北师大版八年级下册数学 2.1 不等关系 同步检测题(含答案)
2014新版 北师大版八年级数学下册2.1不等关系
2.1 不等关系
看一看
你还记得小孩玩的翘翘板吗?你想过它的工 作原理吗?其实,翘翘板就是靠不断改变两 端的重量对比来工作的.
不相等 处处可见
由此可见,“不相等”处处可见。 从今天起,我们开始学习一类新的数学知识: 不等式.
学习目标:
1、感受生活中存在着大量的不等关系,了解 不等式的意义,初步体会不等式是研究量与量 之间关系的重要模型之一。
做一做:
铁路部门对旅客随身携带的行李有如下 规定:每件行李的长、宽、高三边之和不得 超过160cm。设行李的长、宽、高分别为 a cm、b cm、c cm, 请你列出行李的长、宽、 高满足的关系式 。
做一做:
通过测量一棵树的树围(树干的周长)可 以计算出它的树龄,通常规定以树干离地面 1.5m的地方作为测量部位。某树栽种时的树围 为6cm,以后树围每年增加约3cm。这棵树至少 生长多少年其树围才能超过30cm?
2、经历由具体实例建立不等式模型的过程, 进一步发展符号感与数学化的能力。
想一想
如下图,用两根长度均为lcm的绳子,分别围成一 个正方形和圆。
1、如果要使正方形的面积不大于25cm2,那么绳长 应满足怎样的关系式?
2、如果要使圆的面积不小于100cm2,那么绳长 l应满足怎样的关系式? 3、当l = 8时,正方形和圆的面积哪个大? l = 12 呢?改变l的值再试一试,由此你能得到什么猜想?
试举出生活中用不等式表示的例子
课堂小结:
这节课-----我发现了生活中…… 我学会了…... 使我感到最困难的是…… 我想进一步研究的问题是……
课后作业
习题2.1 1、 2、 3、 4
随堂小考
1.a是非负数的表达式是( ) A .a>0 B . a≥0 C.a≤0 D .a ≤0 2.a、b两数在数轴上的位置如图所示,下列结论中正确的是( ) A.a>0,b<0 B .a<0,b>0 C.ab>0 D.以上均不对 3.下列不等关系一定正确的是( ) A. a>0 B.-x2<0 C.(x+1)2≥0 D.a2 >0 4.用不等式表示下列关系: (l)a的2倍比a与3的和小; (2)y的一半与5的差是非负数; (3)x的3倍与1的和小于x的2倍与5的差. (4)y的3倍与x的4倍的和是负数 (5)一个数的平方是非负数; (6)某天的气温不高于 25℃.
2.1《不等关系》习题含解析北师大八年级下
《不等关系》习题一、选择题1.下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,其中不等式有()A.2个B.3个C.4个D.5个2.若m是非负数,则用不等式表示正确的是()A.m<0B.m>0C.m≤0 D.m≥03.某市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27B.18≤t<27 C.18<t≤27 D.18≤t≤274.无论x取什么数,下列不等式总成立的是()A.x+5>0B.x+5<0 C.x2<0 D.x2≥05.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()A.每100克内含钙150毫克B.每100克内含钙不低于150毫克C.每100克内含钙高于150毫克D.每100克内含钙不超过150毫克6.在下列式子中,不是不等式的是()A.2x<1B.x≠﹣2C.4x+5>0D.a=37.“a<b”的反面是()A.a≠b B.a>b C.a≥b D.a=b二、填空题8.用不等号“>、<、≥、≤”填空:a2+10.11.k的值大于﹣1且不大于3,则用不等式表示k的取值范围是.(使用形如a≤x≤b的类似式子填空.)三、解答题12.在生活中不等关系的应用随处可见.如图表示机动车驶入前方道路的最低时速限制.此标志设在高速公路或其他道路限速路段的起点,你会表示这些不等关系吗?13.一种药品的说明书上写着:“每日用量120~180mg,分3~4次服完.”一次服用这种药的剂量在什么范围?14.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?15.用适当的符号表示下列关系:(1)一枚炮弹的杀伤半径不小于300米;(2)三件上衣与四条长裤的总价钱不高于268元;(3)明天下雨的可能性不小于70%;参考答案一、选择题1.答案:B解析:【解答】根据不等式的定义,只要有不等符号的式子就是不等式,所以①②⑤为不等式,共有3个.故选B.【分析】主要依据不等式的定义用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.2.答案:D解析:【解答】非负数即正数或0,即>或等于0的数,则m≥0.故选D.【分析】根据非负数的定义.3.答案:D解析:【解答】∵贵阳市今年5月份的最高气温为27℃,最低气温为18℃,某一天的气温为t℃,∴27≤t≤18.故选D.【分析】用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式是解答此题的关键.4.答案:D解析:【解答】A、当x≤﹣5时,不等式不成立,故此选项错误;B、当x≥﹣5时,不等式不成立,故此选项错误;C、当x=0时,不等式不成立,故此选项错误;D、无论x为何值,不等式总成立,故此选项正确;故选:D.【分析】根据题意,找出能使不等式成立的条件即可.5.答案:B解析:【解答】根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故选:B.【分析】“≥”就是不小于,在本题中也就是“不低于”的意思.6.答案:D解析:【解答】A、B、C是不等式,D是等式,故选:D.【分析】根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式可得答案.7.答案:C解析:【解答】a<b的反面是a=b或a>b,即a≥b.故选C.【分析】a与b有三种关系:a=b,a>b,a<b,所以a<b的反面是a=b或a>b,明确“a<b”的反面的意义是解题的关键.二、填空题8.答案:>解析:【解答】根据a2≥0,∴a2+1>0,故答案为:>.【分析】根据非负数的性质可得a2≥0,进而得到a2+1>0.9.答案:﹣4.解析:【解答】因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【分析】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.10.答案:x2﹣a2≤0.解析:【解答】由题意得:x2﹣a2≤0.故答案是:x2﹣a2≤0.【分析】解决本题的关键是理解“不是正数”用数学符号应表示为:“≤0”.11.答案:﹣1<k≤3.解析:【解答】根据题意,得﹣1<k≤3.故填﹣1<k≤3.【分析】此题考查了不等式的定义,解题时要读懂题意,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式,不大于意思是小于或等于以及大于的意思.三、解答题12.答案:见解答过程.解析:【解答】①设时速为a千米/时,则a≥50;②设车高为bm,则b≤3.5;③设车宽为xm,则x≤3;④设车重为yt,则y≤10.【分析】先要了解图标的含义,然后根据含义列出不等式即可.图①表示最低时速限制;图②表示车辆过桥洞时限制车高的标志;图③表示车辆过桥时限制车宽的标志;图④车辆过桥时限制车重的标志.13.答案:30≤x≤60.解析:【解答】∵120÷3=40,120÷4=30,180÷3=60,180÷4=45,∴一次服用这种药的剂量在30mg~60mg之间,即30≤x≤60.【分析】用120÷3,120÷4得到每天服用100mg时3次或4次每次的剂量;180÷3,180÷4即可得到每天服用180mg时3次或4次每次的剂量,找到最少的剂量和最多的剂量即可.14.答案:(1)﹣2<a<4,(2)0所对应的点到B点的距离小于3.解析:【解答】(1)根据题意得:|a﹣1|<3,得出﹣2<a<4,(2)由(1)得:到点B的距离小于3的数在﹣2和4之间,∴在﹣3,0,4三个数中,只有0所对应的点到B点的距离小于3.【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.15.答案:(1)有r≥300;(2)3a+4b≤268;(3)P≥70%.解析:【解答】(1)设炮弹的杀伤半径为r,则应有r≥300;(2)设每件上衣为a元,每条长裤是b元,应有3a+4b≤268;(3)用P表示明天下雨的可能性,则有P≥70%;【分析】本题考查了不等式的定义.一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.(1)、(3)不小于就是大于等于,用“≥”来表示;(2)不高于就是等于或低于,用“≤”表示.。
北师大版数学八年级下册2.1《不等关系》教案
北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。
这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念和基本性质。
2.学会用不等式表示实际问题中的不等关系。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的概念和基本性质。
2.如何用不等式表示实际问题中的不等关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。
六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。
2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。
4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。
5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。
7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。
8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。
教学过程每个环节所用的时间如上所示,供您参考。
北师大版数学八年级下册2.1《不等关系》优秀教学案例
3.小组合作:我将学生分成若干小组,鼓励他们在小组讨论中互相学习、互相启发,共同解决问题。这种小组合作的学习方式有助于培养学生的团队协作精神,提高他们的沟通能力和合作能力。
在教学过程中,我以学生的生活经验为切入点,设计了一系列具有针对性和实用性的教学活动。首先,我通过设置一些简单的实际问题,让学生感知不等关系在生活中的应用,激发他们的学习兴趣。然后,我引导学生总结不等关系的定义,并通过举例让学生理解不等关系的本质。接下来,我利用多媒体课件展示了一些具体的不等式,让学生观察、分析并总结不等式的性质,从而加深他们对不等关系概念的理解。
北师大版数学八年级下册2.1《不等关系》优秀教学案例
一、案例背景
