第三章 导数及其应用3-1导数的概念及运算
浙江高考数学第三章导数及其应用3.1导数的概念及运算课件

-4知识梳理 双击自测
1.平均变化率 ������(������2 )-������(������1 ) ������2 -������1 函数y=f(x)从x1到x2的平均变化率为 若Δx=x2-x1,Δy=f(x2)-f(x1),则平均变化率可表示为 2.导数的概念
f(x0 + ������x)-f(x0 ) Δ������ →0 ������x
-17-
考点一
考点二
对点训练(1)(2018重庆第三次诊断)设函数f(x)=sin x-cos x,f(x)的 导函数记为f'(x),若f'(x0)=2f(x0),则tan x0=( )
A.-1
B.
1 3
C.1
D.3
关闭
根据题意,得f'(x)=cos x+sin x,由f'(x0)=2f(x0),得cos x0+sin x0=2sin x02cos x0,化简可得sin x0=3cos x0,即tan x0=3,故选D. D
解析
关闭
-22答案
考点一
考点二
类型二 求切点坐标 【例3】 曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则点 P的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3)
关闭
f'(x)=3x2-1,令f'(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验, 点(1,3),(-1,3)均不在直线y=2x-1上,故选C. C
⑤y'=(22x+1)'+[ln(3x+5)]'
=(22 x+1 · ln 2)(2x+1)'+
导数的概念、意义及运算

混.
(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复
合过程,然后求导.
对点训练1求下列函数的导数.
(1)y=x2sin x;
(2)y=ln
1
x+ ;
cos
(3)y= e ;
(4)y=ln(2x-5).
1
由题意得, +1=2,解得 x0=1,故 y0=ln
0
y=2x.
1
y'= +1.
1+1+1=2,切线方程为 y-2=2(x-1),即
解题心得求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切
线,曲线y=f(x)在点P(x0,f(x0))处的切线方程是y-f(x0)=f'(x0)(x-x0).求过某点的
3.函数f(x)的导函数
从求函数y=f(x)在x=x0处导数的过程可以看到,当x=x0时,f'(x0)是一个唯一
确定的数.这样,当x变化时,y=f'(x)就是x的函数,我们称它为y=f(x)的导函数
(简称导数).y=f(x)的导函数有时也记作y',即
(+Δ)-()
f'(x)=y'= lim
【例4】 若曲线f(x)=xln x+2m上点P处的切线方程为x-y=0.
(1)求实数m的值;
(2)若过点Q(1,t)存在两条直线与曲线y=f(x)相切,求实数t的取值范围.
解 (1)设点P坐标为(n,n).f(x)=xln x+2m的导数为f'(x)=1+ln x,点P(n,n)处的
1
高考数学一轮复习第三章导数及其应用3.1导数的概念及运算

3.(2018课标全国Ⅰ,6,5分)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的 切线方程为 ( ) A.y=-2x B.y=-x C.y=2x D.y=x
2
ln
x
.
当0<x<1时,x2-1<0,ln x<0,所以g'(x)<0,故g(x)单调递减;
当x>1时,x2-1>0,ln x>0,所以g'(x)>0,故g(x)单调递增.
所以,g(x)>g(1)=0(∀x>0,x≠1). 所以除切点之外,曲线C在直线L的下方.
思路分析 (1)先求导,再求切线斜率,进而得出切线方程; (2)令g(x)=x-1-f(x),待证等价于g(x)>0(∀x>0,x≠1),再利用函数单调性和最值解决问题.
又g(e)=0,∴ln x= ex 有唯一解x=e.∴x0=e.
∴点A的坐标为(e,1).
方法总结 求曲线y=f(x)过点(x1,y1)的切线问题的一般步骤: ①设切点为(x0, f(x0)); ②求k=f '(x0); ③得出切线的方程为y-f(x0)=f '(x0)(x-x0); ④由切线经过已知点(x1,y1)求得x0,进而得出切线方程.
= 2
.
(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),
则y0=2 x03 -3x0,且切线斜率为k=6 x02-3,所以切线方程为y-y0=(6 -3)(x-x0), 因此t-y0=(6 x02 -3)(1-x0).整x理02 得4 x03 -6 x02 +t+3=0. 设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.
2015高考数学一轮课件:第3章 3.1 导数的概念及其运算

题型二
导数的运算
思维启迪 解析 思维升华
【例 2】 求下列函数的导数:
(1)y=ex·ln x;
(2)y=xx2+x1+x13;
(3)y=sin22x+π3
;
(4)y=ln(2x+5).
基础知识
题型分类
思想方法
练出高分 第十四页,编辑于星期五:十三点 四十四分。
题型分类·深度剖析
题型二
导数的运算
思维启迪 解析 思维升华
基础知识
题型分类
思想方法
练出高分 第五页,编辑于星期五:十三点 四十四分。
基础知识·自主学习
夯基释疑
夯实基础 突破疑难
题号
1 2 3 4 5
答案
(1)× (2) × (3) √ (4) ×(5) × (6) ×
2 ±1
2
1 3
解析
基础知识
题型分类
思想方法
练出高分 第六页,编辑于星期五:十三点 四十四分。
基础知识·自主学习
要点梳理
知识回顾 理清教材
(2)几何意义
函数 f(x)在点 x0 处的导数 f′(x0)的几何意义是在曲线 y=f(x) 上点 (x0,f(x0)) 处的 切线的斜率 .相应地,切线方程为 y-f(x0)=f′(x0)(x-x0) . 3.函数 f(x)的导函数 若 f(x)对于区间(a,b)内任一点都可导,则 f(x)在各点的导数
题型三
导数的几何意义
思维启迪
解析 思维升华
【例 3】 已知函数 f(x)=x3-
4x2+5x-4.
(1)求曲线 f(x)在点(2,f(2))处
的切线方程;
(2)求经过点 A(2,-2)的曲线
导数的概念及运算、几何意义

