第十二届全国华罗庚金杯少年数学邀请赛决赛试卷初一组答案及详细解析
(完整版)第11-17届初一华杯赛试题及答案
由上式和b >α,b=13,α=1,d=l所以,K=12,m和n有唯一解m=13n =156.
答:m=13n =156.
7、已知 ,则小于S的最大的整数是(0)
8.如图2,数轴上标有2n+1个点,它们对应的整数是:
为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,则n的最小值是(2005)
二.解答下列各题,要求写出简要过程
9、如图3,ABCD是矩形,BC=6cm,AB =10cm,AC和
BD是对角线.图中的阴影部分以CD为轴旋转一周,则阴影
②直角边为1的三角形有36×2=72(个);斜边长是2的三角形,1-6行依次有4+4+4+3+1+4=20(个),1-6列依次3+3+3+2+3+3=17(个),共20+17=37(个);直角边长是2的1-2行8个,2-3行6个,3-4行2个,4-5行8个,5-6行6个,共8+6+2+8+6=30(个);直角边长是3的1-3行4个,3-5行2个,4-6行4个,共4+2+4=10(个);斜边长是4的1-4行1个,2-5行2个,4-5行1个,共1+2+1=4(个);直角边长是4的3-6行2个。共72+37+30+10+4+2=155(个)
第十一届全国"华罗庚金杯"少年数学邀请赛
决赛试卷(初一组)
(红色字为参考答案)
(时间2006年4月22日10:00~l l :30〉
一、.填空
1、计算: ( )
2019年香港华罗庚金杯少年数学邀请赛(决赛)初中二年级、初一年级组试题含答案
一小時三十分鐘完卷 (上午 10:00 至上午 11:30) 比賽須知:
1. 全卷共 10 題,滿分 100 分。包括填空題 6 道,每題 10 分;詳答題 4 道,每題 10 分。 2. 參賽學生必須全部作答,所有答案寫在答題紙上。 3. 填空題無需書寫步驟,只須填寫答案;詳答題要求寫出詳細過程。 4. 比賽時使用自備文具,例如鉛筆、原子筆及橡皮擦膠等。不准使用計算器。違規者將被
若 | x1-x2|=2 2,則 k 的值為
.
答案:1. 解:令 x+2=kxx2+2x-k=0,△=22+4k≥0k≥-1.
x1+x2=-2,x1x2=-k,|x1-x2|= (x1+x2)2-4x1x2= 4+4k=2 2 k=1.
9. 如圖,方格紙中的每個小正方形的邊長為 1.記圖中陰影部分的面積 A
中二組 F.2 (10 marks for each question)
1. (3x-1)2=0x=3,故3x+3x=2
2.
24+1=4( 2-1),3-4 5=3+ 5即滿足要求的 m 可以取 2,3,4,
5,共 4 個數
3. 取(0,2)關於直線 y=x 的對稱點(2,0),過(-4,-2),(2,0)的直線為 y= 13(x-2),與 y=x 交於點(-1,-1).即為周長最小時的點 C.故 a=-1
二、解答下列各題 (每小題 10 分,共 40 分,要求寫出詳細過程。)
7. 求 − 2 + 2 (− 2 )2 − 4 (− 2 )4 的值。
2
2
2
8. 設 k 為非零實數, 兩個函數 y = x + 2 與 y = k 的圖像相交於 A(x1,y1)、B(x2,y2) x
第十二届全国华罗庚金杯少年数学邀请赛 (3)
1第十二届全国“华罗庚金杯”少年数学邀请赛第十二届全国“华罗庚金杯”少年数学邀请赛初赛试卷(初一组)(时间:2007年3月24日 10∶00~11∶00)一、选择题(每小题10分)以下每小题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.1. 算式 321(1)21(1)2(1)1-⨯----+⨯-+等于( ).(A) 2- (B) 1- (C) 1 (D) 22. 新制作的渗水防滑地板是形状相同的长方形.如图1,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150厘米,则一块渗水妨滑地板的面积是( )平方厘米. (A) 450 (B) 600 (C) 900 (D) 1 350 3. 如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式.例如:32322x xy xyz y +++是3次齐次多项式.若22323m xy xy z ++是齐次多项式,则m 等于().(A) 1(B) 2(C) 3(D) 44. 若x y y x +=-,则有( ). (A) y >0,x <0(B) y <0,x >0(C) y <0,x <0(D) x =0,y ≥0或y =0,x ≤05. 设a b >0,cd>0.有如下四个结论: (1) 如果 ad >bc ,则必定有 a b >c d .(2) 如果 ad >bc ,则必定有 a b <cd. (3) 如果 ad <bc ,则必定有a b <c d .(4) 如果 ad <bc ,则必定有 a b >c d. 其中正确结论的个数是( ). (A) 0 (B) 1 (C) 2(D) 3图1第十二届全国“华罗庚金杯”少年数学邀请赛6. 已知a 是整数,则以下四个代数式中,不可能得整数值的是( ).(A)325a + (B)23a- (C)316a + (D)527a -二、填空题(每小题10分)7. 如图2,空心圆柱底面圆环的外径和内径之比为2∶1,若保持内径不变,外径扩大成内径的3倍,则扩大后的空心圆柱的体积是原来的体积的 倍.8. 图3是某车间的1至12月的产量图表,记月份为n ,1至5月份的产量为20an +,6至12月份的产量为2bn -,则ab 等于 .9. 相同的正方块码放在桌面上,从正面看,如图4;从侧面看,如图5.则正方块最多有 个,最少有 个.10.甲种签字笔每支3.5元,乙种签字笔每支2.65元.班上的同学每人出了相同的钱凑在一起买了两种签字笔若干支,将这些笔分给同学们,每人3支多2支,每人4支少13支.该班里有 名同学,每人至少要出 元钱.三、解答题(30分钟完成)11、(15分)若记号“*”表示球两个有理数的平均数的运算,即*2a ba b += (1)对于任意三个有理数a 、b 、c , 等式(*)(*)(*)()*(222)222a b ca ab bc c a b c ++=++++是否成立? (2)试写出一个两边都含有运算符号“*”和“+”且对于任意四个有理数a 、b 、c 、d 都成立的等式。
华杯赛决赛第13~16届(初一组)试题及答案
y 的, 而当 y 1时, 由第一个等式得到 2x 1, 所以 x 1 .
2 评分参考: 1) (1)之前给 2 分; 2) (1)和(2)各给 4 分.
三、解答下列各题(每题 15 分,共 30 分,要求写出详细过程)
1 k
4k 2 9
4k
2
9
,
其中,
对于有理数
x,
x= x x.
所以有1 k2
,
9
1
1
k
4k 9
2
0.
当 k 取不同整数时, 1 k 4k 2 的情况如下表: 9
k
2
1
0
=1
=2
xy 0 . 因此, 三个相等的式子只有两种可能:
(1) x y xy x . 由后一等式得到, y 1或 y 1, 而 y 1是不可能的, 因为 y
此时由第一个等式得到 x 1 x , 矛盾. 当 y 1 时, 由第一个等式得到 x 1 x , 即 2x 1 , 所以 x 1 .
