻率
电阻率是衡量材料导电能力的物理量。半 导体的电阻率可以通过掺杂等方式进行调 控,从而实现对其导电性能的优化。
光吸收与发光特性
光吸收
半导体具有吸收光子的能力,当光子能量大于其能带间隙时,电子从价带跃迁至导带, 产生光电流。
发光特性
某些半导体在受到激发后可以发出特定波长的光,这一特性使得半导体在发光器件、激 光器等领域具有广泛应用。
离子束刻蚀
利用离子束对材料进行刻蚀,实现纳米级加工。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)属于哪一个带; 自
(2)它的简约波矢k 等于什么
由 电 子
E(k)
}允带
} 允带
-π/a 0 π/a k
} 允带
简约布里渊区
能带理论的一些重要结论
➢ 原子在相互靠近时,原子的波函数交叠导致能级分裂。分 裂的能级数目和原胞数目、原胞内的原子数、以及原始能 级的简并度有关。具体为N(原胞数)×原胞内原子数× 能级简并度。
➢ 近似计算的结果表明:晶体中电子的波函数为一个类似于 自由电子的平面波被一个和晶格势场同周期的函数所调幅 的布洛赫波函数。
➢ 由于周期性的边界条件。布洛赫波函数的波矢k只能取分 立的值。k是描述半导体晶体电子共有化的波矢。它的物 理意义是表示电子波函数位相的不同。
➢ 每一个k对应着一个本征值(能量E)。而在特定的k值附 近由于周期性晶格势场的简并微扰,使能带发生分裂,形 成一系列的允带和禁带。
➢ 单电子近似 通常利用哈特里-福克自洽场方法,每个电 子是在固定的离子势场和其它电子的平均势场中运动,多 电子问题就简化为单电子问题。单电子近似也称为哈特里 -福克近似或自洽场近似。更精确的单电子理论是密度泛 函理论。
➢ 周期场近似 所有离子势场和其它电子的平均势场被简化 为周期性势场,不考虑晶格振动和晶体缺陷对周期场的破 坏。
GaAs、 InAs
Si的sp3杂化
Si与GaAs的能带结构
E(k)图中对称点的含义
FCC晶格的简约布里渊区形状及特殊K点坐标
E(k)图的理论计算与实验确定:薛定谔方程
➢ 绝热近似 考虑到原子核或离子实的质量比电子大得多, 电子运动的速度比离子实快得多,在讨论传导电子运动时, 可以认为离子是固定在瞬时位置上。这样多种粒子的多体 问题就简化为多电子的问题。
半导体材料与器件
教材与参考书
➢ 黄昆 《固体物理》 ➢ 刘恩科 《半导体物理学》 ➢ 施敏《半导体器件物理与工艺》
半导体材料的基本特性与分类
➢ 基本特性:
电阻率介于10e-3∼10e6Ω.cm,可变化区间大,介于金 属(10e-6Ω.cm)和绝缘体(10e12Ω.cm)之间
纯净半导体负温度系数,掺杂半导体在一定温度区域 出现正温度系数
不同掺杂类型的半导体做成pn结后,或是金属与半导 体接触后,电流与电压呈非线性关系,可以有整流效 应
具有光敏性,用适当波长的光照射后,材料的电阻率 会变化,即产生所谓光电导
半导体中存在着电子与空穴两种载流子
➢ 分类:元素半导体与化合物半导体
能带理论
➢ 固体类型:
单晶:长程有序(整体有序,宏观尺度,通常包含整 块晶体材料,一般在毫米量级以上);
➢ 薛定谔方程 在绝热近似、单电子近似和周期场近似下, 固体中电子运动就简化为单电子在周期性势场中的运动。 在没有外加磁场和电场时,电子运动的薛定谔方程为:
Hr2 m 22VrrEr
一维周期势
一维周期势近自由电子近似的能带结构
能带结构的经典物理图像
➢ 能带的形成:原子靠近→电子云发生重叠→电子之间存在 相互作用→分立的能级发生分裂。
原子轨道
d
p
s
原子能级分裂为能带的示意图
硅原子形成硅晶体的电子能级分裂示意图
E(k)图的一些特点
➢ 由于E (k) 具有对称性、周期性,因而可以把其它布里渊区 中的E~k曲线通过平移整数个2π/a而放到第一布里渊区内, 从而构成简约布里渊区,相应,其中的波矢k称为简约波 矢。
Ø 这样一来,我们要标志 一个状态需要标明:
E
ve
e
je
h
vh jh
费米-狄拉克分布函数与费米能级
上式中,N(E)为单位体积 的晶体材料中,单位能量 间隔区间内存在的微观粒 子数量,g(E)为单位体积 的晶体材料中,单位能量 间隔区间内所具有的量子 态-数狄量拉。克统fF(计E)就分称布作函费数米, 它反映的是能量为E的一 个量子态被一个电子占据 的能几级率。。而EF则称为费米
用能带理论解释导体Βιβλιοθήκη 半导体、绝 缘体的导电性绝缘体
绝缘体的禁带宽度很大,激发电子需要 很大的能量,在通常温度下,能激发到 导带中的电子很少,所以导电性很差。 半导体禁带宽度比较小,在通常温度下 已有不少电子被激发到导带中去,所以 具有一定的导电能力,这是绝缘体和半 导体的主要区别。
➢ 半导体中导带的电子和价带的空穴参与导 电,这是与金属导体的最大差别。
➢ 室温下,金刚石的禁带宽度为6~7eV,它 是绝缘体;硅为1.12eV,锗为0.67eV,砷 化镓为1.43eV,所以它们都是半导体。
半导体中的电子特征
半导体中的载流子-电子和空穴
传导电子
Eg
跃迁 空穴
空穴的有效质量是价带顶电子有效质量的负值,即为正
半导体中的电子特征 半导体的导电特征
v导带底电子沿外加电场反方向漂移 v价带顶电子沿外加电场方向的漂移
金属
金属中,由于组成金属的原子 中的价电子占据的能带是部分 占满的,所以金属是良好的导 电体
用能带理论解释导体、半导体、绝 缘体的导电性
半导体
半导体和绝缘体的能带类似, 即下面是已被价电子占满的满 带(其下面还有为内层电子占 满的若干满带),亦称价带, 中间为禁带,上面是空带。因 此,在外电场作用下并不导电, 但是这只是绝对温度为零时的 情况。
➢ s能级(l=0,ml=0,ms=±1/2),2度简并,交叠后分裂为2N个 能级;p 能级(l=1, ml=0, 1,ms=±1/2 )6度简并,交叠 后分裂为6N个能级,d 能级(l=2, ml=0, 1, 2, ms=±1/2 ),交叠后分裂为10N个能级
能量E
能带
{
{ 允带
禁带
{ 禁带
原子能级
➢ 由曲于线E。n这(k)就具是有以周能期带性分,裂因时而的可k在值同为一边个界周的期布内里表渊示区出。E每~k 个布里渊区内有N个k值,对应于一个准连续的能带。将所 有的E~k通过平移操作置于最简单的布里渊区内,该布里 渊区称为简约布里渊区,相应的波矢k称作简约波矢。
用能带理论解释导体、半导体、绝 缘体的导电性
多晶:长程无序,短程有序(团体有序,成百上千个 原子的尺度,每个晶粒的尺寸通常是在微米的量级);
非晶(无定形):基本无序(局部、个体有序,仅限 于微观尺度,通常包含几个原子或分子的尺度,即纳 米量级,一般只有十几埃至几十埃的范围)
7大晶系、14种布拉菲格子
简单立方格子的重要晶面
Si、 Ge