导数的概念及运算、几何意义1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)==.y′|x=x(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)·(x-x0).(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数.2.导数公式及运算法则(1)基本初等函数的导数公式(2)导数的运算法则①[f (x )±g (x )]′=)(x f '±g ′(x );②[f (x )·g (x )]′=)(x f 'g (x )+f (x )g ′(x ); ③])()(['x g x f =f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 特殊情况[c ·f (x )]′=c ·)(x f '.(3)复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1))(0x f '与[f (x 0)]′表示的意义相同.(×)(2))(0x f '是导函数)(x f '在x =x 0处的函数值.(√)(3)曲线的切线不一定与曲线只有一个公共点.(√) (4))3sin('π=cos π3.(×)(5)若(ln x )′=1x ,则)1('x =ln x .(×)(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .(×)(7)函数f (x )=,由于f ′(0)无意义,则说明f (x )=在x =0处无切线.(×)(8)与曲线只有一个公共点的直线一定是曲线的切线.(×)(9)若f (a )=-x 2+2ax +a 3,则f ′(a )=2x +3a 2.(√)(10)过点P 作y =f (x )的切线,且P 在y =f (x )上,则P 一定为切点.(×)考点一 导数的运算[例1] (1)函数y =(1-x ))1(x +,则y ′=________.解析:∵y =(1-x ))11(x +=1x -x =2121x x --,='y 21232121----x x答案:21232121----x x (2)函数y =ln x x ,则y ′=________.解析:y ′=)ln ('xx =(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. 答案:1-ln x x 2(3)y =ln(2x +5),则y ′=________.解析:设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5. 答案:22x +5 (4)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:f ′(x )=2f ′(1)+1x令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.答案:-1 [方法引航] (1)总原则:先化简解析式,再求导.(2)具体方法:①连乘积的形式:先展开化为多项式形式,再求导.②根式形式:先化为分数指数幂,再求导.③复杂分式:化为简单分式的和、差,再求导.(3)区分f ′(x )与f ′(x 0)f ′(x )表示导函数,f ′(x 0)是导函数值.1.若函数y =tan x ,则y ′=________.解析:y ′=)cos sin ('xx =(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . 答案:1cos 2x2.设f (x )=x ln x ,若)(0x f '=2,则x 0的值为( )A .e 2B .e C.ln 22 D .ln 2 解析:选B.由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.考点二 导数的几何意义[例2] (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.[方法引航] 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f(x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1.在本例中,若f (x )在P 点处的切线平行x 轴,求P 点坐标.解:∵f ′(x )=3x 2-8x +5,令3x 2-8x +5=0得x =1或x =53,∴f (1)=1-4+5-4=-2,f (53)=-5827,∴P (1,-2)或P )2758,35(-. 2.在本例中,若f (x )不变,求f (x )过点(1,-2)的切线方程.解:设过点P (1,-2)的直线与y =f (x )切于点M (x 0,y 0),∴其切线斜率k =f ′(x 0)=3x 20-8x 0+5,y 0=x 30-4x 20+5x 0-4,其切线方程为y -(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(x -x 0)过点(1,-2),即-2-(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(1-x 0),即(x 0-1)2(2x 0-3)=0∴x 0=1或x 0=32.∴切点为(1,-2)或)817,23(-,∴k 1=0或k 2=-14. ∴所求切线方程分别为y =-2.或y +178=-14)23(-x ,即y =-14x -74.[易错警示]借问“切点”何处有——求曲线的切线方程时切点易错[典例] (2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[正解] 设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x-9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A[易误] (1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.[警示] ①“曲线y =f (x )在P 点处的切线”与“曲线过P 点的切线”不同,前者P 为切点,后者P 不一定为切点.②此类题首先确定点是否为曲线的切点.当不是切点时.应先设出切点.[高考真题体验]1.(2016·高考全国丙卷)已知f (x )为偶函数,当x ≤0时,x e x f x -=--1)(,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:当x >0时,-x <0,f (-x )=e x -1+x ,而f (-x )=f (x ),所以f (x )=e x -1+x (x >0),点(1,2)在曲线y =f (x )上,易知f ′(1)=2, 故曲线y =f (x )在点(1,2)处的切线方程是y -2=f ′(1)·(x -1),即y =2x .答案:y =2x2.(2015·高考课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.答案:13.(2012·高考课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.解析:y ′=3ln x +1+x ·3x =3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x -3.答案:y =4x -34.(2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则)0(f '的值为________.解析:∵f ′(x )=2e x +(2x +1)e x =(2x +3)·e x ,∴f ′(0)=3.答案:35.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,)(x f '为f (x )的导函数.若)1(f '=3,则a 的值为________.解析:∵f ′(x )=a ln x +a ,∴f ′(1)=a ln 1+a =3,解得a =3.答案:36.(2016·高考山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:选A.对于A ,y ′=cos x ,存在x 1,x 2,若cos x 1cos x 2=-1,如x 1=π,x 2=2π,可满足,对于B ,其导数为f ′(x )=1x ,f ′(x 1)·f ′(x 2)=1x 1x 2>0,故B 不满足;y =f (x )=e x 的导函数为f ′(x )=e x ,f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故C 不满足;y =f (x )=x 3的导函数为f ′(x )=3x 2,f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故D 不满足.故选A.课时规范训练A 组 基础演练1.若函数f (x )=ax 4+bx 2+c 满足2)1(='f ,则)1(-'f 等于( )A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且2)1(='f ,∴)1(-'f =-2.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0解析:选A.切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),即y -1=4(x -1),整理得l 的方程为4x -y -3=0.3.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( ) A .2 B .ln 2+1 C .ln 2-1 D .ln 2解析:选C.∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b ,得b =ln 2-1.4.曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C.y ′=3x+1,令y ′=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率1|='=x y k =4×1+11=5.所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为2|1='==x y k7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y '<1得3≤x 2<103,显然满足该不等式的整数x不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.依题意,记g (x )=(x -a 1)(x -a 2)…(x -a 8),则f (x )=xg (x ),)(x f '=g (x )+xg ′(x ),f ′(0)=g (0)=a 1a 2…a 8=(a 1a 8)4=212,故选C.10.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=)(1x f ',f 3(x )=)(2x f ',…,f n +1(x )=)(x f n ',n ∈N *,则f 2 019(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A.∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 019(x )=f 3(x )=-sin x -cos x ,故选A.B 组 能力突破1.已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:选C.法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1, 由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),)(xf'为f(x)的导函数,则f(2 017)+f(-2 017)+)2018(f'-)2018(-'f=()A.0 B.2 017 C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=)(xf'的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为)(xf',且满足f(x)=3x2+2x·)2(f',则)5(f'=________.解析:对f(x)=3x2+2x)2(f'求导,得f′(x)=6x+2)2(f'.令x=2,得)2(f'=-12.再令x=5,得f′(5)=6×5+2)2(f'=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:[2,+∞)。
3.1导数的概念及运算课件高三数学一轮复习

解析 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错. (2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错. (3)求f′(x0)时,应先求f′(x),再代入求值,(3)错. (4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值 为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方 程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切 线可以不止一条,(4)错.
f′(x)=___e_x__
1
f′(x)=__x_l_n_a__
1
f′(x)=__x___
4.导数的运算法则
若 f′(x),g′(x)存在,则有: [f(x)±g(x)]′=______f′_(_x_)±_g_′_(_x_) _______; [f(x)g(x)]′=____f′_(_x_)g_(_x_)_+__f(_x_)_g_′(_x_)____; gf((xx))′=__f_′(__x_)__g_(__x[_g)_(_-_x_)f_(_]_2x_)__g_′_(__x_)__ (g(x)≠0); [cf(x)]′=_____c_f_′(_x_)_____.
训练1 (1)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图
象如图所示,则该函数的图象是( B )
解析 由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率 先增大后减小,故选B.
(2)曲线f(x)=2ln x在x=t处的切线l过原点,则l的方程是( )
A.f(x)=x2
B.f(x)=e-x
C.f(x)=ln x
D.f(x)=tan x
解析 若f(x)=x2,则f′(x)=2x,令x2=2x,得x=0或x=2,方程显然有解, 故A符合要求; 若f(x)=e-x,则f′(x)=-e-x,令e-x=-e-x,此方程无解,故B不符合要求;
《导数的概念及应用》课件

极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
旧教材适用2023高考数学一轮总复习第三章导数及其应用第1讲导数的概念及运算课件

1.(2021·江苏沭阳高级中学模拟)2020 年 12 月 1 日 22 时 57 分,嫦娥 五号探测器从距离月球表面 1500 m 处开始实施动力下降,7500 牛变推力发 动机开机,逐步将探测器相对月球纵向速度从约 1500 m/s 降为零.12 分钟后, 探测器成功在月球预选地着陆,记与月球表面距离的平均变化率为 v,相对 月球纵向速度的平均变化率为 a,则( )
复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系
为
□18 y′x=y′u·u′x
,即 y 对 x 的导数等于 y 对 u 的导数与 u 对
x 的导数的乘积.
1.f′(x0)与 x0 的值有关,不同的 x0,其导数值一般也不同. 2.f′(x0)不一定为 0,但[f(x0)]′一定为 0. 3.可导奇函数的导数是偶函数,可导偶函数的导数是奇函数,可导周 期函数的导数还是周期函数. 4.函数 y=f(x)的导数 f′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反 映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这 点处的切线越“陡”.
(c 为常数).
(3)gf((xx))′= □16 f′(x)g([xg)(-x)f(]2x)g′(x)
(g(x)≠0).
5.复合函数的导数
一般地,对于两个函数 y=f(u)和 u=g(x),如果通过变量 u,y 可以表示
成 x 的函数,那么称这个函数为函数 y=f(u)和 u=g(x)的复合函数,记 作 □17 y=f(g(x)) .
A.v=2152 m/s,a=2152 m/s2 B.v=-2152 m/s,a=-2152 m/s2 C.v=-2152 m/s,a=2152 m/s2 D.v=2152 m/s,a=-2152 m/s2
2025版高考数学总复习第3章导数及其应用第1讲导数的概念及运算课件

x=-sin12x,C
错误;
(x23x)′=(x2)′·3x+x2×(3x)′=2x3x+x23xln 3,D 正确.
2.求下列函数的导数. (1)y=x2sin x; (2)y=ln x+1x; (3)y=xsin2x+π2cos2x+π2; (4)f(x)= 2x+1.
[解析] (1)y′=(x2)′sin x+x2(sin x)′=2xsin x+x2cos x.
等式
运算求解
点问题
Ⅱ,22
创新性
数学运算 逻辑推理
考题
考点
考向
关键能力 考查要求 核心素养
2022新高考 利用导数证 由 不 等 式 恒 成 逻辑思维 综合性 数学运算
Ⅱ,22 明不等式 立求取值范围 运算求解
逻辑推理
利用导数研
2022新高考
研 究 极 值 点 、 运算求解
究函数的极
Ⅰ,10 值、最值 零点个数
3.基本初等函数的导数公式 (1)C′=___0___(C为常数); (2)(xn)′=_____n_x_n-__1 _____(n∈Q*); (3)(sin x)′=_____c_o_s_x______; (4)(cos x)′=____-__s_i_n_x_______; (5)(ax)′=_____a_x_ln__a_______;
(2)y′=ln
x+1x′=(ln
x)′+1x′=1x-x12.
(3)∵y=xsin2x+π2cos2x+π2=12xsin(4x+π)=-12xsin 4x,
∴y′=-12sin 4x-12x·4cos 4x=-12sin 4x-2xcos 4x.
(4)f′(x)=2
21x+1×(2x+1)′=
2025年高考数学总复习课件19第三章第一节导数的概念及运算