第十三届全国“华罗庚庚金杯”少年数学邀请赛决赛试卷(初一组)
第十三届“华罗庚金杯”少年数学邀请赛 决赛试卷(初一组)
(建议考试时间:2008 年 4 月 19 日 10:00~11:30)
一、填空(每题 10 分,共 80 分)
1. 某地区 2008 年 2 月 21 日至 28 日的平均气温为-1℃,2 月 22 日至 29 日的平
枚围棋
第十三届全国“华罗庚庚金杯”少年数学邀请赛决赛试卷(初一组)
2007年第十二届“华罗庚金杯”少年邀请赛初赛(附答案)
2007年第十二届“华罗庚金杯”少年数学邀请赛初赛一、选择题1、算式10.2530.53120.751342+⨯+⨯-+等于( )。
(A )3 (B )2 (C )1 (D )0解答:原式=5351422393342+=+= 选B2、折叠一批纸鹤,甲同学单独折需要半小时,乙同学单独折需要45分钟。
甲、乙两同学共同折叠需要( )。
(A )12分钟 (B )15分钟 (C )18分钟 (D )20分钟 解答:111304518+= 1÷118=18分钟 需要18分钟 选C3、如图,将四条长为16厘米,宽为2厘米的长方形纸条垂直相交平放在桌面上,则桌面被盖住的面积是( )。
(A )72cm 2 (B )128cm 2 (C )124cm 2 (D )112cm 2 解答:16×2×4=128平方厘米 2×2×4=16平方厘米128-16=112平方厘米 盖住的面积是112平方厘米 选D4、地球表面的陆地面积和海洋面积之比是29:71,其中陆地的四分之三在北半球。
那么南、北半球海洋面积之比是()。
(A)284:29 (B)284:87 (C)87:29 (D)171:113解答:陆地面积占29100北半球陆地占293871004400⨯=北半球海洋占12-87400=113400南半球海洋占71113171100400400-=171113:400400=171:113 南、北半球海洋面积之比是171:113 选D5、一个长方体的长、宽、高恰好是3个连续的自然数,并且它的体积的数值等于它的所有的棱长之和的数值的2倍,那么这个长方体的表面积是()。
(A)74 (B)148 (C)150 (D)154解答:设宽为n,则长为n+1,高为n-1(n+n+1+n-1)×4×2=24n 24=4×6 所以n=5(5×4+5×6+6×4)×2=148 表面积为148 选B6、从和为55的10个不同的非零的自然数中,取出3个数后,余下的数之和是55的711,则取出的三个数的积最大等于()。
第十二届全国华罗庚金杯少年数学邀请赛-决赛试卷(初一组)--答案及详细解析
第十二届全国“华罗庚金杯”少年数学邀请赛决赛试卷(初一组)一、填空(每题10分,共80分) 1、计算:=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--⨯-3553134217685.17130998-解析:3576306113999820171315130130⎛⎫⎛⎫⎛⎫-⨯--⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2、“b 的相反数与a 的差的一半的平方”的代数表达式为 。
解析:2222⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--a b a b 或3、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则解析:400.726001271211211367⨯==+ 已知 5-=-n m ,1322=+n m ,那么 44n m += 97 。
解析:4、22224422222()(5)6,()(6)()()2=m n m n m n m n m n m n -=-→⨯=-⨯=-+=+-代入数据,原式975、用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图1,从正面看这个立体,如图2,则这个立体的表面积最多是 48 。
图1(从上向下看) 图2(从正面看)解析:从两个视图可知,该立体的排布最多如图所示,则表面积最多为48 6、满足不等式|13|22|1|3+>--n n n 的整数n 的个数是 5 。
解析:n-1=0 则n=1, 3n+1=0 则n=-1/3当n-1>=0时,n>=1, 3(n-1)-2n>2(3n+1),5n<-5 ,n<-1, 则n 无解当-1/3<n<1时,3(1-n)-2n>2(3n+1),3-5n>6n+2,n<1/11 ,则-1/3<n<1/11…(1) 当n<=-1/3时,3(1-n)-2n>2(-3n-1),n>-5,则-5<n<=-1/3…(2) 由(1)、(2)得:-5<n<1/11,则整数n 的个数是: n=-4.-3.-2.-1.0共5个7、某年级原有学生280人,被分为人数相同的若干个班。
第十二届【华罗庚金杯】总决赛一试试题及解答
第十二届华杯赛总决赛一试试题及解答1.从下面每组数中各取一个数,将它们相乘,则所有这样的乘积的总和是___.第一组:,0.15;第二组:4,;第三组:,1.22.一个正方体,平放于桌面,下图是从初始状态向不同方向翻滚一次所得到的三幅视图,则这个正方体初始状态的正面是___色,右面是___色.3.如图所示,已知APBCD是以直线l为对称轴的图形,且∠APD=116°,∠DPC=40°,DC>AB,那么,以A、P、B、C和D五个点为顶点的所有三角形中有___个钝角三角形,有___个锐角三角形.4.A、B、C三项工程的工作量之比为1∶2∶3,由甲、乙、丙三个工程队分别承担,同时开工,若干天后,甲完成的工作量是乙未完成工作量的二分之一,乙完成的工作量是丙未完成工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙三个队的工作效率的比是多少?5.将1分、2分、5分和1角的硬币投入19个盒子中,使每个盒子里都有硬币,且任何两个盒子里的硬币的钱数都不相同。
问:至少需要投入多少硬币?这时,所有的盒子里的硬币的总钱数至少是多少?6.下图是一种电脑射击游戏的示意图,线段CD、EF和GH的长度都是20厘米,O、P、Q是它们的中点,并且位于同一条直线AB上,AO=45厘米,OP=PQ=20厘米,已知CD上的小圆环的速度是每秒5厘米,EF 上的小圆环的速度是每秒9厘米,GH上的小圆环的速度是每秒27厘米。
零时刻,CD、EF、GH上各有一个小圆环从左端点同时开始在线段上匀速往返运动。
问:此时,从点A向B发射一颗匀速运动的子弹,要想穿过三个圆环,子弹的速度最大为每秒多少厘米?1.解:设总和为S,则S==(0.75+0.15)×()=0.9×(2.4+4.8+0.4+0.8)=0.9×8.4=7.562.解:红面与灰、蓝、棕、白面相邻,故知红面与绿面相对;同理可知白面与蓝面相对,灰面与棕面相对。
第十一届全国“华罗庚金杯”少年数学邀请赛决赛试题解答(初一组)
第十一届全国“华罗庚金杯〞少年数学邀请赛决赛试题解答〔初一组〕一. 填空1 计算:()()⎥⎦⎤⎢⎣⎡-÷+⎪⎭⎫ ⎝⎛-⨯÷⎭⎬⎫⎩⎨⎧-⨯⎥⎦⎤⎢⎣⎡---342)2(5833225.01631=( ).答:47解:原式(){}235130254388.⎡⎤⎛⎫⎡⎤=---⨯÷⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()144187⎛⎫=-÷-= ⎪⎝⎭.2 当2m π=时,多项式31am bm ++的值是0,那么多项式31452a b ππ++=〔 〕.答:5.解:根据 38210a b ππ++=,即()3311458215522a b a b ππππ++=+++=,故原式的值为5.3 将假设干本书籍分给几名小朋友,如果每人分4本书,就还余下20本书,如果每人分8本书,就有1名小朋友虽然分到了一些书,但是缺乏8本, 那么共有〔 〕名小朋友. 答:6.解:设共有x 名小朋友,由题意,04208(1)8x x <+--<,02848x <-<推出75<<x ,得6=x .4 图16中的长方形ABCD 是由四个等腰直角三角形和一个正方形EFGH 拼成. 长方形ABCD 的面积是120平方厘米,那么正方形EFGH 的面积等于〔 〕平方厘米. 答:10.图16解法1:如图16a ,延长BF 交DC 于N 点,延长EH 交BC 于M 点,由条件可知1122CE CM CN CB ===,DA DE CB CN ===,所以 CM=MB =CE=EN =ND . 将长方形ABCD 的长边3等分,短边2等分,如图1a 所示,连接对应的等分点,分成网格图形, 数一数,长方形ABCD 恰好等于12个正方形EFGH 的面积,由于长方形ABCD 的面积为120平方厘米,所以正方EFGH 的面积等于10平方厘米.解法 2:设正方形EFGH 的边长为x ,根据题意,图1中的四个三角形为等腰直角三角形,那么三角形EHC 的直角边长为x ,三角形CGB 的直角边长为x 2, 三角形ABF 的直角边长为x 3,三角形ADE 的斜边长为x 4.并且,正方形EFGH 的面积=2x ,三角形EHC 的面积=22x ,三角形CGB 的面积=2222)2(x x =,三角形ABF 的面积=292)3(22x x =, 三角形ADE 的面积=2⨯三角形CGB 的面积=24x .因此120=2222221242922x x x x x x =+++, 故102=x ,即正方形EFGH 的面积等于10平方厘米.5 满足方程2006182006|x |--+=的所有x 的和为〔 〕. 答: 4012.