线性代数证明题解析

合集下载

线性代数常见证明题型及常用思路

线性代数常见证明题型及常用思路

线性代数常见证明题型及常用思路The Standardization Office was revised on the afternoon of December 13, 2020《线性代数》常见证明题型及常用思路二、证明题题型1.关于1,,m αα线性相关性的证明中常用的结论 (1)设110m m λαλα++=,然后根据题设条件,通过解方程组或其他手段:如果能证明1,,m λλ必全为零,则1,,m αα线性无关;如果能得到不全为零的1,,m λλ使得等式成立,则1,,m αα线性相关。

(2)1,,m αα线性相关当且仅当其中之一可用其他向量线性表示。

(3)如果1,,n m F αα∈,则可通过矩阵的秩等方面的结论证明。

(4)如果我们有两个线性无关组,11,,,m W αα∈12,,,t W ββ∈且12,W W 是同一个线性空间的两个子空间,要证11,,,,,m t ααββ线性无关。

这种情况下,有些时候我们设111111110,,m m t t m m t tλαλαμβμβαλαλαβμβμβ+++++==++=++。

根据题设条件往往能得到0αβ==,进而由11,,,m W αα∈12,,t W ββ∈的线性无关得到系数全为零。

题型2. 关于欧氏空间常用结论(1)内积的定义(2)单位正交基的定义(3)设1{,,}n B αα=是单位正交基,11(,,),(,,)B n B n u x x v y y ==。

则11(,)n n u v x y x y =++ 5 题型3. 关于矩阵的秩的证明中常用的结论(1)初等变换不改变矩阵的秩(2)乘可逆矩阵不改变矩阵的秩 (3)阶梯形的秩(4)几个公式(最好知道如何证明):常用来证明关于秩的不等式 ()()();()min{(),()};()()();max{(),()}(,)()();()();()()()()();0()()T T T T m n r A B r A r B r AB r A r B r A r A r A A A r A r B r A B r r A r B B A r r A r B B A r A r B r r A r B r C C B A B r A r B n⨯+≤+≤==⎛⎫≤=≤+ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭⎛⎫+≤≤++ ⎪⎝⎭=⇒+≤ (5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式)例:证明:()()()m n r A r B n r AB ⨯+≤+。

线性代数课后习题答案分析

线性代数课后习题答案分析

线性代数课后题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:相信自己加油(1)381141102---; (2)b a c a c b cb a(3)222111c b a c b a ; (4)yxy x x y x y y x y x +++.解 注意看过程解答(1)=---38114112811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba ca cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yxyx x y x y y x y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:多练习方能成大财(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-260523********12; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bfde cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c ba100110011001 解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014--321132c c c c ++141717201099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)efcfbfde cd bd ae ac ab---=ecbe c b e c badf ---=111111111---adfbce=abcdef 4(4)dc b a 100110011001---21ar r +d cb a ab 100110011010---+=12)1)(1(+--dca ab 101101--+23dc c +010111-+-+cd c ad a ab=23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b ab a +=3)(b a -;(2)bzay by ax bxaz by ax bxaz bz ay bxaz bz ay by ax +++++++++=yxz x z yz y xb a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x x x n n n+----- n n n n a x a x a x ++++=--111 .证明(1)122222221312a b a b a a b a ab a c c c c ------=左边ab a b ab a ab 22)1(22213-----=+ 21))((ab a a b a b +--=右边=-=3)(b a (2)bzay by ax z by ax bx az y bxaz bz ay x a ++++++分开按第一列左边bz ay by ax x by ax bx az z bx az bz ay y b +++++++++++++002y by ax zx bxaz y z bz ay x a 分别再分bzay yx byax x zbxaz z y b +++zyx y x zx z y b y x zx z y z y x a 33+分别再分右边=-+=233)1(yxz x z yzy x b yxzx z yz y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423dd c cb b a ac c c c c c c c ----第二项第一项06416416416412222=+d dd c c cb b b a a a(4) 444444422222220001a d a c a b a a d a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a xD n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D :1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得nnnn a a a a D 11111=, 11112n nnn a a a a D = ,11113a a a a D n nnn=,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nn n n a a a a a a a a 331122111121)1()1( nn n nn n a a a a111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnnn n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaa x a a a xD n=;(3)1111)()1()()1(1111n a a a n a a a n a a a D n n n nn nn ------=---+;提示:利用范德蒙德行列式的结果.(4)nnnnn d c d c b a b a D00011112=;(5)ji a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1)aa a a a D n 010000000000001000=按最后一行展开)1()1(100000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得a x x a a x xa a x x a a a a x D n ------=0000000 再将各列都加到第一列上,得ax a x a x a a a an x D n ----+=000000000)1( )(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n行经)1(-n次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn nn n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D 011112=n n n n n nd d c d c b a b a a 00000011111111----展开按第一行0)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n(6)nn a a a D +++=11111111121,,433221c c c c c c ---nn n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------0000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=1421420005410032101111-=---=112105132412211151------=D 11210513290501115----= 1121023313090509151------=23313095112109151------=1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D 1,3,2,144332211-========∴DD x D D x D D x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=5101065100065000601000152=D 展开按第二列5100651006500061-6510065*********-365510651065⨯-=1145108065-=--=5110065000060100051001653=D 展开按第三列51006500061000516500061*********+6100510656510650061+=703114619=⨯+=5100060100005100651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=110005100065100651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即 0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321161109412316z z z所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛-=0926508503⎪⎪⎪⎭⎫⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x ; (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫ ⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212*********x x x a a a a a a a a a x x x ()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3000320012101313000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148 但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫⎝⎛=27151610 故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求kA A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫ ⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A . 解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ001001010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ⎪⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A由此推测⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---kk kk k k kk k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫⎝⎛---145243121;(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫⎝⎛n a a a 0021)0(21≠a a a n解(1)⎪⎪⎭⎫ ⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A (6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk kk k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m mm a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫ ⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n A A若0=A 由(1)知0=*A 此时命题也成立故有1-*=n AA20.取⎪⎪⎭⎫ ⎝⎛==-==1001D C B A ,验证DCB A DC B A ≠检验: =D C BA =--101001011010010111001010020002--410012002== 而01111==D C B A故 DCB A DC B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020*******1)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----00000410001111020201 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解。

