UOP标准
方法UOP 326
UOP 326-08马来酸酐法测二烯值测量范围1.2-100方法大纲顺丁烯二酸酐和样品在甲苯中回流3h,未反应的顺丁烯酸酐被水解成马来酸,从反应混合物中提取,用氢氧化钠滴定,空白用同样方法处理。
装置天平烧杯,250ml,不带烧杯嘴,高烧杯冷凝器坩埚,10ml,瓷器量筒,10,25ml干燥器电极锥形瓶,250ml锥形瓶,250ml,带毛玻璃接头锥形瓶,500ml,厚玻璃,带侧臂容量瓶,1000ml过滤漏斗分离漏斗,250ml电热板磁力搅拌棒研钵,瓷器,130mm外直径烘箱移液管移液管,摩尔,25ml移液管,体积2,3,5,10,20ml环架和夹具玻璃搅拌棒电位滴定仪不锈钢火钳厚壁管,橡胶,真空装置使用真空泵试剂和材料二氧化碳吸附剂沸石干燥剂,电解液,3mol/L氯化钾滤纸,定性的,无酸的,未酸洗顺丁烯二酸酐,99%,52-55馏程范围顺丁烯二酸酐甲苯溶液,60g顺丁烯二酸酐溶解于温甲苯中,冷却,定容到一升,放置一天,使用前过滤MTBE(甲基叔丁基醚),3度的馏程范围氮气,99.999%的纯度铅笔,软铅,石墨润滑剂酚酞指示剂,1%苯二甲酸氢钾,基准药剂氢氧化钠,0.1M氢氧化钠,1.0M甲苯水,无二氧化碳去离子水步骤氢氧化钠标准溶液1,研磨3g氢氧化钠,转移到坩埚中,120℃烘干2h,转到干燥器中冷却到室温2,准备三个250ml烧杯,放搅拌子,配1.0M的每个中加入大约0.5g的氢氧化钠,配0.1M的称取0.1g的氢氧化钠3,加入100ml无二氧化碳的去离子水(煮沸10min,然后通氮气冷却或者放在真空空间足够长的时间)4,放置一个烧杯在滴定台,电极和滴定管沉浸在液体中,烧杯上层空间通氮气,排除空气,并且搅拌5,用邻苯二甲酸氢钾滴定氢氧化钠溶液6,样品分析1,称取5-20g的样品,放在干燥的250ml带磨口接头的锥形烧瓶中。
(If a diene value greater than 1 is expected, use 5-10 g; ifa diene value less than 1 is expected use 20 g.)加入20ml的顺丁烯二酸酐甲苯溶液,加入沸石。
霍尼韦尔 UOP RTP
快速热处理技术((RTP)霍尼韦尔UOP 快速热处理技术I.公司简介霍尼韦尔简介霍尼韦尔公司位列世界财富100强,是一家在技术和制造业方面占据世界领先地位的多元化跨国公司,在全球范围内为客户提供以下业务:航空航天产品和服务;楼宇、家庭和工业的自动化控制;自动化产品;涡轮增压器和特殊材料等。
公司总部位于美国新泽西州的莫里斯,其股票在纽约证交所、伦敦证交所和芝加哥证交所上市交易。
霍尼韦尔在全球约有15万名员工,分布在100多个国家各地区,年销售额约为350亿美金。
UOP简介UOP为霍尼韦尔全资子公司,隶属于霍尼韦尔特殊材料集团。
UOP是石油炼制和气体处理领域领先的工艺技术、催化剂、吸附剂、装置设备和技术服务供应商,及专利许可商. 具有95年的优秀历史,在2003年曾获得美国国家最高技术奖章。
目前世界上60%的运输燃料,60%的二甲苯,以及85%的可降解洗涤产品都在使用UOP的的技术生产。
UOP也是70年代早期受中国政府邀请进入中国,协助新中国建设的10家外资企业之一。
目前世界上使用的35种炼油技术中,有31种为UOP所发明。
UOP在全球约3500名员工,年销售额约20亿美金。
II.技术产品介绍1)快速热处理技术简介UOP快速热处理技术是一项被商业实践证明的领先技术,已经设计并成功运营7套装置,第8套和9套(均为400吨日原料处理量装置)正在执行中。
该技术可将农业废弃物(秸秆,木屑等)转化为工业燃料油。
该技术的工艺简图如下:快速热处理技术热解油产率在70%左右,由快速热处理技术生产出的绿色燃料可将温室气体排放降低70-90%,可用来替代化石燃料产生热能,蒸气,发电,还可升级为运输燃料。
2)快速热处理技术生产出的热解油性能目前,中国还没有关于热解油的标准,但美国已经有关于热解油的ASTM标准,以下为RTP 针对美国ASTM标准的参数:对客户的热解油产油产为目前世界上唯一一家敢于对快速热处理技术提供运行保证的公司,,UOP对客户的热解UOP为目前世界上唯一一家敢于对快速热处理技术提供运行保证的公司。
UOP539
气相色谱法分析炼厂气UOP 方法539-97适用范围这种自动方法适用于测定炼厂气样品的化学成份,或者测定炼油工艺中或天然资源中获得的液化石油气(LPG)样品的化学成份。
非凝气体、硫化氢、C1到C4烃类、以及C5烷烃分别给出报告,同时C5烯烃和C6+烃类作为复合物进行报告。
氧气不和氩气分离。
如果存在硫化氢的情况下,在有些分析仪中,硫化氢的结果可能不是定量的。
本方法得到的单个组分或混合物定量结果从0.1到99.9%(摩尔);但是得到的硫化氢的定量结果在0.1和25%(摩尔)之间。
测试结果也可以以%(质量百分比)进行报告。
方法概述本方法要求采用自动化炼厂气分析专用的气相色谱系统,能够经过多个色谱柱、多个检波器操作的阀门开关进行分析。
使用两个进样阀,注入样品,在等温条件下进行分析。
氢气和氦气,采用氮气载气和热导池检测器(TCD),在一个13X型分子筛色谱柱进行测定。
样品中其他组分,采用氢气载气,经过用6-阀口和10-阀口旋转阀串联在一起的四个色谱柱和第二个TCD,进行测定。
四个色谱柱分离总试样中各个专门的部分。
开头两个色谱柱分开气体中的C3-C5馏程、二氧化碳、硫化氢和C5烯烃及/或C6+烃复合物。
第三个色谱柱解析中间馏程组分、乙烯和乙烷。
轻质气体、氧气及/或氩气混合物、氮气、甲烷和一氧化碳被第四个色谱柱解析。
采用单独的相对响应因子,然后归一化到100%,然后从记录峰值的测量面积,获得定量结果。
试验装置为了给使用此方法的用户提供方便,这里给出了供应商和产品目录编号等参考资料。
也可以使用其它供应商的产品。
© 环球油品公司(UOP LLC)版权所有(1963年,1973年,1987年,1997年)保留所有权利。
UOP测试方法也可以通过美国材料试验学会(ASTM)国际公司购买,地址:100 Barr Harbor Drive,PO Box C700,West Conshohocken PA 19428-2959,United States。
Fanuc机器人IO配置和UIUO配置
Fanuc机器人IO配置和UI/UO配置说明:这几天直接跳转发送Fanuc部分内容知识,以供大家阅读借鉴。
这里主要给大家分享Fanuc机器人的IO分类以及CRMA15、CRMA16的IO分配,UI/UO的分配。
一、Fanuc机器人IO种类1、Fanuc机器人IO分类I/O (输入/输出信号),是机器人与末端执行器、外部装置等系统的外围设备进行通信的电信号。
有通用 I/O 和专用 I/O 。
(1)通用 I/O通用I/O 是用户可以自己定义和使用的的 I/O信号,通用 I/O 有如下三类。
I/O 的i表示信号号码和组号码的逻辑号码。
•数字 I/O:DI[ i ]/DO[ i ]个数:512/512•群组 I/O:GI[ i ]/GO[ i ]个数:100/100,范围:0-32767•模拟 I/O:AI[ i ]/AO[ i ]个数:64/64,范围:0-16383(2)专用 I/O系统定义的专用IO信号,用户不能重新定义功能的信号;专用 I/O 是用途已经确定的 I/O ,专用 I/O 有如下几种。
•外围设备(UOP):UI[ i ]/UO[ i ]个数:18/20•操作面板(SOP):SI[ i ]/SO[ i ]个数:15/15•机器人 I/O :RI[ i ]/RO[ i ]个数:8/83、Fanuc机器人图片(图片来自百度网络)二、Fanuc机器人通讯IO模块1、Fanuc机器人硬件种类和机架号机架系指构成I/O 模块的硬件的种类。
•0 =处理 I/O 印刷电路板•1~16=I/O 单元 MODELA/B•32 =I/O LINK 从动装置•48 =外围设备控制接口(CRMA15、CRMA16)2、Fanuc机器人CRMA15、CRMA16插槽插槽系指构成机架的I/O 模块部件的号码。
•使用处理 I/O 印刷电路板的情况下,按所连接的印刷电路板顺序分别为插槽1、2...。
•使用 I/O 单元 MODEL A/B的情况下,则为用来识别所连接模块的号码。
液蜡 质量标准
质量标准
检验结果
试验方法
正构烷烃总含量。%(重)不小于
98.5
SH/T0410
C12和<C12,%(重)不小于
0.5
UOP620
C18和>C18,%(重)不小于
报告
UOP620
溴指数,mgBr/100g
25
ASTMD2710
赛波特颜色,号不低于
30
GB/T3555
硫含量,Mg/kg不大于
轻油
备注
1
外观
无机械杂质
无机械杂质
2
颜色
水白色
水白色
3
正构烷烃%≥
95
95
4
比重D204
0.76~0.775
0.745~0.755
5
碘价%≤
3
3
6
芳烃%≤
1
1
7
碱性氮PPm≤
5
5
8
闪点(闭口)℃≥
85
70
9
馏程始点℃
220
185
10
98%馏出温度℃
320
240
UOP621
C14和>C14%(重)不小于
报告
UOP621
溴指数,mgBr/100g
25
ASTMD2710
赛波特颜色,号不低于
30
GB/T3555
硫含量,Mg/kg不大于
3.0
SH/T0253
芳烃,%(重)不大于
0.4
SH/T0409
平均分子量
160-168
UOP621
2.4.2石蜡
序号
项目
重油
3.0
SH/T0253
UOP炼油工艺简介
加氢裂化
• 应用:美国霍尼韦尔UOP 公司的Unicracking工艺可 以将各种原料转化成分子 量较低的产品。
• 原料:原料包括常压瓦斯 油、减压瓦斯油、 FCC/RCC循环油、焦化 装置瓦斯油、脱沥青油和 生产液化石油气(LPG) 的石脑油。
• 产品:加工目标包括生产 汽油、喷气发动机燃料、 柴油燃料、润滑油原料、 乙烯装置原料、优质FCC 原料和LPG。
流化催化裂化
• 应用:利用美国霍尼韦尔UOP 装置:自从二十世纪四十 公司的FCC工艺、Resid FCC 年代初期开始至今,美国
(RFCC)工艺、PetroFCC工 霍尼韦尔UOP公司一直是
艺和RxPro工艺选择性地将直 一家非常活跃的FCC技术
馏和加氢处理的瓦斯气和残渣 油原料转化成价值更高的产品。
焦化
• 说明:原料直接进入到分馏塔(1)中,该分馏塔 里,原料与回收再用原料混合后一起泵入到焦化 装置加热器。该混合物被加热到焦化温度后,出 现了部分蒸发和轻度裂化。蒸气与液体混合物进 入一台焦炭塔(2台或者3台)进行进一步的裂化。 塔顶物流入到分馏塔(1)中被分离成瓦斯气、石 脑油、轻瓦斯油和重瓦斯油。瓦斯气和石脑油进 入蒸气回收装置(VRU)(4)中。至少要配备 两个焦化塔,一个焦化塔用于焦化,而另一个焦 化塔利用高压水流进行脱碳。焦化装置中还包括 一台焦炭装卸、焦炭切割、水回收和排放系统。 排放系统排出的放空气体被回收到VRU中。
含量,改善了汽油质量。
基化反应,最大限度地提高了
烷基化物产率和质量。美国霍
尼韦尔UOP公司提供了一套重
力流设计结构,在不需要催化
UOP炼油工艺简介
烷基化反应
说明:在烷基化反应中,在催 化剂的作用下C3~C5烯烃与 • 应用:UOP公司的Alky Plus 异丁烷反应生成汽车燃料烷基 烷基化工艺中加入清洁燃烧的 化物。在美国霍尼韦尔UOP公 中等沸程异石蜡烃,把C3~ C5烯烃组分转化成烷基化物, 司的Revap工艺中,在改性氢 降低了汽油调合蒸气压和烯烃 氟酸催化剂的作用下,发生烷 含量,改善了汽油质量。 基化反应,最大限度地提高了 烷基化物产率和质量。美国霍 尼韦尔UOP公司提供了一套重 力流设计结构,在不需要催化 剂循环泵的情况下得到了较高 的混合效果。强迫循环设计减 少了酸库存量和反应容器的高 度。 在一个小型酸再生器中进行酸 再生,该酸再生器降低了酸消 耗量,无需处置废酸。
脱沥青
• 应用:美国霍尼韦尔UOP公司/美国福斯特惠勒公 司溶剂脱沥青(SDA)工艺可以制备FCC 装置和 以减压渣油为原料的加氢裂化装置用的优质原料 和润滑油和沥青生产用的调和油料。
•产品:催化裂化和加氢裂化原料用脱沥青油 (DAO)、特种混合料用的树脂、特种沥青混合 料和残剩油用沥青。 •装置:目前已经建设了50多套装置;其中包括在 1996年将合并之前最初单独授权建设的美国霍尼 韦尔UOP公司和美国福斯特惠勒公司的装置。
既可以使用树脂催化剂,也可以使 用固体磷酸(SPA)催化剂使烯烃 聚合。树脂催化剂主要是转化异丁 烯。SPA催化剂也可以转化正丁烯。 饱和工段既可以使用碱金属,也可 以使用贵金属催化剂。
烷基化反应
• UOP公司的间接烷基化(简称:InNAlk)工艺中使用固体 催化剂把轻烯烃(主要是C4,但也有C3和C5)转化成烷 基化物。 • 原料:各种原料都可以采用InAlk工艺进行加工。典型的原 料包括FCC装置产生的轻烯烃、蒸汽裂解装置烯烃和iC4 加氢烯烃。 • 装置:InAlk工艺是在UOP公司的催化缩合反应和烯烃饱 和技术基础之上开发的。UOP公司已经授权和设计了400 多套生产聚汽油和石化烯烃的催化缩合装置,还授权和设 计了200多套不同的加氢装置。总共授权了12套InAlk装置。 这些装置中的六套装置目前正在运转,其中的两套正在设 计和建设之中。剩余的四套已经授权的装置都已停产和/ 或从来就没有建成过。至今为止已经授权的12套装置中的 7套是把MTBE装置改造成使用InAlk技术进行生产的装置。
UOP规范5-21-7一般用途离心泵
1. GENERAL概述Scope范围a. This Standard Specification covers the general design requirements for centrifugal pumps within the following application limits and specified to comply with ASME or standards: 本标准规范涉及遵守ASME 或标准和满足下列条件的离心泵的设计。
Maximum discharge pressure 275 psig (19 kg/cm 2 g)最大出口压力275 psig (19 kg/cm 2 g)Maximum suction pressure(normal operating, non short term upset) 75 psig (5 kg/cm 2 g)最大入口压力(常规工况无切换) 75 psig (5 kg/cm 2 g)Maximum rated total head 400 feet (120 meters)最大额定扬程400英尺(120米)Maximum rated speed 3600 rpm最大额定转速 3600 rpmMaximum pump fluid temperature 300 F (150C)最高介质温度300 F (150C)b. Exceptions or variations shown in the UOP Project Specifications take precedence over requirements shown herein.“UOP公司工程规范”中给出的例外情况或变更优先于本标准中的要求。
References参考文献Unless noted below, use the edition and addenda of each referenced document current on the date of this UOP Standard Specification. When a referenced document incorporates another document, use the edition of that document required by the referenced document.如果以下没有另外说明,使用本“标准规范”发行日期内有效的各参考文件版本和附录。