(2)求f ′(x0)时,可先求f (x0),再求f ′(x0).( × )
(3)曲线y=f (x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同.( × )
第一节
导数的概念及运算
必备知识
落实“四基”
2.已知函数f (x)在x=x0处的导数为12,则 lim
变化的方向,其大小|f ′(x)|反映了变化的快慢,|f ′(x)|越大,曲线在这点处的切线
越“陡峭”.
第一节
导数的概念及运算
必备知识
落实“四基”
核心考点
提升“四能”
自查自测
知识点二 导数的运算
1.(多选题)(教材改编题)下列导数的运算中正确的是( ABD )
A.(3x)′=3x ln 3
x sin x- cos x
导数的概念及运算
考向3
必备知识
落实“四基”
核心考点
提升“四能”
课时质量评价
求参数的值或取值范围
【例3】(1)(2024·江门模拟)若曲线y=e2ax在点(0,1)处的切线与直线x+2y+1=0
-sin x
f ′(x)=_________
f (x)=cos x
f (x)=ex
f (x)=ax(a>0,且a≠1)
f (x)=ln x
f (x)=log x(a>0,且a≠1)
ex
f ′(x)=____
ax ln a
f ′(x)=_________
1
f ′(x)=____
x
1
x ln a
f ′(x)=____
在点(0,f (0))处的切线方程为y-1=x,即y=x+1.
高中数学教材——导数篇

第三章 导数及其应用第一节 导数的概念及运算、定积分1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx ❶为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)❷处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).❷曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.(3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.(4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.5.定积分的概念在∫b a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.6.定积分的性质(1)∫b a kf (x )d x =k ∫b a f (x )d x (k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x ; (3)∫b a f (x )d x =∫c a f (x )d x +∫b c f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算.7.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即∫b a f (x )d x =F (x )|ba =F (b )-F (a ).8.定积分的几何意义定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S .①S =∫b a f (x )d x ;②S =-∫b a f (x )d x ;③S =∫c a f (x )d x -∫bc f (x )d x ; ④S =∫b a f (x )d x -∫b a g (x )d x =∫b a [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.二、常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.熟记以下结论:(1)⎝⎛⎭⎫1x ′=-1x 2;(2)(ln|x |)′=1x ; (3)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (4)[af (x )±bg (x )]′=af ′(x )±bg ′(x ). 3.常见被积函数的原函数(1)∫b a c d x =cx |b a ;(2)∫b a x n d x =x n +1n +1|ba (n ≠-1); (3)∫b a sin x d x =-cos x |b a ;(4)∫b a cos x d x =sin x |ba ;(5)∫b a 1x d x =ln|x ||b a ;(6)∫b a e x d x =e x |b a . 考点一 导数的运算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.2.(2019·宜昌联考)已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2B.21-2ln 2C.41-2ln 2D .-2解析:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 解析:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 答案:-24.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x .(4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2 =12x sin(4x +π) =-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .考点二 导数的几何意义及其应用考法(一) 求切线方程[例1] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 法二:∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x .[答案] D考法(二) 求切点坐标[例2] 已知函数f (x )=x ln x 在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0)考法(三) 由曲线的切线(斜率)求参数的值(范围)[例3] (1)(2018·商丘二模)设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围是( )A .[-1,2]B .(3,+∞) C.⎣⎡⎦⎤-23,13 D.⎣⎡⎦⎤-13,23 (2)(2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. [解析] (1)由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1,∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x∈[-2,2],∴3a -2sin x ∈[-2+3a ,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.(2)∵y ′=(ax +a +1)e x , ∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3. [答案] (1)D (2)-3考法(四) 两曲线的公切线问题[例4] 已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.[解析] 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0, ①a =-1x, ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e -34.[答案] -e -34[题组训练]1.曲线y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A.18B.14C.12D .1 解析:选B 因为y ′=2(x +1)2,所以y ′x =0=2,所以曲线在点(0,-1)处的切线方程为y +1=2x ,即y =2x -1,与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,所以与两坐标轴围成的三角形的面积S =12×|-1|×12=14.2.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值为________.解析:由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.答案:13.若一直线与曲线y =ln x 和曲线x 2=ay (a >0)相切于同一点P ,则a 的值为________. 解析:设切点P (x 0,y 0),则由y =ln x ,得y ′=1x,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 20=ay 0,解得a =2e.答案:2e考点三 定积分的运算及应用[题组训练]1. ⎠⎛0π(sin x -cos x )d x =________.解析:⎠⎛0π (sin x -cos x )d x=⎠⎛0πsin x d x -⎠⎛0πcos x d x =-cos x ⎪⎪⎪π0-sin x ⎪⎪⎪π=2. 答案:2 2. ⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π×22=2π,故答案为2π+1.答案:2π+13.由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为____________.解析:法一:画出草图,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x 及⎩⎪⎨⎪⎧x +y =2,y =-13x ,得交点分别为(1,1),(0,0),(3,-1), 所以所求图形的面积S =⎠⎛01⎣⎡⎦⎤ x -⎝⎛⎭⎫-13x d x +⎠⎛13⎣⎡⎦⎤(2-x )-⎝⎛⎭⎫-13x d x =⎠⎛01⎝⎛⎭⎫ x +13x d x +⎠⎛13⎝⎛⎭⎫2-23x d x =⎝ ⎛⎭⎪⎫23x 32+16x 2⎪⎪⎪10+⎝⎛⎭⎫2x -13x 2⎪⎪⎪31 =56+6-13×9-2+13=136.法二:如图所求阴影的面积就是三角形OAB 的面积减去由y 轴,y =x ,y =2-x 围成的曲边三角形的面积,即S =12×2×3-⎠⎛01 (2-x -x )d x=3-⎝ ⎛⎭⎪⎫2x -12x 2-23x 32⎪⎪⎪1=3-⎝⎛⎭⎫2-12-23=136. 答案:1364.一物体在力F (x ) =⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )做的功为________J.解析:由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J). 答案:361.正确选用求定积分的4个常用方法 定理法 性质法 几何法 奇偶性法 2.定积分在物理中的2个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[课时跟踪检测]A 级1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.4.(2019·四川名校联考)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选C 设f ′(3),f (3)-f (2),f ′(2)分别表示直线n ,m ,l 的斜率,数形结合知0<f ′(3)<f (3)-f (2)<f ′(2),故选C.5.(2019·玉林模拟)由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13 B.310 C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01 (x -x 2)d x =⎝ ⎛⎭⎪⎫23x 32-13x 3⎪⎪⎪10=13.6.(2018·安庆模拟)设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .3解析:选D ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.7.(2018·延边期中)设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线的斜率k ≥-3,所以切线的倾斜角α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 8.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0 相互垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝⎛⎭⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以1×⎝⎛⎭⎫-a 2=-1,解得a =2. 答案:29.(2019·重庆质检)若曲线y =ln(x +a )的一条切线为y =e x +b ,其中a ,b 为正实数,则a +eb +2的取值范围为________.解析:由y =ln(x +a ),得y ′=1x +a .设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b =a e -2.∵b >0,∴a >2e,∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)10.(2018·烟台期中)设函数F (x )=ln x +ax (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12.答案:⎣⎡⎭⎫12,+∞B 级1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x ⎪⎪⎪10=13+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =-13. 2.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1], x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3 解析:选A ⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12 (x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43. 3.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C 因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列, 所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8, 所以f ′(0)=84=212.4.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2, 设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.5.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 019(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,∴f n (x )的解析式以4为周期重复出现,∵2 019=4×504+3,∴f 2 019(x )=f 3(x )=-sin x -cos x .6.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是( ) A .2 5 B .2 C .2 3D. 3解析:选A 设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在点M 处的切线与直线2x -y +8=0平行时,点M 到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.∵y ′=22x -1,∴22x 0-1=2,解得x 0=1,∴M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0. 答案:y -3=08.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,所以⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)是定值,理由如下:设P (x 0,y 0)为曲线y =f (x )上任一点,由f ′(x )=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0·|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,且此定值为6.9.已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 图象上任意一点A (x 0,y 0)处的切线,问:在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的 x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1(x >0且x ≠1),∴f ′(x )=1x +2a(x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1, ∴f ′⎝⎛⎭⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x (x -1)2. ∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞),无单调递减区间. (2)在区间(1,+∞)上存在唯一一个满足条件的x 0. ∵g (x )=ln x ,∴g ′(x )=1x,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0.②由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0= x 0+1x 0-1.下证在区间(1,+∞)上存在唯一一个满足条件的x 0. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又∵f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,∴结合零点存在性定理,知方程f (x )=0在区间(e ,e 2)上有唯一的实数根,这个根就是所求的唯一满足条件的x 0.第二节导数的简单应用一、基础知识1.函数的单调性与导数的关系在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在❶(a,b)上为减函数.2.函数的极值(1)函数的极小值:;函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0❷,f(a)而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点❸叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)开区间上的单调连续函数无最值.,(1)f′(x)>0(<0)是f(x)在区间(a,b)内单调递增(减)的充分不必要条件.(2)f′(x)≥0(≤0)是f(x)在区间(a,b)内单调递增(减)的必要不充分条件.(3)由f(x)在区间(a,b)内单调递增(减)可得f′(x)≥0(≤0)在该区间内恒成立,而不是f′(x)>0(<0)恒成立,“=”不能少,必要时还需对“=”进行检验.)=0是x0为f(x)的极值点的必要不充分条件.例如,f(x)=x3,f′(0)=0,但xf′(x=0不是极值点.(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.二、常用结论(1)若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.(2)若函数f (x )在开区间(a ,b )内只有一个极值点,则相应的极值一定是函数的最值. (3)极值只能在定义域内取得(不包括端点),最值却可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取. 第一课时 导数与函数的单调性 考点一 求函数的单调区间1.已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上单调递增 B .在(0,+∞)上单调递减 C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 解析:选D 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 2.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________.解析:设幂函数f (x )=x a ,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22a,a =2,所以f (x )=x 2,故g (x )=e x x 2, 则g ′(x )=e x x 2+2e x x =e x (x 2+2x ), 令g ′(x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0). 答案:(-2,0)3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是___________________________________________________________.解析:f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0(x ∈(-π,π)), 解得-π<x <-π2或0<x <π2,即函数f (x )的单调递增区间是⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 考点二 判断含参函数的单调性(2018·全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞), f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0, 当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②当a >2时,令f ′(x )=0, 得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[题组训练]已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性. 解:(1)g ′(x )=1x+2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴, 得g ′(1)=1+2a +b =0,所以b =-2a -1. (2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞), 所以当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 当a >0时,令g ′(x )=0,得x =1或x =12a,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1, 即函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减; 若12a >1,即0<a <12,由g ′(x )>0,得x >12a 或0<x <1, 由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0, 即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减.考点三 根据函数的单调性求参数[典例精析](1)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.(2)若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上单调递减,则a 的取值范围为________.[解析] (1)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 答案:(1)⎣⎡⎦⎤-13,13 (2)⎣⎡⎭⎫-716,0∪(0,+∞)[变式发散]1.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上单调递增”,则a 的取值范围为________.解析:因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,即a ≤1x 2-2x 恒成立,又因为当 x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a ≤-1,即a 的取值范围是(-∞,-1]. 答案:(-∞,-1]2.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上存在单调递减区间”,则a 的取值范围为________.解析:因为h (x )在[1,4]上存在单调递减区间, 所以h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,而当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞). 答案:(-1,0)∪(0,+∞)3.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上不单调”,则a 的取值范围为________.解析:因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x =⎝⎛⎭⎫1x -12-1在(1,4)上有解, 令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716.所以实数a 的取值范围是⎝⎛⎭⎫-1,-716. 答案:⎝⎛⎭⎫-1,-716 [题组训练]1.(2019·渭南质检)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.若函数f (x )在区间[m ,m +1]上单调递增,则m 的取值范围是________.解析:∵f (x )=ax 3+bx 2的图象经过点M (1,4), ∴a +b =4,①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b .由题意可得f ′(1)·⎝⎛⎭⎫-19=-1,即3a +2b =9.② 联立①②两式解得a =1,b =3, ∴f (x )=x 3+3x 2,f ′(x )=3x 2+6x .令f ′(x )=3x 2+6x ≥0,得x ≥0或x ≤-2. ∵函数f (x )在区间[m ,m +1]上单调递增, ∴[m ,m +1]⊆(-∞,-2]∪[0,+∞), ∴m ≥0或m +1≤-2,即m ≥0或m ≤-3. 答案:(-∞,-3]∪[0,+∞)2.已知函数f (x )=3xa -2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a≤3,又a >0, 所以0<a ≤25或a ≥1.答案:⎝⎛⎦⎤0,25∪[1,+∞) [课时跟踪检测]A 级1.下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e x C .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x 在区间⎣⎡⎦⎤12,4上单调递增,则实数c 的取值范围是( ) A .(-∞,2] B .(-∞,4] C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x ,∵函数f (x )在区间⎣⎡⎦⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎡⎦⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎡⎦⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎡⎦⎤12,4恒成立,∵x ∈⎣⎡⎦⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4.4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sin x -x ,设a =f ⎝⎛⎭⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( ) A .b <a <c B .c <a <b C .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解. 设g (x )=2x -e x ,则g ′(x )=2-e x , 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增, 当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间. 解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0; 当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x -e x -1, ∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.B 级1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sin x =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x <0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)4.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号, 所以f (x )在其定义域内单调递增.因为f (a -1)+f (2a 2)≤0, 所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 6.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程; (2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0), 所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x=a +⎝⎛⎭⎫1x -122-14. ①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a 2a >0,且x 2>x 1,故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a 2a <0,F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减. 7.已知函数f (x )=ax -ln x ,g (x )=e ax +2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a的取值范围.解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12,+∞ 时,f ′(x )>0,f (x )单调递增.所以f (x )在x =12处取得极小值,且f ⎝⎛⎭⎫12=1+ln 2,无极大值. (2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax +2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x <0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x <0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝⎛⎭⎫-∞,1a ln ⎝⎛⎭⎫-2a 上单调递减,在⎝⎛⎭⎫1a ln ⎝⎛⎭⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝⎛⎭⎫-2a >0,解得a <-2. 综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).第二课时 导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由.[解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;。
高数——导数的概念