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

考研线代证明题

考研线代证明题

考研线代证明题摘要:1.考研线代证明题概述2.线性无关组的概念及性质3.证明题的解题思路和方法4.举例说明5.结论正文:一、考研线代证明题概述线性代数是考研数学的重要组成部分,其中证明题是历年考研数学试卷中必考的内容。

线代证明题主要涉及到向量空间、线性变换、特征值与特征向量、二次型等知识点。

这类题目不仅考查考生的数学知识,还考查考生的逻辑思维和推理能力。

二、线性无关组的概念及性质线性无关组是线性代数中一个基本概念,是指一组向量线性无关。

线性无关组的性质有:1.线性无关组中的向量可以线性表示其他向量;2.线性无关组中的向量数量是最大的;3.线性无关组中的向量具有线性无关性,即任意一个向量都不能由其他向量线性表示。

三、证明题的解题思路和方法解线代证明题,首先要理解题目所给出的已知条件,然后找到解题的思路。

具体方法如下:1.利用已知条件,通过线性组合将向量表示出来;2.利用线性无关组的性质,判断向量是否线性无关;3.利用矩阵的性质,如行列式、秩等,推导出所需结论。

四、举例说明假设有一个线性无关组a(1), a(2),..., a(s),现在需要证明这个线性无关组是极大线性无关组。

我们可以按照以下步骤进行证明:1.假设a(1), a(2),..., a(s) 不是极大线性无关组,即存在一个向量a(i) 可以表示为a(1), a(2),..., a(s) 的线性组合,其中i 不属于{1, 2,..., s}。

2.根据线性组合的定义,可以得到一个矩阵方程,即a(i) = A * a(1) + B * a(2) +...+ D * a(s),其中A、B、...、D 为待定系数。

3.由于a(1), a(2),..., a(s) 线性无关,所以矩阵方程中系数矩阵的行列式不为0,即|A * a(1) + B * a(2) +...+ D * a(s)| ≠0。

