《雷达原理与系统》PPT课件

合集下载

电子对抗原理--雷达系统结构和工作原理 ppt课件

电子对抗原理--雷达系统结构和工作原理  ppt课件

频率源分类



自激振荡源 晶体振荡器、腔体振荡器 介质振荡器、压控振荡器等 合成频率源
直接模拟式:对基准频率进行各种各样的 加减乘除 间接模拟式:利用模拟锁相环锁定VCO 来实现频率合成 直接数字式:使用数字技术完成频率和波 形的合成 间接数字式:由数字锁相环构成,包含数 字分频器和数字鉴相器

DBF系统的基本原理图
天线单元阵列 A/D变换器
接收模块 数字波束形成器
稀布阵雷达
VHF波段 发射1个圆阵(25个窄带全向发射天线,每个10KHz带宽,共250KHz) 接收1个圆阵,48个全向接收天线,带宽250KHz
RIAS* / SIAR** by Jaques Dorey (1986) – «Space Frequency »orthogonal coding
数字中频接收机原理框图
中频 信号 中频 滤波器
低通滤波、抽 取
cos(2f I nT )
A/D
I
低通滤波、抽 取
Q
sin( 2f I nT )
问题:上图有什么问题?
数字中频接收机原理框图
中频 信号 中频 滤波器
低通滤波、抽 取
cos(2f I nT )
A/D
I
低通滤波、抽 取
Q
sin(2f I nT )
大气吸收与频率的关系
大气天顶衰减与地面水汽密度的关系
斜路径大气衰减 f=23.75GHz
发射电磁波
脉冲
目标反射电磁波
雷达系统 结构与工作原理





雷达系统结构和基本工作原理 频率综合器 发射机 天线 接收机 信号处理机 雷达终端 监控设备

雷达系统原理PPT课件

雷达系统原理PPT课件
旁瓣旁瓣电平为主瓣电平与最大旁瓣电平之差脉冲波束宽度脉冲宽度是指在主瓣中辐射功率密度为最大辐射功率密度3db的一半的角也被称为半值宽度雷达无线电波特性雷达的无线电波略沿地表方向传播主要视线
雷达系统原理
什么是雷达系统?
• 雷达是从天线发射称为微波的甚高频无线电波的导航设备。发射 的无线电波经过 目标(如其他船,浮标,小岛等)反射回来,并 通过相同的天线接受后转换为电 信号。再将这些电信号发送给显 示单元进行显示。雷达使在夜晚或大雾的情况下 发现视线以外的 目标成为可能,并可以使船避免一些潜在的危险。 由于天线发射 的同时在旋转,这样就使本船周边的情况便一目了然。 雷达发射 的微波信号被称为脉冲信号,发射和接收这些信号是交替进行的。 一次 360 度的旋转就有上千的脉冲信号被发射和接收。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
关于 SART雷达应答器
• 根据 GMDSS(全球遇险与安全系统)要求,IMO/SOLAS 类型的 船必须配备 SART。当船遇险时,SART 可以自动发出信号,所以 其他船或飞机就可以确定 遇险船的位置。若本船配备了波段的雷 达,并且 8 英里内有船遇险,SART 可以 指引雷达回波到遇险船。 该信号包括了 12 扫频,并在 9.2 到 9.5GHz 的频段传输。 根据距 离的不同,SART 具有 2 种扫频时间,由慢(7.5μs)到快(0.4μs) 扫描或反 之亦然。当接收到该信号时,屏幕上出现一条总长为 0.64 海里被 12 个点平均的 线。最近的 SART 的光点指示遇险船 的位置。当本船接近 SART 1 海里以内时, 雷达上显示快速闪烁 的扫描信号,并有一根单薄的线连接 12 个光点。
弱反射目标
• 目标反射的回波强度不仅取决于与目标间的距离,目标的高度或 尺寸,还要取决 于目标的材料和特性。具有低发射或入射角的目 标,如 FRP(纤维增强复合材料) 船和木制船发射的都不好。所以, 必须注意 FRP 船,木船或沙,沙洲,泥礁等 物体都是弱反射目 标。 由于与海岸线的距离等,本船在雷达图像上看起来比实际的 海岸线要远,当船周 围有弱反射目标时,应更加谨慎。