解:根据绝对值的性质,逐步去除等式2006182006|x |--+=绝对值符号,得到2006120068x --=-,2006120068x -=+-,()2006120068x =++-,或()2006120068x =-+-由表达式可以看到,x 有2个不同的解,它们的和是:图2图16a()2006120068++-+()20061200684012-+-=.6 一个存有一些水的水池,有一个进水口和假设干个口径相同的出水口, 进水口每分钟进水3立方米.假设同时翻开进水口和三个出水口, 池中水16分钟放完; 假设同时翻开进水口与五个出水口, 池中水9分钟放完. 池中原有水〔 〕立方米. 答: 288.解: 设每个出水口每分钟放出水x 立方米, 池中原有水y 立方米, 那么3163165939x yx y⨯⨯=⨯+⎧⎨⨯⨯=⨯+⎩, 解上面二元一次方程组,()4845482721x -=-=,7x =〔立方米〕,316748288y =⨯⨯-=〔立方米〕. 7 20062005122006220052)1(164834221-++-++-+-=+ k k k S ,小于S 的最大的整数是〔 〕. 解答:因为,2005200620052006123420052006248162212342005200602481622S =-+-++-⎛⎫⎛⎫⎛⎫=-+-++-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2005200620042005200620052006123420052006248162212345200420052006248163222211320032006 1.283222S =-+-++-⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<-----< 因此小于S 的最大的整数是0.8 如图17,数轴上标有21n +个点,它们对应的整数是:(),1,,2,1,0,1,2,,1,n n n n ------.为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,那么n 的最小值是〔 〕.答: 2005.解:① 将数轴上的21n +个点,自左端开始,连续8个点为一组,每组仅取右边4个点,这样就可以确保所取出的点,其中任意两点之间的距离不等于 4. 从多少组中才能取出2006个点?既然,200645012=⨯+,即从501组可以取出2004个点,另外,再从第502组中取出2个点,就得到2006个点. 所以,850124010⨯+=.即数轴上至少有4010个点,就能够确保从这4010个点中取出2006个,其中任意两点之间的距离不等于4.214010n +≥,2005n ≥.当n =2005时,可以取 -2005,-2004,-2003,-2002,-1997,-1996,-1995,-1994,,-2005+8k ,-2004+8k ,-2003+8k ,-2002+8k ,,1995,1996,1997,1998,2003,2004,共2006个,其中任何两个数所代表的两个点之间的距离都不等于4.② 当2004=n 时,数轴上连续点的个数是214009n +=. 此时,将距离是4的2个点配对,共有2004对,另外还有单独的一个点,从每个配对中只取一个点,否那么一定有2个点的距离是4, 连同单独的一个点,一共可以取出2005个点,但是要求取出2006个点,不得不将某个配对的两个点都取出,它们的距离是4. 所以,当2004=n 时,任取2006个点,一定有2个点,距离是4. 当2004<n 时,补足至4009个点,就可以说明n 的最小值是2005.二. 解答以下各题〔要求写出简要过程〕9 图18中,ABCD 是矩形,6BC cm =,10AB cm =,AC 和BDCD 为轴旋转一周,那么阴影局部扫过的立体的体积是多少立方厘米?〔π 取3.14〕图18图17解: 〔见小学组决赛第11题解答〕 10 将21个整数:109832101238910,,,,,,,,,,,,,------分为个数不相等的六组数,分别计算各组的平均值,那么这六个平均值的和最大是多少? 解: 将21个整数分为个数不相等的6组,各组的个数分别为1、2、3、4、5、6个. 既然是求六组个平均值的和的最大值,应当将数值大的分在整数个数少的组中. 所以,可以如下分组:10第一组第二组98第三组765第四组4321第五组-1-2-3-4第六组-5-6-7-8-9-10计算上述六组整数的平均值的和:1098765432101567891012345611110862272221172.+--=++++++--2-3-4------+++++=++ 答:最大的和是1172.评注和说明:下面说明理由.六组数分别为{}{}{}{}{}{}112123123412345123456,,,,,,,,,,,,,,,,,,,,a b b c c c d d d d e e e e e f f f f f f ,那么各组数平均数的和为()()()()()12123126111212312341234512345623660302015121060b bc c c f f f a a b b c c cd d d de e e e ef f f f f f ++++++++++++++++++++++++++++++=我们要使得这个分数最大,只要使得分子最大. 先考虑让那一个字母取10,显然是1a ,这样能使总和最大;同理,让12,b b 取8,9对总和的奉献是最大的……以此类推,{}{}{}{}{}{}10,8,9,5,6,7,1,2,3,4,4,3,2,1,0,10,9,8,7,6,5----------是我们得到的分组结果.这一过程无非就是把我们的解题过程用代数式翻译了一遍.为了同学们能多体会字母代表数的抽象性,这里再介绍一种更为一般一些的方法.()()()()()()()()61121231234123451234561091019100;S a b b c c c d d d d e e e e e f f f f f f =++++++++++++++++++++=+++++-++-+-=()()()()()()51121231234123451093445S a b b c c c d d d d e e e e e =++++++++++++++≤+++-+-=;()()()411212312341092155S a b b c c c d d d d =+++++++++≤++++=;()()3112123109640S a b b c c c =+++++≤+++=;()2112109827S a b b =++≤++=; 1110S a =≤因而有()()()()()1212312611121231234123451234561234562366030201512106030105321060b bc c c f f f a a b b c c cd d d de e e e ef f f f f f S S S S S S ++++++++++++++++++++++++++++++=+++++=()11240102251659060300270225165906035,2a b b +++++≤++++≤= 该不等式在{}{}{}{}{}{}112123123412345123456,,,,,,,,,,,,,,,,,,,,a b b c c c d d d d e e e e e f f f f f f 分别取{}{}{}{}{}{}10,8,9,5,6,7,1,2,3,4,4,3,2,1,0,10,9,8,7,6,5----------时恰好能取到等号,因此最大值为352. 11 当5431013231241000m ,,,,,,,,,=----时,从等式()()2123150m x m y m ++-+-=可以得到10个关于x 和y 的二元一次方程,问这10个方程有没有公共解?如果有,求出这些公共解?解:分别取0m =和1m =,我们得到两个方程:210340x y x y ++=⎧⎨--=⎩ 先求两个方程的公共解,把它们看作二元一次方程组,解得:1,1-==y x .把1,1-==y x 代入()()212315m x m y m ++-+-,值恒为0. 此即意味着:当5431013231241000m ,,,,,,,,,=----时,()()212315m x m y m ++-+-=0成立.所以,1,1-==y x 是对应的10个方程的的公共解.答:这些方程的公共解是 1,1-==y x .12 平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36度. 说明理由.解:在平面上任取一点O ,过O 点作的5条直线的平行线12345,,,,l l l l l . 将以O 为中心的周角分为10个彼此依次相邻的小的角,记为12910,,,,θθθθ.每个小角iθ〔1,2,,9,10i =〕都等于这5条直线相交的一个交角.这10个小角的和恰等于360,即.12910360θθθθ++++=,根据抽屉原理,至少有一个小角不超过36.三. 解答以下各题〔要求写出详细过程〕13 如图19,A 、B 和C 是圆周的三等分点,甲、乙、丙三只蚂蚁分别从A 、B 、C 三个点同时出发,甲和乙沿圆周逆时针爬行,丙顺时针爬行. 甲、乙、丙三只蚂蚁爬行的速度之比是8:6:5,求出三只蚂蚁所有的会合地点. 