4.根据矩阵的秩的定义,系数矩阵的秩等于矩阵方程中未知数的个数,即r(A * a(1) + B * a(2) +...+ D * a(s)) = s。

线性代数课后答案解析__第二版__同济大学出版社

线性代数课后答案解析__第二版__同济大学出版社

线性代数习题解答 同济大学出版社习题11.求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2;(3)4 1 5 3 2; (4)3 7 1 2 4 5 6; (5)1 3 … (21)n - 2 4 … (2)n ; (6)1 3 … (21)n - (2)n (22)n - … 2. 2.利用对角线法则计算下列二阶、三阶行列式:(1)3214---; (2)201141183---;(3)a b c b c a c a b ; (4)x y x y yx y x x yxy+++.3.在六阶行列式中,下列两项各应带什么符号: (1)233142561465a a a a a a ;(2)334214516625a a a a a a . 4.计算下列各行列式:(1)000100020010000000n n -; (2)1234214334124321------;(3)2100121001210012; (4)0451250201720343115023013-------;(5)abac aebdcd de bfcfef---; (6)1111111111111111x x y y+-+-.5.证明:(1)11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =; (2)2222111a abb aa b b +=3()a b -;(3)111111222222b cc a a bb c c a a b b c c a a b +++++++++=1112222ab ca b c a b c ; (4)222244441111a b c d a b c d a b c d ; ()()()()()a b a c a d b c b d =-----()()-+++c d a b c d ;(5)1221100001000001n n n x x xa a a a x a -----+111n n n n x a x a x a --=++++ .6.计算下列各n 阶行列式:(1)11aa,其中对角线上元素都是a ,未写出的元素都是0;(2)111x a a a x a a a x --- ;(3)123111100100100n a a a a,230≠其中n a a a ; (4)12111111111na a a +++,120n a a a ≠ 其中;(5)111222(1)(2)()(1)(2)()12111n n n n n n a a a n a a a n a a a n ---------------;(6)det(),n ij ij D a a i j ==-其中. 7.利用拉普拉斯定理计算下列各行列式:(1)320000430000002100003200000032000054;(2)3002034040030560; (3)112110000nnn nna b a b D c d c d =.解答习题11.(1)0;(2)4;(3)6;(4)7;(5)(1)2-n n ;(6)(1)-n n . 2.(1)-14;(2)-4;(3)3333---ab a b c ;(4)332()-+x y . 3.(1)正号;(2)负号. 4.(1)(1)(2)2(1)!---n n n ;(2)900;(3)5;(4)-799;(5)4abcdef ;(6)22x y . 5.提示:(1)用行列式定义证明;(2)、(3)、(4)用行列式性质证明;(5)用数学归纳法证明.6.(1)22(1)--n aa ;(2)1[1(1)](1)--+---n x n a x a ;(3)23121()()nn i ia a a a a =-∑ ;(4)1211()(1)=+∑nn i i a a a a ;(5)1()≥>≥-∏n i j i j ;(6)12(1)(1)2----n n n . 7.(1)2;(2)2;(3)1()=-∏niii i i a db c .习题21.有6名选手参加乒乓球比赛,成绩如下:选手1胜选手2,4,5,6负于选手3;选手2胜选手4,5,6负于选手1,3;选手3胜选手1,2,4负于选手5,6;选手4胜选手5,6负于选手1,2,3;选手5胜选手3,6负于选手1,2,4;若胜一场得1分,负一场得零分试用矩阵表示输赢状况,并排序.2.某种物资以3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B .且357220430123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,132021570648B ⎛⎫ ⎪= ⎪ ⎪⎝⎭试用矩阵表示各产地运往各销地两次的物资调运量.3.设111123111124111051A B ⎛⎫⎛⎫⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,,求32AB A -与TA B .4.某厂研究三种生产方法,生产甲、乙、丙三种产品,每种生产方法的每种产品数量用如下矩阵表示:234123241A ⎛⎫ ⎪= ⎪ ⎪⎝⎭甲乙丙方法一方法二方法三 若甲、乙、丙各种产品每单位的利润分别为10元,8元,7元,试用矩阵的乘法求出以何种方法获利最多.5.设12101312A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,问(1)AB BA =吗?(2)()2222A B A AB B +=++吗?(3)()()22A B A B A B +-=-吗?6.举反例说明下列命题是错误的: (1)若2A O =,则A O =;(2)若2A A =,则A O =或A E =;(3)若AX AY =,且A O ≠,则X Y =. 7.设101A λ⎛⎫=⎪⎝⎭,求23kA A A ,,,. 8.设AB 、都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =. 9.用伴随矩阵法求下列矩阵的逆阵:(1)1225⎛⎫ ⎪⎝⎭; (2)cos sin sin cos θθθθ-⎛⎫⎪⎝⎭; (3)121342541-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (4)1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭. 10.解下列矩阵方程: (1)25465321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(2)211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭;(3)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.11.设方阵A 满足225A A E O +-=,证明3A E +可逆,并求其逆矩阵.12.已知对给定方阵A ,存在正整数k ,成立kA O =,试证E A -可逆,并指出()1E A --的表达式.13.设A 为3阶方阵,12A =,求()125A A -*-. 14.设方阵A 可逆,证明其伴随矩阵A *也可逆,且()()11AA -**-=.15.设131020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2AB E A B +=+,求B .16.设三阶矩阵A B ,满足关系:16A BA A BA -=+,且100210041007A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 求B .17.设033110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AX A X =+,求X .18已知AP P =Λ,其中100100210000211001P ⎛⎫⎛⎫⎪ ⎪=-Λ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,=,求A 及5A .19.