《雷达原理与系统》课件

《雷达原理与系统》课件
气象观测
雷达在气象领域用于降水监测 、风场测量等方面,为气象预 报和灾害预警提供重要数据支
持。
CHAPTER 02
雷达系统组成
发射机
功能
产生射频信号,通过天线 辐射到空间。
组成
振荡器、放大器、调制器 等。
关键技术
高频率、大功率、低噪声 。
接收机
功能
01
接收空间反射回来的回波信号,并进行放大、混频、滤波等处
CHAPTER 04
雷达系统性能参数
雷达的主要性能参数
探测距离
雷达能够探测到的最远距离,通常由发射功 率、天线增益和接收机灵敏度决定。
速度分辨率
雷达区分不同速度目标的能力,通常由信号 处理算法决定。
分辨率
雷达区分两个相邻目标的能力,通常由发射 信号的波形和接收机处理决定。
角度分辨率
雷达区分不同方向目标的能力,通常由天线 设计和接收机处理决定。
距离分辨率
雷达的距离分辨率决定了雷达能够区 分相邻目标的能力,主要受发射信号 的带宽和脉冲宽度等因素影响。
多普勒效应与速度分辨率
多普勒效应
当发射信号与目标之间存在相对运动时,回波信号会产生多 普勒频移,通过测量多普勒频移可以推算出目标的运动速度 。
速度分辨率
雷达的速度分辨率决定了雷达能够区分相邻速度目标详细描述
相控阵雷达利用相位控制方法来改变雷达波束的方向,从而实现快速扫描和跟踪 目标。相比传统机械扫描雷达,相控阵雷达具有更高的扫描速度和抗干扰能力, 能够更好地适应现代战争中高速、高机动目标作战环境。
合成孔径雷达(SAR)
总结词
合成孔径雷达通过在飞行过程中对地面进行多次成像,将各个成像点的信息进 行合成处理,获得高分辨率的地面图像。

雷达基本工作原理课件

雷达基本工作原理课件

雷达的分类
01
脉冲雷达
发射脉冲信号,通过测量脉冲 信号往返时间计算目标距离。
02
连续波雷达
发射连续波信号,通过测量信 号频率变化计算目标距离和速
度。
03
合成孔径雷达
利用高速平台对目标区域进行 扫描,形成高分辨率的合成孔
径图像。
雷达的应用
军事侦察
利用雷达探测敌方军事目标,如飞机、 坦克等。
气象观测
指雷达在存在欺骗干扰的情况下,仍能正常工作并检测到目标的能力 ,通常由信号鉴别和抗干扰算法决定。
多目标处理能力
跟踪能力
指雷达在同一时间内能够跟踪的 目标数量,通常由数据处理能力 和硬件资源决定。
分辨能力
指雷达在同一时间内能够分辨的 目标数量,通常由信号处理算法 和天线波束宽度决定。
05
雷达技术的发展趋势
天线是雷达系统的辐射和接收单元,负责发射和接收电磁波。
波束形成是天线的重要技术,通过控制天线阵列的相位和幅度,形成具有特定形状 和方向的波束。
天线的性能指标包括方向图、增益、副瓣电平和极化方式等。
信号处理与数据处理
信号处理是雷达系统的关键技术之一,负责对接收到的回波信号进行处 理和分析。
数据处理负责对雷达系统获取的数据进行进一步的处理、分析和利用。
当目标相对于雷达移动时,反 射的电磁波频率会发生变化, 这种变化被雷达接收并转换为 目标的相对速度。
速度测量的精度受到多普勒效 应的影响,而分辨率则受到雷 达工作频率和采样率的影响。
03
雷达系统组成
发射机
发射机是雷达系统的核心组件之 一,负责产生高功率的射频信号