解
设点
P0
(
x0
,
1 x0
)
是双曲线上的点,由于
y
'
=
(
1 x
)
'
=
−
1 x2
故双曲线在点P0 的切线
P0T
的斜率为k0
=
−
1 x02
由于P0T / / L,而 L 的斜率为
− 1,故 4
k0
=
−
1 4
即
− 1 =−1
x02
4
从而
x02 = 4
x0 = ±2
由此可知双曲线在点
⎛ ⎜⎝
2,
对
x
的导数,并记作
y
'
或
dy dx
d f (x) dx
,或
df dx
,也可记作
d dx
y
或
例 3 求函数 f (x) = C(常数)的导数
解 在任意一点x ,由于Δy = f (x + Δx) − f (x) = C −C = 0 ,
故 f '(x) = 0 .所以常数的导数恒等于零.即(C) ' = 0
ϕ
′(
x)
=
⎧x2 ⎨
+
1,
⎩3x,
x<0 x≥0
在点x = 0是否可导
解 因为ϕ(0+ )=ϕ(0)=0,ϕ(0− )=1故ϕ(x)=在点x = 0不连续,
从而在点x = 0必不可导.
f
'(x0 ) =
lim
Δx→0
Δy Δx
=
lim
Δx→0
f
2023版高考数学一轮总复习第三章导数及其应用第一讲导数的概念及运算课件理

先化为和、差的形式,再求导
根式形式
先化为分数指数幂的形式,再求导
三角形式
先利用三角函数公式转化为和或差的形式,再求导
复合形式
先确定复合关系,由外向内逐层求导,必要时可换元
P(x0,f(x0))处的切线的斜率k,即k= f '(x0) .相应地,切线方程为y-f(x0)=
f '(x0)(x-x0).
说明 函数y=f(x)在某点处的导数、曲线y=f(x)在某点处切线的斜率和
倾斜角,这三者是可以相互转化的.
考点2
ቤተ መጻሕፍቲ ባይዱ
导数的运算
1.基本初等函数的导数公式
基本初等函数
导函数
f(x)=C(C为常数)
y=3x-1,则f(1)+f '(1)=
5
.
考向扫描
考向1
导数的运算
1.典例 求下列函数的导数:
(1)y=(x+1)(x+2)(x+3);
2
(2)y=sin (1-2cos );
2
4
2−1
1
(3)y=ln
(x> ).
2+1
2
考向1
解析
导数的运算
(1)因为y=(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)=x3+6x2+11x+6,
f '(x)=
a
考点2
导数的运算
2.导数的四则运算法则
若f '(x),g'(x)存在,则
(1)[f(x)±g(x)] ' =f '(x)±g'(x) ;
(2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ;
2024年高考数学总复习第三章《导数及其应用》导数的概念及运算