欧洲标准UOP 539
REFINERY GAS ANALYSIS BYGAS CHROMATOGRAPHYUOP Method 539-97SCOPEThis automated method is for determining the composition of refinery gas samples or expanded liquefied petroleum gas (LPG) samples obtained from refining processes or natural sources. Non-condensable gases, hydrogen sulfide, C1 through C4 hydrocarbons and C5 paraffins are reported individually, while C5 olefins and C6+ hydrocarbons are reported as a composite. Oxygen is not separated from argon. Results for hydrogen sulfide, if present, may not be quantitative on some analyzers. The method yields quantitative results from 0.1 to 99.9 mol-% for a single component or composite; except for hydrogen sulfide that yields quantitative results between 0.1 and 25 mol-%. Results may also be reported in mass-%OUTLINE OF METHODThe method requires the use of a dedicated gas chromatographic system that is configured for automated refinery gas analysis, and is capable, via valve switching, of multi-column, multi-detector operation. The sample is injected using two sampling valves, and the analysis is performed under isothermal conditions. Hydrogen and helium are determined on a 13X molecular sieve column using nitrogen carrier gas and a thermal conductivity detector (TCD). The remainder of the sample components are determined using hydrogen carrier gas, a series of four columns connected by 6-port and 10-port rotary valves, and a second TCD. The four columns separate specific portions of the total sample. The first two columns resolve the gases in the C3-C5 boiling range, carbon dioxide, hydrogen sulfide and the C5 olefins and/or C6+ hydrocarbon composite. The third column resolves the components in the intermediate boiling range, ethylene and ethane. The light gases, oxygen and/or argon composite, nitrogen, methane and carbon monoxide, are resolved by the fourth column. Quantitative results are obtained from the measured areas of the recorded peaks by the application of individual relative response factors, followed by normalization to 100%.APPARATUSReferences to catalog numbers and suppliers are included as a convenience to the method user. Other suppliers may be used.IT IS THE USER'S RESPONSIBILITY TO ESTABLISH APPROPRIATE PRECAUTIONARY PRACTICES AND TO DETERMINE THE APPLICABILITY OF REGULATORY LIMITATIONS PRIOR TO USE. EFFECTIVE HEALTH AND SAFETY PRACTICES ARE TO BE FOLLOWED WHEN UTILIZING THIS PROCEDURE. FAILURE TO UTILIZE THIS PROCEDURE IN THE MANNER PRESCRIBED HEREIN CAN BE HAZARDOUS. MATERIAL SAFETY DATA SHEETS (MSDS) OR EXPERIMENTAL MATERIAL SAFETY DATA SHEETS (EMSDS) FOR ALL OF THE MATERIALS USED IN THIS PROCEDURE SHOULD BE REVIEWED FOR SELECTION OF THE APPROPRIATE PERSONAL PROTECTION EQUIPMENT (PPE).© COPYRIGHT 1963, 1973, 1987, 1997 UOP LLCALL RIGHTS RESERVEDUOP Methods are available through ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken PA 19428-2959, United States. The Methods may be obtained through the ASTM website, , or by contacting Customer Service at service@, 610.832.9555 FAX, or 610.832.9585 PHONE.Chromatographic columns:Column 1A, 30 foot, 0.125-inch OD, 20% Sebaconitrile on 80/100 Chromosorb PAW, modified with phosphoric acid, Hewlett Packard, Cat. No. 19006-80095Column 1B, 2 foot, 0.125-inch OD, 20% Sebaconitrile on 80/100 Chromosorb PAW, modified with phosphoric acid, Hewlett Packard, Cat. No. 19006-80090Column 2, 6 foot, 0.125-inch OD, Porapak Q, 80/100 mesh, Hewlett Packard, Cat. No. 19006-80015 Columns 3 and 4, 10 foot, 0.125-inch OD, molecular sieve 13X, 45/60 mesh, Hewlett Packard, Cat.No. 19006-80020, two requiredGas purifier, hydrogen, used to remove oxygen from carrier gas, UOP Mat/Sen, Cat. No. P200-1Gas purifier, nitrogen, used to remove CO2, CO, H2O, O2, and hydrocarbons, UOP Mat/Sen, Cat. No. P300-1Integrator, electronic, or equivalent equipment for obtaining peak areas (may be included with the gas chromatographic system)LPG expansion apparatus, for quantitative expansion of LPG from a liquid to a gas phase, see LPG Sampling and list immediately below:Fitting, male connector, stainless steel, 0.25-inch tube fitting to 0.25-inch male NPT, Swagelok, Dearborn Valve & Fitting, Cat. No. SS-400-1-4, four required. Sample cylinders having an outlet fitting other than 0.25-inch female NPT will require a different fitting.Fitting, port connector, stainless steel, 0.25-inch tube fitting, Swagelok, Dearborn Valve & Fitting, Cat. No. SS-401-PC, two requiredFitting, union tee, stainless steel, 0.25-inch, Swagelok, Dearborn Valve & Fitting, Cat. No. 400-3 Tubing, stainless steel, 9 inches of Type 304, 0.25-inch OD x 0.21-inch ID, Alltech Associates, Cat.No. 30301Vacuum pump, capable of achieving a vacuum of 0.1-mm Hg, Fisher Scientific, Cat. No. 01-115-2 Valve, stainless steel, 0.25-inch Swagelok, Whitey, Dearborn Valve & Fitting, Cat. No. SS-1RS4LPG expansion cylinder, sample cylinder for containing expanded LPG sample:Cylinder, 4- x 6-inches, 316 stainless steel, 1380 kPa (200 psi) internal pressure, double connection, 0.25-inch pipe hex bored through, Arthur Harris, Cat. No. B-270Fitting, hex nipple, stainless steel, 0.25-inch NPT, Cajon, Dearborn Valve & Fitting, Cat. No. SS-4-HN, four requiredFitting, tee, stainless steel, 0.25-inch NPT, Cajon, Dearborn Valve & Fitting, Cat. No. SS-4-T Gauge, stainless steel, vacuum-pressure, -100 through +200 kPa (-14.5 to +29.0 psi) range, Matheson Gas Products, Cat. No. 63-2204Valve, stainless steel, 0.25-inch NPT inlet, 0.25-inch tube fitting outlet, Whitey, Dearborn Valve & Fitting, Cat. No. SS-1RM4-S4, two requiredRecorder (optional), used to supplement integrator plotRefinery gas analyzer. The analyzer used in this method is based on a commercially available 6890 Hewlett Packard Gas Chromatograph with electronic pneumatic control, dual thermal conductivity detectors, configured for automated refinery gas analysis, complete with four rotary valves, two restrictor valves and five columns to perform the method as written. Fig. 1 shows a flow diagram of the system. Various vendors that provide pre-configured refinery gas analyzers are listed in the APPENDIX. Other vendors also supply similar systems. Confirm with the selected vendor that the required separations are provided for the specific sample types to be analyzed.Regulator, air, two-stage, high purity, Matheson Gas Products, Model 3122-590Regulator, hydrogen, two-stage, high purity, Matheson Gas Products, Model 3122-350Regulator, nitrogen, two-stage, high purity, Matheson Gas Products, Model 3122-580Restrictor, fine metering valve, 0.0625-inch Swagelok, Nupro, Dearborn Valve & Fitting, Cat. No. SS-1-SG, two requiredLeak detector, gas, Alltech Associates, Cat. No. 21-250Valve, 6-port (two required), 8-port