本案例背景以北师大版数学八年级下册2.1《不等关系》为依托,旨在探索如何在教学过程中引导学生理解不等关系的本质,培养他们的逻辑思维能力和解决实际问题的能力。本节课的主要内容包括不等关系的定义、不等式的性质以及如何用不等关系表示实际问题中的数量关系。
1.自我评价:引导学生对自己的学习过程进行反思,总结自己在学习不等关系过程中的优点和不足。
2.同伴评价:让学生互相评价,互相借鉴,共同提高。
3.教师评价:教师对学生的学习过程和结果进行客观、公正的评价,给予鼓励和指导,为学生指出明确的发展方向。
四、教学内容与过程
(一)导入新课
1.设计生活实例:我会选择一些与学生生活密切相关的情景,如购物时比较价格、比赛时比较成绩等,让学生感知不等关系在生活中的应用。
三、教学策略
(一)情景创设
1.利用生活实例:在教学导入环节,我会选择一些与学生生活密切相关的实例,如购物时比较价格、比赛时比较成绩等,让学生感知不等关系在生活中的应用,激发他们的学习兴趣。
北师大版数学八年级下册2.1《不等关系》教学设计2
北师大版数学八年级下册2.1《不等关系》教学设计2一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容。
这一节主要让学生理解不等式的概念,掌握不等式的基本性质,学会用不等式表示实际问题中的不等关系,并能够解简单的不等式方程。
本节课的内容是后续学习不等式组、函数、方程等数学知识的基础,对于学生形成系统的数学思维具有重要的意义。
二. 学情分析学生在八年级上学期已经学习了代数基础知识,对代数式、方程等概念有了一定的了解。
但是,对于不等式的概念和性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中发现不等关系,理解不等式的概念,并掌握不等式的基本性质。
三. 教学目标1.了解不等式的概念,能够用不等式表示实际问题中的不等关系。
2.掌握不等式的基本性质,能够解简单的不等式方程。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.教学重点:不等式的概念,不等式的基本性质。
2.教学难点:不等式的解法,不等式方程的实际应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现不等关系,理解不等式的概念。
2.使用案例教学法,通过具体的例子让学生掌握不等式的基本性质。
3.运用小组讨论法,让学生在讨论中加深对不等式知识的理解。
六. 教学准备1.准备相关的实际问题,用于引导学生发现不等关系。
2.准备PPT,用于展示不等式的基本性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如身高、体重、温度等,让学生观察这些问题中是否存在不等关系。
通过引导学生发现这些问题中的不等关系,引出不等式的概念。
2.呈现(10分钟)讲解不等式的定义,并用PPT展示不等式的基本性质。
让学生通过观察和思考,理解不等式的基本性质。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,用不等式表示这个问题中的不等关系,并解出这个不等式方程。
北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)
第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。
最新北师大版八年级数学下册第二章同步测试题及答案全套
最新北师大版八年级数学下册第二章同步测试题及答案全套第二章 一元一次不等式与一元一次不等式组1 不等关系知能演练提升能力提升1.下面给出了6个式子:①3>0;②4x+3>0;③x=3;④x -1;⑤x+2≤3;⑥2x ≠0. 其中不等式共有( ) A .2个 B .3个 C .4个 D .5个2.根据下列数量关系列出相应的不等式,其中错误的是( ) A.a 与3的和大于1:a+3>1 B.a 与2的差不小于3:a -2≥3C.b 与1的和的3倍是一个非负数:3(b+1)>0D.b 的2倍与3的差是负数:2b -3<03.如图,对a ,b ,c 三种物体的质量判断正确的是( )A.a<cB.a<bC.a>cD.b<c4.在开山工程爆破时,已知导火索燃烧的速度为0.5 cm/s,人跑开的速度是4 m/s,为了使放炮的人在爆破时能安全跑到100 m 以外(不包括100 m)的安全区,导火索的长度x (cm)应满足的不等式是( ) A.4×x0.5≥100 B.4×x0.5≤100 C.4×x 0.5<100D.4×x0.5>1005.如图,左托盘物体x 的质量与右托盘两个砝码的质量之间的大小关系是:x 80.6.某饮料瓶上有这样的字样:保质期18个月.如果用x (月)表示保质期,那么该饮料的保质期可以用不等式表示为 .7.某班同学外出春游,要拍照合影留念,若一张彩色底片需0.57元,冲印一张需0.35元.每人预定一张,出钱不超过0.45元.设合影的同学有x 人,则可列不等式为 .8.在“庆祝世界反法西斯战争胜利70周年”知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:答题情况 答对 答错或不答 题 数 x每题分值 10 -5得 分 10x(2)小明同学的竞赛成绩超过100分,写出满足关系的不等式.创新应用9.如图,用锤子以相同的力将铁钉钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm .若铁钉总长度是 6 cm,试求a 的取值范围.答案: 能力提升1.C2.C3.C4.D5.>6.x ≤187.0.57+0.35x ≤0.45x8.解 (1)25-x -5(25-x )(2)根据题意,得10x -5(25-x )>100. 创新应用9.解 若敲击2次后铁钉恰好全部进入木块,则有a+13a=6,解得a=92,而实际这个铁钉被敲击3次后全部进入木块,所以a<92.若敲击 3次后恰好全部进入木块,则有 a+13a+19a=6,解得a=5413.综上可知,a 的取值范围是5413≤a<92.2 不等式的基本性质知能演练提升能力提升1.已知a ,b ,c 均为实数,若a>b ,c ≠0,则下列结论不一定正确的是( )A.a+c>b+cB.c -a<c -bC.a c2>b c2D.a 2>ab>b 22.已知实数a ,b 在数轴上的位置如图,则a -ba+b 0.(填“>”“<”或“=”)3.下列四个判断:①若ac 2>bc 2,则a>b ;②若a>b ,则a|c|>b|c|;③若a>b ,则b a<1;④若a>0,则b -a<b.其中正确的是 .(填序号)4.已知-m+5>-n+5,试比较10m+8与10n+8的大小.5.如图,有四个小朋友在公园玩跷跷板,他们的体重分别为P ,Q ,R ,S.请你根据图中的情境确定他们的体重大小关系.(用“>”连接起来)6.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,请问在哪家超市购买这种商品更合算?创新应用7.阅读下列材料:试判断a 2-3a+7与-3a+2的大小.分析:要判断两个数的大小,我们往往使用作差法,即若a -b>0,则a>b ;若a -b<0,则a<b ;若a -b=0,则a=b. 解:∵(a 2-3a+7)-(-3a+2)=a 2-3a+7+3a -2=a 2+5,且a 2≥0, ∴a 2+5>0.∴a 2-3a+7>-3a+2.阅读后,应用这种方法比较a 2-b 2+22与a 2-2b 2+13的大小.答案:能力提升 1.D2.< 由数轴知0<a<1,b<-1,故a -b>0,a+b<0.由不等式的基本性质3,a -b>0两边除以a+b ,得a -b a+b<0.3.①④4.解 根据不等式的基本性质1,不等式-m+5>-n+5的两边都减去5,得-m>-n ,根据不等式的基本性质3,不等式的两边都乘-1,得m<n ;根据不等式的基本性质2,不等式的两边都乘10,得 10m<10n ,根据不等式的基本性质1,不等式的两边都加上8,得10m+8<10n+8.5.解 由题中第一个图知S>P ;由题中第二个图知P>R ,故S>P>R.又由题中第三个图知P+R>S+Q ,而由S>P ,得S+Q>P+Q ,所以P+R>P+Q ,故R>Q.因此,S>P>R>Q.6.解 设这种商品的价格为a (a>0)元,在甲超市购买需付款a (1-10%)·(1-10%)元,即0.81a 元.在乙超市购买需付款a (1-20%)元,即0.8a 元.∵0.81>0.8,且a>0,∴0.81a>0.8a ,∴在乙超市购买更合算. 创新应用 7.解a 2-b 2+22−a 2-2b 2+13=3a 2-3b 2+66−2a 2-4b 2+26=3a 2-3b 2+6-2a 2+4b 2-26=a 2+b 2+46,由a 2≥0,b 2≥0,得a 2+b 2≥0, 故a 2+b 2+4≥4.故a 2+b 2+46≥46.∵46>0,∴a 2-b 2+22>a 2-2b 2+13.3 不等式的解集知能演练提升能力提升1.下列数值不是不等式5x ≥2x+9的解的是( )A.5B.4C.3D.22.如果式子√2x +6 有意义,那么x 的取值范围在数轴上表示出来正确的是( )3.若关于x 的不等式x -b>0恰有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b ≤-2C.-3≤b≤-2D.-3≤b<-24.已知关于x的不等式的解集如图,则这个不等式的非负整数解是.5.如果a与12的差小于a的9倍与8的和,那么请写出一个符合题意的a的值.6.已知x=3是方程x=x-a-1的解,求关于x的不等式ax+5<0的解集.27.是否存在整数m,使关于x的不等式mx-m>3x+2的解集为x<-4?若存在,求出整数m的值;若不存在,请说明理由.创新应用8.现有A,B两种型号的钢管,每根A型钢管的长度比每根B型钢管的长度的2倍少5 cm.现取这两种型号的钢管分别做长方形的钢框的长与宽,焊成周长大于2.9 m的长方形钢框.(1)B型钢管至少有多长才合适?列出不等式.(2)如果每根B型钢管的长度有以下四种选择:45 cm,55 cm,48 cm,50 cm,那么哪些合适?哪些不合适?答案:能力提升1.D2.C3.D4.0,1,2题中数轴表示的解集是x<3,满足x<3的非负整数有0,1,2,故这个不等式的非负整数解是0,1,2.5.答案不唯一,如0,1,2.只要满足a>-5即可.26.分析本题是方程与不等式的综合运用,通过解方程求出a的值,把a的值代入不等式,然后求不等式的解集.解由x=x-a-1,得2x=x-a-2,2∵x=3是原方程的解,∴a=-x-2=-3-2=-5.∴不等式ax+5<0可化为-5x+5<0,利用不等式的性质,得x>1.7.解∵mx-m>3x+2,∴(m-3)x>m+2.=-4,要使x<-4,必须m-3<0,且m+2m-3解得m<3,m=2,∴存在整数m=2,使关于x 的不等式mx -m>3x+2的解集为x<-4.创新应用8.解 (1)设B 型钢管的长为x cm,则A 型钢管的长为(2x -5) cm .根据题意,得2(x+2x -5)>290.