2024年高考数学总复习第三章《导数及其应用》§3.1导数的概念及运算最新考纲1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =1x 的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α∈Q *)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e xf ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln a f (x )=ln xf ′(x )=1xf(x)=log a x(a>0,a≠1)f′(x)=1 x ln a4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).概念方法微思考1.根据f′(x)的几何意义思考一下,|f′(x)|增大,曲线f(x)的形状有何变化?提示|f′(x)|越大,曲线f(x)的形状越来越陡峭.2.直线与曲线相切,是不是直线与曲线只有一个公共点?提示不一定.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)f′(x0)=[f(x0)]′.(×)(3)(2x)′=x·2x-1.(×)题组二教材改编2.若f(x)=x·e x,则f′(1)=.答案2e解析∵f′(x)=e x+x e x,∴f′(1)=2e.3.曲线y=1-2x+2在点(-1,-1)处的切线方程为.答案2x-y+1=0解析∵y′=2(x+2)2,∴y′|x=-1=2.∴所求切线方程为2x-y+1=0.题组三易错自纠4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()答案D解析由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.5.若f (x )=sin xx ,则f ′π2=________.答案-4π2解析∵f ′(x )=x cos x -sin xx 2,∴f ′π2=-4π2.6.(2017·天津)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为.答案1解析∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ),∴切线l 的方程为y -a =(a -1)(x -1).令x =0,得y =1,故l 在y 轴上的截距为1.题型一导数的计算1.已知f (x )=sin x 21-2cos 2x4f ′(x )=.答案-12cos x 解析因为y =sin x 2-cos x2=-12sin x ,所以y ′=-12sin x ′=-12(sin x )′=-12cos x .2.已知y =cos xe x,则y ′=________.答案-sin x +cos x e x解析y ′=cos xe x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos xe x.3.f (x )=x (2019+ln x ),若f ′(x 0)=2020,则x 0=.答案1解析f ′(x )=2019+ln x +x ·1x=2020+ln x ,由f ′(x 0)=2020,得2020+ln x 0=2020,∴x 0=1.4.若f (x )=x 2+2x ·f ′(1),则f ′(0)=.答案-4解析∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.思维升华1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,尽量避免不必要的商的求导法则,这样可以减少运算量,提高运算速度减少差错.2.(1)若函数为根式形式,可先化为分数指数幂,再求导.(2)复合函数求导,应由外到内逐层求导,必要时可进行换元.题型二导数的几何意义命题点1求切线方程例1(1)(2018·湖北百所重点高中联考)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为()A .1B .-1C .2D .-2答案A解析由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x .∴f ′(x )=1x2,∴f ′(1)=1.由导数的几何意义知,所求切线的斜率k =1.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为.答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴0=x 0ln x 0,0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.命题点2求参数的值例2(1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =.答案1解析由题意知,y =x 3+ax +b 的导数为y ′=3x 2+a ,3+a +b =3,×12+a =k ,+1=3,由此解得k =2,a =-1,b =3,∴2a +b =1.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.命题点3导数与函数图象例3(1)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是()答案B解析由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=.答案0解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+30.思维升华导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),1=f (x 1),0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况.跟踪训练(1)(2018·全国Ⅰ)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是.答案y =0或4x +y +4=0解析设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1),解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1),即y =0或4x +y +4=0.(2)设曲线y =1+cos xsin x 在点x -ay +1=0平行,则实数a =.答案-1解析∵y ′=-1-cos xsin 2x,∴y ′π2x ==-1.由条件知1a=-1,∴a =-1.(3)(2018·开封模拟)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是.答案(-∞,2)解析函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).1.已知函数f (x )=1x cos x ,则f (π)+f ()A .-3π2B .-1π2C .-3πD .-1π答案C解析因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f =-1π+2π×(-1)=-3π.2.(2018·衡水调研)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为()A .e 2B .e C.ln 22D .ln 2答案B解析由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知,ln x 0+1=2,所以ln x 0=1,即x 0=e.3.曲线y =sin x +e x 在点(0,1)处的切线方程是()A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0答案C解析y ′=cos x +e x ,故切线斜率k =2,切线方程为y =2x +1,即2x -y +1=0.4.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是()答案C解析原函数的单调性是当x <0时,f (x )单调递增;当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C.5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是()A.3π4, B.π4,,3π4 D.0答案A解析求导可得y ′=-4e x +e -x +2,∵e x +e -x +2≥2e x ·e -x +2=4,当且仅当x =0时,等号成立,∴y ′∈[-1,0),得tan α∈[-1,0),又α∈[0,π),∴3π4≤α<π.6.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为()A .eB .-e C.1eD .-1e答案C解析y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|0x x ==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e.7.(2018·鹰潭模拟)已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为.答案(-2,9)解析∵f (x )=2x 2+1,∴f ′(x )=4x ,令4x 0=-8,则x 0=-2,∴f (x 0)=9,∴点M 的坐标是(-2,9).8.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.答案2解析设切点坐标为(m ,n )(m >0),对y =14x 2-3ln x 求导得y ′=12x -3x ,可令切线的斜率为12m-3m =-12,解方程可得m =2(舍去负值).9.若曲线y =ln x 的一条切线是直线y =12x +b ,则实数b 的值为.答案-1+ln 2解析由y =ln x ,可得y ′=1x,设切点坐标为(x 0,y 0),由曲线y =ln x 的一条切线是直线y=12x +b ,可得1x 0=12,解得x 0=2,则切点坐标为(2,ln 2),所以ln 2=1+b ,b =-1+ln 2.10.(2018·云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a =______.答案1-e解析因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e.由于切线与曲线y =x 2+a 相切,故y =x 2+a 可联立y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.11.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为.(用“<”连接)答案(1)1(2)h (0)<h (1)<h (-1)解析(1)由题图可得f ′(x )=x ,g ′(x )=x 2,设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2,故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h(x)=f(x)-g(x)=12x2-13x3+c-n,则有h(-1)=56+c-n,h(0)=c-n,h(1)=16+c-n,故h(0)<h(1)<h(-1).12.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线在点(2,f(2))处的切线方程为y+2=x-2,即x-y-4=0.(2)设曲线与经过点A(2,-2)的切线相切于点P(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)·(x-2),又切线过点P(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或1,∴经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.13.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=e x垂直的切线,则实数m的取值范围是()D.(e,+∞)答案B解析由题意知,方程f′(x)=-1e有解,即ex-m=-1e有解,即ex=m-1e有解,故只要m-1e>0,即m>1e即可,故选B.14.(2018·泰安模拟)若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,求a+b的值.解依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,f ′(0)=g ′(0),即-a sin 0=2×0+b ,得b =0.又m =f (0)=g (0),即m =a =1,因此a +b =1.15.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=5x +4sin x -cos x 的“拐点”是M (x 0,f (x 0)),则点M ()A .在直线y =-5x 上B .在直线y =5x 上C .在直线y =-4x 上D .在直线y =4x 上答案B 解析由题意,知f ′(x )=5+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由f ″(x 0)=0,知4sin x 0-cos x 0=0,所以f (x 0)=5x 0,故点M (x 0,f (x 0))在直线y =5x 上.16.已知函数f (x )=x -3x.(1)求曲线f (x )过点(0,-3)的切线方程;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解(1)f ′(x )=1+3x2,设切点为(x 0,y 0),则曲线y =f (x )在点(x 0,y 0)处的切线方程为y -y 0x -x 0),∵切线过(0,-3),∴-30-x 0),解得x 0=2,∴y 0=12,∴所求切线方程为y -12=74(x -2),即y =74x -3.(2)设P (m ,n )为曲线f (x )上任一点,由(1)知过P 点的切线方程为y -n x -m ),即y x -m ),令x =0,得y =-6m,从而切线与直线x =0令y =x ,得y =x =2m ,从而切线与直线y =x 的交点为(2m,2m ),∴点P (m ,n )处的切线与直线x =0,y =x 所围成的三角形的面积S =12·|-6m |·|2m |=6,为定值.。
第三章导数及其应用3-1导数的概念及运算

重点难点
重点:导数的概念、公式及运算法则,导数 的应用
难点:①导数的定义 ②复合函数的导数及积商的导数公式
知识归纳 一、导数及有关概念
(2)瞬时速度 设物体运动路程与时间的关系是 s=f(t),当 Δt 趋近 于 0 时,函数 f(t)在 t0 到 t0+Δt 这段时间内的平均变化率 ΔΔst=ft0+ΔΔtt-ft0趋近于常数,我们把这个常数称为 t0 时刻的瞬时速度.
3.导数 设函数 y=f(x)在 x0 处及其附近有定义,当自变量在 x=x0 附近改变量为 Δx 时,函数值相应地改变量 Δy=f(x0 +Δx)-f(x0).如果当 Δx 趋近于 0 时,平均变化率ΔΔyx= fx0+ΔΔxx-fx0趋近于一个常数 l,那么常数 l 称为函数 f(x) 在点 x0 处的瞬时变化率.函数在点 x0 处的瞬时变化率通 常称为 f(x)在 x=x0 处的导数,又称函数 f(x)在 x=x0 处可 导.
分析:本例所给的函数是100个因式的积, 对于这种结构形式的函数,直接求导比较困 难,可通过两边取对数后再求导,就可以使 问题简化. 但必须注意取对数时真数应为正 实数.
解析:两边取对数得 lny=ln(x-1)+ln(x-2)+…+ln(x-100). 两边对 x 求导:y′y =x-1 1+x-1 2+…+x-1100. ∴y′=x-1 1+x-1 2+…+x-1100·(x-1)(x-2)·…·(x -100).
2.深刻理解“函数在一点处的导数”、 “导函数”、“导数”的区别与联系
(1)函数在一点处的导数f ′(x0)是一个常数, 不是变量.
(2)函数的导数,是针对某一区间内任意点x 而言的.函数f(x)在区间(a,b)内每一点都 可导,是指对于区间(a,b)内的每一个确定 的值x0,都对应着一个确定的导数f ′(x0).根 据函数的定义,在开区间(a,b)内就构成了 一个新的函数,就是函数f(x)的导函数f ′(x).
理科高三数学教案:导数及其应用