它通常包括振荡器、功率放大器 和调制器等组件,用于将低功率 信号放大并调制为所需的波形。

雷达原理课件

雷达原理课件

雷达原理课件雷达原理课件雷达(Radar)是一种利用电磁波进行探测和测量的技术。

它广泛应用于军事、航空、气象等领域,为我们提供了无可替代的信息和数据。

本文将介绍雷达的原理和应用,并探讨其在现代社会中的重要性。

一、雷达的基本原理雷达的基本原理是利用电磁波的特性来实现目标的探测和测量。

它通过发射一束电磁波,然后接收并分析回波来确定目标的位置、距离、速度等信息。

1. 发射电磁波雷达系统首先发射一束电磁波,通常是微波或无线电波。

这些电磁波会沿着直线传播,并在碰到目标时发生反射或散射。

2. 接收回波当发射的电磁波碰到目标时,它们会发生反射或散射,并返回雷达系统。

雷达接收器会接收到这些回波,并将其转化为电信号。

3. 分析回波接收到的电信号经过处理和分析,可以提取出目标的相关信息。

通过测量回波的时间延迟、频率变化和幅度变化等,雷达系统可以确定目标的位置、距离、速度等参数。

二、雷达的应用领域雷达技术在各个领域都有着广泛的应用,以下是几个常见的领域:1. 军事应用雷达在军事领域中起着至关重要的作用。

它可以用于目标探测、目标跟踪、导航、武器制导等方面。

雷达系统可以帮助军队实时监测敌方的动态,提供战场情报,为作战决策提供重要支持。

2. 航空导航雷达在航空领域中被广泛应用于飞行导航和空中交通管制。

它可以帮助飞行员确定飞机的位置和高度,避免与其他飞行器相撞。

雷达系统还可以监测天气变化,提供飞行安全的重要信息。

3. 气象预报雷达技术在气象领域中扮演着重要角色。

通过测量回波的强度和频率,雷达系统可以提供降水量、风速、云层高度等天气信息。

这对于气象预报和灾害预警非常关键。

4. 海洋勘测雷达在海洋领域中也有着广泛的应用。

它可以用于测量海洋表面的波浪、潮汐和海流等信息。

这对于海洋勘测、海上交通和海洋资源开发具有重要意义。

三、雷达在现代社会中的重要性雷达技术的发展和应用对于现代社会来说具有重要意义。

以下是几个方面的重要性:1. 安全保障雷达系统可以帮助保障国家的安全。

《雷达原理与系统》课件

《雷达原理与系统》课件

4 雷达抗干扰性能
指雷达系统对外部干扰源的抵抗和抑制能力。
主流雷达系统
雷达系统分类
根据工作原理和应用 领域,雷达系统可以 分为多种不同类型, 如从空中、地面和舰 船上操作的雷达系统。
机载雷达
机载雷达系统是安装 于航空器上的雷达设 备,用于探测和追踪 空中和地面目标。
地面雷达
地面雷达系统用于检 测和追踪来自空中和 地面的目标,广泛应 用于军事和民用领域。
天线用于发射和接收雷达信号,负责探测目标 并获取返回的信息。
信号处理器
信号处理器对接收到的雷达信号进行处理和分 析,提取出目标信息。
雷达系统技术指标
1 雷达探测距离
指雷达系统能够探测到目标的最远距离。
2 雷达探测范围
指雷达系统能够探测到目标的最大半径。
3 雷达精度
指雷达系统对目标位置和属性的测量精度。
4 地质勘探
雷达系统通过地下目标的探测和分析,可用 于地质勘探和资源调查。
雷达系统的未来
1
雷达系统发展趋势
雷达系统将继续朝着更高的探测距离、更快的信号处理和更强的抗干扰性能方向 发展。
2
雷达系统应用前景
随着技术的不断进步,雷达系统将在更多领域得到应用,如自动驾驶、安防和环 境监测。
《雷达原理与系统》PPT 课件
雷达原理与系统的概述。包括雷达系统的简介、应用以及雷达原理的电磁波 与反射、测距原理和信号处理过程。
雷达系统的组成
发射器与接收器
发射器负责发射雷达脉冲信号,接收器接收经 过目标反射回来的信号。
接收机
接收机用于接收和放大从天线接收到的雷达信 号,以供后续的信号处理。
天线系统
舰载雷达
舰载雷达系统安装在 舰船上,用于探测和 追踪海上和空中目标, 具有强大的远程探测 能力。