and 10-port rotary valves, Valco Instrument, models C6UWE, C8UWE and C10UWE, respectivelySample loop, stainless steel, 100-µL, Valco Instrument, Cat. No. SL100CUW, two requiredTubing, stainless steel, 0.0625-inch OD, Alltech Associates, Cat. No. 300010REAGENTS AND MATERIALSAll reagents shall conform to the specifications established by the committee on Analytical Reagents of the American Chemical Society, when such specifications are available, unless otherwise specified.References to catalog numbers and suppliers are included as a convenience to the method user. Other suppliers may be used.Air, compressed, to actuate column switching valvesHydrogen, 99.95% minimum purity, total hydrocarbons less than 0.5 ppm as methane (zero gas)Nitrogen, 99.99% minimum purity, total hydrocarbons less than 0.5 ppm as methane (zero gas)Blend, qualitative, for determining cut times, containing approximately equal concentrations of hydrogen, argon, nitrogen, carbon monoxide, carbon dioxide, methane, ethane, ethylene, propane, n-pentane and 1,3-butadiene, Matheson Gas Products. CAUTION: 1,3-Butadiene is a suspected human carcinogen.Avoid exposure while sampling, handling or venting any blend or sample that may contain this component. If analysis of 1,3-butadiene is not required, delete it from the Qualitative Blend and Blend2 (increase nitrogen to 16 mol-%). Substitute n-pentane for 1,3-butadiene in the Qualitative Blend anduse the n-pentane peak in place of the 1,3-butadiene peak where cited under Cut Time Determination.Blends, calibration, quantitative, primary standard, Matheson Gas Products, at the nominal levels shown in Table 1. If the composition of the samples to be analyzed varies significantly from the specified Calibration Blends, an alternative blend may be utilized that more closely resembles the composition of the samples. Single point calibrations are acceptable for normalized composition. If hydrogen sulfide is not present in the sample types being analyzed, it may be deleted from Blend 3 (increase nitrogen to 50.0 mol-%).Table 1Calibration Blend Nominal Concentrations, mol-%Component Blend 1 Blend 2 Blend 3Hydrogen 50.0 --- 20.045.0Nitrogen 15.0 15.05.0---Argon 5.0--- Methane 5.0 10.0---10.0Ethane 5.0--- Ethylene --- 5.0--- Propane 12.0 12.0--- Propylene --- 6.0Propadiene --- 1.0 ------ n-Butane 3.0 10.0--- Isobutane 3.0 10.0--- 1-Butene --- 5.0Isobutylene --- 5.0 ---trans-2-Butene --- 5.0 ---cis-2-Butene --- 5.0 ---1,3-Butadiene --- 1.0 ---n-Pentane 1.0 --- ---Isopentane 1.0 --- ---Carbon Dioxide --- --- 5.0Carbon Monoxide --- --- 10.010.0Helium --- ---Hydrogen Sulfide --- --- 5.0 PREPARATION OF APPARATUSIf the pre-configured refinery gas analyzer is purchased, follow the instrument set-up procedure provided by the manufacturer. For a refinery gas analyzer built in-house, refer to the following procedures for the instrument set-up on a HP 6890 based system.Instrument Set-upInstall the four rotary valves, two restrictor valves and five columns on the GC as shown in Fig. 1. CAUTION: Leakage of hydrogen into the confined volume of the column and valve compartments can cause a violent explosion. It is, therefore, mandatory to test for leaks each time a connection is made and periodically thereafter. All connecting lines are to be of minimum length and must be in the heated zone. The restrictors are required to minimize any flow disruption when the flow path through the rotary valves is changed and must be set to provide constant system pressure at Columns 2 and 3 when they are cut out of the system.Use the electronic pneumatic control in the constant flow mode. Establish the column flows in the following manner. Rotate valve 4 to the off position (solid line position, flow through the column) and set the column 4 flow rate to 25 mL/min (nitrogen carrier gas flow rate). Rotate valves 1, 2, 3 to the off position (solid line position, flow through the column) and set the column flow rate on columns 1A, 1B, 2, and 3 to 40 mL/min (hydrogen carrier gas flow rate).Restrictor AdjustmentNeedle valve restrictors are plumbed into Valves 2 and 3 to provide constant pressure when columns 2 and 3 are out of the flow path. Restrictors are adjusted by monitoring the inlet pressure. Record the inlet pressure when all valves are off, then turn on Valve 2 and allow 5 to 10 minutes for the flow to equilibrate. Adjust the restrictor to bring the inlet pressure back to the original value. Allow 5 minutes for flow to equilibrate between restrictor adjustments. Turn Valve 2 off. Repeat the procedure for Valve 3.Cut Time DeterminationPrior to sample injection, all valves are in the off position as shown in Fig. 1.Analysis of HydrogenThe analysis of hydrogen is accomplished by injecting samples from the sample loop on Valve 4. Hydrogen eluted from Column 4 (13X sieve column) is detected by TCD A and the rest of the components injected are back flushed before the next analysis.Cut Time A - the time the signal switches from TCD A to TCD B after hydrogen has been completely eluted from Column 4 and the time to close Valve 4, back flushing the rest of components after the signal is switched.Enter the following commands into the Run Table:Run Time 0.01 min Valve 4 OnRun Time 1.40 min Signal 1 Switch to TCD B Cut Time ARun Time 1.43 min Signal 1 ZeroRun Time 1.43 min Valve 4 Off Back flushRun Time 5 min StopFlush the qualitative blend containing hydrogen, nitrogen, argon, carbon monoxide, carbon dioxide, ethane, ethylene, propane, n-pentane and 1,3-butadiene through the sample loops and start the run. Check the elution time of hydrogen. The time to switch the signal to TCD B should be after hydrogen hascompletely eluted from Column 4. Readjust signal switch time and Valve 4 “Off” time in the Run Table if it is needed. Record this time as Cut Time A.Analysis of Fixed Gas and Light HydrocarbonsThe analysis of fixed gas and light hydrocarbons is established by injecting samples through the sample loop on Valve 1 right after hydrogen is injected from Valve 4. Note: Valve 1 is switched shortly after Valve 4 to prevent hydrogen carrier gas from backing up into the sample loop on Valve 4 eliminating the error in the hydrogen analysis. When sample is introduced into two analysis paths after injection, hydrogen is eluted first and measured at TCD A. Then, the signal is switched to TCD B to measure fixed gases and hydrocarbons. The determination of the following cut times is required for the separation of fixed gases and hydrocarbons.Cut Time B - the time that Valve 1 closes to back flush C6+ heavies so that all the 1,3-butadiene and the components lighter than 1,3-butadiene enter into Column 1A, and C6+ heavies elute in the Column 1B back flush.Enter the following commands into the Run Table:Run Time 0.01 