设A B ,和A B +均可逆,证明11A B --+也可逆,并求其逆矩阵.20.将矩阵2131425442622140A -⎛⎫⎪-⎪= ⎪--- ⎪-⎝⎭化为行阶梯形矩阵,并求矩阵A 的一个最高阶非零子式.21.用初等变换法求下列矩阵的逆:(1)111211120⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321315323⎛⎫⎪ ⎪ ⎪⎝⎭;(3)3201022112320121--⎛⎫⎪ ⎪ ⎪--- ⎪⎝⎭; (4)1357012300120001-⎛⎫⎪⎪⎪⎪⎝⎭.22.下列矩阵的秩.:(1)1234124511012⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321312131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3)1001310312011457⎛⎫⎪-⎪ ⎪-⎪⎝⎭; (4)24131121023636a -⎛⎫ ⎪- ⎪ ⎪⎝⎭.23.设A 为n 阶矩阵,且2A A =,证明()()R A R A E n +-=.24.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,求84A A ,. 25.设矩阵A 和B 均可逆,求分块矩阵O A B O ⎛⎫⎪⎝⎭的逆矩阵,并利用所得结果求矩阵005200218300520⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭的逆矩阵.解答习题21.123456110111200111311100400011500101600100⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭,选手按胜多负少排序为1 2 3 4 5 6.2.357213202043215701230648 A B⎛⎫⎛⎫⎪ ⎪+=+⎪ ⎪⎪ ⎪⎝⎭⎝⎭48924191007611⎛⎫⎪= ⎪ ⎪⎝⎭.3.111123111 3331111242111111051111 AB A⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=-----⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭21322217204292-⎛⎫⎪=--⎪⎪-⎝⎭058123056124290051TTA B⎛⎫⎛⎫⎪ ⎪=---⎪ ⎪⎪ ⎪⎝⎭⎝⎭002123058559124056860051290⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=---=-⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.4.1072844759A⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,方法一获利最多. (1)AB BA≠,因为34124638AB BA⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,所以AB BA≠.(2)()2222A B A AB B +≠++因为 2225A B ⎛⎫+=⎪⎝⎭()2222281425251429A B ⎛⎫⎛⎫⎛⎫+== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭但 2238681010162411812341527A AB B ⎛⎫⎛⎫⎛⎫⎛⎫++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()2222A B A AB B +≠++(3)()()22A B A B A B +-≠- 因为 22022501A B A B ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭,,()()220206250109A B A B ⎛⎫⎛⎫⎛⎫+-== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,而 223810284113417A B ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()()22A B A B A B +-≠-6.(1)取1111A O ⎛⎫=≠ ⎪--⎝⎭,而2A O =; (2)取1000A ⎛⎫=⎪⎝⎭,有A O A E ≠≠,,而2A A =; (3)取101010000001A X Y ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,有X Y ≠,而AX AY =.7. 21010101121A AA λλλ⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;由此推出 ()10231kA k k λ⎛⎫==⎪⎝⎭,,下面利用数学归纳法证明这个结论. 当12k k ==,时,结论显然成立. 假设1k -时结论成立,即有 ()11011k Ak λ-⎛⎫=⎪-⎝⎭则对于k 时,有 ()11010101111kk A A A k k λλλ-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,故结论成立. 8. 证明 由已知:T A A = TB B =充分性:由AB BA =,得T TAB B A =,所以()TAB AB =即 AB 是对称矩阵. 必要性:由()TAB AB =得,T T B A AB =所以BA AB =.9. (1) 公式法:1225A ⎛⎫= ⎪⎝⎭1A =112112225,2(1),2(1),1A A A A ==⨯-=⨯-=112112225221AA A A A *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭ 11A A A -*= 故 15221A --⎛⎫= ⎪-⎝⎭初等行变换法:()12102501AE ⎛⎫=⎪⎝⎭21212100121r r -⎛⎫−−−→ ⎪-⎝⎭12210520121r r --⎛⎫−−−→ ⎪-⎝⎭所以 15221A--⎛⎫= ⎪-⎝⎭. (2) 10A =≠ 故1A -存在11211222cos sin sin cos A A A A θθθθ===-=从而 1c o s s i n s i n c o s A θθθθ-⎛⎫=⎪-⎝⎭(3) 公式法;2A =, 故1A -存在 112131420A A A =-== 而 1222321361A A A =-==- 13233332142A A A =-==-故 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭初等行变换法:()121100342010541001AE -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 2131351211000213100146501r r r r ---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3271211000213100011671r r --⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2313120157102013610011671r r r r +---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3210021002013610011671r r +-⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2122101001310103220011671r --⎛⎫ ⎪ ⎪−−−→-- ⎪- ⎪-⎝⎭所以 12101313221671A --⎛⎫⎪ ⎪=-- ⎪ ⎪--⎝⎭.(4)由对角矩阵的性质知 12110101n a a A a -⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭. 