2-2-2双曲线的几何性质练习题及答案
双曲线的简单几何性质(2) 同步练习-高二上学期数学人教A版(2019)选择性必修第一册
3.2.2双双双双双双双双双双(2)一、单选题1. 已知斜率为1的直线l 与双曲线2214x y -=的右支交于A ,B 两点,若||8AB =,则直线l 的方程为 ( )A. 21y x =B. 21y x =C. 35y x = D. 35y x =2. 已知圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,则双曲线C 的离心率的取值范围是( )A. 3)B. (1,2]C. 3,)+∞D. [2,)+∞3. 设12,F F 是双曲线22:-=145x y C 的两个焦点,O 为坐标原点,点P 在C 上且||3OP =,则12PF F 的面积为( )A. 3B.72C.532D. 54. 已知1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点,12||23F F =,600(,)M x y 是双曲线C 上的一点,若120MF MF ⋅<,则0y 的取值范围是( )A. 33(B. 33(C. 2222(33-D. 2323( 5. 若直线2y x =与双曲线22221(0,0)x y a b a b-=>>有公共点,则双曲线的离心率的取值范围为( )A. 5)B. 5,)+∞C. 5]D. 5,)+∞6. 已知双曲线方程为2214y x -=,过(1,0)P 的直线L 与双曲线只有一个公共点,则L 的条数共有( )A. 4条B. 3条C. 2条D. 1条7. 已知双曲线C :2212x y -=,若直线l :(0)y kx m km =+≠与双曲线C 交于不同的两点M ,N ,且M ,N 都在以(0,1)A -为圆心的圆上,则m 的取值范围是( )A. 1(,0)(3,)3-⋃+∞B. (3,)+∞C. (,0)(3,)-∞⋃+∞D. 1(,3)3-二、多选题8. 已知双曲线C :22221(0,0)x y a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作垂直于渐近线的直线l 交两渐近线于A ,B 两点,若223||||F A F B =,则双曲线C 的离心率可能为( )A.141B.6 C. 3 D. 59. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,左、右顶点分别为A 、B ,O 为坐标原点.点P 为双曲线上任意一点(异于实轴端点),过点1F 作12F PF ∠的平分线的垂线,垂足为Q ,连接.OQ 则下列结论正确的有.( )A. 2//OQ PFB. ||OQ a =C. 22||||2PF PF b ⋅=D. 2max()ABQ Sa =三、填空题10. 若直线0x y m -+=与双曲线2212y x -=交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,则m 的值为__________.11. 直线1y kx =+与双曲线2231x y -=相交于不同的两点,.A B 若点,A B 分别在双曲线的左、右两支上,则实数k 的取值范围为__________;若以线段AB 为直径的圆经过坐标原点,则实数k 的值为__________.12. 已知双曲线C :22145x y -=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,若||5AB =,则满足条件的l 的条数为__________.13. 已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F 的面积分别为1S ,2S ,则21S S =__________. 四、解答题14. 设A ,B 分别为双曲线22221(0,0)x y a b a b-=>>的左,右顶点,双曲线的实轴长为43 3.(1)求双曲线的方程; (2)已知直线32y x =-与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM ON tOD +=,求t 的值及点D 的坐标.15. 如图,平面上,P 、Q 两地间距离为4,O 为PO 中点,M 处为一基站,设其发射的电波为直线,测量得60MOQ ︒∠=,且O 、M 间距离为23N 正在运行,它在运行过程中始终保持到P 地的距离比到Q 地的距离大2(P 、O 、M 、N 及电波直线均共面),请建立适当的平面直角坐标系.(1)求出机器人N 运行的轨迹方程;(2)为了使机器人N 免受M 处发射的电波的影响(即机器人接触不到过点M 的直线),求出电波所在直线斜率k 的取值范围.16. 已知双曲线E :22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =,且点(2,3)P 为E 上一点.(1)求E 的标准方程;(2)设M 为E 在第一象限的任一点,过M 的直线与E 恰有一个公共点,且分别与E 的两条渐近线交于点A ,B ,设O 为坐标原点,证明:AOB 面积为定值.17. 已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,过点且斜率为1的直线l 交双曲线C 于A ,B 两点.且 3.OA OB ⋅=(1)求双曲线C 的标准方程.(2)设Q 为双曲线C 右支上的一个动点,F 为双曲线C 的右焦点,在x 轴的负半轴上是否存在定点.M 使得2QFM QMF ∠=∠?若存在,求出点M 的坐标;若不存在,请说明理由.答案和解析1.【答案】B解:设直线l 的方程为y x m =+,,由2214y x m x y =+⎧⎪⎨-=⎪⎩得2238440x mx m +++=, 则212443m x x +=,1283m x x +=-,又因为||8AB =,且A 、B 是直线l 与双曲线2214x y -=右支的交点, 所以,且803m->, 即,且0m <,解得221m =,且0m <, 所以21m =-,所以直线l 的方程为21.y x =- 故选.B2.【答案】B解:由题意,圆心到直线的距离231d k ==+,3k ∴= 圆223(1)4x y -+=的一条切线y kx =与双曲线2222:1(0,0)x y C a b a b -=>>没有公共点,与其中一条渐近线by x a=斜率比较即可, 3b a∴,2214b a+,∴双曲线C 的离心率的取值范围是(1,2].故答案选:.B11(,)A x y3.【答案】D解:由已知得2, 3.a c == 设(,)P x y ,由||3OP =,得229x y +=, 所以229x y =-,代入22145x y -=,解得5.3y =± 所以1212115||||6||5223F F PSF F y ==⨯⨯±=, 故选.D4.【答案】A解:由题意,3c =2a =1b =,∴双曲线方程为22 1.2x y -=120MF MF ⋅<,220030x y ∴+-<, 220022x y =+, 20310y ∴-<,03333y ∴-<<, 故选:.A5.【答案】B解:双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a=±,由双曲线与直线2y x =有交点, 则有2ba>, 即有22221()145c a b b e a a a+===+>+=则双曲线的离心率的取值范围为(5,).+∞ 故选:.B6.【答案】B解:由题意可得:双曲线2214y x -=的渐近线方程为:2y x =±, 点(1,0)P 是双曲线的右顶点,故直线1x =与双曲线只有一个公共点;过点(1,0)P 平行于渐近线2y x =±时,直线L 与双曲线只有一个公共点,有2条, 所以,过(1,0)P 的直线L 与双曲线只有一个公共点,这样的直线共有3条. 故选.B7.【答案】A解:设11(,)M x y ,22(,)N x y , 由,则①,且122412mkx x k+=-,21222(1)12m x x k -+=-, 设MN 的中点为00(,)G x y ,则02212km x k =-,0212my k=-, M ,N 在以A 为圆心的圆上,,G 为MN 的中点,AG MN ∴⊥,21212m k k km+-∴⋅=-,2231k m ∴=+②,由①②得103m -<<或3m >, 故选.A8.【答案】BC解:由题意得直线 l 垂直于渐近线by x a=,则2OA BF ⊥, 由双曲线性质得2||AF b =,||OA a =,由223||||F A F B =,得2||2||2AB AF b ==或2||4||4.AB AF b == 当2||2||2AB AF b ==时,如图:在Rt BOA 中,2tan b BOA a∠=, 由双曲线渐近线性质得21AOF BOF ∠=∠,2tan b AOF a∠=, 因此有22tan tan(2)tan(2)BOA AOF AOF π∠=-∠=-∠2222222tan 21tan 1bAOF b a b AOF a a⨯∠=-=-=-∠-,化简得2b a =,故离心率2213b e a=+=;当||4AB b =时,如图:在2Rt AOF 中,2tan b AOF a∠=,在Rt AOB 中,4tan b AOB a ∠=,因为22AOB AOF ∠=∠,利用二倍角公式,得2241()bb a b a a⨯=-, 化简得21()2b a =,故离心率2261.2b e a =+=综上所述,离心率e 的值为3或6.2故选.BC9.【答案】ABD解:如图所示:A 选项,延长1F Q 交2PF 于点C ,因为PQ 为12F PF ∠的平分线,1PQ F Q ⊥, 故Q 为1F C 的中点,1||||F Q QC =,又因为12||||FO F O =,即O 为12F F 的中点, 故OQ 为12F F C 的中位线, 所以2||2||F C OQ =,2//OQ F C , 又因为P 、2F 、C 共线, 故2//OQ PF ,故A 正确;B 选项,由定义可知12||||2PF PF a -=, 因为1||||F P PC =,而12||||2F P PF a -=, 故22||||||2PC PF F C a -==,而2||2||F C OQ =, 故1||22OQ a a =⨯=,故B 正确; C 选项,若212||||2PF PF b ⋅=,则222222212121212||||(||||)2||||444()PF PF PF PF PF PF a b c F F +=-+=+==,则1290F PF ∠=︒,题中无说明,故不成立,故C 错误; D 选项,因为||2AB a =,||OQ a =, 当OQ x ⊥轴时,2max1()22ABQ Sa a a =⨯⨯=,故D 正确.故选:.ABD10.【答案】1±解:设A ,B 两点的坐标分别为11(,)A x y ,22(,)B x y ,线段AB 的中点为00(,).M x y 由得22220(0)x mx m ---=∆>,则212122,2x x m x x m +==--,1202x x x m +∴==,002.y x m m =+= 点00(,)M x y 在圆225x y +=上,22(2)5m m ∴+=, 1.m ∴=±故答案为 1.±11.【答案】1±解:(1)由直线1y kx =+与双曲线2231x y -=,得22(3)220k x kx ---=, 因为A , B 在双曲线的左右两支上,所以230k -≠,2203k -<- 解得33;k -<<(2)假设存在实数k ,使得以线段AB 为直径的圆经过坐标原点,设11(,)A x y ,22(,)B x y ,则0OA OB ⋅=,即12120x x y y +=,1212(1)(1)0x x kx kx ∴+++=,即21212(1)()10k x x k x x ++++=,22222(1)1033kk k k k -∴+⋅+⋅+=--, 整理得21k =,符合条件,1.k ∴=±故答案为; 1.±12.【答案】3解:24a =,25b =,29c =,则(3,0)F ,若A 、B 都在右支上,当AB 垂直于x 轴时,将3x =代入22145x y -=得52y =±,则||5AB =,满足, 若A 、B 分别在两支上,2a =,∴两顶点的距离为2245+=<,∴满足||5AB =的直线有2条,且关于x 轴对称,综上满足条件的l 的条数为3. 故答案为:3.13.【答案】4解:离心率为2ce a==,即2c a =,3b a =, (,0)M a -,(0,)N b ,可得MN 的方程为0bx ay ab -+=,设(,)P m n ,1(,0)F c -,2(,0)F c ,可得22212(,)(,)PF PF c m n c m n m n c ⋅=---⋅--=+-, 由22222()m n m n +=+表示原点O 与P 的距离的平方, 显然OP 垂直于MN 时,||OP 最小, 由OP :ay x b=-,即33y x =-330x y a -+=, 可得33(,)44P a a -,即211332242S c a a =⋅⋅=, 当P 与N 重合时,可得||OP 最大, 可得2212232S c b a =⋅⋅=, 即有222123 4.3S a S a ==故答案为:4.14.【答案】解:(1)双曲线的渐近方程为by x a=±,焦点为(,0)F c ±, ∴焦点到渐近线的距离为,又243a =,23a ∴=,双曲线的方程为221.123x y -=(2)设点112200(,),(,),(,)M x y N x y D x y ,由得: 2163840x x -+=,1212123163,()4123x x y y x x ∴+=+=+-=, OM ON tOD +=,0,01212()(,)t x y x x y y ∴=++,有,又点00(,)D x y 在双曲线上, 2216312()()1123t t ∴-=,解得216t =,点D 在双曲线的右支上,0t ∴>,4t ∴=,此时点(43,3).D15.【答案】解:(1)如图所示,以点O 为坐标原点,以PQ 所在的直线为x 轴建立直角坐标系,则(2,0),(2,0)P Q -,设点(,)N x y ,则||||2||4NP NQ PQ -=<=, 所以动点N 是以点,P Q 为焦点的双曲线的右支, 由题得22,2,1a c a ===, 所以2413b =-=,所以动点N 的轨迹方程为221(1).3y x x -= (2)由题得点M 的坐标为3,3),设直线的方程为3(3)y k x -=,即:(3)3y k x =-+,联立直线和221(1)3y x x -=, 消去y 得2222(3)(236)633120k x k k x k k -+-+--=当230k -=时,若3k =当3k =当230k -≠时,由0∆<得2222(236)4(3)(63312)0k k k k k -----<,所以(3)(3)0k k --<, 32 3.k << 32 3.k <所以电波所在直线斜率k 的取值范围16.【答案】解:(1)当3ba =E 的标准方程为222213x y a a -=,代入(2,3),解得2 1.a =故E 的标准方程为221.3y x -=(2)直线斜率显然存在,设直线方程为y kx t =+,与2213y x -=联立得:222(3)230.k x ktx t -+++=由题意,3k ≠222244(3)(3)0k t k t ∆=--+=,化简得:2230.t k -+=设1122(,),(,)A x y B x y ,将y kx t =+与3y x =联立,解得13x k =-;与3y x =-联立,解得23x k=+ 212122113||||sin |2||2|sin1203|.22|3|AOBt S OA OB AOB x x x x k ︒∆=⋅⋅∠=⋅⋅==- 由2230t k -+=,3AOB S ∆∴AOB 3.17.【答案】解:(1)设双曲线C 的焦距为2c ,由双曲线C 的离心率为2知2c a =,所以223b c a a -=,从而双曲线C 的方程可化为222213x y a a-=,由得22226630x x a ---=,设11(,)A x y ,22(,)B x y , 因为,所以126x x +=,212332x x a ⋅=--, 因为3OA OB ⋅=,所以12121212(6)(6)3x x y y x x x x +=+=, 于是21212326()62(3)66632x x x x a ++=⨯--=,解得1a =, 所以双曲线C 的标准方程为2213y x -=; (2)假设存在,点(,0)(0)M t t <满足题设条件.由(1)知双曲线C 的右焦点为,设为双曲线C 右支上一点,当02x =时,因为290QFM QMF ︒∠=∠=, 所以45QMF ︒∠=,于是,所以 1.t =-当02x ≠时,00tan 2QF y QFM k x ∠=-=--,00tan QM y QMF k x t∠==-, 因为2QFM QMF ∠=∠,所以0002000221()y y x ty x x t⨯--=---, 将220033y x =-代入并整理得22200002(42)4223x t x t x tx t -++-=--++,所以,解得 1.t =-综上,满足条件的点M 存在,其坐标为。
2020-2021高中数学人教版1-1配套作业:2.2.2 双曲线的简单几何性质含解析
2020-2021学年高中数学人教A版选修1-1配套作业:2.2.2 双曲线的简单几何性质含解析第二章2。