(2)把45 cm,55 cm,48 cm,50 cm 分别代入(1)中的不等式,得x=55是该不等式的解,所以 55 cm 合适,45 cm,48 cm ,50 cm 不合适.4 一元一次不等式第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式2(x+1)<3x 的解集在数轴上表示为 ( )2.不等式x -72+1<3x -22的负整数解有( )A.1个B.2个C.3个D.4个3.若不等式ax>b 的解集是x<ba,则a 的取值范围是( )A.a ≤0B.a<0C.a ≥0D.a>04.定义新运算:对于任意实数a ,b 都有:a b=a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2 5=2×(2-5)+1=2×(-3)+1=-5.则不等式3 x<13的解集为 .5.若(m -2)x 2m+1-1>5是关于x 的一元一次不等式,则该不等式的解集是 .6.解不等式x -1≤1+x3,并把解集在数轴上表示出来.7.已知不等式x+8>4x+m (m 是常数)的解集是x<3,求m 的值.8.当1≤x ≤2时,ax+2>0,试求a 的取值范围.创新应用9.已知关于x ,y 的方程组{x -y =3,2x +y =6a的解满足不等式x+y<3,求实数a 的取值范围.答案: 能力提升1.D2.A3.B4.x>-15.x<-3 根据一元一次不等式的定义,可知2m+1=1,且m -2≠0,即m=0.把m=0 代入不等式,得-2x -1>5.解这个不等式,得x<-3.6.解 去分母,得3(x -1)≤1+x.去括号,得3x -3≤1+x.移项、合并同类项,得2x ≤4. 两边同除以2,得x ≤2.该不等式的解集用数轴表示如图所示:7.解 移项,得4x -x<8-m.合并同类项,得 3x<8-m.两边同除以3,得x<8-m 3.∵不等式的解集为x<3,∴8-m 3=3,解得m=-1.8.解 由题可知,当1≤x ≤2时,ax+2>0恒成立.①当a>0时,得x>-2a ,故-2a <1,故a>-2,又∵a>0,∴a>0;②当a=0时,原不等式为2>0,故当1≤x ≤2时,不等式恒成立;③当a<0时,得x<-2a ,故-2a >2,故a>-1,又∵a<0,∴-1<a<0.综上所述,a 的取值范围是a>-1. 创新应用9.解 把方程组中的两个方程相加,得3x=3+6a ,得x=1+2a,代入x-y=3,得y=x-3=2a-2.故x+y=4a-1,于是有4a-1<3,解得a<1.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,最多可打()A.6折B.7折C.8折D.9折2.老王家上个月付电话费31元以上,其中月租费21元.已知市内通话如果每次不超过3分钟,则话费为0.18元.如果老王家上个月打的全部是市内电话,且每次都不超过3分钟,那么老王家上个月通话次数最少为()A.55次B.56次C.57次D.58次3.小宏准备用50元买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买甲饮料.4.一只纸箱的质量为1 kg,放入一些苹果(每个苹果的质量约为0.25 kg)后,箱子和苹果的总质量不超过10 kg.这只箱子内最多能装个苹果.5.为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B 种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6.某超市有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1 600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1 640元,且总利润(利润=售价-进价)不少于600元,请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.7.某城市平均每天产生垃圾700 t,由甲、乙两个处理厂处理.已知甲厂每小时可处理垃圾55 t,需费用550元;乙厂每小时可处理垃圾45 t,需费用495元.问:(1)甲、乙两厂同时处理该城市的垃圾,每天需多长时间完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7 370元,那么甲厂每天处理垃圾至少需要多长时间?创新应用8.为了提倡低碳经济,某公司为了更好地节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2 040吨,为了节约资金,请你设计一种最省钱的购买方案.答案:能力提升1.B2.B3.3瓶 设小宏买x 瓶甲饮料.列不等式为7x+4(10-x )≤50,解得x ≤313,即最多能买3瓶甲饮料.4.36 设这只纸箱内装x 个苹果.根据题意得0.25x+1≤10,解得x ≤36, 所以x 的最大值是36.5.解 (1)y=-20x+1 890 y=90(21-x )+70x=-20x+1 890.(2)由题意,得x<21-x ,解得x<10.5.又∵x ≥1,∴1≤x<10.5,且x 为整数.由(1)中一次函数知,y 随x 的增大而减小,故当x=10时,y 取最小值-20×10+1 890=1 690,因此,费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1 690元.6.解 (1)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得10x+30(80-x )=1 600.解得x=40,80-x=40.因此,购进甲、乙两种商品各40件.(2)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得{10x +30(80-x )≤1 640,(15-10)x +(40-30)(80-x )≥600.解得38≤x ≤40.∵x 为整数,∴x=38,39,40,相应的y=42,41,40.从而利润分别为5×38+10×42=610,5×39+10×41=605,5×40+10×40=600. 因此,使该超市利润最大的方案是购进甲商品38件,乙商品42件.7.解 (1)设甲、乙两厂同时处理垃圾,每天需x h .依题意,得(55+45)x=700.解这个方程,得x=7.所以,甲、乙两厂同时处理垃圾,每天需7 h 完成. (2)设甲厂每天处理垃圾需要y h . 依题意,得55y×55055+(700-55y )×49545≤7 370,解得y ≥6.所以,甲厂每天处理垃圾至少需要6 h . 创新应用8.解 (1)设购买节省能源的甲型新设备x 台,乙型新设备(10-x )台.根据题意得12x+10(10-x )≤110, 解得x ≤5,∵x 取非负整数, ∴x=0,1,2,3,4,5, ∴有6种购买方案.(2)由题意得240x+180(10-x )≥2 040, 解得x ≥4, 则x 为4或5.当x=4时,购买资金为12×4+10×6=108(万元), 当x=5时,购买资金为12×5+10×5=110(万元),则最省钱的购买方案为选购甲型设备4台,乙型设备6台.5 一元一次不等式与一次函数第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.如图,已知直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b<0 的解集为( ) A.x>-3 B.x<-3 C.x>3 D.x<3 2.如图,函数y 1=|x|和y 2=13x+43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是( ) A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>23.如图,已知直线y 1=x+b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x+b>kx -1的解集在数轴上表示正确的是( )4.在一次800 m 的长跑比赛中,甲、乙两人所跑的路程s (m)与各自所用时间t (s)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后180 s 时,两人相遇D.在起跑后50 s 时,乙在甲的前面5.如图,已知一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有.(把你认为说法正确的序号都填上)6.若直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式2x<kx+b的解集为.7.当x为何值时,一次函数y=-2x+3的值小于一次函数y=3x-5的值?(1)一变:当x为何值时,一次函数y=-2x+3的值等于一次函数y=3x-5的值?(2)二变:当x为何值时,一次函数y=-2x+3的图象在一次函数y=3x-5的图象的上方?(3)三变:已知一次函数y1=-2x+a,y2=3x-5a,当x=3时,y1>y2,求a的取值范围.8.x+3的图象,观察图象回答下列问题:如图,直线l是函数y=12(1)当x取何值时,1x+3>0?2x+3<5?(2)当x取何值时,12x+3,则点P的坐标可能是(-2,1)吗?(3)若点P(x,y)满足x<5,且y>129.我边防局接到情报,在离海岸5海里处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图,l A,l B分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪个速度更快?(2)B能否追上A?创新应用10.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)列出甲、乙的存款额y1,y2(元)与存款月数x(月)之间的函数关系式,并画出函数图象;(2)请问到第几个月,甲的存款额超过乙的存款额?答案:能力提升1.A2.D3.A4.D5.①②③6.x<-1易知y=-x-3,所以2x<-x-3,解得x<-1.7.解由题意,可知-2x+3<3x-5,.即-5x<-8,得x>85(1)由题意,可知-2x+3=3x-5,.即-5x=-8,得x=85(2)由题意,可知-2x+3>3x-5,.即-5x>-8,得x<85(3)当x=3时,y1=-6+a,y2=9-5a,∵y1>y2,∴-6+a>9-5a,.即6a>15,得a>528.解由题图可以看出函数与x轴的交点为(-6,0).x+3>0.(1)当x>-6时,12(2)由题图可以看出,当y=5时,x=4,x+3<5.所以当x<4时,12(3)由题意,得点P 满足横坐标x<5的同时,对应的点P 的位置要在直线的上方,而点(-2,1)在直线的下方, 故点P 的坐标不可能是(-2,1).9.分析 根据题图提供的信息,分别求出l A ,l B 的关系式,根据k 值的大小来判断谁的速度快,B 能否追上A.实际上,根据图象就可以直接作出判断.解 (1)∵直线l A 过(0,5),(10,7)两点,设直线l A 的函数表达式为s=k 1t+b ,则{5=b ,7=10k 1+b ,∴{k 1=15,b =5.