10. (1) 125461321X --⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭(2) 1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭10111312324323330⎛⎫-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭ ⎪-⎝⎭22182533-⎛⎫⎪= ⎪-- ⎪⎝⎭ (3) 11143120120111X --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭243110111011212-⎛⎫⎛⎫⎛⎫= ⎪⎪⎪-⎝⎭⎝⎭⎝⎭66101301212⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭11104⎛⎫⎪= ⎪⎝⎭11. 由22A A E O --=得22A A E -= 两端同时取行列式: 22A A -=即 2A A E -=,故 0A ≠ 所以A 可逆,而22A E A +=2220A E A A +==≠ 故2A E +也可逆.由22A A E O --=得()2A A E E -=所以 11()2A A A E A E ---=,则11()2AA E -=- 又由22A A E O --=(2)3(2)4A E A A E E +-+=-(2)(3)4A E A E E +-=-所以 11(2)(2)(3)4(2)A E A E A E A E --++-=-+则 11(2)(3)4A E E A -+=-. 12.()11k E A E A A ---=+++ .13. 因为11AA A-*=,所以 ()1111111255522A A A A A A A -*-----=-=- ()31112288216A A A ---=-=-=-=-⨯=-.14. 由11AA A-*=,得1A A A *-=, 所以 当A 可逆时,有110nn A A A A-*-==≠,从而A *也可逆.因为1A A A *-=,所以()11A AA --*=又()()1111A A A A A**---==,所以()()()11111A AA AA A A -**--*--===15. 由2AB E A B +=+得()2A E B A E -=-即()()()A E B A E A E -=-+因为 0011010100A E -==-≠,所以()A E -可逆,则 201030102B A E ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭.16.600020001⎛⎫⎪ ⎪ ⎪⎝⎭.17.033123110⎛⎫ ⎪- ⎪ ⎪⎝⎭18. 因为AP P =Λ,所以1A P P -=Λ;又 1P =-, 1100210411P --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,55115⎛⎫⎪Λ ⎪ ⎪⎝⎭= 所以 1100110021012102115411A P P ---⎛⎫⎛⎫⎛⎫⎪⎪⎪=Λ=-- ⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭100200611⎛⎫ ⎪= ⎪ ⎪--⎝⎭5100200611A ⎛⎫⎪= ⎪ ⎪--⎝⎭.19. 因为()1111A B A E CA B B B A ----+=+=+,由()()1A B A B E -++=得()()()()111111AB A A B B A B A B B ------++=++=则()()1111A B A A B B B B E ----++==所以11A B --+可逆,其逆为()1A B A B -+.20. 213241221312131425400124262001221400011r r r r r r A -+---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭ 32344221312131001200120000000100010000r r r r r r B -↔+--⎛⎫⎛⎫⎪⎪-- ⎪ ⎪−−−→−−−→= ⎪⎪⎪ ⎪⎝⎭⎝⎭B 的秩为3,其一个3阶非零子式为13112001--,对应于A 的3阶非零子式为131254262----. 故2131001200010000-⎛⎫⎪- ⎪⎪⎪⎝⎭即为矩阵A 的行阶梯形矩阵,矩阵A 的一个最高阶非零子式为131254262----. 21.(1)111222111444513444⎛⎫- ⎪ ⎪⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)72363211211022⎛⎫- ⎪ ⎪-- ⎪ ⎪- ⎪⎝⎭,(3)11240101113621610--⎛⎫ ⎪-⎪ ⎪-- ⎪--⎝⎭,(4)131120012100120001--⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. 22.(1)2,(2)3,(3)4,(4)当4a =-时,秩为2;当4a ≠-时,秩为3.24.34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A OA ⎛⎫=⎪⎝⎭故8182A O A O A ⎛⎫=⎪⎝⎭8182A O OA ⎛⎫= ⎪⎝⎭8888816121210A A A A A ===444414426450052022O A O A OA O ⎛⎫⎪⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭25. nn s ns s A O E O C B OE ⨯⎛⎫⎪⎝⎭ 111n nA r ns ns s EO A O C B OE --⨯⎛⎫−−−→ ⎪⎝⎭()2111r Cr nns n ns EOA O OB C A E ---⨯⎛⎫−−−−−→ ⎪-⎝⎭左乘 ()121111s s B r nns n nsA O EO B C A B O E -----⨯⎛⎫−−−−→ ⎪ ⎪-⎝⎭左乘 11111s s n s n nA O A OBC A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭利用这个结果取103021121412A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则由11111ss n s n n A O A O B C A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭得 112040111113212A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,,114021201241111312113512224B CA ----⎛⎫⎛⎫⎛⎫⎛⎫=-⋅= ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭-,则 1124080111212262424A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,故 110002400012001212001213012482412143526-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪--⎪ ⎪--⎝⎭⎝⎭习题31.设α=(1,1,0,-1)T ,β=(-2,1,0,0)T ,γ=(-1,-2,0,1)T ,求35αβγ-+.2.设34αβ+=(2,1,1,2)T 23αβ+=(-1,2,3,1)T求,αβ.3.解向量方程325X αβ-=其中,α=(3,5,7,9)T ,β=(-1,5,2,0)T .4.判断向量β能否由其余向量线性表示?若能,写出表示式.(1)β=(0,10,8,7)T ,1α=(-1,2,3,9)T ,2α=(1,3,1,0)T ,3α=(1,8,5,-2)T .(2)β=(1,2,1,1)T ,1α=(1,1,1,1)T ,2α=(1,1,-1,-1)T ,3α=(1,-1,1,-1)T ,4α=(1,-1,-1,1)T .5.