22。
2.2A级基础巩固一、选择题1.以椭圆错误!+错误!=1的顶点为顶点,离心率为2的双曲线方程为(C)A.错误!-错误!=1B.错误!-错误!=1C.错误!-错误!=1或错误!-错误!=1D.以上都不对[解析]当顶点为(±4,0)时,a=4,c=8,b=43,双曲线方程为错误!-错误!=1;当顶点为(0,±3)时,a=3,c=6,b=3错误!,双曲线方程为错误!-错误!=1。
2.双曲线2x2-y2=8的实轴长是(C)A.2B.2错误!C.4D.42[解析]双曲线2x2-y2=8化为标准形式为x24-y28=1,∴a=2,∴实轴长为2a=4。
3.(全国Ⅱ文,5)若a〉1,则双曲线x2a2-y2=1的离心率的取值范围是(C)A.(错误!,+∞) B.(错误!,2 )C.(1,错误!) D.(1,2)[解析]由题意得双曲线的离心率e=错误!.∴c2=a2+1a2=1+错误!.∵a>1,∴0〈错误!<1,∴1<1+错误!〈2,∴1〈e〈错误!.故选C.4.(2018·全国Ⅲ文,10)已知双曲线C:错误!-错误!=1(a>0,b>0)的离心率为错误!,则点(4,0)到C的渐近线的距离为(D) A. 2 B.2C.错误!D.2错误![解析]由题意,得e=错误!=错误!,c2=a2+b2,得a2=b2。
又因为a〉0,b>0,所以a=b,渐近线方程为x±y=0,点(4,0)到渐近线的距离为错误!=2错误!,故选D.5.(2019·全国Ⅲ卷理,10)双曲线C:错误!-错误!=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若|PO|=|PF|,则△PFO的面积为(A)A.错误!B.错误!C.2错误!D.3错误![解析]双曲线错误!-错误!=1的右焦点坐标为(错误!,0),一条渐近线的方程为y=错误!x,不妨设点P在第一象限,由于|PO|=|PF|,则点P的横坐标为错误!,纵坐标为错误!×错误!=错误!,即△PFO 的底边长为错误!,高为错误!,所以它的面积为错误!×错误!×错误!=错误!。
双曲线专题 (优秀经典练习题及答案详解)
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。
2.2.2 双曲线的简单几何性质(1)
6 ,0
e 3 2 2
3
10 , 0
0 , 2 2
e 2
y x
0 ,
e
74
e 10
74 5
y
2 4
x
y=±3x
y
5 7
x
例题讲解
1 :求双曲线
9y2 16x2 144 的实半轴长,虚半轴长,
y2 x2 2 1 2 4 3
e 增大时,渐近线与实轴
的夹角增大
e是表示双曲线开口大小的一个量,e越大开口越大
(4)等轴双曲线的离心率e= ?2
离心率 e 2的双曲线是等轴双曲线
(5)
e
c a
c a b
2 2
2
y
在 a 、 b 、 c 、 e 四个参数中,知二可求
2 2
二
2
B2
c b a
c b a
A2
几何意义
( a ,0),(0,b),且 原 点 到 直 线 l的 距 离 为
解 : l : b x a y a b 0 ,
ab a b
2 2
=
3c 4 2 3 3 ,
则 3e -16e +16=0,解 得 e=2,或 e= 0<a<b e= 1+ b a
2 2
4
2
> 2 ,则 e=2.
小
结
椭 圆
双曲线
方程
a b c关系
2 x2 y 1 a> b >0) 2 ( 2 a b
x2 y2 1 ( a> 0 b>0) 2 b2 a
c 2 a 2 b 2 (a> b>0)
高中数学2.2双曲线2.2.2双曲线的简单几何性质第2课时双曲线几何性质的应用学案含解析新人教A版选修1_1
第2课时 双曲线几何性质的应用学习目标 1.了解直线与双曲线的位置关系.2.了解与直线、双曲线有关的弦长、中点等问题.知识点一 直线与双曲线的位置关系思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗? 答案 不能.梳理 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有两个公共点,此时称直线与双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线相离. 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=+k2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].1.若直线与双曲线交于一点,则直线与双曲线相切.( × ) 2.直线l :y =x 与双曲线C :2x 2-y 2=2有两个公共点.( √ )类型一 直线与双曲线的位置关系例1 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,且过点(6,1).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,求k 的取值范围. 考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 (1)由e =233,可得c 2a 2=43,所以a 2=3b 2,故双曲线方程可化为x 23b 2-y 2b2=1.将点P (6,1)代入双曲线C 的方程, 解得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)联立直线与双曲线方程,⎩⎨⎧y =kx +2,x 2-3y 2-3=0,消去y ,得(1-3k 2)x 2-62kx -9=0.由题意得,⎩⎪⎨⎪⎧Δ=72k 2--3k2-,1-3k 2≠0,解得-1<k <1且k ≠±33. 所以k 的取值范围为⎝⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫-33,33∪⎝ ⎛⎭⎪⎫33,1. 反思与感悟 (1)解决直线与双曲线的公共点问题,不仅要考虑判别式,更要注意二次项系数为0时,直线与渐近线平行的特殊情况.(2)双曲线与直线只有一个公共点的题目,应分两种情况讨论:双曲线与直线相切或直线与双曲线的渐近线平行.(3)注意对直线l 的斜率是否存在进行讨论.跟踪训练1 已知双曲线x 2-y 24=1,过点P (1,1)的直线l 与双曲线只有一个公共点,求直线l 的斜率k .考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 当直线l 的斜率不存在时, 直线l :x =1与双曲线相切,符合题意. 当直线l 的斜率存在时,设l 的方程为y =k (x -1)+1, 代入双曲线方程,得(4-k 2)x 2-(2k -2k 2)x -k 2+2k -5=0. 当4-k 2=0时,k =±2,直线l 与双曲线的渐近线平行,l 与双曲线只有一个公共点; 当4-k 2≠0时,令Δ=0,得k =52.综上,k =52或k =±2或k 不存在.类型二 弦长公式及中点弦问题 例2 双曲线的方程是x 24-y 2=1.(1)直线l 的倾斜角为π4,被双曲线截得的弦长为8311,求直线l 的方程;(2)过点P (3,1)作直线l ′,使其被双曲线截得的弦恰被P 点平分,求直线l ′的方程. 考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0, Δ=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=m 2+3.由弦长公式|AB |=1+k 2|x 1-x 2|,得 2×⎝ ⎛⎭⎪⎫-83m 2-m 2+3=8311, ∴42×m 2-33=8311,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5.(2)设直线l ′与双曲线交于A ′(x 3,y 3),B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2. 由x 23-4y 23=4,x 24-4y 24=4,两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3-y 4x 3-x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0.把此方程代入双曲线方程,整理得5y 2-10y +114=0,满足Δ>0,∴所求直线l ′的方程为3x -4y -5=0.反思与感悟 (1)使用弦长公式时,一般可以利用根与系数的关系,解决此类问题,一定不要忽略直线与双曲线相交这个条件,得到的k 要保证满足相交,即验证Δ>0.(2)与弦中点有关的问题主要用点差法.跟踪训练2 设双曲线的顶点是椭圆x 23+y 24=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)已知椭圆的焦点为(0,±1), 即是双曲线的顶点,因此设双曲线方程为y 2-mx 2=1(m >0),① 又直线15x -3y =-6,②A (x 1,y 1),B (x 2,y 2)是方程①②组成的方程组的两个解.由⎩⎨⎧y 2-mx 2=1,15x -3y =-6,得⎝ ⎛⎭⎪⎫53-m x 2+4153x +3=0, 当m =53时,显然不满足题意.当m ≠53时,则⎩⎪⎨⎪⎧x 1+x 2=-415353-m ,x 1x 2=353-m ,又OA ⊥OB ,∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,∴x 1x 2+y 1y 2=83x 1x 2+2153(x 1+x 2)+4=0,∴83×353-m +2153×⎝ ⎛⎭⎪⎪⎫-415353-m +4=0,∴m =13,经验证,此时Δ>0.∴双曲线的方程为y 2-x 23=1.(2)∵⎩⎪⎨⎪⎧x 1+x 2=-15,x 1x 2=94,∴|AB |=1+k 2×x 1+x 22-4x 1x 2=1+⎝⎛⎭⎪⎫1532×-152-4×94=4.类型三 由直线与双曲线相交求参数的取值范围(值)例3 已知中心在坐标原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2,所以b =1.故所求双曲线方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,可得(1-3k 2)x 2-62kx -9=0. 由直线l 与双曲线交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,故k 2≠13且k 2<1.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2,由OA →·OB →>2,得x 1x 2+y 1y 2>2. 又因为y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+2=-9k 21-3k 2+12k21-3k2+2=3k 21-3k2+2. 所以-91-3k 2+3k 21-3k 2+2>2,所以3k 2-91-3k 2>0.又因为k 2≠13且k 2<1,所以13<k 2<1.所以k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪⎪-1<k <-33或33<k <1. 反思与感悟 当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系式求解. 跟踪训练3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.∴当双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1).由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0, ∴⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线上的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD=12(|x 1|-|x 2|) =12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD=12(|x 1|+|x 2|) =12|x 1-x 2|. ∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2, 即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62. 又∵-2<k <2且k ≠±1, ∴当k =0或k =±62时,△AOB 的面积为 2.1.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围是( ) A .-2<k <2B .-1<k <1C .0<k <2D .-2<k <0考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 B3.直线y =x -1被双曲线2x 2-y 2=3所截得的弦的中点坐标是( ) A .(1,2) B .(-2,-1) C .(-1,-2)D .(2,1)考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 C解析 将y =x -1代入2x 2-y 2=3,得x 2+2x -4=0,由此可得弦的中点的横坐标为x 1+x 22=-22=-1,将x =-1代入直线方程y =x -1得y =-2,故选C. 4.过点A (3,-1)且被A 点平分的双曲线x 24-y 2=1的弦所在的直线方程是________.考点 直线与双曲线的位置关系 题点 直线与双曲线的其他问题 答案 3x +4y -5=0解析 易知所求直线的斜率存在,设为k ,设该直线的方程为y +1=k (x -3),代入x 24-y 2=1,消去y 得关于x 的一元二次方程(1-4k 2)x 2+(24k 2+8k )x -36k 2-24k -8=0, ∴-24k 2+8k 1-4k 2=6,∴k =-34,此时Δ>0,符合题意,∴所求直线方程为3x +4y -5=0.5.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则满足条件的直线l 有________条.考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 答案 3解析 当直线l 交双曲线于左右两支时,因为2a =2,而|AB |=4,故可有两条.若直线l 交双曲线于同支,当直线l 垂直于x 轴时,|AB |=4,故只有一条,所以满足条件的直线有3条.双曲线的综合问题常涉及其离心率、渐近线、范围等,与向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立关系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关关系求解.一、选择题1.双曲线C 与椭圆x 29+y 24=1有相同的焦距,一条渐近线的方程为x -2y =0,则双曲线C 的标准方程为( ) A.x 24-y 2=1 B.x 24-y 2=1或y 2-x 24=1 C .x 2-y 24=1或y 2-x 24=1D .y 2-x 24=1 考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 B2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A.2B.3C .2D .3 考点 双曲线的几何性质 题点 求双曲线的离心率答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).∵直线l 过双曲线的焦点且与对称轴垂直, ∴直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1,得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2, ∴y =±b 2a ,故|AB |=2b 2a .依题意2b2a=4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3. 3.双曲线y 2b 2-x 2a 2=1(a >b >0)的一条渐近线与椭圆x 2a 2+y 2b2=1交于点M ,N ,则|MN |等于( )A .a +b B.2aC.a 2+b 2 D.a 2-b 2考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 C解析 双曲线y 2b 2-x 2a 2=1的一条渐近线方程为y =ba x ,由⎩⎪⎨⎪⎧y =ba x ,x 2a 2+y 2b 2=1,得x =±22a . 所以|MN |=1+b 2a 2|x 2-x 1|=a 2+b 2a 2·2a=a 2+b 24.已知F 1,F 2分别为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2等于( ) A.14B.35C.34D.45 考点 双曲线的定义 题点 双曲线的焦点三角形 答案 C解析 由双曲线定义知,|PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=4 2.