雷达原理ppt课件68页PPT知识讲解

雷达原理ppt课件68页PPT知识讲解

雷达对抗的重要性
取得军事优势的重要手段和保证
典型战例1:二次世界大战的诺曼地登陆,盟军 完全掌握了德军德40多不雷达的参数何配置, 通过干扰何轰炸,使德军雷达完全瘫痪。盟军 参战的2127艘舰船,只损失了6艘。 海湾战争:多国部队凭借高技术优势,在战争 的整个过程中使用了各种电子对抗手段,使伊 军的雷达无法工作、通信中断、指挥失灵。双 方人员损失为百人比数十万人。
电子战(EW)的含义
电子战是敌我双方利用电磁能和定向能破 坏敌方武器装备对电磁频谱、电磁信息 的利用或对敌方武器装备和人员进行攻 击、杀伤,同时保障己方武器装备效能 的正常发挥和人员的安全而采取的军事 行动。
电子战(EW)的含义
传统的电子战: 电子对抗(ECM),包括电子侦察、干扰、
隐身、摧毁。 电子反对抗(ECCM),包括电子反侦察、
先看几个著名的电子战经典战例:
——1982年6月9日,叙以贝卡谷地之战,以军一方面用 RC-707电子战飞机施放强烈电子干扰,同时用E-2"鹰眼" 空中预警机掩护导航,用"标准"和"狼"式反辐射导弹将叙 军苦心经营10年的19个导弹基地全部摧毁。
——1986年4月美军空袭利比亚。"软杀伤"与"硬摧 毁"手段紧密结合,双管齐下,仅仅12分钟就完成了代号 为"黄金峡谷"的军事行动,被称为"外科手术式"的攻击战, 使利比亚的防空体系毁于一旦。
处于抗干扰和反侦察地需要,许多雷达具有改变发射 信号的载波频率、脉冲重复频率、脉冲波形或者其它调 制参数,变化的时间可能在秒、毫秒甚至脉间。 信号威胁程度高、反应时间短
2)近年的分类方法
电子干扰

雷达原理介绍ppt课件

雷达原理介绍ppt课件

的射频信号进行下变频以转化为视频信号(即中心频率等
于0)。正交解调接收机即可完成这样的下变频处理:
sm(t) = s(t) exp(-j2 f0t) 可见,正交解调处理将信号的中心频率降低了 f0 。
|s( f )|
s(t)
sm(t)
正交解 调前
exp(-j2 f0t)
0 |sm( f )|
f0
f
正交解
基本原理
发射系统 接收系统
目标
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp
t
Tr
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有:
SNR = Ps / Pn 显然SNR越高,目标回波就越显著,就越有利于信号分析。
发射功率
不考虑各种损耗,影响目标回波峰值功率Ps的因素有:
雷达发射峰值功率Pt、目标的雷达截面积(RCS) 、目
标与雷达的相对距离R。它们之间存在关系:
Ps= Pt /R4 是与雷达系统及环境有关的常数。若 过小或R过大,则
Tp
t
响应的 3dB宽度称为雷 达距离分辨率,它表征 了雷达将相邻目标区分 开的能力。若接收机没 有脉冲压缩,可用发射
与雷达相距r的目标回波相对于发射脉冲 脉宽Tp近似距离分辨率;
的延时 = 2r / c,c为电磁波的传播速度。 若有脉冲压缩,分辨率
那么,与雷达的相对距离差为r的两个

雷达基本工作原理ppt课件

雷达基本工作原理ppt课件
3 对方位分辨率和测方位精度的关系
工作波长越短,天线水平波束宽度越窄,方位分辨率和测方位进 度越高
4 抗杂波干扰能力的关系
工作波长越短,雨雪海浪等对雷达波德反射越强,干扰越大
29
5.2 脉冲宽度对使用性能影响
1 对最大作用距离的影响
脉冲宽度越大,能量越大,作用距离越大
2 对最小作用距离的关系
固定距标圈 荧光屏边缘
10
1.4 雷达的测距与测向原理
1. 雷达测距原理 Δ t: 往返于天线与目标的时间, C: 电磁波在空间传播速度3×108m/s。
R
=
1 C
×Δ
t
2
2. 雷达测向原理 借助于定向天线 - 扫描.
11
2 雷达基本组成
微波传输线 发射脉冲
发射机
天线
回波 T/R
触发器
接收机
电源
测 (2)
无视线限制
测量目标参数 距离,方位,速度,航向...
导航 (1) 避碰