∴s=15t+5. ∵直线l B 过(0,0),(10,5)两点,设直线l B 的函数表达式为s=k 2t ,则5=10k 2,∴k 2=12.∴s=12t.∵k 1<k 2,∴B 的速度快. (2)∵k 1<k 2,∴B 能追上A.创新应用10.解 (1)y 1=600+500x ;y 2=2 000+200x.函数图象如图.(2)令600+500x>2 000+200x ,解得x>423, 所以到第5个月甲的存款额超过乙的存款额.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某市打市话的收费标准是:每次3 min 以内(含3 min)收费0.2元,以后每 min 收费0.1元(不足1 min 按1 min 计).某天小芳给同学打了一个6 min 的市话,所用电话费为0.5元;小刚现准备给同学打市话6 min,他经过思考以后,决定先打3 min,挂断后再打3 min,这样只需电话费0.4元.若你想给某同学打市话,准备通话10 min,则你所需要的电话费至少为( ) A.0.6元 B.0.7元 C.0.8元 D.0.9元2.声音在空气中的传播速度y (m/s)(简称音速)与气温x (℃)满足关系式:y=35x+331.当音速超过340 m/s 时,气温 .3.某医药公司要把药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元.当运输路程时,选择邮车运输较好.4.某单位需刻录一批光盘,若在电脑公司刻录每张需8元(包括空白光盘费);若单位自制,除租用刻录机需120元外,每张还需成本4元(包括空白光盘费).问刻录这批光盘是到电脑公司刻录费用省,还是自制费用省?请说明理由.5.某商场计划投入一笔资金采购一批商品,经市场调研发现,如果本月初出售,那么可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售,那么可获利25%,但要支付仓储费8 000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.6.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x 之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.7.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍每副定价60元,乒乓球每盒定价10元.世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1,y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.创新应用8.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,则开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.答案:能力提升1.B2.超过15 ℃3.小于210千米4.解设需刻录x张光盘,单位自制的总费用为y1元,电脑公司刻录的总费用为y2元.由题意,得y1=4x+120,y2=8x.(1)当y1>y2,即4x+120>8x时,解得x<30;(2)当y1=y2,即4x+120=8x时,解得x=30;(3)当y1<y2,即4x+120<8x时,解得x>30.所以,当刻录光盘少于30张时,到电脑公司刻录费用省;当刻录光盘等于30张时,两个地方都行;当刻录光盘多于30张时,单位自制费用省.5.解设商场投入资金x元,如果本月初出售,到下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x;如果下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2,即0.21x=0.25x-8 000时,x=200 000;当y1>y2,即0.21x>0.25x-8 000时,x<200 000;当y1<y2,即0.21x<0.25x-8 000时,x>200 000.所以,若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多.6.解(1)派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台,派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.则y=1 600x+1 800(30-x)+1 200(30-x)+1 600(x-10)=200x+74 000(10≤x≤30,x是正整数).(2)由题意,得200x+74 000≥79 600,解得x≥28.由于10≤x≤30,所以,x取28,29,30三个值.因此有三种分配方案.(3)由于一次函数y=200x+74 000的值是随着x的增大而增大的,故当x=30时,y取最大值.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.7.解(1)y1=10(x-4)+120=10x+80,y2=(10x+120)×90%=9x+108,x≥4,且x是整数.(2)若y1>y2,即10x+80>9x+108,解得x>28;若y1=y2,即10x+80=9x+108,解得x=28;若y1<y2,即10x+80<9x+108,解得x<28.故当x>28时,在乙商店购买所需的商品比较便宜;当4≤x<28时,在甲商店购买所需的商品比较便宜;当x=28时,在两家商店购买所需商品价钱一样.(3)若所需商品全部在一家商店购买,由(2)知,购买2副球拍和20盒乒乓球时,在甲商店购买比乙商店购买便宜,需10×20+80=280(元).若所需商品在两家商店购买,可以到甲商店购买2副乒乓球拍,需要2×60=120(元),同时获得4盒乒乓球;到乙商店购买16盒乒乓球,需16×10×90%=144(元),共需120+144=264(元).∵264元<280元,∴最佳的购买方案是:到甲商店购买2副乒乓球拍,获赠4盒乒乓球,到乙商店购买16盒乒乓球. 创新应用8.解 (1)当1≤x ≤8时,每平方米的售价应为y=4 000-(8-x )×30=30x+3 760(元/m 2),当9≤x ≤23时,每平方米的售价应为y=4 000+(x -8)×50=50x+3 600(元/m 2).故y={30x +3 760(1≤x ≤8),50x +3 600(9≤x ≤23).(2)第十六层楼房的每平方米的价格为50×16+3 600=4 400(元/m 2), 按照方案一所交房款为W 1=4 400×120×(1-8%)-a=485 760-a (元), 按照方案二所交房款为W 2=4 400×120×(1-10%)=475 200(元), 当W 1>W 2时,即485 760-a>475 200,解得0<a<10 560, 当W 1<W 2时,即485 760-a<475 200,解得a>10 560,故当0<a<10 560时,方案二合算;当a>10 560时,方案一合算;当a=10 560时,两种方案一样合算.6 一元一次不等式组第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.若一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A.-2<x<1B.-2<x ≤1C.-2≤x<1D.-2≤x ≤12.如图,天平右盘中的每个砝码的质量都是1 g,则物体A 的质量m (g)的取值范围在数轴上可表示为 ( )3.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为( )A.1B.2C.3D.44.已知不等式组{x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A.7<a ≤8B.6<a ≤7C.7≤a<8D.7≤a ≤85.如果不等式组{3-2x ≥0,x ≥m ①②有解,那么m 的取值范围是 .6.不等式组{3x +4≥0,12x -24≤1的所有整数解的积为 .7.将一箱苹果分给若干名小朋友,若每名小朋友分5个苹果,则还剩12个苹果,若每名小朋友分8个苹果,则有一名小朋友分到了苹果但不足5个,则有小朋友 名,苹果 个.8.已知三个一元一次不等式:2x>6,2x ≥x+1,x -4<0,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.9.解不等式组{4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.创新应用10.一个长方形足球场的长为x m,宽为70 m.如果它的周长大于350 m,面积小于7 560 m 2,求x 的取值范围,并判断这个足球场是否可以用作国际足球比赛.(注:用于国际足球比赛的足球场地的长在100 m 到110 m 之间,宽在64 m 到75 m 之间)答案: 能力提升1.C2.A3.C4.A5.m ≤32 首先将不等式组化简,由不等式①解得x ≤32,∵不等式组有解,∴m 的取值范围为m ≤32.6.07.6 428.解 答案不唯一,如(1)2x>6与x -4<0结合,组成不等式组{2x >6,x -4<0.①②解不等式①,得x>3;解不等式②,得x<4. 故不等式组的解集为3<x<4.不等式组的解集在数轴上表示如图.(2)2x ≥x+1与x -4<0结合,组成不等式组{2x ≥x +1,x -4<0.①②解不等式①,得x ≥1;解不等式②,得x<4.故不等式组的解集为1≤x<4.不等式组的解集在数轴上表示如图.9.解 {4(x +1)≤7x +10,x -5<x -83.①②由①得4x+4≤7x+10,-3x ≤6,x ≥-2. 由②得3x -15<x -8,2x<7,x<72.把不等式①②的解集在数轴上表示如图.所以不等式组的解集为-2≤x<72,其非负整数解为0,1,2,3. 创新应用10.解 由题意,得{2(x +70)>350,70x <7 560,解得105<x<108.所以可以用作国际足球比赛.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式组{2x +12<12x -4,3x -1≤2x的解集在数轴上表示正确的是( )2.关于x 的不等式组{3x -1>4(x -1),x <m的解集为x<3,则m 的取值范围为( )A.m=3B.m>3C.m<3D.m ≥33.生物兴趣小组要在温箱里培养A,B 两种菌苗.已知A 种菌苗的生长温度x (℃)的范围是35≤x ≤38,B 种菌苗的生长温度y (℃)的范围是34≤y ≤36.则温箱里的温度T (℃)的范围是( ) A.34≤T ≤38 B.35≤T ≤38C.35≤T ≤36D.36≤T ≤384.若不等式组{x <m +1,x >2m -1无解,则m 的取值范围是 . 5.若ab>0,根据学过的知识可将其转化为{a >0,b >0或{a <0,b <0.若x -2与x -3的乘积为正数,则x 的取值范围是 .6.关于x 的不等式组{x+152>x -3,2x+23<x +a 只有4个整数解,求a 的取值范围.7.