解:① 设圆周的周长为3L ,甲的速度为v 8,乙的速度为v 6,丙的速度为v 5;甲第一次追上乙时,爬行的时间和爬行的路程分别是:甲爬行的时间=862L L v v v =-, 甲爬行的路程=842Lv L v=, ABAC A图19因为圆周的周长为3L ,即甲在Bk+1(k 是整数)次追上乙时,甲爬行的时间=322L kLv v+, 甲爬行的路程=3822L kL v v v ⎛⎫+⨯= ⎪⎝⎭()412314L kL L k L +=+⨯+因为()314k L ⨯+是圆周周长的整数倍,所以,甲在B 点追上乙. ② 在时刻322L kLv v+,( 丙爬行的路程=3315362222L kL k v L kL L v v ⎛⎫⎛⎫+⨯=++- ⎪ ⎪⎝⎭⎝⎭,当k =1时,上式是35922L kL v L L v v ⎛⎫+⨯=+ ⎪⎝⎭因为丙是从C 出发顺时针爬行,所以,丙爬行至B 处,意味着甲、乙、丙能够在B 点会合.答;甲、乙、丙仅仅在B 处集合. 14 m, n 都是正整数,并且),11)(11()311)(311)(211)(211(m m A +-+-+-=),11)(11()311)(311)(211)(211(nn B +-+-+-=① 证明:A =m m 21+, n n B 21+=; ② 假设,261=-B A 求 m 和n 的值. 解:①111111(1-)(1+)(1-)(1+)(1-)(1+)2233111111(1-)(1-)(1-)(1+)(1+)(1+)23231213411 ;23232A m m m m m m m m m m==-++=⨯⨯⨯⨯⨯⨯⨯=同样,nn B 21+=②由题设,11111222226m n A B m n m n ++-=-=-=,11113m n -=111131313nm n n+=+=, 所以,1313nm ,n=+ ()13131313131313131313n n m ,n n n+-⨯===-+++ 即13+n 是1313⨯的因数,1313⨯只有3个因数:1,13,132. 所以,13+n=132,n =132 –13=156, m =12.〕评注和说明:另一方法可以求出正整数m,n ,使11113m n -=. 设()1m Ka,n Kb,a,b ===,代入上式,11113b a Ka Kb Kab --==. ()b a -和a,b 都互质,一定整除K .记Kd b a=-是正整数,b a >那么有 1113dab =. 由上式和b a >,1311b ,a ,d ===. 所以,K =12,m 和n 有唯一解,12156m ,n ==.。
第十届全国华罗庚金杯少年数学邀请赛初一组决赛试卷与解答
第十届全国”华罗庚金杯”少年数学邀请赛决赛试题:初一组一. 填空(每题10分,共80分)1.①计算: 22111134413(12)(0.5)(2)22412433⎡⎤-⨯-÷-÷⨯-⨯--=⎣⎦ . ②已知: 0abc ≠且0a b c ++=,则a b b c c a a b b c c a++= . 2.m 和n 均不为零, 233x y 和2235m nx y ++-是同类项,则322332233395369m m n mn n m m n mn n -++=+-+ . 3.由于浮力的作用,金放在水里秤量和它的重量比较,在水中的”重量”会减少119;银放在水里秤量和它的重量相比较,在水中的”重量”会减少110.某个只含有金银成分的古文物,重量是150克,在水中秤量,”重量”是141克,则古文物中金占 %.(精确到1%)4.图1是几何学中非常著名的美丽的轴对称的图形,它有 条对称轴.5.甲加工一种零件,乙加工另一种零件.甲用A 型机器需要6小时才能完成任务,用B 型机器效率降低60%;乙用B 型机器需要10小时才能完成任务,用A 型机器效率提高20%.如果甲用A 型机器,乙用B 型机器同时开始工作,中途某一时刻交换使用机器,甲和乙同时完成任务.则甲完成任务所用的时间是 小时.6.一个直角三角形三条边的长度是3,4,5.如果分别以各边为轴旋转一周,得到三个立体,那么三个立体中最大的体积和最小的体积的比是 .7.一列自然数0,1,2,3……,2005,……,2024.第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2004.现在将这列自然数排成以下数表:3 8 15 (1)2 7 14 (4)5 6 13 …… 9 10 11 12 ………… …… …… …… ……规定横排为行,竖排为列,则2005在数表中位于第 行和第 列。
8。
(31)635m x x -=-是关于x 的方程,为确保该方程的解是负整数,m 能取的最大 值 。
“华罗庚金杯”少年数学邀请赛(口试)试题1-10届
华罗庚金杯少年数学邀请赛口试试题第01届华罗庚金杯少年数学邀请赛口试试题1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数。
3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?第02届华罗庚金杯少年数学邀请赛口试试题1、如下图是一个对称的图形,黑色部分面积大还是阴影部分面积大?2、你能不能将自然数1到9分别填入右面的方格中,使得每个横格中的三个数之和都是偶数?3、司机开车按顺序到五个车站接学生到学校(如下图),每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,车到学校时,车上最少有多少学生?4、如图中五个正方形的边长分别是1米、2米、3米、4米、5米。
问:白色部分面积与阴影部分面积之比是多少?5、用1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,问乘积中是偶数多还是奇数多?6、7、将右边的硬纸片沿虚线折起来,便可作成一个正方体,问:这个正方体的2号面对面是几号面?(如下图)8、下面是一个11位数,它的每三个相邻数之和都是20,你知道打“?”的数字是几?9、有八张卡片,右图分别写着自然数1到8,从中取出三张,要使这三张卡片上的数字之和为9,问有多少种不同的取法?第03届华罗庚金杯少年数学邀请赛团体决赛口试1.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如右图阴影所示部分,红条宽都是2厘米.问:这条手帕白色部分的面积是多少?2.伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到1991时,你数在那个手指上?3.有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份.问:一共有多少种不同的订法?4.图上有两条垂直相交的直线段AB、CD,交点为E(如下图).已知:DE=2CE,BE=3AE.在AB和CD上取3个点画一个三角形.问:怎样取这3个点,画出的三角形面积最大?5.如下图中有两个红色的圆,两个蓝色的圆,红色圆的直径分别是1992厘米和1949厘米,蓝色圆的直径分别是1990厘米和1951厘米.问:红色二圆面积大还是蓝色二圆面积大?6.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来(如下图),填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?7.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?8.把一个时钟改装成一个玩具钟(如右图),使得时针每转一圈,分针转16圈,秒针转36圈.开始时3针重合.问:在时针旋转一周的过程中,3针重合了几次?(不计起始和终止的位置).9.将1,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍.问:最小的和是多少?10.这是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上.问:共有多少种不同的放法(如下图)?11.这是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%(如右图).问:大圆的面积是多少?12.有一根1米长的木条,第一次去掉它的,第二次去掉余下木条的;第三次又去掉第二次余下木条的,等等;这样一直下去,最后一次去掉上次余下木条的.问:这根木条最后还剩下多长?13.这是一个楼梯的截面图(如下图),高2.8米,每级台阶的宽和高都是20厘米.问:此楼梯截面的面积是多少?14.请找出6个不同的自然数,分别填入6个括号中,使这个等式成立.第04届华罗庚金杯少年数学邀请赛团体决赛口试1.2×3×5×7×11×13×17这个算式中有七个数连乘,请回答:最后得到的乘积中,所有数位上的数字和是多少?请讲一讲你是怎样算的?2.这是一个中国象棋盘(图中小方格都是相等的正方形,“界河”的宽等于小正方形边长),黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12, 13,14中的两个位置.问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种形状的短管(加工损耗忽略不计)问:剩余部分的管子最少是多少厘米?4.乙两人同时从A出发向B行进,甲速度始终不变,乙在走前面路程时,速度为甲的2倍,而走后面路程时,速度是甲的,问甲、乙二人谁选到B?请你说明理由。
(整理)第十一届全国“华罗庚金杯”少年数学邀请赛华杯赛初一组试卷附答案1