min Valve 4 On InjectionRun Time 0.10 min Valve 1 On InjectionRun Time 0.10 min Valve 2 OnRun Time 0.10 min Valve 3 OnRun Time 1.40 min Signal 1 Switch to TCD B Cut Time ARun Time 1.43 min Signal 1 ZeroRun Time 1.43 min Valve 4 OffRun Time 1.50 min Valve 1 Off Cut Time BRun Time 30.0 min StopFlush the same qualitative blend used to determine Cut Time A through the sample loops and start the run. Valves 2 and 3 are switched to the “On” position during the injection to isolate Columns 2 and 3 from the flow path, and fixed gases (except for hydrogen) and hydrocarbons are separated only by the Sebaconitrile columns. A chromatogram similar to that shown in Fig. 2 should be obtained. Identify the peaks by comparing your chromatogram to that shown in Fig. 2. Check the chromatogram for the appearance of a peak in the C6+ heavies region. If there is a peak in the C6+ region and the 1,3-butadiene peak is smaller than expected or does not appear, delete the Run Time and enter a later time for switching Valve 1 to the “Off” position. Repeat the run as above until there is no C6+ peak and the maximum area is obtained for the 1,3-butadiene peak. Record the final time for switching Valve 1 “Off” as Cut Time B.Cut Time C - the time that Valve 3 is switched to the “Off” position while Valve 2 stays on. The 13X sieve column is in the flow path to collect the composite Ar/O2/N2/CH4/CO peak.Based on the chromatogram obtained in Cut Time B, determine Cut Time C by subtracting 0.1 minutes from the time that the composite Ar/O2/N2/CH4/CO peak started. Record this time as Cut Time C.Cut Time D - the time that Valve 2 is switched off while Valve 3 is turned on. The Porapak column is in the flow path to collect the composite C2=/C2 peak.Based on the chromatogram obtained in Cut Time B, also determine the time at the valley between the carbon monoxide peak and the ethane peak. This time can be established quite accurately by taking one half of the difference between the retention times of the two peaks and adding this value to the retention time of the first peak. Record this time as Cut Time D.Cut Time E - the time that Valve 2 is returned to the “On” position while both Columns 2 and 3 are isolated from the flow path. Components CO2 to 1,3-butadiene are eluted from the Sebaconitrile columns and detected by TCD B.Based on the chromatogram obtained in Cut Time B, also determine the time at the valley between the ethane/ethylene peak and carbon dioxide peak and record this as Cut Time E.Cut Time F - the time that Valve 2 is turned back off to elute the C2=/C2 from Column 2 after 1,3-butadiene has completely eluted from the Sebaconitrile column.Based on the chromatogram obtained in Cut Time B, also determine the time for Valve 2 to switch to the “Off” position by adding three minutes to the retention time of the 1,3-butadiene peak. Record the time as Cut Time F.Cut Time G - the time that Valve 3 is turned back off to elute O2, N2, CH4 and CO from Column 3 after ethane has completely eluted from the Porapak column.Based on the chromatogram obtained in Cut Time B, also determine the time for Valve 3 to switch to the “Off” position by adding five minutes to Cut Time F. Ethylene and ethane are expected to be eluted in five minutes, and then Valve 3 is turned off to elute O2, N2, methane and carbon monoxide from Column 3. Record this time as Cut Time G.Enter the Cut Times determined above in a new Run Table, such as:Run Time 0.01 min Valve 4 OnRun Time 0.10 min Valve 1 OnRun Time 0.10 min Valve 2 OnRun Time 0.10 min Valve 3 OnRun Time 1.40 min Signal 1 Switch to TCD B Cut Time ARun Time 1.43 min Signal 1 ZeroRun Time 1.43 min Valve 4 OffRun Time 1.50 min Valve 1 Off Cut Time BRun Time 2.60 min Valve 3 Off Cut Time CRun Time 3.20 min Valve 3 On Cut Time DRun Time 3.20 min Valve 2 Off Cut Time DRun Time 3.70 min Valve 2 On Cut Time ERun Time 15.0 min Valve 2 Off Cut Time FRun Time 20.0 min Valve 3 Off Cut Time GRun Time 30.0 min StopRe-inject the qualitative blend to check the cut times. If necessary, adjust the timing to ensure the proper separations.PROCEDUREChromatographic TechniqueThe first time the columns are installed, or any time the columns are replaced, condition the columns according to the manufacturers’ instructions.Table 2Operating Conditions for In-House Built AnalyzerOven temperature (isothermal) 55o CInjection port temperature 100o CDetector temperature 160o CCarrier gas (A) nitrogenFlow rate 25 mL/minCarrier gas (B) hydrogenFlow rate 40 mL/minDetector A* TCDReference gas nitrogenFlow rate 40 mL/minMakeup gas nitrogenFlow rate 3 mL/minDetector B* TCDReference gas hydrogenFlow rate 55 mL/minMakeup gas hydrogenFlow rate 3 mL/min___________________*Consult the manufacturer’s instrument manual for suggested flow rates.1. Install the gas purifiers in the supply line between the carrier gas source and the carrier gas inlet onthe gas chromatograph.• The column life is significantly reduced if the gas purifiers are not used.2. Establish the recommended operating conditions for the in-house built analyzer (see Table 2).• Other conditions may be used if they produce the required sensitivity and chromatographic separations equivalent to those shown in the typical chromatogram (Fig. 3).3. Connect the sample or calibration blend cylinder to the sample inlet (Fig. 1) and purge the sampleloops with the gas to be analyzed.4. Stop the flow, allow 5 to 10 seconds for the pressure to equilibrate, and start the analysis.5. Identify the sample components by comparing the resultant chromatogram with the typicalchromatogram (Fig. 3).LPG SamplingLiquefied petroleum gas (LPG) must be carefully expanded to ensure that a representative sample is analyzed. Various procedures are used to quantitatively expand LPG from a liquid phase into a representative gas phase prior to analysis. The following is the recommended procedure that has been proved to be satisfactory.1. Assemble the LPG Expansion Cylinder consisting of a small stainless steel expansion cylinder, astainless steel gauge with a reading range from vacuum to 200 kPa (gauge) and two stainless steel shut-off valves (see Fig. 4).• Some expansion cylinders have two valves (C and D) as shown in Fig. 4, some have only one (Valve C).The version shown in Fig. 4 is easier to clean, but either may be used.2. Connect the apparatus to the vacuum system and evacuate the cylinder assembly to 0.013 kPa (0.1-mm Hg).3. Connect two small pieces of clean stainless steel tubing, a tee and Valve B to the evacuated cylinderas shown in Fig. 4 (LPG Expansion Apparatus).4. Determine if the LPG sample cylinder contains a dip tube. If not, place the LPG sample cylinder in avertical position in a hood or well-vented area. Briefly open the bottom valve (A) to check that no water or sediment is present in the LPG. If the sample cylinder contains a dip tube, invert the cylinder (both valves on the bottom) and briefly open the valve not connected to the dip tube to check that no water or sediment is present. If water or sediment is determined to be present, discontinue the analysis and obtain a clean sample.