一种药品的说明书上写着:“每日用量60~120 mg,分3~4次服用.”一次服用这种药品的剂量在什么范围?创新应用8.南海地质勘探队在一次勘探中发现了很有价值的A,B 两种矿石,A 矿石大约565 t,B 矿石大约500 t .要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1 000元,乙货船每艘运费1 200元.(1)设运送这些矿石的总运费为y 元,若使用甲货船x 艘,请写出y 和x 之间的函数关系式.(2)如果甲货船最多可装A 矿石20 t 和B 矿石15 t,乙货船最多可装A 矿石15 t 和B 矿石25 t,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.答案:能力提升1.C2.D3.C4.m ≥2 不等式组{x <m +1,x >2m -1无解, 因此,2m -1≥m+1,解这个不等式得m ≥2.5.x>3或x<2 由(x -2)(x -3)>0得{x -2>0,x -3>0或{x -2<0,x -3<0.解第一个不等式组得x>3,解第二个不等式组得x<2.故x 的取值范围是x>3或x<2.6.解 解不等式组{x+152>x -3,2x+23<x +a ,得{x <21,x >2-3a . 由不等式组有4个整数解,可知这4个解应是20,19,18,17,则 16≤2-3a<17,解得a 的取值范围为-5<a ≤-143.7.解 设一次服用的剂量为x mg .若分3次服用,则{3x ≥60,3x ≤120,解得20≤x ≤40; 若分4次服用,则{4x ≥60,4x ≤120,解得15≤x ≤30. 创新应用8.解 (1)y=1 000x+1 200(30-x ).(2){20x +15(30-x )≥565,15x +25(30-x )≥500,解得23≤x ≤25.因为x 为整数,所以x 可取23,24,25.因此共有3种方案. 方案一:甲货船23艘、乙货船7艘,运费y=1 000×23+1 200×7=31 400元; 方案二:甲货船24艘、乙货船6艘,运费y=1 000×24+1 200×6=31 200元; 方案三:甲货船25艘、乙货船5艘,运费y=1 000×25+1 200×5=31 000元. 所以,方案三运费最低,最低运费为31 000元.。
北师大版数学八年级下册2.1《不等关系3》说课稿
北师大版数学八年级下册2.1《不等关系3》说课稿一. 教材分析北师大版数学八年级下册2.1《不等关系3》这一节内容,是在学生已经掌握了不等式的概念、不等式的性质、不等式的解法等基础知识的基础上进行讲解的。
本节课的主要内容是让学生了解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
在教材中,通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
然后,通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
最后,通过练习题,让学生巩固所学的不等关系知识。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于不等式的概念和性质有一定的了解。
但是,学生对于不等关系的理解和应用还比较模糊,需要通过实例和练习来加深理解。
同时,学生对于实际问题中的不等关系还没有直观的认识,需要通过生活中的实例和问题来引导学生理解不等关系。
此外,学生在这一阶段的学习中,需要培养分析问题和解决问题的能力,因此,在教学过程中,需要注重学生的参与和实践。
三. 说教学目标1.知识与技能目标:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
2.过程与方法目标:通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。
四. 说教学重难点1.教学重点:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系。
2.教学难点:让学生理解实际问题中的不等关系,并能够用不等号表示出来。
五. 说教学方法与手段在教学过程中,我将采用讲授法、实例分析法、小组讨论法等教学方法,结合多媒体课件和黑板等教学手段,引导学生理解和掌握不等关系。
六. 说教学过程1.引入新课:通过一个实际问题,引导学生用不等号表示问题中的不等关系,从而引出不等关系的概念。
北师大版八年级下册2.1《不等关系》教学设计
教学过程:布置一些具有代表性的习题,要求学生在课后完成。同时,鼓励学生在日常生活中观察和发现不等式的应用,将数学知识与社会实践相结合。
五、作业布置
为了巩固学生对《不等关系》这一章节知识的掌握,激发他们的学习兴趣,培养独立思考和解决问题的能力,特布置以下作业:
6.定期进行课堂小结,引导学生总结所学知识,形成知识体系,提高他们的概括和归纳能力。
7.关注学生的个体差异,实施差异化教学,针对学生在不等式学习中的薄弱环节,给予个性化指导,帮助他们克服困难。
8.创设问题情境,引导学生运用所学知识解决实际问题,培养他们的创新意识和实际操作能力。
9.强化过程评价,关注学生在课堂上的表现,鼓励他们积极参与、主动思考,激发学习积极性。
4.将实际问题转化为不等式问题,解决实际问题。
(二)教学难点
1.学生对不等式性质的理解和运用。
2.图像法、区间法等求解不等式方法的掌握。
3.解决实际问题时,对问题的分析和不等式的构建。
(教学设想)
1.采用情境教学法,以生活中的实例引入不等式的概念,帮助学生理解不等式与现实生活的联系,激发学习兴趣。
2.利用比较法,将等式与不等式进行对比,引导学生发现两者的共性与差异,加深对不等式性质的理解。
1.采用问题驱动的教学方法,以实际问题引入不等式的概念,激发学生的兴趣和探究欲望。
2.通过小组合作、讨论交流等形式,引导学生发现和总结不等式的性质,培养他们的合作精神和探究能力。
3.利用图像法、区间法等直观方法,帮助学生形象地理解不等式的解集,提高他们解决问题的能力。
4.设计不同难度的习题,引导学生教学内容:针对学生的解题过程,进行个别辅导。
教学过程:在学生解题过程中,教师密切关注每个学生的进展,及时发现问题并进行个别辅导。对学生的疑问给予解答,帮助他们找到解题的思路和方法。
北师大版八年级数学下册检测题及答案解析
第二章 一元一次不等式与一元一次不等式组检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015四川南充中考)若m >n ,下列不等式不一定成立的是( ) +2>n +2 >2n C.22m n> D.22m n >2.同时满足不等式2124x x-<-和3316-≥-x x 的整数是( ) ,2,3 ,1,2,3,2,3,4 ,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 ( )组 组 组 组4.(2015湖北襄阳中考)在数轴上表示不等式2(1-x )<4的解集,正确的是( )A. B. C.D.5.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( )A.9>xB.9≥xC.9<xD.9≤x6.(2015山东泰安中考)不等式组的整数解的个数为( )7.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是( ) A.25411-≤<-a B.25411-<≤-a C.25411-≤≤-a D.25411-<<-a 8.(2015·浙江温州中考)不等式组12,12x x +>⎧⎨-≤⎩的解集是( ) A. 1<x B. x ≥3C. 1≤x <3D. 1<x ≤39.如图,函数y=2x-4与x轴、y轴交于点(2,0),(0,-4),当-4<y<0时,x的取值范围是()<-1 <x<0<x<2 <x<210.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()辆辆辆辆二、填空题(每小题3分,共24分)11.若代数式2151--+tt的值不小于-3,则的取值范围是_________. 12.若不等式03≤-kx的正数解是1,2,3,则的取值范围是________.13.若0)3)(2(>-+xx,则的取值范围是________.14.若ba<,用“<”或“>”号填空:2______ba+.15.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,则)3)(3(+-b a 的值等于_______. 16.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 17.若关于的不等式5)1(+<-a x a 和42<x 的解集相同,则的值为________.18.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支元,则其中签字笔购买了_______支.三、解答题(共46分)19.(6分)解下列不等式(组):(1)1312523-+≥-x x ;(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x20.(6分)已知关于的方程组⎩⎨⎧=+=+3135y x m y x 的解为非负数,求整数的值.21.(6分)若关于的方程52)4(3+=+a x 的解大于关于的方程3)43(4)14(-=+x a x a 的解,求的取值范围.22.(6分)有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球”.试问这个班共有多少位学生23.(6分)(2015·湖南株洲中考)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍24.(8分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2 400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为x kg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销售总量.25.(8分)随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.第二章一元一次不等式与一元一次不等式组检测题参考答案1.D 解析:∵ m >n ,根据不等式的基本性质1,不等式两边同时加上2,不等号方向不变,故A 项正确;∵ m >n ,且2>0,根据不等式的基本性质2,不等式两边同乘(或除以)同一个正数,不等号方向不变,∴ 2m >2n ,22mn>,故B ,C 项都正确; ∵ 当m =1,n =-3时,m >n ,但22m n <,故D 项不一定成立.解析:由题意,得121426133x x x x .⎧-<-⎪⎨⎪-≥-⎩,解得243x -≤<,所以整数x 的取值为0,1,2,3.解析:设三个连续正奇数中间的一个数为x ,则 27)2()2(≤+++-x x x ,解得 9≤x ,所以72≤-x .