第十一届全国"华罗庚金杯"少年数学邀请赛决赛试卷(初一组) (红色字为参考答案)(时间2006年4月22日10:00~l l :30〉一、.填空 1、计算:243331(0.25)(2)3()5(2)168⎧⎫⎡⎤⎡⎤---⨯-÷⨯-+÷-=⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭( 47 )2、当2m π=时,多项式31am bm ++的值是0,则多项式31452a b ππ++=( 5 )3、将若干本书分给几名小朋友,如果每人分4本书,就还余下20本书,如果每人分8本书,就剩有1名小朋友虽然分到了一些书,但是不足8本,则共有( 6 )名小朋友4、图l 中的长方形ABCD 是由四个等腰直角三角形和一 个正方形EFGH 拼成.己知长方形ABCD 的面积为120平方厘米,则正方形EFGH 的面积等于( 10 )平方厘米5、满足方程|||x-2006|-1|+8|=2006的所有x 的和为( 4012 )6、一个存有一些水的水池,有一个进水口和若干个口径相同的山水口,进水口每分钟进水3立方米.若同时打开进水口和三个出水口,池中水16分钟放完;若同时 打开进水口与五个出水口,池中水9分钟放完.池中原有水( 288 )立方米7、已知120052006123420052006(1)24816222k k k S +=-+-++-++-,则小于S 的最大的整数是( 0 )8.如图2,数轴上标有2n+1个点,它们对应的整数是:,(1),,2,1,0,1,2,,1,n n n n ------为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,则n 的最小值是( 2005 )图1图2n n-10-1-2-(n-1)-n二.解答下列各题,要求写出简要过程9、如图3,ABCD 是矩形,BC=6cm,AB =10cm,AC 和BD 是对角线.图中的阴影部分以CD 为轴旋转一周,则阴影 部分扫过的立体的体积是多少立方厘米?(z 取3.14) 解: ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是S,S 等于高为10厘米,底面半径是6厘米的 圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆 锥的体积. ②即:S=13×26×10×π-2×13×23×5×π=90π, 2S=180π=565.2(立方厘米).答:体积是565.2立方厘米. 10、将21个整数10,9,8,,3,2,1,0,1,2,3,,8,9,10------分为个数不相等的六组数,分别计算各组的平均值,那么这六个平均值的和最大是多少? 解:①分为个数不相等的6组,整数的个数分别为1、2、3、4、5、6. ②应当将数值大的分在整数个数少的组中.所以,可以如下分组:第一组10 第二组9 8 第三组7 6 5 第四组4 3 2 1 第五组0 -1 -2 -3 -4 第六组-5 -6 -7 -8 -9 -10③计算它们的平均值的和:109876543210123456789101171234562++++++----------+++++= 答:最大的和是1172。
第十四届全国华罗庚金杯少年数学邀请赛 决赛试卷A(初一组) 答案及详细解析
第十四届华罗庚金杯少年数学邀请赛决赛试题A (初一组)(时间:2009年4月11日10:00~11:30)一、填空题(每题10分,共80分)1.计算:()2414-3-6.5(2)(6)313⎛⎫-⨯+-÷-= ⎪⎝⎭949,解析:21041319416313269⎛⎫⎛⎫⎛⎫--⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2.设有理数a,b,c 在数轴上的对应点如下图所示, 则代数式b a a c c b -+-+-=2(a-b ) 解析:()()()a>1 ;b<c<0;a-b ;=a-b =2a-b b a a c a c c b c bb a ac c b a c c b -=-=--=-∴-+-+-+-+-根据图像,得 则:;()3.设m,n 是非负整数且3m<2n ,则三个n 次多项式之积与一个2m 次多项式之和是(3n )次多项式 解析:24932 23,333m n m n m n n n n <→<<<=因为 且m>0,n>0,所以所以三个次多项式之积与一个2m 次多项式之和是 3n 次多项式4.一名运动员进行爬山训练,从山脚出发,上山路长10千米,每小时行3千米;爬到山顶后沿原路下山,下山每小时5千米,那么这位运动员上下山的平均速度是每小时(3.75)千米。
解析:依题意,列出算式 得101020=3.7535⎛⎫÷+ ⎪⎝⎭5.已知a,b 是有理数。
有以下三个不等式:①|a+b|<|a-b|,② a 2+b 2+|a|+|b|+1<0, ③a 2+b 2-2|a|-2|b|+1<0,其中一定不成立的是(②)(填写序号) 解析:22a 1 1.b a b ++++必定大于等于所以②必定不成立6.若二元一次方程组4234331x y n x y m -=-⎧⎨+=-⎩的解x,y 满足-1≤x ≤2,-2≤y ≤4,则m+n 的取值范围为:2.5m+n 10.5-≤≤解析:由4+3243+13x y n x y m -=⎧⎨+=⎩得123+9686+26x y n x y m -=⎧⎨+=⎩,两式相加:20x+3y+11=6(m+n),则因为-1≤x ≤2,-2≤y ≤4,有-15≤6(m+n)≤63,故-2.5≤m+n ≤10.57.把2006,2007,2008,2009四个数分别填入算式: 的四个方框中,则算式的最大可能值是:100331004解析:让被减数尽可能的最大,减数尽可能的小。
奥数竞赛 第十二届全国华罗庚金杯少年数学邀请赛决赛试卷及答案
第十二届全国华罗庚金杯少年数学邀请赛决赛试卷及答案一、填空(每题10分,共80分)1.“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是 。
2.计算;=÷÷-+75.41]25239)21274.3(75.20[ 。
图13.如图书1所示,两个正方形ABCD 和DEFG 的边长都是整数厘米,点E 在线段CD 上,且CE<DE ,线段CF=5厘米,则五边形ABCFG 的面积等于 平方厘米。
4.将52.0523.0523.0....,,4021,250131 ,从小到大排列,第三个数是 。
5.图2a 是一个密封水瓶的切面图,上半部为圆锥状,下半部为圆柱关,底面直径都是10厘米,水瓶高度是26厘米,瓶中液面的高度为12厘米,将水瓶倒置后,如图2b ,瓶中液面的高度是16厘米,则水瓶的容积等于 立方厘米。
(取π=3.14,水瓶壁厚不计)6.一列数是按以下条件确定的:第一个是3,第二个是6,第三个是18,以后每个数是前面所有数的和的2倍,则第六个数等于 ,从这列数的第 个数开始,第个都大于2007。
7.一个自然数,它的最大的约数和次大的约数的和是111,这个自然数是 。
8.用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图3 ,从正面看这个立体,如图4,则这个立体的表面积最多是 。
二、简答下列各题(每题10分,共40分,要求写出简要过程) 9.如图5,在三角形ABC中,点D在BC上,且∠ABC=∠ACB,∠ADC=∠DAC,∠DAB=21°,求∠ABC的度数;并且回答:图中哪些三角形是锐角三角形。
图510.李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒,已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度是多少?11.图6是一个9×9的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些小方格填有1至9的数字,小青在第4列的空格中各填入了一个1至9中的自然数,使每行、每列和每个“小九宫”格内的数字都要不重复,然后小青将第4列的数字从上向下写成一个9位数,请写出这个9位数,并且简单说明理由。
华罗庚金杯数学邀请赛决赛初一组练习题含答案
第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组) 总分第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组·练习用)一、填空题(每小题10 分, 共 80 分)1. 点O为线段AB 上一点, AOC 10 , COD 50 ,A O B则 BOD 或.2018 12k2.已知m>0 ,且对任意整数k,均为整数,则m 的最大值为.3m3. [x]表示不超过x 的最大整数,如[ 1.3] 2 ,[1.3] 1.1 2 9[a ] [a ] K [a ] =4已知,则a 的取值范围是.10 10 104. 使 2n 1和 11n 121 都是平方数的最小正整数n 为.5. 在3 3 的“九宫格”中填数,使每行每列及每条对角线上的三数之和都相等.如图,有 3 个方格已经填的数分别为 3,10,2018,则“九宫格”中其余 6 个方格所填数之和等于.6. 已知某三角形的三条高线长a,b,c 为互不相等的整数,则a b c 的最小值为.7. 16 张卡片上分别写着 1~16 这 16 个自然数,把这 16 张卡片分成 4 组,使得每组卡片张数一样,每组卡片上所写数的和相等,且每组有两张卡片上的数的和为 17,共有种分法.(说明:不考虑组的顺序,也不考虑组内数字的顺序.例如将 1~16 分为四组后,保持各组内数字不变,只改变组的顺序或组内数字的顺序,视为相同的分法.)abc8. a ,b ,c 是三个不同的非零整数,则的最小值为.4ab 2bc 3ca第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组)二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9. 