理科高三数学教案:导数及其应用【】鉴于大伙儿对查字典数学网十分关注,小编在此为大伙儿搜集整理了此文理科高三数学教案:导数及其应用,供大伙儿参考!本文题目:理科高三数学教案:导数及其应用第三章导数及其应用高考导航考试要求重难点击命题展望1.导数概念及其几何意义(1)了解导数概念的实际背景;(2)明白得导数的几何意义.2.导数的运算(1)能依照导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y= ,y= 的导数;(2)能利用差不多初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一样不超过三次);(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一样不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一样不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.定积分与微积分差不多定理(1)了解定积分的实际背景,了解定积分的差不多思想,了解定积分的概念;(2)了解微积分差不多定理的含义. 本章重点:1.导数的概念;2.利用导数求切线的斜率;3.利用导数判定函数单调性或求单调区间;4.利用导数求极值或最值;5.利用导数求实际问题最优解.本章难点:导数的综合应用. 导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一样、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所表达,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的差不多运算与简单的几何意义,而以解答题的形式来综合考查学生的分析问题和解决问题的能力.知识网络3 .1 导数的概念与运算典例精析题型一导数的概念【例1】已知函数f(x)=2ln 3x+8x,求f(1-2x)-f(1)x的值.【解析】由导数的定义知:f(1-2x)-f(1)x=-2 f(1-2x)-f(1)-2x=-2f(1)=-20.【点拨】导数的实质是求函数值相关于自变量的变化率,即求当x0时,平均变化率yx的极限.【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时刻t(min)的函数关系能够近似地表示为f(t)=t2100,则在时刻t=10 min的降雨强度为()A.15 mm/minB.14 mm/minC.12 mm/minD.1 mm/min【解析】选A.题型二求导函数【例2】求下列函数的导数.(1)y=ln(x+1+x2);(2)y=(x2-2x+3)e2x;(3)y=3x1-x.【解析】运用求导数公式及复合函数求导数法则.(1)y=1x+1+x2(x+1+x2)=1x+1+x2(1+x1+x2)=11+x2.(2)y=(2x-2)e2x+2(x2-2x+3)e2x=2(x2-x+2)e2x.(3)y=13(x1-x 1-x+x(1-x)2=13(x1-x 1(1-x)2=13x (1-x)【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= ; f(1+x)-f(1)x= (用数字作答).【解析】f(0)=4,f(f(0))=f(4)=2,由导数定义f(1+x)-f(1)x=f(1).当02时,f(x)=4-2x,f(x)=-2,f(1)=-2.题型三利用导数求切线的斜率【例3】已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点P(x0,y0) (x00),求直线l的方程及切点坐标.【解析】由l过原点,知k=y0x0 (x00),又点P(x0,y0) 在曲线C上,y0=x30-3x20+2x0,因此y0x0=x20-3x0+2.而y=3x2-6x+2,k=3x20-6x0+2.又k=y0x0,因此3x20-6x0+2=x20-3x0+2,其中x00,解得x0=32.因此y0=-38,因此k=y0x0=-14,因此直线l的方程为y=-14x,切点坐标为(32,-38).【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.【变式训练3】若函数y=x3-3x+4的切线通过点(-2,2),求此切线方程.【解析】设切点为P(x0,y0),则由y=3x2-3得切线的斜率为k=3x20-3.因此函数y=x3-3x+4在P(x0,y0)处的切线方程为y-y0=(3x20-3)(x-x0).又切线通过点(-2,2),得2-y0=(3x20-3)(-2-x0),①而切点在曲线上,得y0=x30-3x0+4,②由①②解得x0=1或x0=-2.则切线方程为y=2 或9x-y+20=0.总结提高1.函数y=f(x)在x=x0处的导数通常有以下两种求法:(1) 导数的定义,即求yx= f(x0+x)-f(x0)x的值;(2)先求导函数f(x),再将x=x0的值代入,即得f(x0)的值.2.求y=f(x)的导函数的几种方法:(1)利用常见函数的导数公式;(2)利用四则运算的导数公式;(3)利用复合函数的求导方法.3.导数的几何意义:函数y=f(x)在x=x0处的导数f(x0),确实是函数y =f(x)的曲线在点P(x0,y0)处的切线的斜率.3.2 导数的应用(一)典例精析题型一求函数f(x)的单调区间【例1】已知函数f(x)=x2-ax-aln(x-1)(aR),求函数f(x)的单调区间.【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+).f(x)=2x-a-ax-1=2x(x-a+22)x-1,①若a0,则a+221,f(x)=2x(x-a+22)x-10在(1,+)上恒成立,因此a0时,f(x)的增区间为(1,+).②若a0,则a+221,故当x(1,a+22]时,f(x)=2x(x-a+22)x-1当x[a+22,+)时,f(x)=2x(x-a+22)x-10,因此a0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+).【点拨】在定义域x1下,为了判定f(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.【变式训练1】已知函数f(x)=x2+ln x-ax在(0,1)上是增函数,求a的取值范畴.【解析】因为f(x)=2x+1x-a,f(x)在(0,1)上是增函数,因此2x+1x-a0在(0,1)上恒成立,即a2x+1x恒成立.又2x+1x22(当且仅当x=22时,取等号).因此a22,故a的取值范畴为(-,22].【点拨】当f(x)在区间(a,b)上是增函数时f(x)0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f(x)0在(a,b)上恒成立.然后就要依照不等式恒成立的条件来求参数的取值范畴了.题型二求函数的极值【例2】已知f(x)=ax3+bx2+cx(a0)在x=1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判定x=1是函数的极小值点依旧极大值点,并说明理由.【解析】(1)f(x)=3ax2+2bx+c.因为x=1是函数f(x)的极值点,因此x=1是方程f(x)=0,即3ax2+2bx+c=0的两根.由根与系数的关系,得又f(1)=-1,因此a+b+c=-1. ③由①②③解得a=12,b=0,c=-32.(2)由(1)得f(x)=12x3-32x,因此当f(x)=32x2-320时,有x-1或x当f(x)=32x2-320时,有-1因此函数f(x)=12x3-32x在(-,-1)和(1,+)上是增函数,在(-1,1)上是减函数.因此当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f (1)=-1.【点拨】求函数的极值应先求导数.关于多项式函数f(x)来讲,f(x)在点x=x0处取极值的必要条件是f(x)=0.然而,当x0满足f(x0)=0时,f(x)在点x=x0处却未必取得极值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.同时假如f(x)在x0两侧满足左正右负,则x0是f(x)的极大值点,f(x0)是极大值;假如f(x)在x0两侧满足左负右正,则x0是f(x)的极小值点,f(x0)是极小值.【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f(x) 0,若x13,则有()A. f(x1)f(x2)C. f(x1)=f(x2)D.不确定【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),因此函数f(x)的图象关于x=32对称.又因为(x-32)f(x)0,因此当x32时,函数f (x)单调递减,当x32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x23,因此x1+x2232,相当于x1,x2的中点向右偏离对称轴,因此f(x1)f(x2).故选B.题型三求函数的最值【例3】求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.【解析】f(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.又由f(x)=11+x-12x0,且x[0,2],得知函数f(x)的单调递增区间是(0,1),同理,得知函数f(x)的单调递减区间是(1,2),因此f(1)=ln 2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln 3-10,f(1)f(2),因此,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln 2-14为函数f(x)在[0,2]上的最大值.