|F 1F 2|=2c =2 a 2+b 2=4.∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34. 5.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系答案 B解析 由双曲线x 2-y 24=1的渐近线方程为y =±2x ,点P (1,0)是双曲线的右顶点,则直线x =1与双曲线只有一个公共点,过点P (1,0)且平行于渐近线y =±2x 时,直线l 与双曲线只有一个公共点,有2条,故满足题意的直线共3条. 6.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (3,0),过点F 的直线交双曲线于A ,B 两点,若AB 的中点坐标为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 26-y 23=1 C.x 24-y 25=1 D.x 25-y 24=1 考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 C解析 设A (x 1,y 1),B (x 2,y 2), 则x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, 两式相减可得x 1+x 2x 1-x 2a 2=y 1+y 2y 1-y 2b 2.∵线段AB 的中点坐标为N (-12,-15), ∴-x 1-x 2a 2=-y 1-y 2b 2. ∴y 1-y 2x 1-x 2=4b 25a 2.∵直线的斜率为-15-12-3=1, ∴4b 25a 2=1. ∵右焦点为F (3,0),∴a 2+b 2=9,解得a 2=4,b 2=5,∴E 的方程为x 24-y 25=1. 7.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233 考点 双曲线的几何性质题点 双曲线范围的应用答案 A解析 由题意知a 2=2,b 2=1, 所以c 2=3,不妨设F 1(-3,0),F 2(3,0),所以MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0),所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0,所以-33<y 0<33. 8.如图,已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的离心率为( ) A.7B .4 C.233 D. 3考点 双曲线的几何性质题点 求双曲线的离心率答案 A解析 因为△ABF 2为等边三角形,不妨设|AB |=|BF 2|=|AF 2|=m ,A 为双曲线上一点,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,B 为双曲线上一点,则|BF 2|-|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,由∠ABF 2=60°,得∠F 1BF 2=120°,在△F 1BF 2中,由用余弦定理,得4c 2=4a 2+16a 2-2·2a ·4a ·cos120°,得c 2=7a 2,则e 2=7,即e =7.二、填空题 9.双曲线x 2a 2-y 29=1的离心率e =54,则其两条渐近线方程为________. 考点 双曲线性质的应用题点 以离心率或渐近线为条件的简单问题答案 y =±34x 解析 双曲线x 2a 2-y 29=1,∴b =3, 又双曲线的离心率e =c a =1+b 2a 2=1+9a 2=54, 解得a =4, ∴双曲线的两条渐近线方程为y =±b a x =±34x .10.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.考点 双曲线的定义题点 双曲线的焦点三角形答案 3215 解析 双曲线右顶点A (3,0),右焦点F (5,0),双曲线一条渐近线的斜率是43,则直线FB 的方程是y =43(x -5),与双曲线方程联立解得点B 的纵坐标为-3215,故△AFB 的面积为12×|AF ||y B |=12×2×3215=3215. 11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =2x 无交点,则离心率e 的取值范围是________. 考点 双曲线的几何性质题点 求双曲线离心率的取值范围答案 (1,5]解析 由题意可得,双曲线的渐近线的斜率ba≤2,所以e =1+⎝ ⎛⎭⎪⎫b a 2≤ 5. 又e >1,则离心率e 的取值范围是(1,5].12.过P (8,3)作双曲线9x 2-16y 2=144的弦AB ,且P 为弦AB 的中点,那么直线AB 的方程为________.考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 3x -2y -18=0解析 设A (x 1,y 1),B (x 2,y 2),由P (8,3)为弦AB 的中点,可得x 1+x 2=16,y 1+y 2=6,又9x 21-16y 21=144,9x 22-16y 22=144,两式相减,可得9(x 1+x 2)(x 1-x 2)-16(y 1+y 2)(y 1-y 2)=0,即为9(x 1-x 2)-6(y 1-y 2)=0,可得k AB =y1-y 2x 1-x 2=32,则直线AB 的方程为y -3=32(x -8),即3x -2y -18=0.三、解答题13.已知双曲线的渐近线方程为y =±2x ,且双曲线过点(-3,42).(1)求双曲线的方程;(2)若直线4x -y -6=0与双曲线相交于A ,B 两点,求|AB |的值.考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系解 (1)双曲线的渐近线方程为y =±2x ,则设双曲线的方程为x 2-y24=λ(λ≠0),把(-3,42)代入方程,得9-324=λ,解得λ=1,∴双曲线的方程为x 2-y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧4x -y -6=0,x 2-y24=1,整理得3x 2-12x +10=0,由根与系数的关系,得x 1+x 2=4,x 1x 2=103, 由弦长公式可知|AB |=+k 2x 1+x 22-4x 1x 2] =+⎝ ⎛⎭⎪⎫42-4×103=21023, ∴|AB |的值为21023. 四、探究与拓展 14.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作一条与其渐近线平行的直线l ,交C 于点P .若点P 的横坐标为2a ,求双曲线C 的离心率. 考点 双曲线的几何性质题点 求双曲线的离心率解 如图所示,不妨设与渐近线平行的直线l 的斜率为b a , 又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y 2b2=1, 化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去), 故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =b a (2a -c ),化简可得离心率e =c a =2+ 3.15.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点.(1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点? 考点 直线与双曲线的位置关系题点 弦长及弦中点问题解 由⎩⎪⎨⎪⎧ y =ax +1,3x 2-y 2=1,消去y , 得(3-a 2)x 2-2ax -2=0.由题意可得3-a 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.(1)|AB |=x 1-x 22+y 1-y 22=+a 2x 1+x 22-4x 1x 2] =+a 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 3-a 22+83-a 2=2+a 2-a 2|3-a 2|.(2)由题意知,OA ⊥OB ,则OA →·OB →=0.即x 1x 2+y 1y 2=0,∴x 1x 2+(ax 1+1)(ax 2+1)=0,即(1+a 2)x 1x 2+a (x 1+x 2)+1=0,∴(1+a 2)·-23-a 2+a ·2a3-a 2+1=0,解得a =±1.经检验当a =±1时,以AB 为直径的圆经过坐标原点.。
课时作业6:2.2.2 双曲线的简单几何性质
2.2.2 双曲线的简单几何性质基础梳理1.直线与双曲线的位置关系.一般地,设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),② 把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线的渐近线平行,直线与双曲线C 相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有________公共点,此时称直线与双曲线相交;Δ=0⇒直线与双曲线有________公共点,此时称直线与双曲线相切;Δ<0⇒直线与双曲线________公共点,此时称直线与双曲线相离.想一想:直线和双曲线只有一个公共点,直线一定和双曲线相切吗?2.弦长公式.斜率为k (k ≠0)的直线l 与双曲线相交于A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2(y 1+y 2)2-4y 1y 2.想一想:当直线的斜率k 不存在或为0时,如何求弦长?自测自评1.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( ) A .y =±54x B .y =±45x C .y =±43x D .y =±34x 2.设F 1和F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三角形的三个顶点,则双曲线的离心率为( )A.32 B .2 C.52 D .33.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4条B .3条C .2条D .1条基础巩固1.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A .y =±2x B .y =±2xC .y =±22xD .y =±12x 2.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) A.53 B.43 C.54 D.323.若圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( )A.x 29-y 272=1B.y 29-x 272=1 C.x 216-y 281=1 D.y 281-x 216=1 4.若双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),则双曲线的方程是______________.能力提升5.若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( ) A .实半轴长相等 B .虚半轴长相等C .离心率相等D .焦距相等6.设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0个 B .1个 C .2个 D .3个7.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是__________. 8.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为__________,渐近线方程为__________.9.双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,试求双曲线方程与椭圆的方程.10.P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC →=λOA →+OB →,求λ的值.答 案基础梳理1.【答案】(2)两个 一个 没有想一想:【解析】不一定.当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.2.想一想:【解析】把直线的方程直接代入双曲线方程,求出交点坐标,再求其弦长.自测自评1.【解析】依题意,得e =c a =53.设a =3k ,c =5k ,则b 2=c 2-a 2=25k 2-9k 2=16k 2,则b =4k .又双曲线焦点在y 轴上,∴其渐近线方程为y =±34x . 【答案】D2.【答案】B3.【解析】过P 与渐近线平行的直线与双曲线只有一个公共点,另外x =1与双曲线只有一个公共点,∴l 的条数是3.【答案】B基础巩固1.【解析】由题意得b =1,c =3,所以a =2,所以双曲线的渐近线方程为y =±b ax ,即y =±22x .故选C. 【答案】C2.【解析】双曲线焦点在x 轴,由渐近线方程可得b a =43,可得e =c a =32+423=53. 【答案】A3.【解析】因为圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,所以A ,B 是双曲线的顶点.令x =0,则y =-3或y =3,A (0,-3),B (0,3),在双曲线中a =3,2c =3×2a =18,所以c =9,得b 2=81-9=72,因此,双曲线的标准方程是y 29-x 272=1.故选B. 【答案】B4.【解析】由渐近线方程知b a=3,又c =10, a 2+b 2=c 2⇒a 2+9a 2=10⇒a 2=1,b 2=9.【答案】x 2-y 29=1能力提升5.【解析】∵0<k <5,∴5-k >0,16-k >0.对于双曲线:x 216-y 25-k=1,其焦距是25-k +16=221-k ;对于双曲线:x 216-k -y 25=1,其焦距是216-k +5=221-k .故焦距相等. 【答案】D6.【解析】由方程t 2cos θ+t sin θ=0,解得t 1=0,t 2=-tan θ,不妨设点A (0,0),B (-tan θ,tan 2θ),则过这两点的直线方程为y =-x tan θ,该直线恰是双曲线x 2cos 2θ-y 2sin 2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A.【答案】A7.【解析】由渐近线方程为y =±m 2x =±32x ,得m =3,c =7,且焦点在x 轴上. 【答案】(±7,0)8.【解析】椭圆的焦点坐标为(4,0),(-4,0),故c =4,且满足c a=2,故a =2,b =c 2-a 2=23,所以双曲线的渐近线方程为y =±b ax =±3x . 【答案】(4,0),(-4,0) y =±3x9.【答案】解:由共同的焦点F 1(0,-5),F 2(0,5),可设椭圆方程为y 2a 2+x 2a 2-25=1(a 2>25); 双曲线方程为y 2b 2-x 225-b 2=1(0<b 2<25), 点P (3,4)在椭圆上,所以16a 2+9a 2-25=1,得a 2=40, 双曲线过点P (3,4)的渐近线为y =b 25-b 2x , 即4=b 25-b 2×3,b 2=16, 所以椭圆方程为y 240+x 215=1,双曲线方程为y 216-x 29=1. 10.【答案】解:(1)由点P 在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1, 由题意又有y 0x 0-a ·y 0x 0+a =15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2,则e =c a =305. (2)联立方程得⎩⎪⎨⎪⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=5c 2,x 1x 2=35b 24. 设OC →=(x 3,y 3),由OC →=λOA →+OB →得⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2. 又C 为双曲线E 上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,又A (x 1,y 1),B (x 2,y 2)在双曲线E 上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2. 又x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得:λ2+4λ=0,解出λ=0或λ=-4.。
2.2.2双曲线的简单几何性质
b y=±- ax
a y=±- bx
半轴长
离心率 a,b,c的关系
半实轴长为a, 半虚轴长为b. c e a c2=b2+a2
例3 求双曲线9y2–16x2=144的实半轴长和虚半轴长、焦点坐标、 离心率及渐进线方程.