现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年年初交 10 万元,第 6 年年初返 6 万元,以后每年处返 1.5 万元;方案二:购买一款年利率5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 1.053 1.052 =3.47563125)10. 如图,考古发现一块正多边形的瓷砖残片(如图),瓷砖上已不能找到完整的一个“角”,考古专家判定D ,E 两点是该正多边形相邻的两个顶点,C ,D 两个顶点之间隔有一个顶点.经过测量 CDE 135 ,DE 13厘米.原正多边形的周长是多少厘米?11. 一筐苹果,若分给全班同学每人 3 个,则还剩下 25 个;若全班同学一起吃,其中 5 个同学每人每天吃 1 个,其他同学每人每天吃 2 个,则恰好用若干天吃完.问筐里最多共有多少个苹果?12. 给定一个 5×5 方格网,规定如下操作:每次可以把某行(或列)中的连续 3 个小方格改变颜色(把白格变黑格,把黑格变白格).如果开始时所有25 个小方格均为白色,请问:能否经过8 次这样的操作,使得5×5 方格网恰好变为黑白相间(如图所示),且任何一个小方格在前 4 次操作中至多变色 1 次?如果能,请给出一种操作方案(直接画出第 4,5,6,7 次操作后的方格网颜色);如果不能,请给出证明.三、解答下列各题(每小题15 分, 共 30 分, 要求写出详细过程)13. 求证:不存在 3 个有理数的平方和等于 15.14. 如图,一个由 41 个小方格组成的棋盘.先将其中的任意 8 个方格染黑,然后按照以下规则继续染色:如果某个方格至少与 2 个黑格都有恰好 1 个公共顶点,那么就将这个方格染黑.这样操作下去能否将整个棋盘都染成黑色?第二十三届华罗庚金杯少年数学邀请赛决赛试题·练习用参考答案(初中一年级组)一、填空题(每小题10 分, 共 80 分)题号 1 2 3 4 5 6 7 80.5≤a< 0.41202答案或或者264 11040 9 10531400.4≤a<0.5二、解答下列各题(每小题10 分, 共 40 分, 要求写出简要过程)9. 【答案】:方案二更划算.解:方案二,第 4,5 年年初将之前的本息全部续存,到第 6 年年初时,共有本息10 (1 5%)5 10 (1 5%)4 10 (1 5%)3 ≈10.5 3.4756≈36.5(万元),提取 6 万元后仍有约36.5 6 30.5(万元)可不断续存,以后每年可提取利息约30.5 5% 1.525 (万元).在前期投入及回报一致的情况下,显然比方案一以后每年返1.5万元划算.而且方案二还可以随时提取或部分提取30.5万元储蓄用于应急或者选择其它更理想的理财方式,而方案一无此选择权.综上所述,方案二更划算.10. 【答案】156 厘米【解答】如图,设原图是正n 边形,其中C ,D 间的顶点为 F ,连接CF ,DF ,则(n 2 )CFD FDE 180 ,n因为 C F F D,1 8 0 C F D 1 8所以 C D F F C D ,2 n- 1 -n 3C D E F D E F D C 1 80 1 3,所以n解得n 12 .所以原本多边形是正 12 边形,周长为13 12=156(厘米).11. 【答案】130.【解答】解答1:设全班同学有n 人,根据题意,3n 25是2n 5的倍数,则30n2n5数.为整n n30 1 2 5 65 1 65又 1∵,2 5 2 2 5 2 2 5n n n65∴是奇数,2n 5∴ 2n 5最大为 65,n 最大为 35,∴筐里最多共有3 35 25 130个苹果.解答2:设全班同学有n 人,根据题意,3n 25是2n 5的倍数,则30n2n5数.为整记n 302n 5k ,k 为正整数,则n 30 k(2n 5) ,两边同乘2,得到2n 60 2k(2n 5) ,2n 60 2n 5 65, 2n 5 65 2k(2n 5) ,(2k 1)(2n 5) 65 5 13.2k 1 1时,2n 5 65,n 35,2k 1 5时,2n 5 13,n 9 ,2k 1 13时,2n 5 5,n 5,2k 1 65时,2n 5 1,n 3,n 为 35 时,苹果数最多,此时筐里的苹果数为35 3 25 130.12. 【答案】可以【解答】操作如下:(1)经过 4 次操作可染成如下:- 2 -第二十三届华罗庚金杯少年数学邀请赛决赛试题参考答案(初中一年级组),(2)继续操作第 5次 第 6次 第 7次 第 8次三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13. 证明:注意到( x )2 x 2 ,只需考虑非负有理数的平方和.假设存在 3 个有理数n m , q p , t k ,其中 m ,n ,p ,q ,k ,t 是自然数, 且(m ,n ) 1,( p ,q ) 1,(k ,t ) 1,使得15 ( n )2 ( q )2 ( t )2,m p k那么15m 2n 2 p 2 (npk )2 (mqk )2 (mpt )2 ,即15d 2 a 2 b 2 c 2 ,其中 a ,b ,c ,d 是自然数.(1)如果 d 为偶数,那么经过有限次如下步骤,可使得 d 为奇数.假设 d 2d ,若 a ,b ,c 两奇一偶,则 a 2 b 2 c 2 被 4 除余 2,而15d 2 被 41整除,矛盾!所以 a ,b ,c 都是偶数,故令 a 2a ,b 2b ,c 2c (11 1 a ,b ,c1 1 1 都是自然数),所以15d2 a 2 b 2 c 2(其中 1 1 1 1a b c ab c ).如果 d 还 1 1 1 1是偶数,类似上述讨论,经过有限次后可得到奇数.(2)如果 d 为奇数,即 d 2r 1( r 是自然数),那么15d 2 15(2r 1)215 4r (r 1) 1 ,即15d 2 被 8 除余 7. 另一方面,若 a ,b ,c 为三个奇数,那么 a 2 b 2 c 2 被 8 除余 3;若a ,b ,c 为两偶一奇,那么 a 2 b 2 c 2 被 8 除余 1 或 5;- 3 -。
初中竞赛数学第十二届“华罗庚金杯”少年数学邀请赛决赛试题及答案(初一)
第十二届全国“华罗庚”少年数学邀请赛决赛试卷(初一组)(时间2018年4月21日10:00~11:30)一、填空(每题10分,共80分) 1、计算:=⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛--⨯-3553134217685.17 。
2、“b 的相反数与a 的差的一半的平方”的代数表达式为 。
3、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则4、已知 5-=-n m ,1322=+n m ,那么 44n m += 。
5、用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图1,从正面看这个立体,如图2,则这个立体的表面积最多是 。
图1(从上向下看) 图2(从正面看) 6、满足不等式|13|22|1|3+>--n n n 的整数n 的个数是 。
7、某年级原有学生280人,被分为人数相同的若干个班。
新学年时,该年级人数增加到585人,仍被分为人数相同的若干个班,但是多了6个班,则这个年级原有 个班。
8、如果锐角三角形的三个内角的度数均为整数,并且最大角是最小角的5倍,那么这个三角形的最大角的度数是 。
∶∶∶∶∶∶∶∶∶装∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶订∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶线∶∶∶∶∶∶∶∶∶∶二、简答下列各题(每题10分,共40分,要求写出简要过程)9、已知a ,b ,c 都是整数,当代数式 c b a 327++ 的值能被13整除时,那么代数式 c b a 2275-+的值是否一定能被13整除,为什么? 10、如图3所示,在四边形ABCD 中,ND MN AM ==,FC EF BE ==,四边形ABEM ,MEFN ,NFCD 的面积分别记为1S ,2S 和3S ,求312S S S +=?(提示:连接AE 、EN 、NC 和AC )11、图4是一个9×9的方格图,由粗线隔为9个横竖各有3个格的“小九宫”格,其中,有一些方格填有1至9的数字,小鸣在第九行的空格中各填入了一个不大于9的正整数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小鸣将第九行的数字从左向右写成一个9位数。
华杯赛初一试题及答案
华杯赛初一试题及答案华罗庚金杯少年数学邀请赛(简称“华杯赛”)是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。
以下是一份为初一学生设计的华杯赛试题及答案。