(2) 定位
7
雷达/ARPA, ECDIS, GPS/DGPS和自动舵构成的自动 船桥系统是未来主要的导航系统
8
1.3雷达考核内容
雷达结构及其工作原理 雷达影像失真的特点及其产生原因 影响雷达正常观测的诸要素 雷达测距/测方位 雷达定位与导航 雷达航标
28
5.1 工作波长对使用性能影响
1 对最大作用距离的影响
正常天气观测较小的物标时,3cm雷达的rmax要比10cm的大 雨雪天,则10cm雷达的rmax要比3cm雷达的大得多
2 对距离分辨率和测距精度的关系
工作波长越短,脉冲前沿越短,测距精度高;脉冲前沿越短,有 利于缩短脉冲宽度,提高距离分辨率

雷达原理及系统课件:第5章雷达作用距离

雷达原理及系统课件:第5章雷达作用距离

检测准则
降低门限的缺点:只要有噪声存在,其尖峰超过门限 电平的概率增加,虚警相应增加。 门限检测采用奈曼-皮尔逊准则:在给定的信噪比条件 下,在满足一定的虚警概率时的发现概率最大,或者 漏警概率最小。
§5.2.2 检测性能和信噪比
由: Pd+Pla=1, Pan+Pfa=1 雷达信号的检测性能由其发现概率Pd和 虚警概率Pfa定义
Pd
VT
pd (r)dr
VT
r
2
exp
r2
2
A2
2
I0
rA
2
dr
P137,图5-7
Pfa P(VT
r )
VT
r
2
exp
r2
2 2
dr
exp
VT 2
2 2
虚警概率Pfa一定,门限电平VT随之确定
结论: 门限电平VT一定时,发现概率Pd随信噪比增大而增大 信噪比一定时,虚警概率Pfa越小(VT越高),Pd越小
1 Pfa
发现概率Pd
振幅为A的正弦信号同高斯噪声一起输入到中频滤波器 设信号的频率是中频滤波器的中心频率fIF,则包络检 波器的输出包络的概率密度函数为:
pd
(r)
r
2
exp
r2
2
A2
2
I0
rA
2
r0
式中
I0 (z)
n0
z2n 22n n! n!
设置门限电平VT,发现概率Pd(r超过门限的概率)为:
门限
输出包络超 过门限,认 为目标存在
§5.2.2 门限检测
信号是否超出门限判断目标有无的四种情况
发现:存在目标,判为目标-------Pd 漏报:存在目标,判为无目标------Pla 正确不发现:不存在目标,判为无目标--Pan 虚警:不存在目标,判为目标------Pfa

《雷达基本工作原理》PPT课件(2024)

《雷达基本工作原理》PPT课件(2024)

雷达抗干扰与隐身技术探讨
2024/1/28
15
常见干扰类型及抗干扰措施
有源干扰
通过发射与雷达信号相似的干扰信号,使雷达难以区分目标 回波和干扰信号。
2024/1/28
无源干扰
利用反射、散射等方式,使雷达信号偏离目标或产生虚假目 标。
16
常见干扰类型及抗干扰措施
01
02
03
信号处理技术
采用先进的信号处理技术 ,如脉冲压缩、动目标检 测等,提高雷达抗干扰能 力。
2024/1/28
雷达定义
利用电磁波的反射原理进行目标 探测和定位的电子设备。
发展历程
从20世纪初的萌芽阶段到二战期 间的广泛应用,再到现代雷达技 术的不断创新和发展。
4
雷达应用领域及重要性
应用领域
军事、民用航空、气象、海洋监测、 地质勘探等。
重要性
在各个领域发挥着不可替代的作用, 如保障国家安全、提高航空安全、预 测天气变化等。
强化信号处理部分
信号处理是雷达技术的核心,建议增加相关 课时和实验,深入讲解信号处理技术。
2024/1/28
33
课程安排建议和拓展学习资源推荐
• 引入新技术:随着科技的发展,新型雷达技术不断涌现,建议课程中加入新型雷达技术的介绍和 讨论。
2024/1/28
34
课程安排建议和拓展学习资源推荐
2024/1/28
02
在安检、反恐、生物医学等领域 具有潜在应用价值。
2024/1/28
30
06
总结回顾与课程安排建议
2024/1/28
31
关键知识点总结回顾
雷达基本概念
雷达是一种利用电磁波进行探测和测 距的电子设备,广泛应用于军事、民 用等领域。