例4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋 转所成的曲面,它的最小半径为12m,上口半径为13m,下口 半径为25m,高为55m,试选择适当的坐标系,求出此双曲线 的方程。
4.渐近线:
b 0 ,即y=±- ax
y
B2 A1
O
当a=b时,双曲线叫做等轴双曲线。 5.离心率: 双曲线的焦距与实轴长的比 称为双曲线的离心率,
c 用e表示,即 e a
a
B1
A2
b
x
[1]离心率的取值范围:e>1
[2]离心率对双曲线形状的影响:
渐近线与双曲 线永不相交
e越大,c就越大,从而b就越大,双曲线就开口越阔。
(3)焦点为(0, 6),(0, -6),且过点(0, 4)
2.2.2 椭圆的简单几何性质
x y - 2 =1 2 a b
1.范围: 两直线x=±a的外侧 2.对称性:
A1
O
2
2
y
B2
a
B1
A2
b
x
双曲线是轴对称图形,也是中心对称图形。坐 标轴是它的对称轴,坐标原点是它的对称中心。 双曲线的对称中心叫双曲线的中心。 3.顶点: A1(-a,0),A2(a,0)叫做双曲线的顶点。 线段A1A2叫做双曲线的实轴,ห้องสมุดไป่ตู้B1B2 叫做双曲线 的虚轴。它们的长分别为2a和2b。
F(±c,0)
1、2-2-2双曲线的几何性质
选修1-1 2.2.1双曲线的几何性质一、选择题1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1D.x 26-y 210=1 [答案] A[解析] ∵e =ca=2,由c =4得a =2.所以b 2=c 2-a 2=12.因为焦点在x 轴上,所以双曲线方程为x 24-y 212=1.2.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( ) A .-14B .-4C .4D.14[答案] A[解析] 由双曲线方程mx 2+y 2=1,知m <0,则双曲线方程可化为y 2-x 2-1m=1,则a 2=1,a =1,又虚轴长是实轴长的2倍,∴b =2,∴-1m =b 2=4,∴m =-14.故选A.3.如果双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( )A. 2 B .2 C. 3D .2 2[答案] A[解析] ∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,又两渐近线互相垂直,∴a =b ,c=a 2+b 2=2a ,∴e =ca= 2.4.双曲线x 2-y 2=-3的( )A .顶点坐标是(±3,0),虚轴端点坐标是(0,±3)B .顶点坐标是(0,±3),虚轴端点坐标是(±3,0)C .顶点坐标是(±3,0),渐近线方程是y =±xD .虚轴端点坐标是(0,±3),渐近线方程是x =±y [答案] B[解析] 双曲线x 2-y 2=-3可化为y 23-x 23=1,∴a =3,b =3,顶点坐标为(0,±3),虚轴端点坐标是(±3,0), ∴它的渐近线方程为y =±a b x =±34x .5.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x[答案] D[解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34, ∴它的渐近线方程为y =±a b x =±34x .6.双曲线4x 2+my 2=4m 的虚轴长是( ) A .2m B .-2m C .2mD .2-m[答案] D[解析] 双曲线4x 2+my 2=4m 可化为:x 2m +y 24=1,∴m <0,∴a 2=4,b 2=-m ,b =-m ,2b =2-m . 7.双曲线x 2a 2-y 2b 2=1与x 2b 2-y 2a 2=1具有( )A .相同的焦点B .相同的虚轴长C .相同的渐近线D .相同的实轴长[答案] A[解析] ∵c 2=a 2+b 2,∴c =a 2+b 2, ∴双曲线x 2a 2-y 2b 2=1与x 2b 2-y 2a2=1有相同的焦点.8.方程x 2+(k -1)y 2=k +1表示焦点在x 轴上的双曲线,则k 的取值范围是( ) A .k <-1 B .k >1C .-1<k <1D .k <-1或k >1[答案] C[解析] 方程x 2+(k -1)y 2=k +1,可化为x 2k +1+y 2k +1k -1=1,∵双曲线的焦点在x 轴上,∴k +1>0且k +1k -1<0,∴-1<k <1.9.(2009·四川文,8)已知双曲线x 22-y 2b 2=1(b >0)的左右焦点分别为F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则PF 1→·PF 2→=( )A .-12B .-2C .0D .4[答案] C[解析] 本小题主要考查双曲线的方程及双曲线的性质. 由题意得b 2=2,∴F 1(-2,0),F 2(2,0),又点P (3,y 0)在双曲线上,∴y 20=1,∴PF 1→·PF 2→=(-2-3,-y 0)·(2-3,-y 0) =-1+y 20=0,故选C.10.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4D .2[答案] C[解析] ∵焦点坐标为(±5,0), 渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.二、填空题11.双曲线x 24-y 28=1的渐近线方程是________.[答案] y =±2x[解析] 由题意知a =2,b =22,∴双曲线x 24-y 28=1的渐近线为y =±2x .12.椭圆x 24+y 2a 2=1与双曲线x 2a 2-y 2=1焦点相同,则a =________.[答案]62[解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 13.双曲线的中心在原点,离心率e =3,焦距为6,则双曲线方程为__________.[答案] x 2-y 28=1或y 2-x 28=1 [解析] ∵焦距为6,∴c =3,由e =3得a =1,所以b 2=c 2-a 2=8.由于焦点不确定在x 轴或y 轴,所以双曲线方程为x 2-y 28=1或y 2-x 28=1. 14.(2008·安徽)已知双曲线x 2n -y 212-n =1的离心率为3,则n =________.[答案] 4[解析] ①当⎩⎪⎨⎪⎧n >012-n >0时,则有12n =(3)2,∴n =4.经验证,符合题意.②当⎩⎪⎨⎪⎧n <012-n <0时无解.三、解答题15.求一条渐近线方程是3x +4y =0,一个焦点是(4,0)的双曲线标准方程. [解析] ∵双曲线的一条渐近线方程为 3x +4y =0,∴设双曲线的方程为x 216-y 29=λ,由题意知λ>0,∴16λ+9λ=16,∴λ=1625.∴所求的双曲线方程为x 225625-y 214425=1.16.求双曲线25y 2-4x 2+100=0的实半轴长、虚半轴长、焦点坐标、顶点坐标、离心率及渐近线方程.[解析] 双曲线方程25y 2-4x 2+100=0可化为x 225-y 24=1.∴实半轴长a =5,虚半轴长b =2,焦点坐标为(29,0).(-29,0),顶点坐标为(0,-5),(0,5),离心率为e =c a =295,渐近线方程为y =±25x .17.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求此双曲线的方程;(2)若点M (3,m )在双曲线上,求证MF 1⊥MF 2; (3)求△F 1MF 2的面积.[解析] (1)因为e =2,所以双曲线为等轴双曲线,所以可设双曲线方程为x 2-y 2=λ(λ≠0),因为过点(4,-10),所以16-10=λ,即λ=6,所以双曲线方程为x 2-y 2=6.(2)易知F 1(-23,0),F 2(23,0),所以kMF 1=m 3+23,kMF 2=m3-23,所以kMF 1·kMF 2=m 29-12=-m 23,因为点(3,m )在双曲线上,所以9-m 2=6,所以,m 2=3,故kMF 1·kMF 2=-1,所以MF 1⊥MF 2.(3)在△F 1MF 2中,底|F 1F 2|=43,F 1F 2上的高h =|m |=3,所以S △F 1MF 2=12|F 1F 2|·|m |=6.18.已知动圆与⊙C 1:(x +3)2+y 2=9外切,且与⊙C 2:(x -3)2+y 2=1内切,求动圆圆心M 的轨迹方程.[解析] 设动圆圆心M 的坐标为(x ,y ),半径为r , 则|MC 1|=r +3,|MC 2|=r -1,∴|MC 1|-|MC 2|=r +3-r +1=4<|C 1C 2|=6,由双曲线的定义知,点M 的轨迹是以C 1、C 2为焦点的双曲线的右支,且2a =4,a =2, 双曲线的方程为:x 24-y 25=1(x ≥2).。
2-2-2 双曲线的简单几何性质
能力拓展提升一、选择题11.已知方程ax 2-ay 2=b ,且a 、b 异号,则方程表示( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线 [答案] D[解析] 方程变形为x 2b a -y 2b a =1,由a 、b 异号知ba <0,故方程表示焦点在y 轴上的双曲线,故答案为D.12.(2013·新课标Ⅰ文,4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14x B .y =±13x C .y =±12x D .y =±x[答案] C[解析] 本题考查双曲线渐近线方程.由题意得c a =52,即c =52a ,而c 2=a 2+b 2,所以a 2+b 2=54a 2,b 2=14a 2,b 2a 2=14,所以b a =12,渐近线的方程为y =±12x ,选C.在解答此类问题时,要充分利用a 、b 、c 的关系.13.(2012~2013学年度浙江金华十校高二期末测试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±32x B .y =±12x C .y =±2x D .y =±233x[答案] A[解析] 由题意得a 2-b 2a =12, ∴3a 2=4b 2,∴b a =32.∴双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±32x .14.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54x B .y =±45x C .y =±43x D .y =±34x[答案] D[解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,又∵双曲线的焦点在y 轴上, ∴双曲线的渐近线方程为x =±b a y ,即x =±43y , ∴所求双曲线的渐近线方程为y =±34x . 二、填空题15.若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则b 等于________.[答案] 1[解析] 双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±b 2x ,∴b 2=12,即b =1.16.已知双曲线与椭圆x 2+4y 2=64共焦点,它的一条渐近线方程为x -3y =0,则双曲线的方程为________.[答案] x 236-y 212=1[解析] 解法一:由于双曲线的一条渐近线方程为x -3y =0,则另一条为x +3y =0,可设双曲线方程为x 2-3y 2=λ(λ>0),即x 2λ-y 2λ3=1由椭圆方程x 264+y 216=1可知 c 2=a 2-b 2=64-16=48双曲线与椭圆共焦点,则λ+λ3=48 ∴λ=36.故所求双曲线方程为x 236-y 212=1.解法二:双曲线与椭圆共焦点,可设双曲线方程为 x 264-λ-y 2λ-16=1 由渐近线方程x -3y =0可得λ-1664-λ=13∴λ=28故所求双曲线方程为x 236-y 212=1.解法三:椭圆x 264+y 216=1中,c 2=64-16=48.设双曲线的实半轴长,虚半轴长分别为a 、b ,则由条件知⎩⎨⎧a 2+b 2=48b a =13,∴⎩⎪⎨⎪⎧a 2=36b 2=12,∴双曲线方程为x 236-y 212=1. 三、解答题17.设双曲线x 2a 2-y 2b 2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,且原点到直线l 的距离为34c ,求双曲线的离心率.[分析] 由截距式得直线l 的方程,再由双曲线中a 、b 、c 的关系及原点到直线l 的距离建立等式,从而求出ca .[解析] 由l 过两点(a,0)、(0,b ),得 l 的方程为bx +ay -ab =0.由原点到l 的距离为34c ,得ab a 2+b 2=34c .将b =c 2-a 2代入,平方后整理,得16⎝ ⎛⎭⎪⎫a 2c 22-16×a 2c 2+3=0.令a2c 2=x , 则16x 2-16x +3=0,解得x =34或x =14.由e =ca 有e =1x .故e =233或e =2.因0<a <b ,故e =ca =a 2+b 2a =1+b 2a 2>2,所以应舍去e =233,故所求离心率e =2.18.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),F 1(-c,0),F 2(c,0).因为双曲线过点P (42,-3), 所以32a 2-9b 2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 所以c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去).所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1.。
高中数学第二章2.2双曲线2.2.2双曲线的简单几何性质讲义(含解析)新人教A版选修1_1
2.2.2 双曲线的简单几何性质预习课本P49~53,思考并完成以下问题1.双曲线有哪些几何性质?2.双曲线的顶点、实轴、虚轴分别是什么?3.双曲线的渐近线、等轴双曲线的定义分别是什么?[新知初探]1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c性质范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 轴实轴:线段A1A2,长:2a;2.等轴双曲线实轴和虚轴等长的双曲线叫等轴双曲线,它的渐近线是y =±x ,离心率为e = 2. [点睛] 对双曲线的简单几何性质的几点认识 (1)双曲线的焦点决定双曲线的位置;(2)双曲线的离心率和渐近线刻画了双曲线的开口大小,离心率越大,双曲线的开口越大,反之亦然.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)双曲线x 22-y 24=1的焦点在y 轴上( )(2)双曲线的离心率越大,双曲线的开口越开阔( ) (3)以y =±2x 为渐近线的双曲线有2条( ) 答案:(1)× (2)√ (3)×2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)答案:B3.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 答案:B4.(2017·全国卷Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.答案:5双曲线的几何性质[典例] 22虚轴长、离心率和渐近线方程.[解] 双曲线的方程化为标准形式是x 29-y 24=1,∴a 2=9,b 2=4,∴a =3,b =2,c =13. 又双曲线的焦点在x 轴上, ∴顶点坐标为(-3,0),(3,0), 焦点坐标为(-13,0),(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =ca =133,渐近线方程为y =±23x .由双曲线的方程研究几何性质的解题步骤(1)把双曲线方程化为标准形式是解决本题的关键; (2)由标准方程确定焦点位置,确定a ,b 的值;(3)由c 2=a 2+b 2求出c 值,从而写出双曲线的几何性质. [注意] 求性质时一定要注意焦点的位置. 1.已知双曲线x 29-y 216=1与y 216-x 29=1,下列说法正确的是( )A .两个双曲线有公共顶点B .两个双曲线有公共焦点C .