所以2-x 只能分别取1,3,5,7.故这样的奇数组有4组.解析:去括号,得2-2x <4.移项,得-2x <4-2.合并同类项,得-2x <2.系数化为1,得x >-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选项B ,C ,D 错误,选项A 正确.解析:由题意可得,解得,所以x 的取值范围是.解析:要求不等式组的整数解的个数,首先求出不等式组的解集,然后从解集中确定整数解.{4x −3>2x −6????25−x ??−35???? 解不等式①,得x >-32.解不等式②,得x ≤1. 所以不等式组的解集是<x ≤1,所以不等式组的整数解有-1,0,1三个.故选C.解析:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<. 因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解, 所以134212≤-<a ,解得25411-<≤-a . 解析:根据不等式的解法,先分别求出不等式组中两个不等式的解集,然后取这两个不等式解集的公共部分.解不等式??,得x >1;解不等式②,得x ≤3.所以不等式组的解集是1<x ≤3.解析:函数与x 轴、x 轴交于点(2,0),(0,-4);故当时,函数值x 的取值范围是-4<x <0.因而当-4<x <0时,x 的取值范围是0<x <2.故选C.解析:设甲种运输车应安排x 辆,则 ,解得.故甲种运输车至少需要6辆.故选C. 11.373t ≤ 解析:由题意,得11 3 52t t +--≥-,解得373t .≤ 12.129<≤k 解析:不等式03≤-k x 的解集为3k x ≤. 因为不等式03≤-k x 的正整数解是1,2,3,所以 433<≤k ,所以129<≤k . 13.3>x 或2-<x 解析:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x , 前一个不等式组的解集为3>x ,后一个不等式组的解集为2-<x . 所以x 的取值范围是3>x 或2-<x .14.< 解析:因为b a <,所以a +a <a +b ,所以2a <a +b .解析:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b . 由题意,得⎪⎩⎪⎨⎧=+-=+121123a b ,解得 ⎩⎨⎧-==21b a ,所以2)32()31()3)(3(-=+-⨯-=+-b a .解析:根据题意,得-5x +12<12x +1,解得x >-111.所以使y 1<y 2的最小整数是0.解析:2x <4的解集是x <2.因为的解集相同, 所以所以51a x a +<-,所以51a a +-=2,解得7a .= 检验:当7a =时,10a -≠,所以7a =符合要求.解析:设签字笔购买了x 支,则圆珠笔购买了15 x -()支, 根据题意,得215(15)27215(15)>26.x .-x ,x .-x +<⎧⎨+⎩解不等式组得79x .<< ∵x 是整数,∴8x .=19.解:(1)去分母,得15)12(5)23(3-+≥-x x . 去括号,得1551069-+≥-x x .移项、合并同类项,得 4-≥-x .两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x 解不等式 ①,得 2>x .解不等式 ②,得1x .>所以,原不等式组的解集是2x .>20.解:解方程组 5331 x y m x y +=⎧⎨+=⎩,,得31325312m x ,m y .-⎧=⎪⎪⎨-⎪=⎪⎩ 由题意,得3130 25310 2m m -⎧≥⎪⎪⎨-⎪≥⎪⎩,,解得331531≤≤m . 因为x 为整数,所以x 只能为7,8,9,10.21.解:因为关于x 的方程方程52)4(3+=+a x 的解为372-=a x , 关于x 的方程3)43(4)14(-=+x a x a 的解为a x 316-=. 由题意,得a a 316372->-.解得 187>a . 22.解:设该班共有x 位学生,则6)742(<++-x x xx .∴6283<x .∴56<x . 又∵x ,2x ,4x ,7x 都是正整数, 则x 是2,4,7的公倍数.∴28=x .故这个班共有28位学生.23.解:设孔明购买球拍x 个,根据题意,得1.52022200x ⨯+≤, 解得8711x ≤. 由于x 取正整数,故x 的最大值为7.答:孔明应该买7个球拍.24.解:(1)设利润为x 元.方案一:240082400)2432(1-=--=x x y ,方案二:x x y 4)2428(2=-=.当x x 424008>-时,600>x ;当x x 424008=-时,600=x ;当x x 424008<-时,600<x .即当600>x 时,选择方案一;当600=x 时,任选一个方案均可;当600<x 时,选择方案二.(2)由(1)可知当600=x 时,利润为2400元. 一月份利润2000<2400,则600<x ,由4x =2000,得x =500,故一月份不符.三月份利润5600>2400,则600>x .由560024008=-x ,得 x =1000,故三月份不符. 二月份600=x 符合实际.故第一季度的实际销售总量=500+600+1000=2100(kg ).25.解:设下个月的产量为x 件,根据题意,得 ⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x解得 1800016000≤≤x .即下个月的产量不少于16000件,不多于18000件.。
北师大版2020八年级数学下册第二章一元一次不等式和一元一次不等式组期中复习题B(附答案)
北师大版2020八年级数学下册第二章一元一次不等式和一元一次不等式组期中复习题B (附答案)1.某同学在解不等式组的过程中,画的数轴除不完整外,没有其它问题.他解的不等式组可能是( )A .B .C .D . 2.下列数学表达式中是不等式的是( )A .5x =4B .2x +5yC .6<2xD .0 3.若a b >,则下列各式正确的是( )A .a b 0-<B .3a 3b -<-C .a b >D .a b 33< 4.不等式2x -6≤0的解集在数轴上表示正确的是( )A .B .C .D .5.某品牌智能手机的标价比成本价高%a ,根据市场需求,该手机需降价%x ,若不亏本,则x 应满( )A .100a x a ≤+B .100a x a ≤-C .100100a x a ≤+D .100100a x a ≤- 6.不等式4-2x >0的最大正整数解是( ).A .4B .3C .2D .17.如下图,一次函数y 1=x 十b 与一次函数y 2=kx +4的图象交于点P(1,3)则关于x 的不等式x +b >kx +4的解集是( )A .x <3B .x >3C .x >1D .x <18.若一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的不等式04kx b <+<的解集是( )A .3x <B .23x -<<C .13x <<D .03x <<9.下列不等式是一元一次不等式的是( )A .x>3B .x+1x <0C .x+y>0D .x 2+x+9≥010.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x 为正整数,则x 可以取的所有值是__.11.已知关于x 的不等式350x a +≥的负整数解共有5个,则整数a 的值是_____. 12.如图所示是某个不等式组的解集在数轴上的表示,它是下列四个不等式组①23x x ≥⎧⎨>-⎩;②23x x ≤⎧⎨<-⎩;③23x x ≥⎧⎨<-⎩;④23x x ≤⎧⎨>-⎩中的_____(只填写序号)13.不等式组13x x <⎧⎨<-⎩的解集为_____.14.已知50x n -≤的正整数解为1,2,3,4,则n 的取值范围是_________.15.若已知方程组y kx b y x a =-⎧⎨=-+⎩的解是13x y =-⎧⎨=⎩,则直线y=-kx+b 与直线y=x-a 的交点坐标是________。
北师大版八年级下册数学《2.1 不等关系》教案
北师大版八年级下册数学《2.1 不等关系》教案一. 教材分析北师大版八年级下册数学《2.1 不等关系》这一节主要介绍不等式的概念和基本性质。
通过这一节的学习,使学生了解不等式的定义,理解不等式中的基本概念如解、解集等,掌握不等式的基本性质,为后续的不等式计算和应用打下基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数、方程等基础知识,具备一定的逻辑思维能力和运算能力。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.了解不等式的定义,理解不等式中的基本概念。
2.掌握不等式的基本性质,能运用不等式解决实际问题。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.不等式的定义和基本性质。
2.如何运用不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实例和练习引导学生理解和掌握不等式的概念和性质,培养学生运用不等式解决实际问题的能力。
六. 教学准备1.准备相关的实例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,如“小明比小红高,请问小明和小红的身高关系是什么?”引导学生思考和表达不等式。
2.呈现(10分钟)呈现不等式的定义和基本性质,通过课件和讲解使学生理解和掌握。
同时,给出相关的实例和练习题,让学生巩固所学知识。
3.操练(10分钟)让学生分组进行练习,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些选择题和填空题,检验学生对不等式的理解和掌握程度。
5.拓展(5分钟)引导学生思考和探讨不等式在实际生活中的应用,如比较物品的价格、判断比赛的名次等。
6.小结(5分钟)对本节课的主要内容进行总结,强调不等式的定义和基本性质。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
最新北师大版八年级数学下册单元测试题全套及答案
最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)