• LPG samples are usually contained in a cylinder having valves on both ends or, in some cases, a cylinder where one of the valves is connected to a dip tube.5. Connect the bottom valve or the valve connected to the dip tube of the LPG sample cylinder with ashort stainless steel connector to the expansion apparatus. Fully open Valve B in Fig. 4.6. Open (about 1/4 turn) Valve A, rapidly, on the sample cylinder until only liquid comes out of ValveB. Important: The valve must be opened wide enough so that a portion of liquid sample enters thestainless steel tubing before it vaporizes. Fractionation must not take place at the valve, or the composition of the sample will change.7. Close Valve B and then Valve A and open Valve C (Fig. 4).8. Close Valve C on the apparatus and disconnect the apparatus from the sample vessel. A positivepressure of 69 to 103 kPag (10 to 15 psig) should be displayed on the expansion cylinder gauge. If not, repeat Steps 1 through 8 with a longer or shorter piece of stainless steel tubing in the expansion apparatus. The cylinder now contains a gas phase sample that is representative of the LPG sample in the original pressurized cylinder.9. Inject the expanded sample following Steps 3 through 5 under Chromatographic Technique.CalibrationResponse factors are required to relate detector response for each sample component to mol-%. Response factors for hydrogen, oxygen and/or argon composite, isopentane and n-pentane are calculated fromCalibration Blend 1. The response factors for C1 to C4 hydrocarbons and nitrogen are calculated from Calibration Blend 2, while the response factors for hydrogen sulfide (if present), carbon monoxide and carbon dioxide are determined from Calibration Blend 3.Analyze each calibration blend three times as described under Chromatographic Technique. The three replicates should repeat with 3% (relative). If not, rerun until three replicates are obtained with the desired repeatability. Based on the average of the three replicate analyses, determine the average relative response factor for each component, to three significant figures, using nitrogen as reference and the following formula:=ABFCD(1)where:A= component of interest, mol-%B= area of nitrogen peakC= nitrogen, mol-%D= average peak area for a component of interestF= relative response factorThe response factor for argon is used for the unresolved oxygen and/or argon composite peak.Extrapolate a relative response factor for a C6 hydrocarbon from the relative response factors of propane, n-butane and n-pentane. Use that factor for the C5 olefin and/or C6+hydrocarbon peak.CALCULATIONSCalculate the actual mol-% concentration of each component or composite (assuming all componentspresent in the sample are detected) to the nearest 0.1 mol-% using Eq. 2.=FGComponent or Composite, mol-%100H(2)where:F= previously defined, Eq. 1G= peak area of the componentH= sum of the products FG for all recorded peaks100= factor to convert to mol-%When mass-% concentrations are required, the conversion can be made using Eq. 3. Report results to thenearest 0.1 mass-%.=YZComponent or Composite,mass-%100T(3)where:T= sum of the products YZ for all componentsY= component concentration, mol-%Z= molecular weight of component, g/mole100= factor to convert to mass-%PRECISIONRepeatabilityBased on two tests performed by each of two analysts on each of two different days (8 tests), the within-laboratory estimated standard deviations (esd) were calculated for components at specific concentrations in a synthetic refinery gas blend and are listed in Table 3. Two tests performed in one laboratory by different analysts on different days should not differ by more than the allowable differences in Table 3 at the concentrations listed (95% probability).The data listed in Table 3 are an estimate of short-term repeatability of the method. When the test is run routinely in the field, a control standard and individual-range chart should be used to develop a better estimate of the long-term repeatability.ReproducibilityThere is insufficient data to calculate reproducibility of the test at this time.TIME FOR ANALYSISThe elapsed time for the analysis of a gas sample is 0.5 hour, with a 0.1 hour labor requirement. The elapsed time for the analysis of a LPG sample (including expansion of the sample) is 1.0 hour, with a 0.5 hour labor requirement.Table 3RepeatabilityComponent or Composite Concentration,mol-%Within-Lab esd,mol-%AllowableDifference, mol-%Hydrogen 50.2 0.15 0.6 Nitrogen 15.0 0.10 0.4 Methane 5.0 0.06 0.2 Ethane 4.90.040.2 Propane 12.0 0.06 0.2n-Butane 2.9 0.02 0.1 Isobutane 3.0 0.03 0.1n-Pentane 1.0 0.02 0.1 Isopentane 1.0 0.01 0.1 Oxygen/Argon 5.0 0.04 0.2 Hydrogen Sulfide 16.4 0.09 0.4SUGGESTED SUPPLIERSThe suggested suppliers for the refinery gas analyzer are listed in the APPENDIX.Alltech Associates, Inc., 2051 Waukegan Rd., Deerfield, IL 60015 (847-948-8600)Arthur Harris and Co., 210 N. Aberdeen St., Chicago, IL 60607 (773-666-6832)Dearborn Valve & Fitting Co., 1540 Old Rand Rd., P.O. Box 847, Wauconda, IL 60084-0847 (847-526-6900)Fisher Scientific, 711 Forbes Ave., Pittsburgh, PA 15219 (412-562-8300)Hewlett Packard Co., 2850 Centerville Rd., Wilmington, DE 19808-1610 (302-633- 8000)Matheson Gas Products, Inc., P.O. Box 96, Joliet, IL 60434 (815-727-4848)UOP Mat/Sen, 4509 Golden Foothill Pkwy., El Dorado Hills, CA 95762 (916-939-8800)Valco Instruments Co. Inc., P.O. Box 55603, Houston, TX 77255 (713-688-9345)APPENDIXList of Suggested Suppliers for Refinery Gas AnalyzersSuggested Supplier,Model # Application Instrument Specifications AddressHewlett-Packard Company,Model HP/AC,Model G2329A Separates hydrogen, C6+, C1-C5Equipped with HP 6890 SeriesGC with EPC, HP 3365ChemStation or HP 3396BIntegrator, Packed Columns,TCD/TCD426 Gallimore DairyRd., Greensboro, NC27409Tel: (800) 227-9770AC Analytical Controls Inc.,AC/HP RGA,Model 1029 (Turnkey) Separates hydrogen, C6+, C1-C5 rangeper component and fixed gasesEquipped with HP 6890 SeriesGC with EPC, HP 3365ChemStation or HP 3396BIntegrator, Packed Columns,TCD/TCD3448 Progress Dr.,Bensalem, PA 19020Tel: (215) 638-7078Fax: (215) 638-7096EG&G Chandler Engineering,Carle Series 400: Model 04196-A, Cat. No. 72030-11 Refinery Gas Analysis for Low C5+Samples (enhanced C4 unsaturatesseparation)TCD/TCD P.O. Box 470710,Tulsa, OK 74147-0710Tel: (918) 627-1740Fax: (918) 627-1748Model 04124-A, Cat. No. 72020-01 Refinery Gas Liquids