两个双曲线有公共渐近线D .两个双曲线的离心率相等解析:选C 双曲线x 29-y 216=1的焦点和顶点都在x 轴上,而双曲线y 216-x 29=1的焦点和顶点都在y 轴上,因此可排除选项A 、B ;双曲线x 29-y 216=1的离心率e 1=9+169=53,而双曲线y 216-x 29=1的离心率e 2=16+916=54,因此可排除选项D ;易得C 正确. 2.(2017·北京高考)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.解析:由双曲线的标准方程可知a 2=1,b 2=m , 所以e =1+b 2a2=1+m =3,解得m =2. 答案:2由双曲线的几何性质求标准方程[典例] (1)(2017·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1(2)过点(2,-2)且与x 22-y 2=1有相同渐近线的双曲线的标准方程为________.[解析] (1)由e =2知,双曲线为等轴双曲线, 则其渐近线方程为y =±x ,故由P (0,4),知左焦点F 的坐标为(-4,0), 所以c =4,则a 2=b 2=c 22=8.故双曲线的方程为x 28-y 28=1.(2)法一:当焦点在x 轴上时,由于b a =22. 故可设方程为x 22b 2-y 2b2=1,代入点(2,-2)得b 2=-2(舍去); 当焦点在y 轴上时,可知a b =22,故可设方程为y 2a 2-x 22a2=1,代入点(2,-2)得a 2=2. 所以所求双曲线方程为y 22-x 24=1.法二:因为所求双曲线与已知双曲线x 22-y 2=1有相同的渐近线,故可设双曲线方程为x 22-y 2=λ(λ≠0),代入点(2,-2)得λ=-2,所以所求双曲线的方程为x 22-y 2=-2,即y 22-x 24=1. [答案] (1)B (2)y 22-x 24=1求双曲线的标准方程的方法与技巧(1)一般情况下,求双曲线的标准方程关键是确定a ,b 的值和焦点所在的坐标轴,若给出双曲线的顶点坐标或焦点坐标,则焦点所在的坐标轴易得.再结合c 2=a 2+b 2及e =c a列关于a ,b 的方程(组),解方程(组)可得标准方程.(2)如果已知双曲线的渐近线方程为y =±b a x ,那么此双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).求适合下列条件的双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦点在x 轴上,离心率为2,且过点(-5,3); (3)顶点间距离为6,渐近线方程为y =±32x .解:(1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知2b =12,c a =54且c 2=a 2+b 2,∴b =6,c =10,a =8,∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵e =ca=2,∴c =2a ,b 2=c 2-a 2=a 2. 又∵焦点在x 轴上,∴设双曲线的标准方程为x 2a 2-y 2a2=1(a >0).把点(-5,3)代入方程,解得a 2=16. ∴双曲线的标准方程为x 216-y 216=1.(3)设以y =±32x 为渐近线的双曲线方程为x 24-y 29=λ(λ≠0), 当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-4y 281=1或y 29-x 24=1.双曲线的离心率[典例] 过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.[解析] 如图所示,不妨设与渐近线平行的直线l 的斜率为b a,又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a2a 2-y 2b2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去),故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =ba(2a -c ),化简可得离心率e =c a=2+ 3.[答案] 2+ 3求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =c a求解,若已知a ,b ,可利用e = 1+⎝ ⎛⎭⎪⎫b a2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =c a,转化为关于e 的n 次方程求解.[活学活用]1.如果双曲线x 2a 2-y 2b2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________.解析:如图,因为AO =AF ,F (c,0),所以x A =c 2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =ca >2.答案:(2,+∞)2.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,|F 1F 2|=2c ,则在△PF 1F 2中,∠PF 1F 2=30°,由余弦定理得(2a )2=(4a )2+(2c )2-2×(4a )×(2c )×cos 30°,整理得(e -3)2=0,所以e = 3.答案: 3层级一 学业水平达标1.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2解析:选C 双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,从而2a =4,故选C.2.已知双曲线的实轴和虚轴等长,且过点(5,3),则双曲线方程为( ) A.x 225-y 225=1 B.x 29-y 29=1C.y 216-x 216=1 D.x 216-y 216=1解析:选D 由题意知,所求双曲线是等轴双曲线,设其方程为x 2-y 2=λ(λ≠0),将点(5,3)代入方程,可得λ=52-32=16,所以双曲线方程为x 2-y 2=16,即x 216-y 216=1.3.(2017·全国卷Ⅱ)若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)解析:选C 由题意得双曲线的离心率e =a 2+1a .即e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a2<1,∴1<1+1a2<2,∴1<e < 2.4.若一双曲线与椭圆4x 2+y 2=64有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程为( )A .y 2-3x 2=36 B .x 2-3y 2=36 C .3y 2-x 2=36D .3x 2-y 2=36解析:选A 椭圆4x 2+y 2=64可变形为x 216+y 264=1,a 2=64,c 2=64-16=48,∴焦点为(0,43),(0,-43),离心率e =32, 则双曲线的焦点在y 轴上,c ′=43,e ′=23, 从而a ′=6,b ′2=12,故所求双曲线的方程为y 2-3x 2=36.5.已知双曲线x 2a2-y 2=1(a >0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的渐近线方程为( )A .y =±35xB .y =±53xC .y =±34xD .y =±43x解析:选D 由双曲线方程为x 2a2-y 2=1,知b 2=1,c 2=a 2+1,∴2b =2,2c =2a 2+1.∵实轴长、虚轴长、焦距长成等差数列,∴2a +2c =4b =4,∴2a +2a 2+1=4,解得a =34.∴双曲线的渐近线方程为y =±43x .6.已知点(2,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:由题意知4a 2-9b2=1,c 2=a 2+b 2=4,解得a =1,所以e =c a=2. 答案:27.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (25,0),且离心率为e =52,则双曲线的标准方程为________.解析:由焦点坐标,知c =25,由e =c a =52,可得a =4,所以b =c 2-a 2=2,则双曲线的标准方程为x 216-y 24=1. 答案:x 216-y 24=18.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析:法一:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3),∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上, 故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1. 答案:x 24-y 2=19.求满足下列条件的双曲线的标准方程.(1)与双曲线y 24-x 23=1具有相同的渐近线,且过点M (3,-2);(2)过点(2,0),与双曲线y 264-x 216=1离心率相等;(3)与椭圆x 225+y 216=1有公共焦点,离心率为32.解:(1)设所求双曲线方程为y 24-x 23=λ(λ≠0).由点M (3,-2)在双曲线上得44-93=λ,得λ=-2.故所求双曲线的标准方程为x 26-y 28=1.(2)当所求双曲线的焦点在x 轴上时, 可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x 24-y 2=1;当所求双曲线的焦点在y 轴上时, 可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去).综上可知,所求双曲线的标准方程为x 24-y 2=1.(3)法一:由椭圆方程可得焦点坐标为(-3,0),(3,0),即c =3且焦点在x 轴上.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).因为e =c a =32,所以a =2,则b 2=c 2-a 2=5,故所求双曲线的标准方程为x 24-y 25=1.法二:因为椭圆焦点在x 轴上,所以可设双曲线的标准方程为x 225-λ-y 2λ-16=1(16<λ<25).因为e =32,所以λ-1625-λ=94-1,解得λ=21.故所求双曲线的标准方程为x 24-y 25=1.10.设双曲线x 2a 2-y 2b2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,已知原点到直线l 的距离为34c ,求双曲线的离心率. 解:直线l 的方程为x a +yb=1,即bx +ay -ab =0. 于是有|b ·0+a ·0-ab |a 2+b 2=34c ,所以ab =34c 2,两边平方,得a 2b 2=316c 4. 又b 2=c 2-a 2,所以16a 2(c 2-a 2)=3c 4, 两边同时除以a 4,得3e 4-16e 2+16=0, 解得e 2=4或e 2=43.又b >a ,所以e 2=a 2+b 2a 2=1+b 2a2>2,则e =2.于是双曲线的离心率为2.层级二 应试能力达标1.若双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线方程为y =-x ,则双曲线的方程为( )A .y 2-x 2=96 B .y 2-x 2=160 C .y 2-x 2=80D .y 2-x 2=24解析:选D 设双曲线方程为x 2-y 2=λ(λ≠0),因为双曲线与椭圆有相同的焦点,且焦点为(0,±43),所以λ<0,且-2λ=(43)2,得λ=-24.故选D.2.若中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.52解析:选D 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).由题意,知过点(4,-2)的渐近线方程为y =-b a x ,所以-2=-b a×4,即a =2b .设b =k (k >0),则a =2k ,c =5k ,所以e =c a =5k 2k =52.故选D. 3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1解析:选B 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b25a2,又AB 的斜率是-15-0-12-3=1,所以4b 2=5a 2,代入a 2+b 2=9得a 2=4,b 2=5, 所以双曲线标准方程是x 24-y 25=1.4.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A. 5 B .2 C. 3D. 2解析:选D 不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为()2a ,3a .∵M 点在双曲线上,∴4a 2a 2-3a2b2=1,a =b ,∴c =2a ,e =c a= 2.故选D.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是________________________________________________________________________.解析:由题意,知b a ≥3,则b 2a 2≥3,所以c 2-a 2≥3a 2,即c 2≥4a 2,所以e 2=c 2a2≥4,所以e ≥2.答案:[2,+∞)6.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215,所以B ⎝ ⎛⎭⎪⎫175,-3215.所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 答案:32157.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程.解:(1)由已知得c =2,e =2,所以a =1,b = 3.所以所求的双曲线方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1,整理得2x 2-2mx -m 2-3=0.(*)设MN 的中点为(x 0,y 0),则x 0=x 1+x 22=m2,y 0=x 0+m =3m2,所以线段MN 垂直平分线的方程为y -3m 2=-⎝ ⎛⎭⎪⎫x -m 2,即x +y -2m =0,与坐标轴的交点分别为(0,2m ),(2m,0),可得12|2m |·|2m |=4,得m 2=2,m =±2,此时(*)的判别式Δ>0,故直线l 的方程为y =x ± 2.8.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 为坐标原点,且△AOB 的面积是2,求实数k 的值.解:(1)由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1消去y ,得(1-k 2)x 2+2kx -2=0.①由直线l 与双曲线C 有两个不同的交点,得⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.即k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由方程①,得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.因为直线l :y =kx -1恒过定点D (0,-1),则当x 1x 2<0时,S △AOB =S △OAD +S △OBD =12|x 1-x 2|=2;当x 1x 2>0时,S △AOB =|S △OAD -S △OBD |=12|x 1-x 2|= 2.综上可知,|x 1-x 2|=22,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),可知-2<k <2且k ≠±1,故k =0或k =±62都符合题意.。
2.2.2 双曲线的简单几何性质
2.双曲线的渐近线 (1)求法:令常数项为零,因式分解即得. (2)用法:①由渐近线方程得到ba或ab的值;②利用渐近线方程设出 双曲线的方程. (3)双曲线的焦点到其渐近线的距离为 b(虚半轴的长). (4)等轴双曲线的渐近线方程为 y=±x.