# 华杯赛初一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,那么这个数加1后除以3的余数是多少?- A. 0- B. 1- C. 2- D. 3答案:B3. 哪个数学公式可以用来计算一个长方形的面积?- A. 周长- B. 长 + 宽- C. 长× 宽- D. 长× 长答案:C4. 下列哪个选项不是质数?- A. 2- B. 3- C. 4- D. 5答案:C5. 一个数的60%加上它的40%等于这个数的多少?- A. 100%- B. 80%- C. 120%- D. 160%答案:A6. 一个长方体的长、宽、高分别是8cm、6cm和5cm,它的体积是多少立方厘米?- A. 240- B. 180- C. 120- D. 100答案:A7. 一个数的1/4加上它的1/2等于这个数的多少?- A. 3/4- B. 5/6- C. 9/12- D. 1答案:D8. 下列哪个选项是2的倍数?- A. 17- B. 23- C. 38- D. 47答案:C9. 一个数的3/4比它的1/2多1,这个数是多少?- A. 4- B. 8- C. 12- D. 16答案:A10. 一个班级有40名学生,其中1/5是女生,那么这个班级有多少名女生?- A. 8- B. 10- C. 15- D. 20答案:A二、填空题(每题4分,共20分)11. 一个数的75%是150,那么这个数是______。
答案:20012. 一本书的价格是35元,打8折后的价格是______元。
13. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是______厘米。
第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案
第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。
答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。
答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。
图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。
第十二届全国“华罗庚金杯”少年数学邀请赛决赛试卷答案(六年级组)
第十二届全国“华罗庚金杯”少年数学邀请赛决赛试卷答案(六年级组)一、 填空(每题10分,共80分)注:第6题,每空5分.二、简答下列各题(每题10分,共40分,要求写出简要过程) 9、解:①由已知条件 ACB ABC ∠=∠,DAC ADC ∠=∠, 由三角形内角和是180°,在三角形ADC 中, ABC ACB ACB ADC ∠-︒=∠-︒=∠-︒=∠21902902180.(给4分)②又因为 ︒=∠+∠180ADC BDA ,所以ABC ABC ADC BDA ∠+︒=⎪⎭⎫⎝⎛∠-︒-︒=∠-︒=∠21902190180180.在三角形BAD 中,︒=∠+︒+∠18021BDA ABC ,即:︒=⎪⎭⎫⎝⎛∠+︒+︒+∠180219021ABC ABC ,解得 ︒=∠46ABC (给4分) ③又因为︒=∠88BAC ,︒=∠=∠46ACB ABC ,︒=∠=∠67DAC ADC ,︒=∠113BDA .因此图中的三角形ABC 与三角形CAD 都是锐角三角形.(给2分) 答:︒=∠46ABC ,三角形ABC 与三角形CAD 都是锐角三角形. 评分参考:见解答过程;仅给出正确的答案,无过程,只给4分. 10、解法一:设货车车速为x 千米/小时,由题意,1000)10302.1308.15(360018)60(+⨯+⨯=⨯+x , 解上面方程 52.0360018)60(=⨯+x10418360052.060=⨯=+x得到 4460104=-=x (千米/小时).解法二:货车总长52.01000)10302.1308.15(=+⨯+⨯(千米),(2分) 客车行进的距离 3.036001860=⨯(千米) (2分)货车行进的距离 22.03.052.0=-(千米) (2分) 货车的速度:4436001822.0=÷(千米/小时) (4分) 答:货车车速为每小时44千米.评分参考:解法一,①能列出方程,给5分;②正确解出方程给5分;解法二,见解答.11、解答:填数的方法是排除法,用(m ,n )表示位于第m 行和第n 列的方格.方格图(题目中涂6)第4列已有数字1、2、3、4、5,第6行已有数字6、7、9,所以,在方格(6,4)中只能填数字8;第3行和第5行中都有数字9,所以在方格(7,4)中只能填9;正中的“小九宫”格中已经有7,所以,7只能填在方格(3,4)中了;此时,在第4列中只余下方格(5,4),6只能填在(5,4)中,见图6a .这个9位数是327468951.图6a评分参考:①正确给出答案,给4分;②对图5第4列中4个空格的填法,能说明理由,给6分,每个空格正确给1.5分;③即使最后答案不正确,对于推理正确的空格填法,要适当给分.12、解法一:为使全班同学的平均成绩达到90分,需要将2名得优的同学和1名没有得优的同学匹配为一组,即得优的同学至少应当是没有得优同学的两倍,才能确保全班同学的平均成绩不少于90分.解法二:设全班有n 位同学,其中得优的为x 人,没得优的为x n -人,则全班同学的总分为 )(8095x n x -⨯+⨯,平均分为:nxn x n x 1580)(8095+=-⨯+⨯,要使全班的平均成绩不少于90分,即901580≥+n x ,即 1015≥nx,32≥n x . 答:得优的同学占全班同学的比例至少是32.评分参考:①能判断出得优的人数至少是未得优人数得2倍,给5分,给出正确答案,再给5分;②仅有正确(或猜出)答案,只给5分.三、详答下列各题(每题15分,共30分,要求写出详细过程) 13、分析:(1)图7中的等边三角形按照面积大小分类有3种类型,共14个,图7a 中,六边形的每1个顶点是某个小号等边三角形的顶点,而且,每个小号等边三角形,有且仅有一个顶点是六边形的一个顶点,既然六边形 有6个顶点,图7中有6个小号等边三角形;图7b 中,六边形的每一条边是某个中号等边三角形的一条边,而且,每个中号等边三角形有且仅有一条边是六边形的一条边,既然六边形有6条边,图中有6个中号等边三角形;图7c 中,大号等边三角形有2个.(2)图7中的非等边等腰三角形,按照面积大小分类有3种类型,共有24个,见图7d .小号(黑色)等腰三角形有6个,因为这类三角形均以六边形的一条边为其长边.并且,六边形的每一条边只唯一对应一个小号等腰三角形,见图7d.正六边形共有6条边,所以有6个小号等腰三角形;中号(圆点)等腰三角形有12个,因为每个中号等腰三角形的长边都是六边形的一条非直径的弦,并且,以非直径的弦为长边的三角形有2个,如图7e,这样的弦共有6条,所以有12个中号三角形;大号(灰色)等腰三角形有6个,因为每个大号等腰三角形的长边都是六边形的一条直径,每条直径上有对应有2个大号三角形,如图7f.共有3条直径,所以有6个大号(灰色)等腰三角形;答:图中共有38个等腰三角形.评分参考:①能分类计算等腰三角形个数,例如:能依照等边三角形和非等边的等腰三角形分类计数,然后依大小再做分类计数,按照等边三角形计数,给6分,按照非等边的等腰三角形分类计数,则给9分;②仅仅给出正确答案,未讲理由,只给5分;③可以用其它分类方法计数.例如:假定正六边形面积是18,则可以依面积分别为1、3、4、9计算等腰三角形的个数,计数的关键是抓住特征做分类,不重复和不遗漏,培养严谨的思维.建议以这种原则判题给分,每类给3—4分.14、解答:按照题意,如果依顺时针方向不间断地给这7个盒子编号,则1号盒子可以有的编号是1,8,15,22,…,7k+1,2号盒子可以有的编号是2,9,16,23,…,7k+2,…,7号盒子可以有的编号是7,14,21,…,7k+7.按照规则,小明将第1枚棋子放在1号盒子,第2枚棋子放在3号盒子,第2枚棋子放在6号盒子,第4枚棋子放在10号盒子,即3号盒子,第5枚棋子放在15号盒子,即1号盒子,第6枚棋子放在21号盒子,即7号盒子;第7枚棋子放在28号盒子,即7号盒子,……按照放棋子的规则,自第8枚棋子开始一个新的周期,即第8枚棋子放在1号盒子,第9枚棋子放在3号盒子,……,第k枚棋子放在2)1(+kk号盒子中,即棋号数为2)1(+kk除7的余数,也就是每7枚棋子为一个周期.并且,这7枚棋子有2枚放在1号盒子,有2枚放在3号盒子,有2枚放在7号盒子,有1枚放在6号盒子,2、4和5号盒子没有棋子.所以,200=7×28+4,经过28次循环后,第197枚白色棋子放在1号盒子,第198枚和第200枚白色棋子放在3号盒子,第199枚白色棋子放在6号盒子.所以,1号盒子中有57枚白色棋子;3号盒子中有58枚白色棋子;6号盒子有29枚白色棋子;7号盒子有56枚白色棋子,其余盒子中没有白色棋子.小青依逆时针方向放置红色棋子,我们可以将1号盒子仍视为1号,7号则视为2号,6号视为3号,5号视为4号,4号视为5号,3号视为6号,2号视为7号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二届全国“华罗庚金杯”少年数学邀请赛决赛试卷(初一组)一、填空(每题10分,共80分) 1、计算:=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--⨯-3553134217685.17130998-解析:3576306113999820171315130130⎛⎫⎛⎫⎛⎫-⨯--⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2、“b 的相反数与a 的差的一半的平方”的代数表达式为 。
解析:2222⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--a b a b 或3、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则解析:400.726001271211211367⨯==+ 已知 5-=-n m ,1322=+n m ,那么 44n m += 97 。