设1α=(1+k ,1,1,1)T ,2α=(1,1+k ,1,1)T ,3α=(1,1,1+k ,1)T ,β=(1,3,2,1)T ,试问k 取何值时,β可由123,,ααα线性表示?并写出表示式.6.设1α=(1,0,2,3)T ,2α=(1,1,3,5)T ,3α=(1,-1,a +2,1)T ,4α=(1,2,4,a +8)T ,β=(1,1,b +3,5)T ,试问当,a b 为何值时.(1)β不能由1234,,,αααα线性表示;(2)β能由1234,,,αααα线性表示,且表示法唯一,并写出该表示式; (3)β能由1234,,,αααα线性表示,且表示法不唯一,并写出两个表示式.7.设向量β可由向量组12,,,m ααα 线性表示,但不能由121,,,m ααα- 线性表示,则向量组12,,,m ααα 与向量组121,,,,m αααβ- 等价.8.判断下列向量组是否线性相关?(1)1α=(2,2,7,-1)T ,2α=(3,-1,2,4)T ,3α=(1,1,3,1)T .(2)1α=(1,4,2,7)T ,2α=(3,2,4,5)T ,3α=(1,-1,2,2)T ,4α=(1,4,2,7)T .9.问k 取何值时下列向量组线性相关?线性无关?1α=(k ,2,1)T ,2α=(2,k ,0)T ,3α=(1,-1,1)T10.设向量组123,,ααα线性无关,112323βααα=--,21232βααα=++,3123βααα=-+,讨论向量组123,,βββ的线性相关性.11.已知向量组12,,,m ααα 线性无关,设112βαα=+,223βαα=+,…,11m m m βαα--=+,1m m βαα=+,讨论向量组12,,,m βββ 的线性相关性.12.设向量组12,,,m ααα 不含零向量,且αk (k =2,3,…,m)不能由121,,,k ααα- 线性表示,则向量组12,,,m ααα 线性无关.13.求下列向量组的秩及一个极大线性无关组,并用极大线性无关组线性表示其余向量.(1)1α=(2,1,3,-1)T ,2α=(3,-1,2,0)T ,3α=(1,3,4,-2)T ,4α=(4,-3,1,1)T .(2)1α=(1,2,3,-1)T ,2α=(3,2,1,-1)T ,3α=(2,3,1,1)T ,4α=(2,2,2,-1)T ,5α=(5,5,2,0)T .(3)1α=(1,2,-1,1)T ,2α=(2,0,k ,0)T ,3α=(0,-4,5,-2)T ,4α=(2,2,2,-1).(4)1α=(1,0,1,2)T ,2α=(0,1,1,2)T ,3α=(-1,1,0,k )T ,4α=(1,2,k ,6)T ,5α=(1,1,2,4)T .14.设12{,,,}m R ααα =12{,,,}t R βββ ,且12,,,m ααα 可由12,,,t βββ 线性表示,则向量组12,,,m ααα 与向量组12,,,t βββ 等价.15.设有两个向量组1α=(1,2,-1,3)T ,2α=(2,5,a ,8)T ,3α=(-1,0,3,1)T ;1β=(1,a ,2a -5,7)T ,2β=(3,3+a ,3,11)T ,3β=(0,1,6,2)T ,若1β可由123,,ααα线性表示,试判断这两个向量组是否等价?16.已知向量组1β=(0,1,-1)T ,2β=(a ,3,1)T ,3β=(b ,1,0)T 与向量组1α=(1,2,-3)T ,2α=(2,1,-1)T ,3α=(3,0,1)T 具有相同的秩,且3β可由123,,ααα线性表示,求,a b .17.判断下列集合是否是向量空间?为什么?若是向量空间,求出其维数及一个基. (1)V 1={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =0},其中a i (i = 1,2,…,n )为R 中固定的数.(2)V 2={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =1},其中a i (i = 1,2,…,n )为R 中固定的数.18.设123,,n R ααα∈.证明,若1122330k k k ααα++=且k 1k 2 ≠ 0,则L(α1,α3)=L(α2,α3).19.求下列向量生成子空间的维数与一个基.(1)1α=(-1,3,4,7)T ,2α=(2,1,-1,0)T ,3α=(1,2,1,3)T ,4α=(-4,1,5,6)T .(2)1α=(2,1,3,-1)T ,2α=(1,-1,3,-1)T ,3α=(4,5,3,-1)T ,4α=(1,5,3,-1)T .20.设1α=(1,0,-1)T ,2α=(2,1,1)T ,3α=(1,1,1)T ;1β=(3,1,4)T ,2β=(5,2,1)T ,3β=(1,1,-6)T .(1)证明123,,ααα与123,,βββ都是R 3的基; (2)求由基123,,ααα到基123,,βββ的过渡矩阵;(3)求坐标变换公式;(4)求α=(8,3,0)分别在基123,,ααα与基123,,βββ下的坐标.21.设α=(1,0,-1,0,1)T ,β=(0,1,0,2,0)T . (1)求αβ与的内积 [αβ,]; (2)求αβ与的长度||α||,||β||; (3)求αβ与的夹角θ.22.用施密特正交化方法将下列向量组标准正交化.(1)1α=(1,1,1,1)T ,2α=(3,3,-1,-1)T ,3α=(-2,0,6,8)T ; (2)1α=(1,1,1,0)T ,2α=(1,0,1,0)T ,3α=(-1,2,3,0)T . 23.求与向量1α=(1,0,-1,2)T ,2α=(0,1,1,0)T 都正交的向量. 24.判别下列矩阵是否为正交矩阵?并说明理由.(1)1100221100221111222211112222⎛⎫ ⎪⎪⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)11133311022211666⎛⎫⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭25.设,n R αβ∈,A 是n 阶正交矩阵,证明:(1)[,A A αβ]=[,αβ]; (2)||A α||=||α||;(3)A α与A β的夹角等于α与β的夹角. 26.证明,若12,,,n ααα 是R n 的一组标准正交基,A 是n 阶正交矩阵,则12,,,n A A A ααα 也是R n 的一组标准正交基.解答习题31.(0,-8,0,2)T2.α=(10,-6,-10,2)T ,β=(-7,4,7,-1)T 3.X =12(14,-10,11,27)T 4.(1)能,β=α1+α3.(2)能,β=14(5α1+α 2 - α3 - α4) 5.k =3,β=13(2α2+α3) 6.(1)1,0a b =-≠,(2)12311,(2(1))1a b a b b a βααα≠-=-+++++ (3)2131,0.2a b βαβαα=-===-或8.(1)线性无关.(2)线性相关.9.k =3或k =-2时线性相关;k ≠3且k ≠ -2时线性无关. 10.线性无关.11.m 是奇数时线性无关,m 是偶数时线性相关.13.(1)秩=2;α1,α2是极大线性无关组;α3=2α1-α2,α4=-α1+2α2. (2)秩=3;α1,α2,α3是极大线性无关组;α4=121122αα+,α5=α2+α3. (3)k ≠3时:秩=4.k =3时:秩=3;α1,α2,α4是极大线性无关组;α3=-2α1+α2.(4)k ≠ 0且k ≠ 3时:秩=4;α1,α2,α3,α4是极大线性无关组;α5=α1+α2. k =3时:秩=3;α1,α2,α3是极大线性无关组;α4=α1+2α2,α5=α1+α2. k =0时:秩=3;α1,α2,α4是极大线性无关组;α3=-α1+α2,α5=α1+α2. 15.a =4,β1,β2,β3可由α1,α2,α3线性表示,但β1,β2,β3与α1,α2,α3不等价. 16.a =20,b = 5.17.(1)V 1是向量空间.当a i = 0 (i = 1,2,…,n)时:V 1=R n ;dimV 1 = n ;坐标单位向量ε1,ε2,…,εn 是V 1的基.