第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥32、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定3、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A.B.C.D.4、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9 B.8 C.7 D.65、已知关于x的不等式3226x a xx a-≥⎧⎨+≤⎩无解,则a的取值范围为()A.a<2 B.a>2 C.a≤2D.a≥26、如果a>b,下列各式中正确的是()A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b7、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =210、若点()2,1A a a -+在第一象限,则a 的取值范围是() A .2a > B .1a 2-<< C .1a <D .无解 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2bc(3)c -a _______c -b(4)-a |c |_______-b |c |3、不等式3141x +>-的解集是______.4、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.5、如图直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则40x bkx+>⎧⎨+>⎩解集为_____________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?3、已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.4、如图,函数y=2x和y=-23x+4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥-23x+4的解集.5、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.-参考答案-一、单选题1、D【分析】根据不等式组的解集为x >a ,结合每个不等式的解集,即可得出a 的取值范围.【详解】解:∵不等式组3x x a>⎧⎨>⎩的解是x >a , ∴3a ≥,故选:D .【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.2、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、D【分析】由图像可知当x≤-1时,1+≤-,然后在数轴上表示出即可.x b kx【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1+≤-,x b kx∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.4、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.5、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a 的取值范围即可.【详解】 解:整理不等式组得:{x ≥x x ≤6−x 2,∵不等式组无解, ∴62a <a ,解得:a >2. 故选:B .【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a 的不等式是解答本题的关键.6、C【分析】根据不等式的性质即可求出答案.解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B 、∵a >b ,∴2021a >2021b ,故B 错误;C 、∵a >b ,∴a ﹣2021>b ﹣2021,故C 正确;D 、∵a >b ,∴2021﹣a <2021﹣b ,故D 错误;故选:D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.7、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.8、B观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x>-,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、|a |-a ≥0 x -(-5)≤2 23a a -> 2220x -<【分析】(1)a 的绝对值表示为:a ,根据与它本身的差是非负数,即可列出不等式;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,综合即可列出不等式;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,综合即可列出不等式;(4)x 与2的平方差表示为:222x -,负数表示为:0<,综合即可列出不等式.【详解】解:(1)a 的绝对值表示为:a ,与它本身的差是非负数, 可得:0a a -≥;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,可得:()52x --≤;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,可得:23a a ->;(4)x 与2的平方差表示为:222x -,负数表示为:0<,可得:2220x -<; 故答案为:①0a a -≥;②()52x --≤;③23a a ->;④2220x -<.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.5、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.三、解答题1、(1)每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①y =﹣80x +24000;②商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,然后根据“销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得,1020640020105600x y x y +=⎧⎨+=⎩, 解得160240x y =⎧⎨=⎩. ∴每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,据题意得,y =160x +240(100﹣x ),即y =﹣80x +24000,②∵100﹣x ≤2x ,∴x ≥3313,∵y =﹣80x +24000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时y =-80×34+24000=21280(元),即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.2、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=- 解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.3、(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+②得:4412x m =-,解得3x m =-③,把③代入②中得:313m y m --=+,解得24y m =--,∴方程组的解为:324x m y m =-⎧⎨=--⎩. ∵x 为非正数,y 为负数,即x ≤0,y <0,∴30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.∵不等式(2m +1)x ﹣2m <1的解为x >1,∴2m +1<0,解得m 12-<.又∵﹣2<m ≤3,∴m 的取值范围是﹣2<m 12-<.又∵m 是整数,∴m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.4、 (1) (32,3);(2) x ≥32. 【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得2,24,3y x y x =⎧⎪⎨=-+⎪⎩解得3,23.x y ⎧=⎪⎨⎪=⎩ ∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32. 【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.5、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.。
北师大版八年级数学下册第二章2.1不等关系(教案)
1.培养学生逻辑推理能力:通过不等式的定义、性质和证明方法的学习,使学生能够运用逻辑推理分析、解决问题,提高其数学逻辑思维。
2.提升学生数学建模能力:学会将实际问题抽象为一元一次不等式(组),培养学生运用数学知识解决实际问题的能力。
3.增强学生数学运算能力:熟练掌握一元一次不等式的解法,提高运算速度和准确性。
-举例:若a>b,则a+3>b+3。
-一元一次不等式的解法:熟练掌握一元一次不等式的求解步骤,包括移项、合并同类项、系数化为1等。
-举例:解不等式2x-5>7。
-不等式的应用:能够将实际问题抽象为一元一次不等式,并求解得出实际问题的答案。
-举例:某商品打折后价格不低于原价的8折。
2.教学难点
-不等式的证明:理解并掌握不等式的证明方法,如比较法、分析法、综合法等。
4.培养学生空间想象能力:通过不等式在几何中的应用,使学生能够理解和把握几何图形的不等关系,培养空间想象力。
5.培养学生合作交流能力:在讨论、探究不等式的性质和应用过程中,鼓励学生积极参与,学会与人合作、交流,提高表达能力。
三、教学难点与重点
1.教学重点
-不等式的定义与性质:理解不等式的概念,掌握不等式的性质,并能运用性质进行简单的推理。
-难点解释:学生需要理解证明过程中的逻辑推理,以及如何选择合适的证明方法。
-不等式组的求解:对于含有多个不等式的组合,学生需要学会如何求解整个不等式组。
-难点解释:学生需要掌握如何将多个不等式综合起来考虑,以及如何确定解集的交集。
-不等式在几何中的应用:理解不等式在几何图形中的运用,如线段、角度的不等关系。
最后,我还计划在下一节课开始前,针对今天课堂上发现的问题,设计一些预习材料和问题,让学生提前思考,以便在课堂上能够更有针对性地解决他们的疑惑。通过这样的方式,我相信学生们能够更深入地理解和运用不等式的知识。
北师大版八年级下数学《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组研讨说课复习课件指导
连接中考
(2020•湘潭)如图,直线y=kx+b(k<0)经过点p(1,1),当
kx+b≥x时,则x的取值范围为( A )
A.x≤1
B.x≥1
C.x<1
D.x>1
课堂检测
基础巩固题
1.在一次函数y=-2x+8中,若y>0,则 ( B )
A.x>4
B.x<4
C.x>0
D.x<0
2. 如图,直线y=ax+b(a≠0)过点A,B,则不等式ax+b>0的解 集是 ( C )
探究新知
由上述讨论易知: “关于一次函数的值的问题” 可变换成 “关于一元一次
不等式的问题” ; 反过来,“关于一元一次不等式的问题”可变换成 “
关于一次函数的值的问题”.