◎已知双曲线方程为 x2-y2=1,双曲线的左支上一点 P(a,b)到 直线 y=x 的距离是 2,求 a+b 的值.
解析: OA=a,OB=b,AB=c, 在△OAB 中,有12ab=12·43c·c= 83c2, 又 a2+b2=c2,∴a2(c2-a2)=136c4,即 e2-1=136e4, ∴3e4-16e2+16=0,解得 e=2 或 e=233, ∵0<a<b,∴a2<c2-a2, ∴e> 2,∴e=233应舍去,∴e=2.
解析: 由双曲线方程 mx2+y2=1,知 m<0, 则双曲线方程可化为 y2--x2m1 =1, 则 a2=1,a=1,又虚轴长是实轴长的 2 倍, ∴b=2,∴-m1 =b2=4, ∴m=-14.
答案: -14
4.求满足下列条件的双曲线的标准方程: (1)焦点是(-4,0),(4,0),过点(2,0); (2)离心率为54,半虚轴长为 2.
• 2.2.2 双曲线的简单几何性质
• 第1课时 双曲线的简单几何性质
• 1.掌握双曲线的简单几何性质. • 2.了解双曲线的渐近性及渐近线的概念.
• 1.本节的重点是双曲线的几何性质的理解和应用,难点是渐近 线的理解和应用.
• 2.双曲线的几何性质是考查的重点,其中离心率、渐近线是考 查的热点.
[规范作答] 设 F1(c,0),将 x=c 代入双曲线的方程得 ac22-by22=1,那么 y=±ba2,3 分 由|PF2|=|QF2|,∠PF2Q=90°,知|PF1|=|F1F2|, ∴ba2=2c,∴b2=2ac.6 分 ∴c2-2ac-a2=0,∴ac2-2×ac-1=0.8 分 即 e2-2e-1=0,∴e=1+ 2或 e=1- 2(舍去).10 分 所以所求双曲线的离心率为 1+ 2.12 分
解析几何(2) 双曲线(含答案)
第6课时 双曲线1.了解双曲线的定义、几何图形和标准方程及简单性质. 2.了解双曲线的实际背景及双曲线的简单应用. 3.理解数形结合的思想.【梳理自测】一、双曲线的概念已知点F 1(-4,0)和F 2(4,0),一曲线上的动点P 到F 1,F 2距离之差为6,该曲线方程是________.答案:x 29-y27=1(x≥3)◆此题主要考查了以下内容:平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M||MF 1|-|MF 2||=2a},|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0; (1)当2a <2c 时,P 点的轨迹是双曲线; (2)当2a =2c 时,P 点的轨迹是两条射线; (3)当2a >2c 时,P 点不存在. 二、双曲线标准方程及性质1.(教材改编)双曲线x 210-y22=1的焦距为( )A .3 2B .4 2C .3 3D .4 32.双曲线y 2-x 2=2的渐近线方程是( )A .y =±xB .y =±2xC .y =±3xD .y =±2x3.已知双曲线x 2a 2-y25=1的右焦点为(3,0),则该双曲线的离心率等于( )A .31414 B .324 C .32D .434.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=________.答案:1.D 2.A 3.C 4.-1 4◆此题主要考查了以下内容:考向一双曲线的定义及标准方程(1)(2014·陕西师大附中模拟)设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若|PQ|=7,则△F2PQ的周长为( ) A.19 B.26C.43 D.50(2)已知双曲线x2a2-y2b2=1(a>0,b>0)和椭圆x216+y29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.【审题视点】(1)利用双曲线定义|PF2|-|QF2|=2a及三角形周长的计算求解.(2)已知双曲线的焦点及离心率求双曲线方程.【典例精讲】(1)如图,由双曲线的定义可得⎩⎪⎨⎪⎧|PF 2|-|PF 1|=2a ,|QF 2|-|QF 1|=2a ,将两式相加得|PF 2|+|QF 2|-|PQ|=4a , ∴△F 2PQ 的周长为|PF 2|+|QF 2|+|PQ| =4a +|PQ|+|PQ|=4×3+2×7=26.(2)椭圆x 216+y 29=1的焦点坐标为F 1(-7,0),F 2(7,0),离心率为e =74.由于双曲线x 2a 2-y 2b 2=1与椭圆x 216+y 29=1有相同的焦点,因此a 2+b 2=7.又双曲线的离心率e =a 2+b 2a =7a ,所以7a =274,所以a =2,b 2=c 2-a 2=3,故双曲线的方程为x 24-y23=1.【答案】 (1)B (2)x 24-y23=1【类题通法】 (1)涉及到双曲线上的点到焦点的距离问题时,经常考虑双曲线的定义. (2)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y2n =1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便;(3)当已知双曲线的渐近线方程bx±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(4)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y2b 2=λ(λ≠0),据其他条件确定λ的值.1.根据下列条件,求双曲线方程:(1)与双曲线x 29-y216=1有共同的渐近线,且过点(-3,23);(2)与双曲线x 216-y24=1有公共焦点,且过点(32,2).解析:(1)设所求双曲线方程为x 29-y216=λ(λ≠0),将点(-3,23)代入得λ=14,∴所求双曲线方程为x 29-y 216=14,即x 294-y24=1. (2)设双曲线方程为x 216-k -y24+k =1,将点(32,2)代入得k =4(k =-14舍去). ∴所求双曲线方程为x 212-y28=1.考向二 双曲线的性质及应用(1)(2014·哈尔滨模拟)已知P 是双曲线x 2a 2-y2b2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且PF 1→·PF 2→=0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .8(2)F 1、F 2分别是双曲线x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为( )A .2B .7C .13D .15【审题视点】 (1)利用PF 1→ ·PF 2→=0及e =54转化为a ,b 的方程组.(2)利用双曲线定义及余弦定理求a 与c 的关系. 【典例精讲】 (1)由PF 1→·PF 2→=0,得PF 1→⊥PF 2→,设|PF 1→|=m ,|PF 2→|=n ,不妨设m >n ,则m 2+n 2=4c 2,m -n =2a ,12mn =9,c a =54,解得⎩⎪⎨⎪⎧a =4,c =5, ∴b =3,∴a +b =7,故选C . (2)如图,由双曲线定义得,|BF 1|-|BF 2|=|AF 2|-|AF 1|=2a ,因为△ABF 2是正三角形,所以|BF 2|=|AF 2|=|AB|,因此|AF 1|=2a ,|AF 2|=4a ,且∠F 1AF 2=120°,在△F 1AF 2中,4c 2=4a 2+16a 2+2×2a ×4a ×12=28a 2,所以e =7,故选B .【答案】 (1)C (2)B【类题通法】 (1)求双曲线的离心率,就是求c 与a 的比值,一般不需要具体求出a ,c 的值,只需列出关于a ,b ,c 的方程或不等式解决即可.(2)双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.2.(2014·济南模拟)过双曲线x 2a 2-y2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF(O 为原点)的垂直平分线上,则双曲线的离心率为________.解析:如图所示,不妨设F 为右焦点,过F 作FP 垂直于一条渐近线,垂足为P ,过P 作PM⊥OF 于M.由已知得M 为OF 的中点,由射影定理知|PF|2=|FM||FO|,又F(c ,0),渐近线方程为bx -ay =0,∴|PF|=bcb 2+a2=b ,∴b 2=c 2·c ,即2b 2=c 2=a 2+b 2,∴a 2=b 2,∴e =c a = 1+b2a2= 2.答案: 2考向三 直线与双曲线的综合应用已知双曲线C :x 2a2-y 2=1(a >0)与l :x +y =1相交于两个不同的点A 、B ,l与y 轴交于点P ,若PA →=512PB →,则a =________.【审题视点】 联立方程组,利用P 、A 、B 坐标之间的关系,建立a 的方程. 【典例精讲】 因为双曲线C 与直线l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a2-y 2=1,x +y =1有两组不同的实数解,消去y 并整理,得(1-a 2)x 2+2a 2x -2a 2=0,实数a 应满足⎩⎪⎨⎪⎧a >0,1-a 2≠0,4a 4+8a 2(1-a 2)>0, 解得0<a <2且a≠1. 设A(x 1,y 1)、B(x 2,y 2), 由一元二次方程根与系数的关系, 得x 1+x 2=2a2a 2-1,①x 1x 2=2a2a 2-1,②又P(0,1),由PA →=512PB →,得(x 1,y 1-1)=512(x 2,y 2-1),从而x 1=512x 2,③ 由①③,解得⎩⎪⎨⎪⎧x 1=517·2a 2a 2-1,x 2=1217·2a 2a 2-1代入②, 得517×1217×⎝ ⎛⎭⎪⎫2a 2a 2-12=2a 2a 2-1, 即2a 2a 2-1=28960,解得a =1713,⎝ ⎛⎭⎪⎫a =-1713舍去. 【答案】1713【类题通法】 (1)判断直线l 与双曲线E 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入双曲线E 的方程F(x ,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0F (x ,y )=0,消去y 后得ax 2+bx +c =0.由此转化为两点坐标的关系.(2)特殊情况考虑与渐近线平行的直线与双曲线的位置关系,数形结合求解.3.已知点A(-2,0),点B(2,0),且动点P 满足|PA|-|PB|=2,则动点P 的轨迹与直线y =k(x -2)有两个交点的充要条件为k∈________.解析:由已知得动点P 的轨迹为一双曲线的右支且2a =2,c =2,则b =c 2-a 2=1,∴P 点的轨迹方程为x 2-y 2=1(x >0),其一条渐近线方程为y =x.若P 点的轨迹与直线y =k(x -2)有两个交点,则需k∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪ (1,+∞)双曲线与渐近线的关系不清致误(2014·浙江温州适应性测试)已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( )A .y =±22xB .y =±24xC .y =±xD .y =±22x 或y =±24x 【正解】 依题意c =3a ,∴c 2=9a 2.又c 2=a 2+b 2, ∴b 2a 2=8,b a =22,a b =24.故选D . 【答案】 D【易错点】 (1)默认为双曲线焦点在x 轴其渐近线为y =±ba x ,而错选为A .(2)把双曲线认为等轴双曲线而错选为C .(3)把a ,b ,c 的关系与椭圆c 2=a 2-b 2混淆致错.【警示】 (1)对于方程x 2a 2-y 2b 2=1来说,求渐近线方程就相当于求ba 的值,但要分焦点的位置是在x 轴还是在y 轴上,此题没有给出焦点的位置,其渐近线斜率有四种情况.(2)渐近线为y =±b a x 所对应的双曲线为x 2a 2-y2b 2=λ(λ≠0).当λ>0时,表示焦点在x 轴上,当λ<0时,焦点在y 轴上.1.(2013·高考福建卷)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25B .45C .255 D .455解析:选C .求出双曲线的顶点和渐近线,再利用距离公式求解.双曲线的渐近线为直线y =±12x ,即x±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255. 2.(2013·高考广东卷)已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B .x 24-y25=1 C .x 22-y 25=1 D .x 22-y25=1 解析:选B .求双曲线的标准方程需要确定焦点位置及参数a ,b 的值.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,选B .3.(2013·高考北京卷)双曲线x 2-y2m=1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1C .m >1D .m >2解析:选C .用m 表示出双曲线的离心率,并根据离心率大于2建立关于m 的不等式求解.∵双曲线x 2-y2m=1的离心率e =1+m ,又∵e >2,∴1+m >2,∴m >1.4.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D .先根据θ的范围,确定双曲线方程的类型,判断焦点所在的坐标轴,然后分析双曲线C 1和C 2的实轴长、虚轴长、焦距、离心率是否相等.双曲线C 1的焦点在x 轴上,a =cos θ,b =sin θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =sin θ,b =sin θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ. 故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等。
2-3-2 双曲线的简单几何性质
基础巩固强化一、选择题1.双曲线3x 2-y 2=3的渐近线方程是( ) A .y =±3x B .y =±13x C .y =±3x D .y =±33x[答案] C[解析] 双曲线的渐近线方程为3x 2-y 2=0,即y =±3x ,故选C.2.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14 B .-4 C .4 D.14[答案] A[解析] 双曲线方程化为标准形式:y 2-x 2-1m=1,则有:a 2=1,b 2=-1m ,由题设条件知,2=-1m ,∴m =-14.3.如果双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( )A.2 B .2 C.3 D .2 2 [答案] A[解析] ∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,又两渐近线互相垂直,所以a =b ,c =a 2+b 2=2a ,e =ca = 2.4.经过点M (26,-26)且与双曲线x 24-y 23=1有相同渐近线的双曲线方程是( )A.x 26-y 28=1 B.y 28-x 26=1 C.y 26-x 28=1 D.x 28-y 26=1[答案] C[解析] 设双曲线方程为x 24-y 23=λ(λ≠0),把点M (26,-26)代入双曲线方程,得λ=244-243=-2,∴双曲线方程为:y 26-x 28=1.5.(2013·北京文,7)双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1C .m >1D .m >2[答案] C[解析] 双曲线离心率e =1+m >2,所以m >1,选C. 6.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线[答案] C[解析] ∵0<k <a ,∴a 2-k 2>0. ∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2. 二、填空题7.若双曲线x 24+y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是____________.[答案] (7,0)(-7,0)[解析] 由双曲线方程得出其渐近线方程为y =±-m2x ,∴m =-3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标(7,0)(-7,0).8.(2013·陕西理,11)双曲线x 216-y 2m =1的离心率为54,则m 等于________.[答案] 9[解析] 由a 2=16,b 2=m ,得c 2=16+m ,则e =ca =16+m 4=54,∴m =9.三、解答题9.双曲线与圆x 2+y 2=17有公共点A (4,-1),圆在A 点的切线与双曲线的渐近线平行,求双曲线的标准方程.[解析] ∵点A 与圆心O 连线的斜率为-14,∴过A 的切线的斜率为4. ∴双曲线的渐近线方程为y =±4x .设双曲线方程为x 2-y216=λ.∵点A (4,-1)在双曲线上,∴16-116=λ,λ=25516. ∴双曲线的标准方程为x 225516-y 2255=1.10.已知动圆与⊙C 1:(x +3)2+y 2=9外切,且与⊙C 2:(x -3)2+y 2=1内切,求动圆圆心M 的轨迹方程.[解析] 设动圆圆心M 的坐标为(x ,y ),半径为r , 则|MC 1|=r +3,|MC 2|=r -1,∴|MC 1|-|MC 2|=r +3-r +1=4<|C 1C 2|=6,由双曲线的定义知,点M 的轨迹是以C 1、C 2为焦点的双曲线的右支,且2a =4,a =2,双曲线的方程为:x 24-y 25=1(x ≥2).。
2.2.2双曲线的几何性质
b
B2
A1
o
A2
a
(2)利用渐近线可以较准确的画出 双曲线的草图
x
B1
(3)渐近线对双曲线的开口的影响
b y x a
b y x a
双曲线上的点与这两 直线有什么位置关系呢?