雷达原理及系统复习(课堂PPT)

雷达原理及系统复习(课堂PPT)

• 测角的方法:相位法,振幅法。
利用相位响应进行测角
.
利用振幅响应进行测角
40
• 相位法测角原理
利用多个天线所接收到的回波信号间的相位差测角
实现方法:将两天线收到的高频信号与同一本振差 频后在中频上比相。
.
Hale Waihona Puke 41• 测角误差与多值性问题
测角误差
当 ,此时 , 可能超出2π, 解决方法 三天线测角
实际读数
.
13
雷达发射机的任务和基本组成
• 任务 产生大功率的特定调制的电磁振荡即射频信号
• 组成
单级振荡式 大功率电磁振荡产生与调制在一个器件中同时完成 主振放大式 先产生小功率的CW 振荡,再分多级调制和放大
.
14
雷达发射机的性能指标
• 输出功率
输出信号功率
平均功率 峰值功率
单位时间内发出的功率能量Pav ,脉冲重复周 期内的输出平均功率。
v
vr
R ctr 2
fd
2vr
vr vcos
.
10
雷达的工作频率
f =c /λ
只要是通过辐射电磁能量,利用从目标反射回来的回波 对目标探测和定位,都属于雷达系统的工作范畴。
常用雷达工作频率范围:220MHz~35GHz 天波超视距雷达(OTHR):4MHz~5MHz 地波超视距雷达:2MHz 毫米波雷达:94GHz 雷达频段划分和对应频率-- 书P7,表1.1
虚警概率一定时,发现概率Pd才随信噪比的增加 而增加,因此检测系统要求虚警保持一个恒定的 值;但随着噪声电压的变化,其包络振幅的概率 密度可能会发生变化,导致一定门限值的虚警概 率Pfa发生变化,从而使得在给定信噪比下得不到 所需的发现概率。所以,噪声电平变化时,系统 门限电平应相应变化以获得恒虚警。

雷达一些基本原理ppt课件

雷达一些基本原理ppt课件
雷达方程的推导过程
通过电磁波传播、目标反射、接收处理等过程,推导出雷达方程的 具体形式。
雷达方程的意义
为雷达系统设计、性能分析和优化提供了理论依据,有助于指导雷 达系统的实际应用。
最小可检测信号计算
最小可检测信号的定义
在给定虚警概率和检测概率条件下,雷达系统能够检测到的最小 目标回波信号。
最小可检测信号的计算方法
根据雷达方程和噪声特性,通过理论计算或仿真实验确定最小可检 测信号的大小。
影响最小可检测信号的因素
包括雷达系统参数、目标特性、传播环境等,需要综合考虑各种因 素进行优化设计。
系统性能评估指标
探测距离
衡量雷达系统对远距离目标的 探测能力,与发射功率、天线 增益、目标反射截面等因素有
关。
分辨率
表征雷达系统区分相邻目标的 能力,包括距离分辨率、方位 分辨率和俯仰分辨率等。
02
电磁波与天线
电磁波特性与传播方式
电磁波基本特性
电磁波是一种横波,具有电场和 磁场分量,可以在真空中传播,
速度等于光速。
电磁波谱
电磁波谱包括无线电波、微波、红 外线、可见光、紫外线、X射线和 伽马射线等,不同波段的电磁波具 有不同的特性。
电磁波传播方式
电磁波传播方式包括直射、反射、 折射、衍射和散射等,这些传播方 式决定了雷达探测的基本原理。
雷达一些基本原理ppt课件
目录
பைடு நூலகம்
• 雷达概述 • 电磁波与天线 • 雷达信号处理 • 雷达测距测速原理 • 雷达方程与性能分析 • 现代雷达技术发展趋势
01
雷达概述
雷达定义与发展历程
雷达定义
利用电磁波的反射特性来探测目 标的位置、速度等信息的电子设 备。