因此,我们既可以运用函数图象解不等式 ,也可以运用 解不等式帮助研究函数问题 ,二者相互渗透 ,互相作用.
不等式与函数 、方程是紧密联系着的一个整体 .
课堂检测
基础巩固题
5.如图,直线l1:y1=2x+1与直线l2:y2=mx+4相交于点P(1,b). (1)求b和m的值.
(2)结合图象,直接写出当y1>y2时x的取值范围. 解:(1)对于直线y1=2x+1,当x=1时,y1=3, ∴P(1,3),b=3, 把P(1,3)代入y2=mx+4中,得3=m+4, 解得m=-1. (2)观察图象可知:当y1>y2时x的取值范围是x>1.
探究新知
所以当顾客每个月的通话时长等于100分钟时,选择甲 乙两种业务一样合算;如果通话时长大于100 分钟,选择甲 种业务比较合算;如果通话时长小于100 分钟,选择乙种业 务比较合算.
北师大八年级数学下册一元一次不等式应用题精讲及分类训练(分类训练含答案)
一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.解:设当“峰电”用量占每月总用电量的百分率为x 时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x <89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0) 依题意得k m 3<km 22.1-,解得m<0.72(千米). 答:B 处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A 处继续登山,甲组到达山顶后休息片刻....,再从原路下山,并且在山腰B 处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻....”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A 处走到B 处所用的时间比甲组从山顶下到B 处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x 的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少? 分析:本题存在的两个不等量关系是:①合计生产M 、N 型号的服装所需A 种布料不大于70米;②合计生产M 、N 型号的服装所需B 种布料不大于52米.解:(1)=y ()x x 508045+-,即36005+=x y .依题意得⎩⎨⎧≤+-≤+-.524.0)80(9.0;701.1)80(6.0x x x x 解之,得40≤x ≤44.∵x 为整数,∴自变量x 的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x -1)本后所余课外读物应在大于等于0而小于3这个范围内.解:(1)m=3x+8(2)由题意,得⎩⎨⎧<--+≥--+.3)1(5830)1(583x x x x ∴不等式组的解集是:5<x ≤213 ∵x 为正整数,∴x=6.把x=6代入m=3x+8,得m=26.答:略例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.解:设从甲地到乙地的路程大约是x 公里,依题意,得10+5×1.2<10+1.2(x-5)≤17.2解得10<x ≤11 答:从甲地到乙地的路程大于10公里,小于或等于11公里.用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
北师大版数学八年级下册2.1《不等关系》教学设计
北师大版数学八年级下册2.1《不等关系》教学设计一. 教材分析北师大版数学八年级下册 2.1《不等关系》是学生在学习了初中数学基础之后,进一步深入研究不等式的内容。
这部分内容主要让学生了解不等关系的概念,学会用不等号表示不等关系,并能够分析实际问题中的不等关系。
教材通过实例引入不等关系,让学生在实际问题中感受不等关系的存在,从而更好地理解不等关系的概念。
二. 学情分析学生在学习本节课之前,已经掌握了初中数学的基本知识,对一些简单的数学概念有一定的理解。
但是,对于不等关系的理解和应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要结合学生的实际情况,用生动形象的实例让学生感受不等关系的存在,并通过大量的练习让学生熟练掌握不等关系的应用。
三. 教学目标1.让学生了解不等关系的概念,理解不等号的含义。
2.培养学生分析实际问题中的不等关系,并用不等式表示出来。
3.提高学生运用不等关系解决实际问题的能力。
四. 教学重难点1.重点:不等关系的概念,不等号的含义。
2.难点:实际问题中的不等关系的发现和表示。
五. 教学方法采用问题驱动法,通过实例引入不等关系,引导学生发现和表示实际问题中的不等关系,并通过大量的练习巩固所学知识。
同时,运用小组合作学习法,让学生在小组内讨论和分析实际问题中的不等关系,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的实例,用于引导学生发现不等关系。
2.准备练习题,用于巩固所学知识。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生发现实际问题中的不等关系,并让学生尝试用不等号表示出来。
2.呈现(10分钟)讲解不等关系的概念,让学生理解不等号的含义。
通过PPT展示相关的图片和实例,让学生更直观地理解不等关系。
3.操练(10分钟)让学生分组讨论,分析实际问题中的不等关系,并用不等式表示出来。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生完成一些练习题,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 不等关系 同步检测题
1.小亮家买了一盒高钙牛奶,包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( )
A .每100克内含钙150毫克
B .每100克内含钙不低于150毫克
C .每100克内含钙高于150毫克
D .每100克内含钙不超过150毫克
2.式子:①3<5;②4x +5>0;③x =3;④x 2
+x ;⑤x ≠-4;⑥x +2≥x +1.其中是不等式的有( ) A .2个 B .3个 C .4个
D .5个
3.身高为x cm 的1号同学与身高为y cm 的2号同学站在一起时,如果x >y ,则表示2号同
学比1号同学 .
4.对于不等式x +y ≤8,请设计一个符合条件的实际背景.
5.今年二月宿迁市最高气温是8℃,最低气温是-2℃,则当天宿迁市气温变化范围t (℃)是( ) A .t >8 B .t <2 C .-2<t <8
D .-2≤t ≤8
6.下列按要求列出的不等式中,正确的是( ) A .a 不是负数,即a >0 B .x 不大于3,即x <3
C .x 与4的和是负数,即x +4<0
D .x 与2的差是非负数,即x -2>0
7.一个正方形的周长为a cm ,要使它的面积不小于4cm 2
,则a 需满足不等式( ) A .a 2
>4 B .a 2
≥4 C.14
a 2
>4 D .(14
a )2
≥4
8.已知实数a 、b 在数轴上对应的点如图所示,则下列式子中正确的是( )
A .ab >0
B .|a |>|b |
C .a -b >0
D .a +b >0 9.一种牛奶包装盒上标明“净重300g ,蛋白质含量≥2.9%”.那么其蛋白质含量为( )
A .2.9g 及以上
B .8.7g
C .8.7g 及以上
D .不足8.7g
10.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了
4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( )
A .3×4+2x <24
B .3×4+2x ≤24
C .3x +2×4≤24
D .3x +2×4≥24
11.下列式子:①-3<0;②4x +3y >0;③x =3;④x 2
-y +1;⑤3x ≠5;⑥x -3<y +2,其中是不等式的有: .
12.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则购买签字笔的支数x 应满足的不等式为 .
13.某农户要用篱笆围成一个长方形的羊圈,他有篱笆60m ,若羊圈的一个边长为20m ,另一个边长为x ,完工后篱笆还有剩余,用不等式表示上述数量之间的关系 .
14.如图为一隧道入口处的指示标志牌,图1表示汽车的高度不能超过3.5m ,由此可知图2表示汽车的宽度l (m)应满足的关系为 .
15.用不等号“>、<、≥、≤”填空:a 2
+1 0. 16.用适当的符号表示下列关系: (1)x 的1
3与x 的2倍的和是非正数;
(2)一枚炮弹的杀伤半径不小于300米; (3)三件上衣与四条长裤的总价钱不高于268元; (4)明天下雨的可能性不小于70%.
参考答案: 1. B 2. D 3. 矮
4. 解:在假期,小敏读了x 本书,小华读了y 本书,他们俩读书的总数不超过8本.
5. D
6. C
7. D
8. C
9. C 10. B
11. ①②⑤⑥
12. 26<2x +1.5(15-x )<27 13. 2(20+x )<60 14. l ≤3 15. >
16. 解:(1)1
3
x +2x ≤0;
(2)设炮弹的杀伤半径为r ,则应有r ≥300;
(3)设每件上衣为a 元,每条长裤是b 元,应有3a +4b ≤268; (4)用P 表示明天下雨的可能性,则有P ≥70%.。