⑵ e 的范围: c>a>0 e >1 ⑶ e 的含义: 同样可以形象地理解焦点离开中心的程度.
另外
c ⑴定义:双曲线的焦距与实轴长的比 e ,叫做双曲线的离心率 . a
双曲线的性质(一)
复习: 若没有绝对值, 双曲线与椭圆之间的区别与联系 轨迹,只表示双曲
线的一支
定义
椭
圆
双曲线
|MF1|+|MF2|=2a (2a>2c) ||MF1|-|MF2||=2a (2a<2c)
2 2 x2 y 2 x y 2 1(a b 0) 2 1(a 0, b 0) 2 2 a b a b 2 2 y 2 x2 y x 2 1(a b 0) 2 1(a 0, b 0) 2 2 a b a b
学习小结:
b 渐近线方程为 y x 的双曲线的方程可写 a 2 2 x y 成 2 2 ( 0) 的形式. a b 巧设方程形式将使问题解决变得简洁.
练习巩固:
《优化方案》P32 例2、跟踪训练2
B2
. .
B2 A2
2 2 2 2
图形
. .
F1(-c,0)
F1
y
y
F2
(两个交点)(一个交点) (无交点)
y = kx + m 2 消去y,得 : (b2-a2k2)x2-2kma2x+a2(m2+b2)=0 x y2 2 - 2 =1 a b
新教材高考数学第三章圆锥曲线的方程2-2第2课时双曲线的标准方程及性质的应用练习含解析新人教A版选择
第2课时 双曲线的标准方程及性质的应用学习目标 1.了解双曲线在实际生活中的应用.2.进一步掌握双曲线的方程及其性质的应用.知识点一 直线与双曲线的位置关系 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2).Δ>0⇒直线与双曲线有两个公共点; Δ=0⇒直线与双曲线有一个公共点; Δ<0⇒直线与双曲线有0个公共点.思考 直线与双曲线只有一个交点,是不是直线与双曲线相切?答案 不是.当直线与双曲线的渐近线平行时,直线与双曲线只有一个交点 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k2[x 1+x 22-4x 1x 2].1.已知双曲线的两个焦点为F 1(-5,0),F 2(5,0),P 是其上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=1答案 C2.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.答案8333.过双曲线x 2-y 23=1的左焦点F 1作倾斜角为π6的弦AB ,则|AB |=________.答案 3解析 易得双曲线的左焦点F 1(-2,0), ∴直线AB 的方程为y =33(x +2), 与双曲线方程联立,得8x 2-4x -13=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=-138,∴|AB |=1+k 2·x 1+x 22-4x 1x 2=1+13×⎝ ⎛⎭⎪⎫122-4×⎝ ⎛⎭⎪⎫-138=3.一、直线与双曲线的位置关系例1 已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.解 (1)由⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1,消去y 整理,得(1-k 2)x 2+2kx -2=0.由题意,知⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+81-k2>0,解得-2<k <2且k ≠±1.所以实数k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由(1),得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.又直线l 恒过点D (0,-1),则①当x 1x 2<0时,S △OAB =S △OAD +S △OBD =12|x 1|+12|x 2|=12|x 1-x 2|= 2.②当x 1x 2>0时,S △OAB =|S △OAD -S △OBD |=⎪⎪⎪⎪⎪⎪12|x 1|-12|x 2|=12|x 1-x 2|= 2.所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2,即⎝ ⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),知上述k 的值符合题意,所以k =0或k =±62. 反思感悟 直线与双曲线(1)位置关系的判定方法:代数法(注意二次项系数为0的情况). (2)弦长公式设直线y =kx +b 与双曲线交于A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2.跟踪训练1 已知双曲线焦距为4,焦点在x 轴上,且过点P (2,3). (1)求该双曲线的标准方程;(2)若直线m 经过该双曲线的右焦点且斜率为1,求直线m 被双曲线截得的弦长.解 (1)设双曲线方程为x 2a 2-y 2b2=1(a ,b >0),由已知可得左、右焦点F 1,F 2的坐标分别为(-2,0),(2,0), 则|PF 1|-|PF 2|=2=2a ,所以a =1, 又c =2,所以b =3, 所以双曲线方程为x 2-y 23=1.(2)由题意可知直线m 的方程为y =x -2, 联立双曲线及直线方程消去y 得2x 2+4x -7=0, 设两交点为A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=-2,x 1x 2=-72,由弦长公式得|AB |=1+k 2|x 1-x 2| =1+k2x 1+x 22-4x 1x 2=6.二、与双曲线有关的轨迹问题例2 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚 4 s .已知各观测点到该中心的距离是1 020 m .则该巨响发生在接报中心的(假定当时声音传播的速度为340 m/s ,相关各点均在同一平面上)( )A .北偏西45°方向,距离68010 mB .南偏东45°方向,距离68010 mC .北偏西45°方向,距离680 5 mD .南偏东45°方向,距离680 5 m 答案 A解析 如图,以接报中心为原点O ,正东、正北方向为x 轴,y 轴正向,建立直角坐标系.设A ,B ,C 分别是西、东、北观测点,则A (-1 020,0),B (1 020,0),C (0,1 020). 设P (x ,y )为巨响发生点.由已知|PA |=|PC |,故P 在AC 的垂直平分线PO 上,PO 的方程为y =-x , 又B 点比A 点晚4 s 听到爆炸声,故|PB |-|PA |=340×4=1 360,可知P 点在以A ,B 为焦点的双曲线x 2a 2-y 2b2=1上,依题意得a =680,c =1 020, ∴b 2=c 2-a 2=1 0202-6802=5×3402, 故双曲线方程为x 26802-y 25×3402=1,将y =-x 代入上式,得x =±6805, ∵|PB |>|PA |,∴x =-6805,y =680 5 , 即P (-6805,6805), 故PO =68010 .故巨响发生在接报中心的北偏西45°距中心68010 m 处. 反思感悟 和双曲线有关的轨迹(1)定义法.解决轨迹问题时利用双曲线的定义,判定动点的轨迹就是双曲线. (2)直接法.根据点满足条件直接代入计算跟踪训练2 若动圆P 经过定点A (3,0),且与定圆B :(x +3)2+y 2=16外切,试求动圆圆心P 的轨迹.解 设动圆圆心P (x ,y ),半径为r . 则依题意有|PA |=r ,|PB |=r +4, 故|PB |-|PA |=4.即动圆圆心P 到两个定点B (-3,0),A (3,0)的距离之差等于常数4,且4<|AB |,因此根据双曲线定义,点P 的轨迹是以A ,B 为焦点的双曲线的右支.设其方程为x 2a 2-y 2b2=1(a >0,b >0),则c =3,2a =4,b 2=5,所以动圆圆心P 的轨迹方程为x 24-y 25=1(x ≥2).所以动圆圆心P 的轨迹是双曲线x 24-y 25=1的右支.1.已知双曲线方程为x 2-y 24=1,过点P (1,0)的直线l 与双曲线只有一个公共点,则l 共有( )A .4条B .3条C .2条D .1条 答案 B解析 因为双曲线方程为x 2-y 24=1,则P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的有3条.2.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围为( ) A .(-2,2) B .[-2,2) C .(-2,2] D .[-2,2]答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0, 由Δ>0可得-2<k <2.3.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( )A. 3 B .2 3 C .3 3 D .4 3 答案 D解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,所以|AB |=4 3.4.已知等轴双曲线的中心在原点,焦点在x 轴上,与直线y =12x 交于A ,B 两点,若|AB |=215,则该双曲线的方程为( )A .x 2-y 2=6 B .x 2-y 2=9 C .x 2-y 2=16 D .x 2-y 2=25答案 B解析 设等轴双曲线的方程为x 2-y 2=a 2(a >0),与y =12x 联立,得34x 2=a 2,∴|AB |=1+⎝ ⎛⎭⎪⎫122×433a =215,∴a =3,故选B.5.已知直线l :x -y +m =0与双曲线x 2-y 22=1交于不同的两点A ,B ,若线段AB 的中点在圆x 2+y 2=5上,则实数m 的值是________. 答案 ±1解析 由⎩⎪⎨⎪⎧x -y +m =0,x 2-y 22=1,消去y 得x 2-2mx -m 2-2=0.则Δ=4m 2+4m 2+8=8m 2+8>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2m ,y 1+y 2=x 1+x 2+2m =4m , 所以线段AB 的中点坐标为(m ,2m ). 又点(m ,2m )在x 2+y 2=5上, 所以m 2+(2m )2=5,得m =±1.1.知识清单:(1)判断直线与双曲线交点个数. (2)弦长公式. 2.方法归纳: 定义法,直接法. 3.常见误区:直线与双曲线的位置关系可以通过联立直线方程与双曲线方程得到的方程来判断,首先看二次项系数是否为零,若不为零,再利用Δ来判断直线与双曲线的位置关系.代数计算中的运算失误.1.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( )A .4B .2C .1D .-2 答案 A解析 因为在双曲线x 24-y 2=1中,x ≥2或x ≤-2,所以若x =a 与双曲线有两个交点, 则a >2或a <-2,故只有A 符合题意.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 B解析 易知选项B 正确.3.等轴双曲线x 2-y 2=a 2与直线y =ax (a >0)没有公共点,则a 的取值范围是( ) A .a =1 B .0<a <1 C .a >1 D .a ≥1答案 D解析 等轴双曲线x 2-y 2=a 2的渐近线方程为y =±x ,若直线y =ax (a >0)与等轴双曲线x 2-y 2=a 2没有公共点,则a ≥1.4.直线l :y =kx 与双曲线C :x 2-y 2=2交于不同的两点,则斜率k 的取值范围是( ) A .(0,1) B .(-2,2) C .(-1,1) D .[-1,1]答案 C解析 由双曲线C :x 2-y 2=2与直线l :y =kx 联立,得(1-k 2)x 2-2=0.因为直线l :y =kx与双曲线C :x 2-y 2=2交于不同的两点,所以⎩⎪⎨⎪⎧1-k 2≠0,81-k 2>0,解得-1<k <1,即斜率k 的取值范围是(-1,1).5.设点F 1,F 2分别是双曲线C :x 2a 2-y 22=1(a >0)的左、右焦点,过点F 1且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若△ABF 2的面积为26,则该双曲线的渐近线方程为( )A .y =±3xB .y =±33xC .y =±2xD .y =±22x 答案 D解析 设F 1(-c ,0),A (-c ,y 0),则c 2a 2-y 202=1, ∴y 202=c 2a 2-1=c 2-a 2a 2=b 2a 2=2a2, ∴y 20=4a2,∴|AB |=2|y 0|=4a.又2ABF S=26,∴12·2c · |AB |=12·2c ·4a =4ca =26, ∴c a =62, ∴b a =c 2a 2-1=22. ∴该双曲线的渐近线方程为y =±22x . 6.