《雷达系统原理》课件

《雷达系统原理》课件

20世纪40年代发展出脉冲雷达技术,提高了雷达的探测能力。
3
连续波雷达
20世纪60年代发展出连续波雷达技术,增加了雷达的应用范围。
速度测量
雷达利用多普勒效应测量目标的速度。
雷达应用领域
军事
雷达在军事领域广泛应用,包 括侦察、导航、目标跟踪等。
航空航天
雷达在航空航天领域用于导航、 气象监测、空中交通管制等。
气象
雷达在气象领域用于探测降水、 测量风速、监测台风等。
雷达技术发展历程
1
早期雷达
20世纪初研制并应用早期雷达技术。
2
脉冲雷达
雷达系统原理
雷达系统原理是指雷达的基本原理、雷达组成要素、雷达的工作原理、雷达 信号处理、雷达应用领域以及雷达技术发展历程的概述。
雷达的基本原理
1
电磁波的发送与接收
雷达通过发射电磁波并接收反射回来的
波束的形成与聚束
2
信号来探测目标的位置和性质。
雷达利用天线系统形成和聚束电磁波,
以增强目标的探测能力和定位精度。
3
测量目标的回波时间和频率
雷达通过测量目标反射回来的电磁波的 时间和频率,得出目标的位置、速度、 距离等信息。
雷达组成要素
天线系统
天线用于发射和接收电磁波。
发射机
发射机产生高功率电磁波信号。
接收机
接收机接收和处理目标反射回来的电磁波信号。
显示器
显示器用于显示雷达探测到的目标信息。
雷达的工作原理
1 发射电磁波
2 接收回波信号
雷达发射电磁波,通常是无线电波。
雷达接收目标反射回的信号进行处理,提取目标信息。
雷达信号处理
滤波
雷达信号经过滤波器,去除杂波和噪声。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W
G 发射天线增益

Ar 接收天线有效面积(孔径)m2
工作波长 m
目标的雷达截面积 m2
R 雷达与目标之间的距离 m
Pr min 接收机灵敏度 W
未考虑因素:大气衰减与路径(多精径选,课件曲p率pt),目标特性与起伏
9
1.1 雷达的任务
举例:
某雷达发射脉冲功率为200KW,收发天线增益为30dB,波长0.1m,抗研究所 2014年2月
精选课件ppt
1
主要内容
1、绪论
2、雷达发射机
3、雷达接收机
4、雷达终端显示器与录取设备
5、雷达作用距离
6、目标距离的测量
7、目标角度的测量
8、目标速度的测量
精选课件ppt
2
主要内容
9、连续波雷达 10、脉冲多普勒雷达 11、相控阵雷达 12、数字阵列雷达 13、脉冲压缩雷达 14、双基地雷达 15、合成孔径雷达
收发信号载波频率的差(多卜勒频率)
举例:
fd
ttrt2Vr
2t
tr 2R0Vrt c
频率为10GHz的雷达,当目标径向速度为300m/s时,其多卜勒频率为
c f3 1 1 18 0 H m 0 0/s z0 .0m 3 ,fd2 0 3 .0m m 0 3 /s 0 2K 0Hz
精选课件ppt
8
灵敏度为-110dBm,不考虑大气损耗等,试求其对=1m2目标的最大作用
距离
1
Rm
ax
2
105 1032 0.12
4 3 1014
1
4
1
2 1023
4 3
4
100.786km
精选课件ppt
10
1.2 雷达的基本组成