Analysis of C1-C5saturates and unsaturates, with initialbackflush of C5= and C6TCD/TCDWasson ECE Instrumentation, Model 397-00 Standard Refinery Gas: analysis of C1-C5 paraffins & olefins with initialbackflush of C6+ hydrocarbonsHP 5890 II GC, one capillaryand one packed column,TCD/FID1305 Duff Dr.,Fort Collins, CO 80524Tel: (303) 221-9179Fax: (303) 221-9364Model 383-00 Extended Refinery Gas Analysis:analysis of C1-benzene paraffins &olefins followed by initial backflush oftoluene & C8+ heavies as compositesame as aboveModel 196-00 Refinery Gas by TCD: C1-C5 paraffinsand olefins, an initial composite C5olefin/C6+ backflush, fixed gases andhydrogenTCD/TCDVarian Analytical Instruments,Varian 3800 GC It provides the separations of oxygen,nitrogen, carbon dioxide, H2S andhydrocarbons from C1 through C16Varian 3800 GC,TCD/TCD,Star ChromatographyWorkstationVarian ChromatographySystems, 2700 MitchellDr., Walnut Creek, CA94598Tel: (510) 939-2400Fax: (510) 945-2102RenaissanceAnalytical, LLC, System 1 Extended Accelerated Refinery GasAnalysis: Initial composite backflush oftoluene & C8+ followed by C1-C7paraffins & olefins and benzene (fastanalysis)HP6890 GC, two capillary andone packed column,dual TCD/FIDP.O. Box 373,Pearland, TX 77581Tel: (281) 412-0900Fax: (281) 412-0770System 2 Standard Refinery Gas Analysis:analysis of C1-C5 paraffins & olefinswith initial backflush of C6+ heavies HP6890 GC,packed columns only, dual TCD/FIDSystem 3 Refinery Gas Analysis: analysis of C1-C5 paraffins & olefins with initialbackflush of C6 heavies (slow analysis) HP6890 GC,packed columns only, TCD/TCDSeparation Systems, Inc.,Refinery Gas Analyzer C3-C6 hydrocarbons are determined bythe FID. Hydrogen, nitrogen, oxygen,carbon monoxide, carbon dioxide, andC1 to C2 are determined by TCDHP GC,TCD/FID100 Nightingale Ln.,Gulf Breeze, FL 32561Tel: (904) 932-1433Fax: (904) 934-8642。
astm uop 标准报告
astm uop 标准报告
ASTM UOP 是一种国际标准,用于石油产品和化学品的加工、运输和储存。
ASTM UOP 报告是根据ASTM UOP 制定的标准进行测试和评估的结果。
ASTM UOP 报告通常包括以下内容:
1. 样品信息:包括样品名称、样品编号、取样地点、取样时间等信息。
2. 测试标准:ASTM UOP 制定了许多测试标准,包括石油产品的蒸馏、闪点、密度、粘度等,以及化学品的纯度、杂质含量等。
ASTM UOP 报
告中会列出所使用的测试标准号和测试项目。
3. 测试结果:ASTM UOP 报告会列出详细的测试结果,包括每个测试
项目的测试数据和计算结果。
4. 结论:根据测试结果,ASTM UOP 报告会得出结论,包括产品是否
符合ASTM UOP 标准要求,是否存在潜在的安全风险等。
5. 签名和日期:ASTM UOP 报告需要有实验室主任或分析员的签名,
并注明报告的日期。
UOP简介
UOP简介UOP主要是做工艺包的专利商。
不是工程公司。
UOP是一个在研究开发、技术许可、工艺工程、设备设计、技术服务以及在生产先进材料、专用催化剂和吸附剂等方面拥有自主技术的跨国公司。
UOP为炼油厂、天然气加工和石油化工领域提供催化剂、分子筛和活性氧化铝,是全球最大的催化剂和吸附剂生产商之一,催化剂和吸附剂年销售收入超过6亿美元。
目前,UOP为其许可技术和其他公司许可技术制造约100种不同的催化剂和吸附剂产品,应用于重整、异构化、加氢裂化、加氢精制和氧化脱硫等炼油领域以及包括生产芳烃(苯、甲苯和二甲苯)、丙烯、丁烯、乙苯、苯乙烯、异丙苯和环己烷等在内的石油化工领域。
UOP是全球最大的沸石和铝磷酸盐分子筛供应商,产能超过63.6kt/a,其中有150多种分子筛产品用于炼油厂气体和液体物料的脱水、除去微量污染物和产品分离。
此外,UOP也是世界最大的氧化铝生产商,产品包括拟薄水氧化铝、β-氧化铝、γ-氧化铝和α-氧化铝,提供活性氧化铝和铝/硅-铝球形载体。
UOP在全球有11套生产装置,可进行合成、成型、酸抽提、热液处理和金属负载等操作。
UOP继续在开发中投入大量资金,对具有新颖催化和吸附性质的新材料进行放大和工业化生产。
UOP利用组合化学和一系列表征方法等新的研究工具,通过中试放大和半工业化试验,平均每年开发l5种新的工业催化剂和吸附剂。
UOP最近开发的催化剂包括R-264TM催化剂用于石脑油重整,TA-20TM催化剂用于重芳烃烷基转移,ADS-37TM吸附剂用于回收高纯对二甲苯。
UOP将继续通过创新产品、卓越制造和一流的技术服务,帮助全球的石油炼制业、天然气加工和石油化工业应对日益严竣的挑战。
2005年霍尼韦尔(Honeywell)公司已与道(Dow)化学公司达成最终协议,该公司已购买下道化学在UOP(伊利诺伊州,德斯普兰斯)公司内的50%股份,使它完全拥有了UOP。
UOP是一家石油炼制、石油化工与天然气加工等行业中工艺技术、催化剂、工业装置和咨询服务等著名的国际供应商和许可证转让商。
astm uop 826-2010 胺溶液中二氧化碳
astm uop 826-2010 胺溶液中二氧化碳
ASTM UOP 826-2010是一种用于测定胺溶液中二氧化碳含量的标准测试方法。
该方法适用于各种胺类溶液,包括乙醇胺、二甲醇胺和二乙醇胺等。
该测试方法是通过将胺溶液与一定体积的CO2进入反应器,并在特定温度和压力下进行搅拌和反应,以使CO2与胺发生反应生成盐类。
然后,通过滴定法测定反应后剩余的未消耗CO2的量,从而计算出溶液中的CO2含量。
ASTM UOP 826-2010为胺溶液中二氧化碳含量的测定提供了严格的实验室操作规程和结果计算方法,确保测试结果的准确性和可重复性。
该标准测试方法被广泛应用于化工、石油和天然气行业等领域,以评估和监控胺溶液中二氧化碳的浓度,以保证工业生产过程的质量和安全性。
UOP标准
UOP1 - 87馏程重的石油和焦渣的测定UOP41 - 07石油馏分医生测试UOP79 - 87石油馏分分馏UOP99 - 07戊烷不溶物使用的膜过滤器在石油油UOP163 - 10硫化氢和液态烃硫醇硫,电位滴定法UOP202 - 00轻质石油馏分油和液化石油气的二硫化硫炼油厂使用的腐蚀性溶液UOP209 - 00碱度,硫化氢和硫醇分析电位滴定法中的烃类气体的UOP212 - 05硫化氢,硫醇硫,羰基硫UOP248 - 92在碱性溶液的碱度和氟化物UOP254 - 87流体裂化催化剂的表观体积密度UOP262 - 99酚类物质和石油产品硫酚光度法电位滴定法碳氢化合物UOP269 - 10氮基地UOP274 - 94白金新鲜催化剂分光光度法UOP286 - 89在馏分油的游离硫水星数UOP291 - 02共有氯化物电位滴定法在氧化铝和硅铝催化剂UOP294 - 93催化剂颗粒的表观体积密度UOP303 - 07催化剂杂质,用ICP - OESUOP304 - 08溴数和烃溴指数电位滴定法UOP311 - 02荧光指示剂吸附(FIA)的烃类UOP314 - 97炼油水的pH值,铁,铜分析UOP326 - 08双烯值由顺丁烯二酸酐加成反应在催化剂和催化剂的罚款UOP333 - 10支持筛分析UOP373 - 08通过C5烃气相色谱法气体混合物的组成2UOP375 - 07 UOP表征因子的计算和矿物油的分子量估算UOP377 - 90液化石油气的游离硫汞号码UOP379 - 81氟化氢在HF烷基化蓄热下装UOP382 - 81水蓄热下装氟化氢烷基化UOP389 - 10微量金属在有机湿灰化- ICP - OESUOP391 - 09石油产品或原子吸收光谱法有机物痕量金属UOP395 - 95石油总氯馏分比色法UOP407 - 09微量金属在有机干灰化- ICP - OESUOP410 - 85钠火焰发射或原子吸收光谱法在催化剂UOP411 - 92普通石蜡消减气相色谱UOP437 - 81分子筛颗粒尺寸分布UOP464 - 00苯酚在轻芳烃和环己烷光度法UOP481 - 10水在液态烃库仑Molex的进程N石蜡制品UOP495 - 03芳烃,紫外分光光度法UOP501 - 02荧光指示剂吸附(FIA)的烃类在高温UOP516 - 00汽油,馏分燃料和C3 - C4馏分的采样和处理UOP523 - 96乙二醇和无袋用气相色谱溶剂混合物中的分布UOP539 - 97炼油厂气相色谱法气体分析UOP543 - 11跟踪非芳香族碳氢化合物在高纯度芳烃气相色谱法UOP547 - 97实验室的硫化氢和硫醇的提取UOP549 - 09钠在石油馏分用ICP - OES或AASUOP551 - 08正己烷和低沸点碳氢化合物的GC免费汽油烯烃UOP555 - 10高纯度苯和环己烷的GC的痕量杂质盒装UOP563 - 90分子筛的表观体积密度UOP565 - 05酸值和环烷酸滴定法UOP578 - 11自动孔体积和孔径多孔物质的压汞分布UOP588 - 94,无机和有机氯烃类电位滴定法UOP602 - 89催化剂的索氏提取2,氢和GC轻气态烃UOP603 - 88微量的CO和COUOP614 - 02庚烷不溶物使用的膜过滤器在石油油UOP621 - 98碳氢化合物的沸点分布的气相色谱分析UOP624 - 94通过化学分析的羰基数UOP629 - 08氟化氢的烷基化反应和再生下装分析UOP649 - 10固态,半固态氧总量,高沸点液态烃裂解UOP673 - 06直链烷基苯异构体分布洗涤剂烷基化气相色谱法UOP678 - 04液态烃溶解的分子氧电化学检测UOP682 - 84共有炼油厂水域氰化物可见分光UOP683 - 86炼油废水中硫化物UOP688 - 09正常烯烃和普通石蜡的气相色谱分析UOP690 - 99 Octanes和低沸点碳氢化合物在免费的GC烯烃汽油UOP699 - 09钠原子吸收光谱法在液化石油气高纯度蒸馏水中异丙苯UOP702 - 09杂质的GCUOP703 - 09感应Furnance燃烧和红外探测碳催化剂UOP712 - 71(2006)Ferrox测试丙烯二氯乙烷和四氯化碳等有机含氧化合物UOP714 - 07金属杂项样品,用ICP - OESUOP720 - 08中的杂质和纯度,高纯度GC二甲苯UOP725 - 86 Pentenes和烯烃汽油中低沸点碳氢化合物气相色谱法UOP730 - 09总氧在液态烃裂解UOP732 - 09含氧(生物)给料派生馏分油的GC分析UOP733 - 10剩余甘油三酯在无氧原料气相色谱法UOP744 - 06芳烃碳氢化合物的GCUOP766 - 91片密度水银位移UOP778 - 07盒装挤压催化剂的表观体积密度(ABD)UOP779氯- 08石油馏分由微库仑UOP791 - 94石油气或C5减烃馏分的硫成分的GC - SCDUOP796 - 09用ICP - OES在石油液体硅UOP798 - 96跟踪P - DEB或茚在C8芳烃和P - DEB跟踪C8芳烃气相色谱法UOP799 - 08液态烃的氯化干比色法UOP801 - 80竹炭颗粒尺寸分布UOP802 - 80磨耗炭屑UOP803 - 84氯化苯酚光度法颜色UOP818 - 81硫代精益胺解决方案UOP824 - 81二乙醇胺溶液中颜色指示剂滴定UOP825 - 81乙醇胺颜色指示剂滴定解决方案UOP826 - 10胺溶液中二氧化碳UOP827 - 81胺解决方案视硫化氢UOP828 - 81共有胺溶液中UOP829 - 82 Titrimatric测定中的二氧化碳乙醇胺UOP834 - 82胂乙烯电热原子吸收光谱法UOP851 - 08密度的粉末和固体氦流离失所激光光散射UOP856 - 07粉末的粒子尺寸分布UOP863 - 01 C10 - C18 Molex公司产品在痕量解吸气相色谱法在有机和无机材料的燃烧和红外探测UOP864 - 89硫UOP868 - 88跟踪高纯芳烃饱和的GCUOP876 - 93铂金在氯铂酸分光光度法UOP880 - 08在低烯烃的烃类馏分气相色谱法UOP896 - 93废催化剂中的铂在氢气或液化石油气UOP899 - 04跟踪碳氢化合物气相色谱法UOP905 - 08通过X -射线衍射白金集聚UOP910 - 07共有氯化石油气气态烃和微库仑UOP912 - 06氟离子选择性电极催化剂,分子筛,水溶液UOP914 - 92催化剂分子筛自动抗压强度毛细管气相色谱法UOP915 - 92普通石蜡UOP916 - 93钯,黄金和ICP - AES法二氧化硅催化剂钾UOP917 - 93的食水及废氧化铝催化剂钯分光光度法UOP918 - 92的收集和分析吸附剂和催化剂的磨削UOP923 - 97石油气总硫氢解ICP - AES法在加氢裂化催化剂UOP924 - 00镍,钨,钠和铝UOP925 - 92镍,钼,磷,钴,铝在新鲜催化剂ICP - AES法UOP927 - 92痕量金属杂质的ICP - AES法在新鲜催化剂UOP930 - 07氯化石油气和气态烃干比色法混合二甲苯中的UOP931 - 10痕量杂质的 GC植物存款,规模和污泥UOP933 - 94测试程序UOP935 - 94 Mercaptain在煤油的类型,通过核磁共振UOP936 - 95组合中氮的化学发光法石油气UOP938 - 10液态烃总汞和汞形态UOP939 - 96盐基氮离子色谱法在液化石油气UOP944 - 96新鲜和再生催化剂的比表面UOP945 - 96铂金白金或铂金/锡催化剂氢氧滴定分散UOP946 - 96石油石脑油中砷HG - AASUOP947 - 