当a i = 0 (i = 1,2,…,n)不全零时:dimV 1 = n -1;不妨设a 1≠0,则e 1 = (-a 2,a 1,0,…,0)T ,e 2 = (-a 3,0,a 1,…,0),…,e n -1 = (-a n ,0,…,a 1)是V 1的基.(2)V 2不是向量空间.19.(1)dimL(α1,α2,α3,α4) = 2;基是α1,α2. (2)dimL(α1,α2,α3,α4) = 3;基是α1,α2,α4.20.(2)317527408-⎛⎫⎪- ⎪ ⎪-⎝⎭;(3)112233317527408x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭;(4)3,2,1与11145,,444--. 21.(1)0;(2)3,5;(3)2π.22.(1)123111(1,1,1,1),(2,2,2,2),(11,1,1)242T TT e e e ==--=--,. (2)123111(1,1,1,0),(1,2,1,0),(1,0,1,0)362T T T e e e ==-=-. 23.(-4,-2,2,3).24.(1)是正交矩阵;(2)是正交矩阵.习题41. 用消元法解下列线性方程组:(1)123412341234 2 0,3 630,51050;x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩ (4)23y z 4,2y 4z 5,38y 2z 13,4 y 9z 6;x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩2.三个工厂分别有3吨、2吨和1吨的产品要送到两个仓库储藏,两个仓库各储藏产品4吨和2吨,用ij x 表示从第i 个工厂送到第j 个仓库的产品数(1,2,3;1,2i j ==),试列出ij x 所满足的关系式,并求解由此得到的线性方程组.3.写出一个以x 1222341001c c -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ )为全部解的齐次线性方程组.4.确定,a b 的值使下列齐次线性方程组有非零解,并在有非零解时,求其全部解:(1)1231231232 30,3470, 20;x x x x x x x x ax -+=⎧⎪-+=⎨⎪-+=⎩ (2)123123123 0,0, 20.ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩5.λ取何值时,下列非齐次线性方程组有唯一解、无解或有无限多个解?并在有无限多个解时求解:(1)1231232123 1, , ;x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ (2)123123123(2) 2 21, 2(5) 42, 2 4(5) 1.x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩6.设A 是实矩阵,证明()()T R A A R A =.7.求下列齐次线性方程组的基础解系:(1)123412341234 81020,24 5 0,38 620;x x x x x x x x x x x x -++=⎧⎪++-=⎨⎪++-=⎩ (2)123412341234232 0,35420,87630;x x x x x x x x x x x x --+=⎧⎪++-=⎨⎪++-=⎩8.设12,αα是某个齐次线性方程组的基础解系,证明:1212,2αααα+-也是该线性方程组的基础解系.9.设A 是n 阶方阵,0Ax =只有零解,求证:对任意的正整数k ,0kA x =也只有 零解.10.设A 22139528-⎛⎫=⎪-⎝⎭,求一个42⨯矩阵B ,使AB =0,且R (B )2=.11.求一个齐次线性方程组,使它的基础解系由下列向量组成:1ξ0123⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2ξ3210⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 12.求下列非齐次线性方程组的通解:(1)1212341234 5,2 21,53220;x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ (2)123412341234 52311,536 1,242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩13.证明:线性方程组121232343454515,,,,x x a x x a x x a x x a x x a -=-=-=-=-=.有解的充分必要条件是123450a a a a a ++++=.14.设四元非齐次线性方程组Ax b =的系数矩阵A 的秩为2,已知它的三个解向量为1η,2η,3η,其中1η4321⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2η1351⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3η2632-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,求该方程组的通解.15.设矩阵A 121201101t t t ⎛⎫⎪= ⎪ ⎪⎝⎭,齐次线性方程组0Ax =的基础解系含有两个线性无关的解向量,试求方程组0Ax =的全部解.16.设A 21120131,11λμ⎛⎫ ⎪= ⎪ ⎪⎝⎭b 010⎛⎫ ⎪= ⎪ ⎪⎝⎭,η1111⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭,如果η是方程组Ax b =的一个解,试求方程组Ax b =的全部解.17.设η*是非齐次线性方程组Ax b =的一个解,1ξ,2ξ,…,n r ξ-是对应的齐次线性方程组的一个基础解系,证明:(1)η*,1ξ,2ξ,…,n r ξ-线性无关;(2) η*,η*+1ξ,…,η*+n r ξ-线性无关.18.若1η,2η,…,s η为非齐次线性方程组Ax b =的s 个解,12,,,s k k k 为常数,且121s k k k +++= ,证明:1k 1η+2k 2η+…+s k s η也是非齐次线性方程组Ax b =的解. 19.设非齐次线性方程组Ax b =的系数矩阵A 的秩为r ,1η,2η,…,1n r η-+是它的1n r -+个线性无关的解,试证:它的任一解可表示为x =1k 1η+2k 2η+…+1n r k -+1n r η-+,其中1211n r k k k -++++= .20.用克拉默(Cramer )法则解下列方程组:(1)1234123412341234 5, 2 42,23 52,3 2110;x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩ (2)12342345123234345 0,0,23 2, 23 2,23 2.x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪++=⎨⎪++=-⎪⎪++=⎩21.判断齐次线性方程组12312312322 0,240,5820;x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 是否仅有零解.22.问,λμ取何值时,齐次线性方程组123123123 0,0, 20;x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?23.问λ取何值时,齐次线性方程组123123123(1) 2 40,2(3) 0, (1)0;x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?24.证明:平面上三条不同的直线0,0,0ax by c bx cy a cx ay b ++=++=++=相交于一点的充分必要条件是 0a b c ++=.解答习题41.