若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则k 的取值范围为________. 答案 ⎝ ⎛⎭⎪⎫1,153 解析 联立方程⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0,①若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则方程①有两个不等的负根.所以⎩⎪⎨⎪⎧Δ=16k 2+401-k 2>0,x 1x 2=-101-k 2>0,x 1+x 2=4k1-k2<0,解得1<k <153. 7.直线y =x +1与双曲线x 22-y 23=1相交于A ,B 两点,则|AB |=________.答案 4 6解析 由⎩⎪⎨⎪⎧y =x +1,x 22-y23=1,得x 2-4x -8=0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧Δ>0,x 1+x 2=4,x 1·x 2=-8,∴|AB |=1+k 2[x 1+x 22-4x 1x 2]=2×16+32=4 6.8.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率e =________.答案3+1解析 以线段F 1F 2为边作正△MF 1F 2,则M 在y 轴上,可设|F 1F 2|=2c ,M 在y 轴正半轴,则M (0,3c ),又F 1(-c ,0),则边MF 1的中点为⎝ ⎛⎭⎪⎫-c2,32c ,代入双曲线方程,可得c 24a 2-3c 24b 2=1,由于b 2=c 2-a 2,e =c a ,则有e 2-3e 2e 2-1=4,即有e 4-8e 2+4=0,解得e 2=4±23,由于e >1,即有e =1+ 3.9.已知双曲线的方程为x 2-y 22=1,直线l 过点P (1,1),斜率为k . 当k 为何值时,直线l与双曲线有一个公共点?解 设直线l :y -1=k (x -1),即y =kx +(1-k ).由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得 (k 2-2)x 2-2k (k -1)x +k 2-2k +3=0. 当k 2-2=0,即k =±2时,方程只有一个解;当k 2-2≠0,且Δ=24-16k =0,即k =32时,方程只有一个解.综上所述,当k =±2或k =32时,直线l 与双曲线只有一个公共点.10.斜率为2的直线l 在双曲线x 23-y 22=1上截得的弦长为6,求直线l 的方程.解 设直线l 的方程为y =2x +m ,由⎩⎪⎨⎪⎧y =2x +m ,x 23-y22=1,得10x 2+12mx +3(m 2+2)=0.(*)设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 由根与系数的关系,得x 1+x 2=-65m ,x 1x 2=310(m 2+2).于是|AB |2=(x 1-x 2)2+(y 1-y 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2]=5⎣⎢⎡⎦⎥⎤3625m 2-4×310m 2+2.因为|AB |=6, 所以365m 2-6(m 2+2)=6.则m 2=15,m =±15. 由(*)式得Δ=24m 2-240, 把m =±15代入上式,得Δ>0, 所以m 的值为±15,故所求l 的方程为y =2x ±15.11.已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点,则a 的取值范围是____________. 答案 -6<a <6且a ≠± 3解析 由⎩⎪⎨⎪⎧y =ax +13x 2-y 2=1得(3-a 2)x 2-2ax -2=0.∵直线与双曲线相交于两点,∴⎩⎪⎨⎪⎧3-a 2≠0,Δ>0⇒-6<a <6且a ≠± 3.∴a 的取值范围是-6<a <6且a ≠± 3.12.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l 与双曲线的右支有且只有一个交点,则双曲线的离心率e 的取值范围是________. 答案 [2,+∞)解析 由题意,知b a ≥3,则b 2a2≥3,所以e =1+⎝ ⎛⎭⎪⎫b a 2≥2.13.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________. 答案3215解析 双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215, 所以B ⎝ ⎛⎭⎪⎫175,-3215. 所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 14.双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左、右顶点为A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线斜率为________.答案 ±1解析 由题意知F (c ,0),A 1(-a ,0),A 2(a ,0),其中c =a 2+b 2. 联立⎩⎪⎨⎪⎧x =c ,x 2a 2-y2b2=1, 解得B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝ ⎛⎭⎪⎫c ,-b 2a , 所以A 1B —→=⎝ ⎛⎭⎪⎫c +a ,b 2a , A 2C —→=⎝ ⎛⎭⎪⎫c -a ,-b 2a . 因为A 1B ⊥A 2C ,所以A 1B —→·A 2C —→=(c +a )(c -a )-b 4a2=0, 解得a =b ,所以渐近线的斜率为±1.15.设双曲线x 2-y 22=1上有两点A ,B ,AB 中点M (1,2),则直线AB 的方程为________________. 答案 y =x +1解析 方法一 (用根与系数的关系解决)显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1), 即y =kx +2-k ,由⎩⎪⎨⎪⎧ y =kx +2-k ,x 2-y 22=1, 得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0,当Δ>0时,设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k 2-k 2-k 2,所以k =1,满足Δ>0,所以直线AB 的方程为y =x +1.方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 21-y 212=1,x 22-y 222=1,两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2).因为x 1≠x 2,所以y 1-y2x 1-x 2=2x 1+x2y 1+y 2,所以k AB =2×1×22×2=1,所以直线AB 的方程为y =x +1,代入x 2-y 22=1满足Δ>0.所以直线AB 的方程为y =x +1.16.已知直线l :x +y =1与双曲线C :x 2a 2-y 2=1(a >0).(1)若a =12,求l 与C 相交所得的弦长;(2)若l 与C 有两个不同的交点,求双曲线C 的离心率e 的取值范围. 解 (1)当a =12时,双曲线C 的方程为4x 2-y 2=1,联立⎩⎪⎨⎪⎧x +y =1,4x 2-y 2=1,消去y , 得3x 2+2x -2=0.设两交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-23,x 1x 2=-23,则|AB |=x 1-x 22+y 1-y 22=x 1-x 22+x 1-x 22=2·x 1+x 22-4x 1x 2=2×289=2143.(2)将y =-x +1代入双曲线x 2a 2-y 2=1,得(1-a 2)x 2+2a 2x -2a 2=0,∴⎩⎪⎨⎪⎧ 1-a 2≠0,4a 4+8a 21-a 2>0, 解得0<a <2且a ≠1. ∵双曲线的离心率e =1+a 2a =1a 2+1,∴e >62且e ≠ 2.即离心率e 的取值范围是⎝ ⎛⎭⎪⎫62,2∪(2,+∞).。
2.2.2《双曲线的简单几何性质》限时练1
已知双曲线的左焦点为,离心率为若经过
于双曲线的一条渐近线,则双曲线的方程为
已知双曲线的离心率为,则实数
双曲线的右焦点到该双曲线渐近线的距离等于
双曲线的焦点坐标是
,,
,,
如果双曲线经过点,渐近线方程为,则此双曲线方程为
已知双曲线渐近线方程为,则的值为
已知双曲线的实轴长为
,则此双曲线的渐近线方程为若双曲线的一条渐近线方程为的值为
已知双曲线的右顶点为
若双曲线的一条渐近线方程为,则
若双曲线的一条渐近线的斜率为
若双曲线的离心率为,则
双曲线,则实数
已知双曲线的一条渐近线方程为,则该双曲线的焦距为
双曲线的实轴长与虚轴长之和等于其焦距的倍,且一个顶点的坐标为
,,焦点在
焦点坐标为,
焦点为,经过点
求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.。
2.2.2双曲线的简单几何性质(含答案)
D.y=± 4 x
3.双曲线与椭圆 4x2+y2=1 有相同的焦点,它的一条渐近线方程为 y= 2x,则双曲
线的方程为( )
A.2x2-4y2=1
B.2x2-4y2=2
C.2y2-4x2=1
D.2y2-4x2=3
x2 y2
4.设双曲线a2-b2=1(a>0,b>0)的虚轴长为 2,焦距为 2 3,则双曲线的渐近线方程
2.2.2 双曲线的简单几何性质
课时目标 1.掌握双曲线的简单几何性质.2.了解双曲线的渐近性及渐近线的概念.3.掌 握直线与双曲线的位置关系.
1.双曲线的几何性质 标准方程
x2 y2
a2-b2=1 (a>0,b>0)
y2 x2
a2-b2=1 (a>0,b>0)
图形
焦点
焦距
范围
性 对称性
质 顶点
轴长
2 ,又由渐近线方程为 y= 2x,得b= 2,即 a2=2b2,
( )3
1
1
又由 2 2=a2+b2,得 a2=2,b2=4,又由于焦点在 y 轴上,因此双曲线的方程为
2y2-4x2=1.故选 C.] 4.C [由题意知,2b=2,2c=2 3,则 b=1,c= 3,a= 2;双曲线的渐近线方程为
x2 y2
9.与双曲线 9 -16=1 有共同的渐近线,并且经过点(-3,2 3)的双曲线方程为 __________.
三、解答题
10.根据下列条件,求双曲线的标准方程.
( ) 15 ,3 (1)经过点 4 ,且一条渐近线为 4x+3y=0;
π
(2)P(0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为3.
y2 11.设双曲线 x2- 2 =1 上两点 A、B,AB 中点 M(1,2),求直线 AB 的方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1 B. C.2 D.4
3.双曲线 的离心率为 ,双曲线 的离心率为则 的最小值是( )
A. B.2 C. D.4
4.已知双曲线 的焦点为 、 ,弦AB过 且在若 ,Biblioteka 曲线的一支上,则|AB|等于( )
A.2a B.3a C.4a D.不能确定
5.椭圆和双曲线有相同的中心和准线,椭圆的焦点 、 三等分以双曲线点 、 为端点的线段,则双曲线的离心率e′与椭圆的离心率e的比值是( )
A. B. C.2D.3
6.已知两点 , ,给出下列曲线方程
①4x+2y-1=0② ③ ④
在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )
A.①③B.②④C.①②③D.②③④
二、填空题
7.过双曲线 的右焦点作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线共有_________条。
一、选择题(每小题四个选项中,只有一项符合题目要求)
1.双曲线 的一条准线l与一条渐近线F是与l相应的焦点,则|PF|等于( )交于P点,F是与l相应的焦点,则|PF|等于( )
A.a B.b C.2a D.2b
2.已知平面内有一定线段AB,其长度为4,动点P满足|PA|-|PB|=3,O为AB的中点,则|PO|的最小值为( )
8.设 、 是双曲线 的两焦点,Q是双曲线上任意一点,从 引 的平分线的垂线,垂足为P,则点P的轨迹方程是__________。
三、解答题新课标第一网
9.在双曲线 的一支上不同的三点 , , 与焦点F(0,5)的距离成等差数列
(1)试求 ;
(2)证明线段AC的垂直平分线经过一个定点,并求出该定点坐标。
10.设双曲线中心是坐标原点,准线平行于x轴,离心率为 ,已知点P(0,5)到这双曲线上的点的最近距离是2,求双曲线方程。
11.已知直线l与圆 相切于点T,且与双曲线C: 相交于A、B两点,若T是线段AB的中点,求直线l的方程。
答案与提示
一、1.B2.B3.C4.C5.B6.D
二、7.3条8.
三、9. (2)必过定点