解析:4、22224422222()(5)6,()(6)()()2=m n m n m n m n m n m n -=-→⨯=-⨯=-+=+-代入数据,原式975、用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图1,从正面看这个立体,如图2,则这个立体的表面积最多是 48 。
图1(从上向下看) 图2(从正面看)解析:从两个视图可知,该立体的排布最多如图所示,则表面积最多为48 6、满足不等式|13|22|1|3+>--n n n 的整数n 的个数是 5 。
解析:n-1=0 则n=1, 3n+1=0 则n=-1/3当n-1>=0时,n>=1, 3(n-1)-2n>2(3n+1),5n<-5 ,n<-1, 则n 无解当-1/3<n<1时,3(1-n)-2n>2(3n+1),3-5n>6n+2,n<1/11 ,则-1/3<n<1/11…(1) 当n<=-1/3时,3(1-n)-2n>2(-3n-1),n>-5,则-5<n<=-1/3…(2) 由(1)、(2)得:-5<n<1/11,则整数n 的个数是: n=-4.-3.-2.-1.0共5个7、某年级原有学生280人,被分为人数相同的若干个班。
新学年时,该年级人数增加到585人,仍被分为人数相同的若干个班,但是多了6个班,则这个年级原有 7 个班。
解析:设原有x 个班,原来每个班有a 人,现在每个班有b 人,根据题意得:2805856a x b x ⎧=⎪⎪⎨⎪=⎪+⎩∵由于585为奇数,因此对任意偶数x ,x+6都不可能整除585,这样x 只能取1,5,7,35,其中满足条件的只有7,∴7为唯一解.8、如果锐角三角形的三个内角的度数均为整数,并且最大角是最小角的5倍,那么这个三角形的最大角的度数是 85 。
解析:设最小角是x ,则最大角是5x ,中间一个是180-x-5x=180-6x ,∵该三角形是锐角三角形,∴x ≤180°-6x ≤5x <90°,∴41611≤x <18,∴x=17°,∴5x=85°.故答案为:85二、简答下列各题(每题10分,共40分,要求写出简要过程)9、已知a ,b ,c 都是整数,当代数式 c b a 327++ 的值能被13整除时,那么代数式 c b a 2275-+的值是否一定能被13整除,为什么?解析:设x ,y ,z ,t 是整数,并且假设 )(13)327(2275tc zb ya c b a x c b a +++++=-+(1),比较上式a ,b ,c 的系数,应当有5137=+y x ,7132=+z x ,22133-=+t x (2),取 3-=x ,可以得到 2=y ,1=z ,1-=t ,则有c b a c b a c b a 2275)327(3)2(13-+=++--+(3),既然 )327(3c b a ++和)2(13c b a -+都能被13整除,c b a 2275-+就能被13整除。
【说明】 c b a 2275-+表式为均能被13整除的两个代数式的代数和,表达方式不唯一,例如:取10=x ,则有 5-=y ,1-=z ,4-=t ,则有)45(13)327(102275c b a c b a c b a ++-++=-+实际上,(2)是一组二元整系数不定方程,我们先解第一个,得到k x 133+-=,k y 72-=,这里k 是任意整数,将 k x 133+-=代入其余方程,解得k z 21-=,k t 31--=,这里k 是任意整数,则可以有])31()21()72[(13)327)(133(2275c k b k a k c b a k c b a --+-+-++++-=-+10、如图3所示,在四边形ABCD 中,ND MN AM ==,FC EF BE ==,四边形ABEM ,MEFN ,NFCD 的面积分别记为1S ,2S 和3S ,求312S S S +=?(提示:连接AE 、EN 、NC 和AC )解析:如图3a ,连接AE 、EN 和NC ,易知由 MEN AEM S S ∆∆=, EFN CNF S S ∆∆=,两个式子相加得2S S S CNF AEM =+∆∆ (1)并且四边形AECN 的面积=22S 。
连接AC ,如图3b,由三角形面积公式,易知AEC ABE S S ∆∆=21, CNACDN S S ∆∆=21,两个式子相加得:212ABE CDN AECN S S S S ∆∆+==四边形 (2),将(1)式和(2)相加,得到22S S S S S CDN ABE CNF AEM =+++∆∆∆∆,既然1S S S ABE AEM =+∆∆,3S S S ABE CNF =+∆∆因此 2312S S S =+, 21312=+S S S 。
答:21312=+S S S11、图4是一个9×9的方格图,由粗线隔为9个横竖各有3个格的“小九宫”格,其中,有一些方格填有1至9的数字,小鸣在第九行的空格中各填入了一个不大于9的正整数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小鸣将第九行的数字从左向右写成一个9位数。
请写出这个9位数,简单说明理由。
解析:填数的方法是排除法,用(m ,n )表示位于第m 行和第n 列的方格。
第七行、第八行和第3列有9,所以,原题图4左下角的“小九宫”格中的9应当填在(9,2)格 子中;第1列、第2列和第七行有数字5,所以,在图4右下角的“小九宫”格中的数字5只能填在(9,3)中;第七行、第八行有数字6,图4中下部的“小九宫”格的数字6应当填在(9,6);此时,在第九行尚缺数字7和3,由于第9列有数字7,所以,7应当填在(9,8);3自然就填在(9,9)了,填法如图。
九位数是 495186273。
12、平面上有6个点,其中任何3个点都不在同一条直线上,以这6个点为顶点可以构造多少个不同的三角形?从这些三角形中选出一些,如果要求其中任何两个三角形没有公共顶点,最多可以选出多少个三角形?如果要求其中任何两个三角形没有公共边,最多可以选出多少个三角形?(前两问不要求说明理由) 解析:(1)先从6个点中选取1个做三角形的一个顶点,有6种取法;再从余下的5个点中选取1个做三角形的第二个顶点,有5种取法;再从余下的4个点中选取1个做三角形的第三个顶点,有4种取法。
因为任何3个点不在同一条直线上,所以,这样选出的三个点可以做出1个三角形。
但是,如果选出的三个点相同的话,则做出的三角形相同,三个点相同的取法有3×2×1=6种,所以,以这6个点为顶点可以构造 20123456=⨯⨯⨯⨯个不同的三角形。
(2)每个三角形有3个顶点,所以,6个点最多只能构造2个没有公共顶点的三角形。
(3)用英文大写字母A 、B 、C 、D 、E 、F 记这6个点,假设可以选出两两没有公共边的5个三角形,它们共有15个顶点,需要15个英文大写字母。
这里不同的英文大写字母仅有6个。
因此,这5个三角形中至少有3个三角形有同一个顶点,无妨设为A 。
根据假设,这3个三角形两两没有公共边,即除去公共顶点A 之外,其余6个顶点互不相同,即表示这6个顶点的字母不相同。
但是,除A 之外,我们仅有5个不同的字母。
所以,不可能存在5个三角形,它们两两没有公共边。
又显然ABC ∆,ADE ∆,BDF ∆和CEF ∆这4个三角形两两没有公共边。
所以,最多可以选出4个三角形,其中任何两个三角形都没有公共边。
三、详答下列各题(每题15分,共30分,要求写出详细过程)13、壮壮、菲菲、路路出生时,他们的妈妈都是27岁,某天三位妈妈王雪、刘芳和李薇闲谈时,王雪说:“菲菲比刘芳小29岁”;李薇说:“路路和刘芳的年龄的和是36岁”,刘芳说:“路路和王雪的年龄的和是35岁”。
已知壮壮、菲菲、路路和他们的妈妈6个人年龄的总和是105岁。
请回答:谁是路路的妈妈?壮壮、菲菲和路路的年龄各是多少岁? 解析:设刘芳的年龄为x 岁。
① 刘芳和路路的年龄和是36岁,是个偶数,他们的年龄差也是一个偶数,而路路和妈妈的年龄的差是奇数,因此路路的妈妈不是刘芳。
注意到菲菲比刘芳小29岁,菲菲的妈妈不是刘芳,所以,壮壮的妈妈是刘芳。
②壮壮和妈妈刘芳的年龄的和为227x -() 路路)36(x -岁,他的妈妈应当是 )2736(+-x 岁,和为 )299(x - 菲菲)29(-x 岁,她的妈妈应当是 )2729(+-x 岁,和为 )312(-x 由于6个人共105岁,所以,105)312()299()272(=-+-+-x x x 。
③解出x=32,菲菲比刘芳小29岁,所以菲菲3岁;路路和刘芳的年龄的和是36,路路4岁;路路和王雪的年龄的和是35岁,所以王雪31岁。
答:王雪是路路的妈妈;壮壮5岁、菲菲3岁和路路4岁。
14、请回答:81能否表示为3个互异的正整数的倒数的和?81能否表示为3个互异的完全平方数的倒数的和?如果能,请给出一个例子;如果不能,请说明理由。
解析:(1)由于1613121=++,故有 4812411616131218181++=⎪⎭⎫ ⎝⎛++⨯=。
所以,81能表示为3个互异的正整数的倒数的和(表示法不唯一)。
(2)不妨设c b a <<,现在的问题就是寻找整a ,b ,c ,满足 22211181cb a ++=由c b a <<,则有 222111ab c <<,从而 2222311181ac b a <++=,所以 242<a 。
又有2181a>,所以 82>a ,故92=a 或16。
若92=a ,则有72191811122=-=+cb ,由于21721b<,并且721112222=+>cb b ,所以 722>b ,144722<<b 。