收发开关
发射机
激励器/同步器
线
保护器
接收机/信号处理机 显示/录取设备
天线:将高功率发射信号辐射到特定空间,从特定空间接收相应的目标回波
雷达信号处理
发射机 接收机
传播空间
收发开关/天线
目标
雷达发射信号 s t A t A t , t r t e n r , c e T j t t t
雷达接收信号 s r t s t t r A t A t t r n, t t r r t n e r t r , e c T j ( t t r ) t t t r
tr 2Rc,由目标R 距 引离 精起 选课件的 ppt 传播时间迟延 6
1.1 雷达的任务
距离信息提取 Rctr 2
脉冲测距法:利用收发脉冲包络的时间迟延 re t n cr,T t, re t n cr T ttr,
n
n
调频测距法:利用收发相位函数的频率差 ttrt
2t
举例: 常数 c15m0/s15k0m /ms
精选课件ppt
n
5
1.1 雷达的任务
1.1.3 基本测量原理
雷达发射信号 s t A t A t , t r t e n r , c e T j t t t
At 发射信号振幅
n
At,t 发射天线方向图 最函 大数 A 值[, 00]1
rectnTr, 脉冲串函r数 ect, ,1,0t,Tr脉冲重复周
2、识别目标,确定目标性质(F/E,目标类型,目标形状/散射特性等)
1.1.2 探测与定位的坐标系
球坐标系 以雷达自身为原点 柱坐标系 以雷达自身为原点 近似(忽略曲率)转换关系:
1.1.3 基本测量原理
R,,,Vr 正北为方位0,仰角以水平面为0 D,,H,Vr 正北同上,以海面/地平面高度为0
D R co ,H sR sin
300MHz
分米波/厘米波警戒/引导/制导
30GHz
火控/末制导雷达
n
发射信号载频
t 发射信号相位调制
雷达接收点目标信号
s r t s t t r A t A t t r , t t r r t n e r t r , e c T j ( t t r ) t t t r
各种传播损耗幅 引衰 起减 的 n 振
精选课件ppt
3
1、绪论
1.1 雷达的任务 1.2 雷达的基本组成 1.3 雷达的工作频率 1.4 雷达的应用和发展 1.5 电子战和军用雷达的发展
精选课件ppt
4
1.1 雷达的任务
1.1.1 雷达的任务
利用发射和接收电磁波信号的相关性,完成以下任务
1、发现目标,确定目标在空间中的位置、运动、航迹等 R,,,Vr
信号
收发开关/保护器:发射状态将发射机连通天线,接收机输入端闭锁保护;
接收状态将天线连通接收机并对输入信号限幅保护,发射机开路
发射机:在特定的时间、以特定的频率和相位产生大功率电磁波
接收机/信号处理机:放大微弱的回波信号,解调目标回波中的信息
激励器/同步器:产生和供给收发信号共同的时间、频率、天线指向等雷达
1.1 雷达的任务
1.1.4 雷达的探测能力-基本雷达方程
雷达接收的目标回波信号功率(W):P rP 4tG 2rR A 4P 4 tG 2 3R 24,A rG 4 2
1
1
雷达的作用距离(m):
Rma x4P tG 2P rr A min44 PtG 3 2P2 r min4
Pt 发射脉冲功率
工作的基准
显示器/录取设备:显示、测量、记录、分发目标信息和各种工作状态
精选课件ppt
11
1.3 雷达的工作频率
雷达的工作频率:3MHz 300GHz(100m 1mm)
主要工作频段:300MHz 18GHz(1m 2cm)
3 30MHz
战略预警超视距雷达
30 300MHz 米波远程预警雷达
2
如果目标距离为60km,则对应的时间迟延为: tr2 c R2 3 60m 00s 0.4ms 4 0 s0
0.4ms
如果调频测距雷达的调频斜率为:=10MHz/ms,则对应60km距离目标的频差为:
2R
fcc0.4m 1 sM 0 /H mz s 4MHzfc
T>>tr
发射频率
接收频率
tr
精选课件ppt
7
1.1 雷达的任务
角度信息提取 ,
振幅法测角 最大信号法
mA ax t ,t
t,t
等信号法 A 1 t ,1 t A 2t ,2t
等相位法测角 a { A 1 t n , 1 t g } a { A 2 t n , 2 t g }
速度信息提取 V r
相关文档
最新文档