【点拨】求函数f(x)在某闭区间[a,b]上的最值,第一需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.【变式训练3】(2021江苏)f(x)=ax3-3x+1对x[-1,1]总有f(x)0成立,则a= .【解析】若x=0,则不管a为何值,f(x)0恒成立.当x(0,1]时,f(x)0能够化为a3x2-1x3,设g(x)=3x2-1x3,则g(x)=3(1-2x)x4,x(0,12)时,g(x)0,x(12,1]时,g(x)0.因此g(x)max=g(12)=4,因此a4.当x[-1,0)时,f(x)0能够化为a3x2-1x3,现在g(x)=3(1-2x)x40,g(x)min=g(-1)=4,因此a4.综上可知,a=4.总结提高1.求函数单调区间的步骤是:(1)确定函数f(x)的定义域D;(2)求导数f(3)依照f(x)0,且xD,求得函数f(x)的单调递增区间;依照f(x)0,且xD,求得函数f(x)的单调递减区间.2.求函数极值的步骤是:(1)求导数f(2)求方程f(x)=0的根;(3)判定f(x)在方程根左右的值的符号,确定f(x)在那个根处取极大值依旧取极小值.3.求函数最值的步骤是:先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.3 导数的应用(二)典例精析题型一利用导数证明不等式【例1】已知函数f(x)=12x2+ln x.(1)求函数f(x)在区间[1,e]上的值域;(2)求证:x1时,f(x)23x3.【解析】(1)由已知f(x)=x+1x,当x[1,e]时,f(x)0,因此f(x)在[1,e]上为增函数.故f(x)max=f(e)=e22+1,f(x)min=f(1)=12,因而f(x)在区间[1,e]上的值域为[12,e22+1].(2)证明:令F(x)=f(x)-23x3=-23x3+12x2+ln x,则F(x)=x+1x-2x2=(1-x) (1+x+2x2)x,因为x1,因此F(x)0,故F(x)在(1,+)上为减函数.又F(1)=-160,故x1时,F(x)0恒成立,即f(x)23x3.【点拨】有关超越性不等式的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时()A.f(x)0,g(x)0B.f(x)0,g(x)0C.f(x)0,g(x)0D.f(x)0,g(x)0【解析】选B.题型二优化问题【例2】(2009湖南)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x) x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?【解析】(1)设需新建n个桥墩,则(n+1)x=m,即n=mx-1.因此y=f(x)=256n+(n+1)(2+x)x=256(mx-1)+mx(2+x)x=256mx+mx+2m-256.(2)由(1)知f(x)=-256mx2+12mx =m2x2(x -512).令f(x)=0,得x =512.因此x=64.当00,f(x)在区间(64,640)内为增函数.因此f(x)在x=64处取得最小值.现在n=mx-1=64064-1=9.故需新建9个桥墩才能使y最小.【变式训练2】(2021上海)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).【解析】设圆柱底面半径为r,高为h,则由已知可得4(4r+2h)=9.6,因此2r+h=1.2.S=2.4r2,h=1.2-2r0,因此r0.6.因此S=2.4r2(0令f(r)=2.4r2,则f(r)=2 .4r.令f(r)=0得r=0.4.因此当00;当0.4因此r=0.4时S最大,Smax=1.51.题型三导数与函数零点问题【例3】设函数f(x)=13x3-mx2+(m2-4)x,xR.(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)已知函数f(x)有三个互不相同的零点0,,,且.若对任意的x[,],都有f(x)f(1)恒成立,求实数m的取值范畴.【解析】(1)当m=3时,f(x)=13x3-3x2+5x,f(x)=x2-6x+5.因为f(2)=23,f(2)=-3,因此切点坐标为(2,23),切线的斜率为-3,则所求的切线方程为y-23=-3(x-2),即9x+3y-20=0.(2)f(x)=x2-2mx+(m2-4).令f(x)=0,得x=m-2或x=m+2.当x(-,m-2)时,f(x)0,f(x)在(-,m-2)上是增函数;当x(m-2,m+2)时,f(x)0,f(x)在(m-2,m+2)上是减函数;当x(m+2,+)时,f(x)0,f(x)在(m+2,+)上是增函数.因为函数f(x)有三个互不相同的零点0,,,且f(x)=13x[x2-3mx+3(m2-4)],因此解得m(-4,-2)(-2,2)(2,4).当m(-4,-2)时,m-2因此现在f()=0,f(1)f(0)=0,与题意不合,故舍去.当m(-2,2)时,m-20因此因为对任意的x[,],都有f(x)f(1)恒成立,因此1.因此f(1)为函数f(x)在[,]上的最小值.因为当x=m+2时,函数f(x)在[,]上取最小值,因此m+2=1,即m=-1.当m(2,4)时,0因此0因为对任意的x[,],都有f(x)f(1)恒成立,因此1.因此f(1)为函数f(x)在[,]上的最小值.因为当x=m+2时,函数f(x)在[,]上取最小值,因此m+2=1,即m=-1(舍去).综上可知,m的取值范畴是{-1}.【变式训练3】已知f(x)=ax2(aR),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[2,e]上有两个不等解,求a的取值范畴.【解析】(1)当a0时,F(x)的递增区间为(1a,+),递减区间为(0,1a);当a0时,F(x)的递减区间为(0,+).(2)[12ln 2,1e).总结提高在应用导数处理方程、不等式有关问题时,第一应熟练地将方程、不等式问题直截了当转化为函数问题,再利用导数确定函数单调性、极值或最值.3.4 定积分与微积分差不多定理典例精析题型一求常见函数的定积分【例1】运算下列定积分的值.(1) (x-1)5dx;(2) (x+sin x)dx.【解析】(1)因为[16(x-1)6]=(x-1)5,因此(x-1)5dx= =16.(2)因为(x22-cos x)=x+sin x,因此(x+sin x)dx= =28+1.【点拨】(1)一样情形下,只要能找到被积函数的原函数,就能求出定积分的值;(2)当被积函数是分段函数时,应对每个区间分段积分,再求和;(3)关于含有绝对值符号的被积函数,应先去掉绝对值符号后积分;(4)当被积函数具有奇偶性时,可用以下结论:①若f(x)是偶函数时,则f(x)dx=2 f(x)dx;②若f(x)是奇函数时,则f(x)dx=0.【变式训练1】求(3x3+4sin x)dx.【解析】(3x3+4sin x)dx表示直线x=-5,x=5,y=0和曲线y=3x3+4si n x所围成的曲边梯形面积的代数和,且在x轴上方的面积取正号,在x 轴下方的面积取负号.又f(-x)=3(-x)3+4sin(-x)=-(3x3+4sin x)=-f(x).因此f(x)=3x3+4sin x在[-5,5]上是奇函数,因此(3x3+4sin x)dx=- (3x3+4sin x)dx,因此(3x3+4sin x)dx= (3x3+4sin x)dx+ (3x3+4sin x)dx=0.题型二利用定积分运算曲边梯形的面积【例2】求抛物线y2=2x与直线y=4-x所围成的平面图形的面积.【解析】方法一:如图,由得交点A(2,2),B(8,-4),则S= [2x-(-2x)]dx+ [4-x-(-2x)]dx=163+383=18.方法二:S= [(4-y)-y22]dy= =18.【点拨】依照图形的特点,选择不同的积分变量,可使运算简捷,在以y为积分变量时,应注意将曲线方程变为x=(y)的形式,同时,积分上、下限必须对应y的取值.【变式训练2】设k 是一个正整数,(1+xk)k的展开式中x3的系数为1 16,则函数y=x2与y=kx-3的图象所围成的阴影部分(如图)的面积为.【解析】Tr+1=Crk(xk)r,令r=3,得x3的系数为C3k1k3=116,解得k =4.由得函数y=x2与y=4x-3的图象的交点的横坐标分别为1,3.因此阴影部分的面积为S= (4x-3-x2)dx=(2x2-3x- =43.题型三定积分在物理中的应用【例3】(1) 变速直线运动的物体的速度为v (t)=1-t2,初始位置为x0 =1,求它在前2秒内所走过的路程及2秒末所在的位置;(2)一物体按规律x=bt3作直线运动,式中x为时刻t内通过的距离,媒质的阻力正比于速度的平方,试求物体由x=0运动到x=a时阻力所做的功.【解析】(1)当01时,v(t)0,当12时,v(t)0,因此前2秒内所走过的路程为s= v(t)dt+ (-v(t))dt= (1-t2)dt+ (t2-1)dt= + =2.2秒末所在的位置为x1=x0+ v(t)dt=1+ (1-t2)dt=13.因此它在前2秒内所走过的路程为2,2秒末所在的位置为x1=13.(2) 物体的速度为v=(bt3)=3bt2.媒质阻力F阻=kv2=k(3bt2)2=9kb2t4,其中k为比例常数,且k0.当x=0时,t=0;当x=a时,t=t1=(ab) ,又ds=vdt,故阻力所做的功为W阻= ds = kv2vdt=k v3dt= k (3bt 2)3dt=277kb3t71 = 277k3a7b2.【点拨】定积分在物理学中的应用应注意:v(t)= a(t)dt,s(t)= v(t)dt和W= F(x)dx这三个公式.【变式训练3】定义F(x,y)=(1+x)y,x,y(0,+).令函数f(x)=F[1,log 2(x2-4x+9)]的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.【解析】因为F(x,y)=(1+x)y,因此f(x)=F(1,log2(x2-4x+9))= =x2-4x +9,故A(0,9),又过坐标原点O向曲线C1作切线,切点为B(n,t)(n0),f(x) =2x-4.因此解得B(3,6),因此S= (x2-4x+9-2x)dx=(x33-3x2+9x) =9.总结提高1.定积分的运算关键是通过逆向思维求得被积函数的原函数.?2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.?3.利用定积分求平面图形面积的步骤:?(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;?(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;?(3)把曲边梯形的面积表示成若干个定积分的和;?死记硬背是一种传统的教学方式,在我国有悠久的历史。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、常见函数的导数 1.常用的导数公式 C′=0(C为常数); (xm)′=mxm-1(x>0,m≠0且m∈Q); (xn)′=nxn-1(n∈N+) (sinx)′=cosx; (cosx)′=-sinx; (ex)′=ex,