96长度和直径挤压催化剂,使用一个半自动化的方法UOP948 - 07的混合气体的相对密度从成分计算UOP952 - 97微量铅的石墨炉原子吸收光谱法在汽油和石脑油UOP953 - 97烧碱水溶液中的硫酸盐和硫代硫酸离子色谱法UOP954 - 11点火(意向书)亏损新鲜,再生,使用和废催化剂,催化剂载体,吸附剂UOP958 - 98氨碳氢化合物UOP959 - 98在水溶液中铵离子色谱法测定UOP960 - 06微量含氧液体烃类碳氢化合物气相色谱法UOP961 - 98分子筛的元素组成的ICP - AES火焰AAS或ICP - AES法在汽油和石脑油UOP962 - 98铜UOP963 - 98跟踪芳香烃在90至400 ° C沸点范围石油馏分高效液相色谱法UOP964 - 11表面积,孔体积,平均孔径和氮吸附孔径分布的多孔材料UOP965 - 10共有的环烷烃和总芳烃合成石蜡煤油燃料全二维气相色谱火焰离子化检测UOP967 - 00自动球形催化剂的抗压强度甲基异丁基酮油的GC UOP968 - 00脚灯UOP969 - 00醋酸锰酸盐衰落UOP971 - 00微量氮轻芳香烃化学发光UOP972 - 01铝,硅和醋酸银用ICP - OESUOP973 - 01自动挤压催化剂抗压强度跟踪UOP976 - 02 C4 - C9高纯芳烃饱和的GCUOP979 - 02共有氯化铝催化剂的波长色散X射线荧光UOP980 - 07 C5和下沸点二烯烃,烯烃,并在用GC石脑油ParafinsUOP981 - 11微量氮化学发光法检测氧化燃烧液态烃1,3 -丁二烯UOP983 - 04乙炔气相色谱法UOP986 - 08重型石油馏分中的砷,使用微波消解石墨炉原子吸收光谱法液态烃UOP987 - 11低微量硫氧化燃烧紫外荧光检测UOP988 - 11液化石油气和气态烃低微量硫氧化燃烧,紫外荧光检测UOP990 - 11有机分析馏分全二维气相色谱火焰离子化检测UOP991 - 11的氯化物,氟化物,和液体有机溴化物燃烧离子色谱法(CIC)UOP的方法UOP999 - 05精密报表历史标准UOP6 - 82使用UOP公司的氧气压力容器汽油的诱导期UOP33 - 82汽油中的氧UOP41 - 74石油馏分博士试验UOP46 - 85石蜡矿物油和沥青蜡含量UOP77 - 85原油亨普尔蒸馏油评价UOP99 - 82使用膜过滤器在石油油戊烷不溶物UOP114 - 86气体相对密度林女士积液方法在汽油和石脑油UOP144 - 88铜UOP163 - 89硫化氢和硫醇硫,液态烃UOP163 - 05硫化氢和液态烃硫醇硫,电位滴定法UOP174 - 84剩余燃油的油的储存稳定性UOP197 - 89硫醇硫-铜价UOP210 - 76T苛性碱溶液分析-双指示剂UOP212 - 04硫化氢,硫醇硫和烃类气体中的羰基硫化物电位滴定法UOP212 - 03硫化氢,硫醇硫和烃类气体中的羰基硫化物电位滴定法UOP212 - 77硫化氢,硫醇硫和烃类气体中的羰基硫化物电位滴定法电位滴定法碳氢化合物UOP269 - 90氮基地UOP275 - 98点火催化剂,在900 ° C的损失可见分光光度法在石油馏分UOP276 - 85吡咯氮UOP300 - 61水乙二醇UOP303 - 87催化剂杂质的ICP - AESUOP303 - 05催化剂杂质,用ICP - OESUOP304 - 90溴的数量和碳氢化合物溴指数电位滴定法UOP311 - 92荧光指示剂吸附(FIA)的烃类UOP315 - 59盐基氮低温酸性气体洗涤UOP317 - 66T氯氢气由色度程序UOP320 - 86硫酸氧化铝或二氧化硅,氧化铝基催化剂的比浊法UOP326 - 82双烯值由顺丁烯二酸酐加成反应UOP326 - 06双烯值由顺丁烯二酸酐加成反应UOP326 - 07双烯值由顺丁烯二酸酐加成反应1.6毫米的罚款UOP333 - 89(1/16-Inch)筛分析的球形催化剂和基地在催化剂和催化剂的罚款UOP333 - 07支持筛分析UOP358 - 64液态丁烷和库仑滴定法石油馏分的溴指数UOP364 - 85微量溶解在液体中的氧UOP373 - 83通过C5烃气相色谱法气体混合物的组成2UOP374 - 90汽油中的苯二胺型抑制剂UOP375 - 86 UOP表征因子的计算和石油的分子量估算UOP384 - 76酸提取或直接凯氏定氮过程中氮的石油馏分和重质油湿灰/ ICP - AES法UOP389 - 86在油中的微量金属湿灰化和ICP - OES油UOP389 - 04微量金属湿灰化和ICP - OES油UOP389 - 09微量金属UOP389 - 09A痕量金属中的有机物湿灰化- ICP - OESUOP391 - 91石油产品或原子吸收光谱法有机物痕量金属UOP394 - 85芳烃碳氢化合物气相色谱电位滴定法UOP405 - 67T氯化氢气体流UOP412 - 87损失点火催化剂,在500 ° CUOP413 - 82一天的燃油稳定UOP422 - 66粒子尺寸分布微孔网眼筛用炼油厂烧碱UOP423 - 85硫代UOP425 - 86表面积,孔体积和孔径的多孔物质吸附氮UOP434 - 83分子筛的自由水和挥发性碳氢化合物含量UOP436 - 87二氧化硅称重过程中的催化剂UOP438 - 81分子筛颗粒的磨耗在炼油水域UOP456 - 80氯化物UOP481 - 91水在液态烃库仑UOP481 - 09水在液态烃库仑Molex公司的 N -石蜡制品UOP495 - 00芳烃,紫外分光光度法UOP501 - 83荧光指示剂吸附(FIA)的烃类在高温UOP515 - 68T残留和有机废水残渣UOP537 - 91醇酮的混合物和GCUOP543 - 97跟踪非芳香烃的高纯度芳烃气相色谱钠UOP549 - 81石油馏分,用原子吸收分光光度计火焰发射UOP551 - 86己烷和低沸点碳氢化合物免费汽油中的烯烃气相色谱法UOP555 - 96高纯度苯和环己烷的GC的痕量杂质UOP565 - 04酸值和环烷酸电位滴定法电位滴定法UOP565 - 92酸值和环烷酸UOP569 - 79甲醇气相色谱在石油馏分油和液化石油气UOP578 - 02自动孔体积和孔径多孔物质的压汞分布UOP578 - 84全自动孔径分布的多孔物质,通过压汞UOP586 - 71硫氧-氢的燃烧碳氢化合物UOP587 - 92酸值和环烷酸比色法滴定法UOP592 - 85钯催化剂可见分光UOP614 - 80庚烷不溶物使用的膜过滤器在石油油UOP619 - 83氢氧燃烧氟碳氢化合物UOP627 - 85二氧化硅和钠水玻璃UOP629 - 90氟化氢的烷基化反应和再生下装分析UOP649 - 74总氧有机材料的热裂解气相色谱技术UOP公司的方法UOP666 - 82精密报表UOP670 - 68碳素结构的C和低沸点烯烃样品中的烃类加氢和毛细管气相色谱7法UOP672 - 84芳烃类型洗涤剂烷基化使用低电压质谱UOP673 - 88直链烷基苯洗涤剂烷基化的异构体分布的GCUOP678 - 88液态烃溶解的分子氧电化学检测UOP688 - 92正常烯烃和普通石蜡的气相色谱分析UOP699 - 91钠原子吸收光谱法在液化石油气UOP700 - 70免费硫在石油馏分油和液化石油气的交流极谱高纯度蒸馏水中异丙苯UOP702 - 90杂质的GCUOP703 - 98感应Furnance燃烧和红外探测碳催化剂杂项样品UOP714 - 87金属ICP - AES法UOP715 - 85铼催化剂光度法高纯度对二甲苯UOP720 - 93杂质的GCUOP731 - 74 Microcoulometric滴定法,单次入境船技术的重油,焦油和固体的总硫UOP735 - 73氢含量气体的气相色谱分析UOP740 - 79T挥发性氮基地,其中包括在固体和水溶液中的氨精萘分布和碳SaturatedPetroleum数UOP741 - 86石蜡馏分气相色谱法UOP742 - 86催化剂硫酸由重量法UOP744 - 98芳烃碳氢化合物气相色谱UOP744 - 04芳烃碳氢化合物气相色谱高纯度乙苯UOP755 - 92微量杂质的气相色谱气相色谱UOP759 - 76气体中微量氧UOP762 - 76固体磷酸催化剂的表观体积密度UOP772 - 77硫醇硫石油气由微库仑在石油馏分UOP777 - 77烃类气相色谱法UOP778 - 81挤压催化剂的表观体积密度UOP779 - 92氯化石油馏分由微库仑高效液相色谱法UOP780 - 92碳水化合物石油馏分UOP787 - 78有机硅原子吸收光谱法UOP792 - 78比色法测定水溶液中的硅胶UOP793 - 82颜色稳定性石油馏分UOP800 - 79钒,镍和矿物油的铁原子吸收光谱法UOP806 - 84丙酮醇杂质UOP815 - 87催化剂的酸不溶物UOP816 - 80碳氢化合物液体的折射率UOP821 - 81自动微多孔物质的孔隙大小分布由氮吸附和/或解吸使用麦克分析器UOP822 - 81焦炭粉沥青的比重UOP823 - 90白金新鲜的铂铼催化剂光度法UOP826 - 81胺溶液中的二氧化碳UOP832 - 83 C9碳素结构和低沸点碳氢化合物气相色谱UOP833 - 82钼催化剂和罚款平台原子吸收光谱法UOP835 - 82加速燃料油稳定性UOP836 - 82 X射线Flourescence馏分油和残油的硫磺UOP841 - 83反式烯烃的脂肪酸,酯或甘油三酯的红外光谱UOP842 - 83镍,铁,硫,钒馏分油,残油和X射线荧光光谱法的摊位石油气UOP845 - 90跟踪醇气相色谱法UOP846 - 83气相色谱法的污水C4组成的 OlexUOP847 - 86石油产品的脱蜡UOP848 - 84镍,钒,铁,铅,铜和钠原子吸收光谱法在气油UOP851 - 84密度的粉末和固体氦流离失所UOP854 - 85固体磷酸催化剂的粒度分布激光光散射UOP856 - 85粉末的粒子尺寸分布UOP865 - 86磷催化剂可见分光用气相色谱UOP870 - 90烷烃,环烷烃和芳烃的碳数分布UOP873 - 86贵金属和ICP - AES法催化剂的修饰UOP874 - 88孔尺寸多孔Substnces氮Adsoprtion的分布,使用康塔分析仪UOP878 - 87原子吸收钾催化剂UOP879 - 87原子吸收铝催化剂UOP880 - 96在低烯烃的烃类馏分气相色谱法UOP883 - 95毛细管柱气相色谱纯度UOP公司第5抑制剂UOP887 - 89铼Perrhenic酸和铵光度法PerrhenateUOP的方法UOP888 - 88精密报表GF - AAS UOP894 - 91中的汞催化剂在氢气或液化石油气UOP899 - 97跟踪碳氢化合物气相色谱法UOP905 - 91通过X -射线衍射白金集聚UOP909 - 98损失点火催化剂,在700 ° C苯乙烯UOP913 - 92气相色谱杂质UOP926 - 92铝和硅锂Metaborate融合/ ICP - AES法新鲜催化剂UOP930 - 06氯化石油气和气态烃干比色法混合二甲苯中的UOP931 - 94痕量杂质的气相色谱分析UOP938 - 00总汞和汞物种在液态烃UOP948 - 96的混合气体的相对密度从成分计算UOP954 - 03亏损点火(意向书)为食,再生,使用和废催化剂,催化剂载体,吸附剂UOP964 - 98表面积,孔体积,平均孔径和孔径分布的多孔材料UOP975 - 02氟离子选择性电极检测氧化燃烧液态烃和液化石油气和03 C下沸点二烯烃,烯烃,并在用GC石脑油ParafinsUOP980 -5UOP981 - 10微量氮化学发光法检测氧化燃烧液态烃UOP公司的方法UOP999 - 97精密报表UOP的方法UOP999 - 04精密报表。
uop1033标准
UOP1033是一个石油化工生产流程中的控制点名称,主要用来监控该流程的原料质量、产品数量以及生产过程。
UOP1033是UOP(美国石油学会)发布的石油化工流程安全标准,涵盖了生产、加工、处理、储运等各个方面。
在UOP1033标准中,对于原料和产品的质量监控有严格的要求,包括原料的纯度、产品的浓度、水分含量等都需要符合标准。
此外,UOP1033还要求对生产过程进行严格监控,确保生产过程中的温度、压力、流量等参数在安全范围内。
总的来说,UOP1033标准是石油化工生产流程中的重要标准之一,旨在确保生产过程的安全和稳定,提高产品质量和生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UOP1 - 87馏程重的石油和焦渣的测定UOP41 - 07石油馏分医生测试UOP79 - 87石油馏分分馏UOP99 - 07戊烷不溶物使用的膜过滤器在石油油UOP163 - 10硫化氢和液态烃硫醇硫,电位滴定法UOP202 - 00轻质石油馏分油和液化石油气的二硫化硫炼油厂使用的腐蚀性溶液UOP209 - 00碱度,硫化氢和硫醇分析电位滴定法中的烃类气体的UOP212 - 05硫化氢,硫醇硫,羰基硫UOP248 - 92在碱性溶液的碱度和氟化物UOP254 - 87流体裂化催化剂的表观体积密度UOP262 - 99酚类物质和石油产品硫酚光度法电位滴定法碳氢化合物UOP269 - 10氮基地UOP274 - 94白金新鲜催化剂分光光度法UOP286 - 89在馏分油的游离硫水星数UOP291 - 02共有氯化物电位滴定法在氧化铝和硅铝催化剂UOP294 - 93催化剂颗粒的表观体积密度UOP303 - 07催化剂杂质,用ICP - OESUOP304 - 08溴数和烃溴指数电位滴定法UOP311 - 02荧光指示剂吸附(FIA)的烃类UOP314 - 97炼油水的pH值,铁,铜分析UOP326 - 08双烯值由顺丁烯二酸酐加成反应在催化剂和催化剂的罚款UOP333 - 10支持筛分析UOP373 - 08通过C5烃气相色谱法气体混合物的组成2UOP375 - 07 UOP表征因子的计算和矿物油的分子量估算UOP377 - 90液化石油气的游离硫汞号码UOP379 - 81氟化氢在HF烷基化蓄热下装UOP382 - 81水蓄热下装氟化氢烷基化UOP389 - 10微量金属在有机湿灰化- ICP - OESUOP391 - 09石油产品或原子吸收光谱法有机物痕量金属UOP395 - 95石油总氯馏分比色法UOP407 - 09微量金属在有机干灰化- ICP - OESUOP410 - 85钠火焰发射或原子吸收光谱法在催化剂UOP411 - 92普通石蜡消减气相色谱UOP437 - 81分子筛颗粒尺寸分布UOP464 - 00苯酚在轻芳烃和环己烷光度法UOP481 - 10水在液态烃库仑Molex的进程N石蜡制品UOP495 - 03芳烃,紫外分光光度法UOP501 - 02荧光指示剂吸附(FIA)的烃类在高温UOP516 - 00汽油,馏分燃料和C3 - C4馏分的采样和处理UOP523 - 96乙二醇和无袋用气相色谱溶剂混合物中的分布UOP539 - 97炼油厂气相色谱法气体分析UOP543 - 11跟踪非芳香族碳氢化合物在高纯度芳烃气相色谱法UOP547 - 97实验室的硫化氢和硫醇的提取UOP549 - 09钠在石油馏分用ICP - OES或AASUOP551 - 08正己烷和低沸点碳氢化合物的GC免费汽油烯烃UOP555 - 10高纯度苯和环己烷的GC的痕量杂质盒装UOP563 - 90分子筛的表观体积密度UOP565 - 05酸值和环烷酸滴定法UOP578 - 11自动孔体积和孔径多孔物质的压汞分布UOP588 - 94,无机和有机氯烃类电位滴定法UOP602 - 89催化剂的索氏提取2,氢和GC轻气态烃UOP603 - 88微量的CO和COUOP614 - 02庚烷不溶物使用的膜过滤器在石油油UOP621 - 98碳氢化合物的沸点分布的气相色谱分析UOP624 - 94通过化学分析的羰基数UOP629 - 08氟化氢的烷基化反应和再生下装分析UOP649 - 10固态,半固态氧总量,高沸点液态烃裂解UOP673 - 06直链烷基苯异构体分布洗涤剂烷基化气相色谱法UOP678 - 04液态烃溶解的分子氧电化学检测UOP682 - 84共有炼油厂水域氰化物可见分光UOP683 - 86炼油废水中硫化物UOP688 - 09正常烯烃和普通石蜡的气相色谱分析UOP690 - 99 Octanes和低沸点碳氢化合物在免费的GC烯烃汽油UOP699 - 09钠原子吸收光谱法在液化石油气高纯度蒸馏水中异丙苯UOP702 - 09杂质的GCUOP703 - 09感应Furnance燃烧和红外探测碳催化剂UOP712 - 71(2006)Ferrox测试丙烯二氯乙烷和四氯化碳等有机含氧化合物UOP714 - 07金属杂项样品,用ICP - OESUOP720 - 08中的杂质和纯度,高纯度GC二甲苯UOP725 - 86 Pentenes和烯烃汽油中低沸点碳氢化合物气相色谱法UOP730 - 09总氧在液态烃裂解UOP732 - 09含氧(生物)给料派生馏分油的GC分析UOP733 - 10剩余甘油三酯在无氧原料气相色谱法UOP744 - 06芳烃碳氢化合物的GCUOP766 - 91片密度水银位移UOP778 - 07盒装挤压催化剂的表观体积密度(ABD)UOP779氯- 08石油馏分由微库仑UOP791 - 94石油气或C5减烃馏分的硫成分的GC - SCDUOP796 - 09用ICP - OES在石油液体硅UOP798 - 96跟踪P - DEB或茚在C8芳烃和P - DEB跟踪C8芳烃气相色谱法UOP799 - 08液态烃的氯化干比色法UOP801 - 80竹炭颗粒尺寸分布UOP802 - 80磨耗炭屑UOP803 - 84氯化苯酚光度法颜色UOP818 - 81硫代精益胺解决方案UOP824 - 81二乙醇胺溶液中颜色指示剂滴定UOP825 - 81乙醇胺颜色指示剂滴定解决方案UOP826 - 10胺溶液中二氧化碳UOP827 - 81胺解决方案视硫化氢UOP828 - 81共有胺溶液中UOP829 - 82 Titrimatric测定中的二氧化碳乙醇胺UOP834 - 82胂乙烯电热原子吸收光谱法UOP851 - 08密度的粉末和固体氦流离失所激光光散射UOP856 - 07粉末的粒子尺寸分布UOP863 - 01 C10 - C18 Molex公司产品在痕量解吸气相色谱法在有机和无机材料的燃烧和红外探测UOP864 - 89硫UOP868 - 88跟踪高纯芳烃饱和的GCUOP876 - 93铂金在氯铂酸分光光度法UOP880 - 08在低烯烃的烃类馏分气相色谱法UOP896 - 93废催化剂中的铂在氢气或液化石油气UOP899 - 04跟踪碳氢化合物气相色谱法UOP905 - 08通过X -射线衍射白金集聚UOP910 - 07共有氯化石油气气态烃和微库仑UOP912 - 06氟离子选择性电极催化剂,分子筛,水溶液UOP914 - 92催化剂分子筛自动抗压强度毛细管气相色谱法UOP915 - 92普通石蜡UOP916 - 93钯,黄金和ICP - AES法二氧化硅催化剂钾UOP917 - 93的食水及废氧化铝催化剂钯分光光度法UOP918 - 92的收集和分析吸附剂和催化剂的磨削UOP923 - 97石油气总硫氢解ICP - AES法在加氢裂化催化剂UOP924 - 00镍,钨,钠和铝UOP925 - 92镍,钼,磷,钴,铝在新鲜催化剂ICP - AES法UOP927 - 92痕量金属杂质的ICP - AES法在新鲜催化剂UOP930 - 07氯化石油气和气态烃干比色法混合二甲苯中的UOP931 - 10痕量杂质的 GC植物存款,规模和污泥UOP933 - 94测试程序UOP935 - 94 Mercaptain在煤油的类型,通过核磁共振UOP936 - 95组合中氮的化学发光法石油气UOP938 - 10液态烃总汞和汞形态UOP939 - 96盐基氮离子色谱法在液化石油气UOP944 - 96新鲜和再生催化剂的比表面UOP945 - 96铂金白金或铂金/锡催化剂氢氧滴定分散UOP946 - 96石油石脑油中砷HG - AASUOP947 - 96长度和直径挤压催化剂,使用一个半自动化的方法UOP948 - 07的混合气体的相对密度从成分计算UOP952 - 97微量铅的石墨炉原子吸收光谱法在汽油和石脑油UOP953 - 97烧碱水溶液中的硫酸盐和硫代硫酸离子色谱法UOP954 - 11点火(意向书)亏损新鲜,再生,使用和废催化剂,催化剂载体,吸附剂UOP958 - 98氨碳氢化合物UOP959 - 98在水溶液中铵离子色谱法测定UOP960 - 06微量含氧液体烃类碳氢化合物气相色谱法UOP961 - 98分子筛的元素组成的ICP - AES火焰AAS或ICP - AES法在汽油和石脑油UOP962 - 98铜UOP963 - 98跟踪芳香烃在90至400 ° C沸点范围石油馏分高效液相色谱法UOP964 - 11表面积,孔体积,平均孔径和氮吸附孔径分布的多孔材料UOP965 - 10共有的环烷烃和总芳烃合成石蜡煤油燃料全二维气相色谱火焰离子化检测UOP967 - 00自动球形催化剂的抗压强度甲基异丁基酮油的GC UOP968 - 00脚灯UOP969 - 00醋酸锰酸盐衰落UOP971 - 00微量氮轻芳香烃化学发光UOP972 - 01铝,硅和醋酸银用ICP - OESUOP973 - 01自动挤压催化剂抗压强度跟踪UOP976 - 02 C4 - C9高纯芳烃饱和的GCUOP979 - 02共有氯化铝催化剂的波长色散X射线荧光UOP980 - 07 C5和下沸点二烯烃,烯烃,并在用GC石脑油ParafinsUOP981 - 11微量氮化学发光法检测氧化燃烧液态烃1,3 -丁二烯UOP983 - 04乙炔气相色谱法UOP986 - 08重型石油馏分中的砷,使用微波消解石墨炉原子吸收光谱法液态烃UOP987 - 11低微量硫氧化燃烧紫外荧光检测UOP988 - 11液化石油气和气态烃低微量硫氧化燃烧,紫外荧光检测UOP990 - 11有机分析馏分全二维气相色谱火焰离子化检测UOP991 - 11的氯化物,氟化物,和液体有机溴化物燃烧离子色谱法(CIC)UOP的方法UOP999 - 05精密报表历史标准UOP6 - 82使用UOP公司的氧气压力容器汽油的诱导期UOP33 - 82汽油中的氧UOP41 - 74石油馏分博士试验UOP46 - 85石蜡矿物油和沥青蜡含量UOP77 - 85原油亨普尔蒸馏油评价UOP99 - 82使用膜过滤器在石油油戊烷不溶物UOP114 - 86气体相对密度林女士积液方法在汽油和石脑油UOP144 - 88铜UOP163 - 89硫化氢和硫醇硫,液态烃UOP163 - 05硫化氢和液态烃硫醇硫,电位滴定法UOP174 - 84剩余燃油的油的储存稳定性UOP197 - 89硫醇硫-铜价UOP210 - 76T苛性碱溶液分析-双指示剂UOP212 - 04硫化氢,硫醇硫和烃类气体中的羰基硫化物电位滴定法UOP212 - 03硫化氢,硫醇硫和烃类气体中的羰基硫化物电位滴定法UOP212 - 77硫化氢,硫醇硫和烃类气体中的羰基硫化物电位滴定法电位滴定法碳氢化合物UOP269 - 90氮基地UOP275 - 98点火催化剂,在900 ° C的损失可见分光光度法在石油馏分UOP276 - 85吡咯氮UOP300 - 61水乙二醇UOP303 - 87催化剂杂质的ICP - AESUOP303 - 05催化剂杂质,用ICP - OESUOP304 - 90溴的数量和碳氢化合物溴指数电位滴定法UOP311 - 92荧光指示剂吸附(FIA)的烃类UOP315 - 59盐基氮低温酸性气体洗涤UOP317 - 66T氯氢气由色度程序UOP320 - 86硫酸氧化铝或二氧化硅,氧化铝基催化剂的比浊法UOP326 - 82双烯值由顺丁烯二酸酐加成反应UOP326 - 06双烯值由顺丁烯二酸酐加成反应UOP326 - 07双烯值由顺丁烯二酸酐加成反应1.6毫米的罚款UOP333 - 89(1/16-Inch)筛分析的球形催化剂和基地在催化剂和催化剂的罚款UOP333 - 07支持筛分析UOP358 - 64液态丁烷和库仑滴定法石油馏分的溴指数UOP364 - 85微量溶解在液体中的氧UOP373 - 83通过C5烃气相色谱法气体混合物的组成2UOP374 - 90汽油中的苯二胺型抑制剂UOP375 - 86 UOP表征因子的计算和石油的分子量估算UOP384 - 76酸提取或直接凯氏定氮过程中氮的石油馏分和重质油湿灰/ ICP - AES法UOP389 - 86在油中的微量金属湿灰化和ICP - OES油UOP389 - 04微量金属湿灰化和ICP - OES油UOP389 - 09微量金属UOP389 - 09A痕量金属中的有机物湿灰化- ICP - OESUOP391 - 91石油产品或原子吸收光谱法有机物痕量金属UOP394 - 85芳烃碳氢化合物气相色谱电位滴定法UOP405 - 67T氯化氢气体流UOP412 - 87损失点火催化剂,在500 ° CUOP413 - 82一天的燃油稳定UOP422 - 66粒子尺寸分布微孔网眼筛用炼油厂烧碱UOP423 - 85硫代UOP425 - 86表面积,孔体积和孔径的多孔物质吸附氮UOP434 - 83分子筛的自由水和挥发性碳氢化合物含量UOP436 - 87二氧化硅称重过程中的催化剂UOP438 - 81分子筛颗粒的磨耗在炼油水域UOP456 - 80氯化物UOP481 - 91水在液态烃库仑UOP481 - 09水在液态烃库仑Molex公司的 N -石蜡制品UOP495 - 00芳烃,紫外分光光度法UOP501 - 83荧光指示剂吸附(FIA)的烃类在高温UOP515 - 68T残留和有机废水残渣UOP537 - 91醇酮的混合物和GCUOP543 - 97跟踪非芳香烃的高纯度芳烃气相色谱钠UOP549 - 81石油馏分,用原子吸收分光光度计火焰发射UOP551 - 86己烷和低沸点碳氢化合物免费汽油中的烯烃气相色谱法UOP555 - 96高纯度苯和环己烷的GC的痕量杂质UOP565 - 04酸值和环烷酸电位滴定法电位滴定法UOP565 - 92酸值和环烷酸UOP569 - 79甲醇气相色谱在石油馏分油和液化石油气UOP578 - 02自动孔体积和孔径多孔物质的压汞分布UOP578 - 84全自动孔径分布的多孔物质,通过压汞UOP586 - 71硫氧-氢的燃烧碳氢化合物UOP587 - 92酸值和环烷酸比色法滴定法UOP592 - 85钯催化剂可见分光UOP614 - 80庚烷不溶物使用的膜过滤器在石油油UOP619 - 83氢氧燃烧氟碳氢化合物UOP627 - 85二氧化硅和钠水玻璃UOP629 - 90氟化氢的烷基化反应和再生下装分析UOP649 - 74总氧有机材料的热裂解气相色谱技术UOP公司的方法UOP666 - 82精密报表UOP670 - 68碳素结构的C和低沸点烯烃样品中的烃类加氢和毛细管气相色谱7法UOP672 - 84芳烃类型洗涤剂烷基化使用低电压质谱UOP673 - 88直链烷基苯洗涤剂烷基化的异构体分布的GCUOP678 - 88液态烃溶解的分子氧电化学检测UOP688 - 92正常烯烃和普通石蜡的气相色谱分析UOP699 - 91钠原子吸收光谱法在液化石油气UOP700 - 70免费硫在石油馏分油和液化石油气的交流极谱高纯度蒸馏水中异丙苯UOP702 - 90杂质的GCUOP703 - 98感应Furnance燃烧和红外探测碳催化剂杂项样品UOP714 - 87金属ICP - AES法UOP715 - 85铼催化剂光度法高纯度对二甲苯UOP720 - 93杂质的GCUOP731 - 74 Microcoulometric滴定法,单次入境船技术的重油,焦油和固体的总硫UOP735 - 73氢含量气体的气相色谱分析UOP740 - 79T挥发性氮基地,其中包括在固体和水溶液中的氨精萘分布和碳SaturatedPetroleum数UOP741 - 86石蜡馏分气相色谱法UOP742 - 86催化剂硫酸由重量法UOP744 - 98芳烃碳氢化合物气相色谱UOP744 - 04芳烃碳氢化合物气相色谱高纯度乙苯UOP755 - 92微量杂质的气相色谱气相色谱UOP759 - 76气体中微量氧UOP762 - 76固体磷酸催化剂的表观体积密度UOP772 - 77硫醇硫石油气由微库仑在石油馏分UOP777 - 77烃类气相色谱法UOP778 - 81挤压催化剂的表观体积密度UOP779 - 92氯化石油馏分由微库仑高效液相色谱法UOP780 - 92碳水化合物石油馏分UOP787 - 78有机硅原子吸收光谱法UOP792 - 78比色法测定水溶液中的硅胶UOP793 - 82颜色稳定性石油馏分UOP800 - 79钒,镍和矿物油的铁原子吸收光谱法UOP806 - 84丙酮醇杂质UOP815 - 87催化剂的酸不溶物UOP816 - 80碳氢化合物液体的折射率UOP821 - 81自动微多孔物质的孔隙大小分布由氮吸附和/或解吸使用麦克分析器UOP822 - 81焦炭粉沥青的比重UOP823 - 90白金新鲜的铂铼催化剂光度法UOP826 - 81胺溶液中的二氧化碳UOP832 - 83 C9碳素结构和低沸点碳氢化合物气相色谱UOP833 - 82钼催化剂和罚款平台原子吸收光谱法UOP835 - 82加速燃料油稳定性UOP836 - 82 X射线Flourescence馏分油和残油的硫磺UOP841 - 83反式烯烃的脂肪酸,酯或甘油三酯的红外光谱UOP842 - 83镍,铁,硫,钒馏分油,残油和X射线荧光光谱法的摊位石油气UOP845 - 90跟踪醇气相色谱法UOP846 - 83气相色谱法的污水C4组成的 OlexUOP847 - 86石油产品的脱蜡UOP848 - 84镍,钒,铁,铅,铜和钠原子吸收光谱法在气油UOP851 - 84密度的粉末和固体氦流离失所UOP854 - 85固体磷酸催化剂的粒度分布激光光散射UOP856 - 85粉末的粒子尺寸分布UOP865 - 86磷催化剂可见分光用气相色谱UOP870 - 90烷烃,环烷烃和芳烃的碳数分布UOP873 - 86贵金属和ICP - AES法催化剂的修饰UOP874 - 88孔尺寸多孔Substnces氮Adsoprtion的分布,使用康塔分析仪UOP878 - 87原子吸收钾催化剂UOP879 - 87原子吸收铝催化剂UOP880 - 96在低烯烃的烃类馏分气相色谱法UOP883 - 95毛细管柱气相色谱纯度UOP公司第5抑制剂UOP887 - 89铼Perrhenic酸和铵光度法PerrhenateUOP的方法UOP888 - 88精密报表GF - AAS UOP894 - 91中的汞催化剂在氢气或液化石油气UOP899 - 97跟踪碳氢化合物气相色谱法UOP905 - 91通过X -射线衍射白金集聚UOP909 - 98损失点火催化剂,在700 ° C苯乙烯UOP913 - 92气相色谱杂质UOP926 - 92铝和硅锂Metaborate融合/ ICP - AES法新鲜催化剂UOP930 - 06氯化石油气和气态烃干比色法混合二甲苯中的UOP931 - 94痕量杂质的气相色谱分析UOP938 - 00总汞和汞物种在液态烃UOP948 - 96的混合气体的相对密度从成分计算UOP954 - 03亏损点火(意向书)为食,再生,使用和废催化剂,催化剂载体,吸附剂UOP964 - 98表面积,孔体积,平均孔径和孔径分布的多孔材料UOP975 - 02氟离子选择性电极检测氧化燃烧液态烃和液化石油气和03 C下沸点二烯烃,烯烃,并在用GC石脑油ParafinsUOP980 -5UOP981 - 10微量氮化学发光法检测氧化燃烧液态烃UOP公司的方法UOP999 - 97精密报表UOP的方法UOP999 - 04精密报表。