1 (a )′=a lna;(lnx)′= ; x
x 轴、直
线 x=π 所围成的三角形的面积为( π2 A. 2 C.2π
2
)
B.π2 1 D. (2+π)2 2
解析: 曲线 y=xsinx
π π 在点-2,2处的切线方程
π2 为 y=-x,所围成的三角形的面积为 .故选 A. 2
写出下列函数的导数: (1)y=3xex-2x+e;________ lnx (2)y= 2 ;________ x +1 (3)y=xcosx-sinx;________ (4)y=(3-2x)5.________
(2)瞬时速度 设物体运动路程与时间的关系是 s=f(t),当 Δt 趋近 于 0 时, 函数 f(t)在 t0 到 t0+Δt 这段时间内的平均变化率 Δs ft0+Δt-ft0 = 趋近于常数,我们把这个常数称为 t0 Δt Δt 时刻的瞬时速度.
3.导数 设函数 y=f(x)在 x0 处及其附近有定义,当自变量在 x=x0 附近改变量为 Δx 时,函数值相应地改变量 Δy=f(x0 Δy +Δx)-f(x0).如果当 Δx 趋近于 0 时,平均变化率 = Δx fx0+Δx-fx0 趋近于一个常数 l, 那么常数 l 称为函数 f(x) Δx 在点 x0 处的瞬时变化率.函数在点 x0 处的瞬时变化率通 常称为 f(x)在 x=x0 处的导数,又称函数 f(x)在 x=x0 处可 导.
解析:∵f(x)=2x3+ax的图象过点P(2,0), ∴a=-8,∴f(x)=2x3-8x, ∴f ′(x)=6x2-8. ∵g(x)=bx2+c的图象过点P(2,0),∴4b+c =0. 又g′(x)=2bx,g′(2)=4b=f ′(2)=16, ∴b=4,∴c=-16,∴g(x)=4x2-16. 综上可知,f(x)=2x3-8x,g(x)=4x2-16. 答案:2x3-8x 4x2-16
3. 运用复合函数的求导法则 y′x=y′u· x, u′ 应注 意以下几个问题 (1)分清楚复合函数的复合关系是由哪些基本函数 复合而成,适当选定中间变量; (2)分步计算中的每一步都要明确是对哪个变量求 导,而其中特别要注意的是中间变量的导数,求导后要 . 把中间变量转换成自变量的函数. ...............
●命题趋势 (1)求导数及切线方程. (2)用导数研究函数的单调性,求函数的极 值与最值. (3)导数的综合应用. (4)(理)定积分与微积分基本定理的应用.
●备考指南 1.熟练掌握导数的定义及运算法则 主要包括理解导数的定义,熟记求导公式、 导数的四则运算法则、复合函数求导法则, 并能运用上述公式与法则进行求导计算. 2.熟练掌握导数的应用 主要包括利用导数确定函数的单调性、求函 数的极值与最值. 特别要注意能用导数的方 法解决一些函数性质的综合性问题.
解析:f1(x)=-sinx,f2(x)=cosx,f3(x)= -sinx,f4(x)=cosx,f5(x)=-sinx„, 故fn(x)的周期为2,∵2011=2×1005+1, ∴f2011(x)=f1(x)=-sinx,故选B. 答案:B
(理)曲线 y=xsinx
π π 在点-2,2处的切线与
分析:依据导数的定义
解析:令-k=Δx,则k=-Δx,
答案:-1
解析:原式
答案:2A
解析:
答案:B
[例2] (文)已知函数f(x)=2x3+ax与g(x)= bx2+c的图象都过点P(2,0),且在点P处有 公共切线,则f(x)=______,g(x)= ________.
解析:(1)y′=3x· ex+3x·x-2xln2 ln3· e =(ln3+1)3xex-2xln2; 1 2 · +1-lnx· x2+1-2x2lnx x 2x x (2)y′= = ; x2+12 xx2+12 (3)y′=cosx+x(-sinx)-cosx=-xsinx; (4)y′=5(3-2x)4· (-2)=-10(3-2x)4.
3.(理)掌握定积分的概念、性质,掌握微 积分基本定理,会用定积分解决一些平面曲 线围成的平面图形的面积和变速运动的路程 及变力作功等几何与物理问题.
重点难点 重点:导数的概念、公式及运算法则,导数 的应用 难点:①导数的定义 ②复合函数的导数及积商的导数公式
知识归纳 一、导数及有关概念
解析:两边取对数得 lny=ln(x-1)+ln(x-2)+„+ln(x-100). y′ 1 1 1 两边对 x 求导: = + +„+ . y x-1 x-2 x-100
1 1 1 + +„+ ∴y′= · (x-1)(x-2)· (x „· x-1 x-2 x-100
(3)会使用导数公式表.
3.导数在研究函数中的应用 (1)结合实例,借助几何直观探索并了解函 数的单调性与导数的关系;能利用导数研究 函数的单调性,会求不超过三次的多项式函 数的单调区间. (2)结合函数的图象,了解函数在某点取得 极值的必要条件和充分条件;会用导数求不 超过三次的多项式函数的极大值、极小值, 以及闭区间上不超过三次的多项式函数最大 值、最小值;体会导数方法在研究函数性质 中的一般性和有效性.
4ex 解析:y′=- x e +12 4ex 4ex 4 ∴tanα=- x =- x 2 =- 1 e +12 e +2ex+1 ex+ x+2 e 1 ∵e >0,∴e + x ≥2(当且仅当 x=0 时取等号) e
x x
1 4 ∴e + x+2≥4,∴0< ≤1 e 1 x e + x+2 e
x x
1 (logax)′= . xlna 1 1 特别 f(x)= 时,f ′(x)=- 2, x x f(x)= x时,f ′(x)= . 2 x 1
2.两个函数的四则运算的导数 (f± g)′=f ′± g′; (fg)′=f ′g+fg′,特别(cf)′=cf ′(c 为常数); f ′g-fg′ f ( )′= (g≠0). g g2 3.复合函数的导数 y′x=y′u·x′(其中 u 是 x 的函数) u
-100).
2.复合函数求导法 [例2] 求函数y=ln(x2+5x)的导数.
解析:第一步,将函数看作 y=lnu,与 u=x2+5x 的复
合函数. 第二步,将 y 对 u 求导,将 u 对 x 求导,再相乘,并 把 u 用 x2+5x 替换, 1 ∵(lnu)′= ,(x2+5x)′=2x+5, u 2x+5 ∴y′= 2 . x +5x
●课程标准 1.导数概念及其几何意义 (1)通过对大量实例的分析,经历由平均变 化率过渡到瞬时变化率的过程,了解导数概 念的实际背景,知道瞬时变化率就是导数, 体会导数的思想及其内涵. (2)通过函数图象直观地理解导数的几何意 义.
2.导数的运算 (1)能根据导数定义,求函数 y=c,y=x,y=x2, 1 y= ,(理)y= x的导数. x (2)能利用给出的基本初等函数的导数公式和导 数的四则运算法则求简单函数的导数,(理)能求简单 的复合函数(仅限于形如 f(ax+b))的导数.
2.深刻理解“函数在一点处的导数”、 “导函数”、“导数”的区别与联系 (1)函数在一点处的导数f ′(x0)是一个常数, 不是变量. (2)函数的导数,是针对某一区间内任意点x 而言的.函数f(x)在区间(a,b)内每一点都 可导,是指对于区间(a,b)内的每一个确定 的值x0,都对应着一个确定的导数f ′(x0).根 据函数的定义,在开区间(a,b)内就构成了 一个新的函数,就是函数f(x)的导函数f ′(x). (3)函数y=f(x)在点x0处的导数f ′(x0)就是导 函数f ′(x)在点x=x0处的函数值,即f ′(x0)=f
(2)方法 1:设过 B(3,5)与曲线 y=x2 相切的直线方程 为 y-5=k(x-3),即 y=kx+5-3k.
y=kx+5-3k 由 y=x2
,得:x2-kx+3k-5=0.
Δ=k2-4(3k-5)=0,整理得(k-2)(k-10)=0, ∴k=2 或 k=10. 所求的直线方程为:2x-y-1=0,或 10x-y-25= 0. 方法 2:设切点 P 的坐标为(x0,y0),
由 y=x2 得 y′=2x,∴y′|x=x0=2x0, 5-y0 由已知 kPB=2x0,即 =2x0, 3-x0=5, ∴切点坐标为(1,1),(5,25), ∴所求直线方程为 2x-y-1=0,10x-y-25=0.
1.对数求导法 [例1] 求函数y=(x-1)(x-2)·„·(x-100) (x>100)的导数. 分析:本例所给的函数是100个因式的积, 对于这种结构形式的函数,直接求导比较困 难,可通过两边取对数后再求导,就可以使 问题简化. 但必须注意取对数时真数应为正 实数.
4.生活中的优化问题举例. 例如,通过使利润最大、用料最省、效率最 高等优化问题,体会导数在解决实际问题中 的作用. 5.(理)定积分与微积分基本定理 (1)通过实例(如求曲边梯形的面积、变力做 功等),从问题情境中了解定积分的实际背 景;借助几何直观体会定积分的基本思想, 初步了解定积分的概念. (2)通过实例(如变速运动物体在某段时间内 的速度与路程的关系),直观了解微积分基 本定理的含义.