(1)11221121234222110,(,)00001x c c x c c c c c x x c -+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ . (2)212121210x c y c c z c ----⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(c ∈ ).2.ij x (1,2,3;1,2i j ==)所满足的关系式为:111221223132112131122232 3,2,1,4, x x x x x x x x x x x x +=+=+=++=++=1112212231322,6;x x x x x x ⎧⎪⎪⎪⎪⎨⎪⎪⎪+++++=⎪⎩ 11121212211122213123221111221122100101101001x c c x c c x c c c x c x c x c ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). 3.134234220,340.x x x x x x -+=⎧⎨+-=⎩4.(1)123111x c x c c x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).(2)当0b =或10a -=时,即0b =或1a =时,齐次线性方程组有非零解.当1a =时,有1231001x c x c x c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).当0b =时,有1231(1)11x c x a c c a x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).5.(1)当1,2λ≠-时,非齐次线性方程组有唯一解;当2λ=-时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无限多个解,有1122112321111010001x c c x c c c x c ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). (2)当1λ≠且10λ≠时,非齐次线性方程组有唯一解; 当10λ=时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无数多个解,有112211232122122010001x c c x c c c x c -+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ).7.(1)1ξ43410-⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ01401⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, (2)1ξ11971901⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ219141910⎛⎫- ⎪ ⎪ ⎪-= ⎪ ⎪⎪ ⎪⎝⎭.10.115118008B -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭11.12312420,230.x x x x x x -+=⎧⎨-+=⎩12.(1)x 111161,01702c -⎛⎫-⎛⎫ ⎪ ⎪⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).(2)x 1291172211,72001010c c ⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).14.x 1131221()(),c c ηηηηη=+-+-(12,c c ∈ ).15.x 121011,1001c c ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).16.λμ=,当12λ=,非齐次线性方程组有无限多个解,x 1211122311,100001c c ⎛⎫⎛⎫--⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12,c c ∈ ). 当12λ≠,非齐次线性方程组有无限多个解,有x 011122,112201c -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).20.(1)12341231x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (2)1234511111x x x x x ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪-⎪ ⎪ ⎪⎪⎝⎭⎝⎭.21.齐次线性方程组仅有零解.22.当0μ=或1λ=时,齐次线性方程组有非零解. 23.当0,23λ=或时,齐次线性方程组有非零解.习题51.求下列矩阵的特征值和特征向量.(1)3151⎛⎫ ⎪-⎝⎭;(2)200202311-⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)122212221⎛⎫ ⎪ ⎪ ⎪⎝⎭,(4)1111111111111111⎛⎫⎪-- ⎪ ⎪-- ⎪--⎝⎭. 2.证明下列各题:(1)设A 是幂等矩阵(即满足2A A =),则A 的特征值只能0是或1;. (2)设A 是正交矩阵,则A 的实特征值的绝对值为1.3.已知3阶矩阵A 的特征值为1,0,2-,计算行列式2A A E -+.4.已知3阶矩阵A 的特征值为1,2,3-,计算行列式*|32|A A E ++.5.设,A B 都是n 阶方阵,且A 可逆,证明AB 与BA 相似.6.判断矩阵⎪⎪⎪⎭⎫ ⎝⎛----=201335212A 可否对角化,若能的话,将它化为标准形.7.设矩阵20022311A a -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000b -⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭相似,求,a b ;并求一个可逆矩阵P ,使1P AP -=Λ.8.设20131405A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,问a 为何值时,矩阵A 可对角化?9.试求一个正交的相似变换矩阵,将下列实对称矩阵化为对角矩阵:(1)120222023-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭;(2)400031013⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)222254245-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)0111101111011110-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭. 10.将矩阵102012220A -⎛⎫⎪= ⎪ ⎪⎝⎭用两种方法对角化:(1)求一个可逆矩阵P ,使1P AP -为对角阵;(2)求一个正交矩阵T ,使1T AT -为对角矩阵.11.设3阶矩阵A 的特征值为1232,1,2λλλ=-==;对应的特征向量依次为1231101,1,1101ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求矩阵A .12.设3阶实对称矩阵A 的特征值1231,0,1λλλ=-==;属于12,λλ的特征向量依次为12221,221ξξ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求一个正交矩阵T ,使1T AT -为对角矩阵.13.设3阶实对称矩阵A 的特征值1231,1λλλ=-==;属于特征值11λ=-的特征向量为1011ξ⎛⎫⎪= ⎪ ⎪⎝⎭,求矩阵A .14.设120020211⎛⎫ ⎪= ⎪ ⎪---⎝⎭A ,求100A . 15.在某国,每年有比例为p 的农村居民移居城镇,有比例为q 的城镇居民移居农村.假设该国总人数不变,且上述人口迁移的规律也不变.把n 年后农村人口和城镇人口占总人数的比例依次记为n x 和n y (1)n n x y +=.(1)求11n n x y ++⎛⎫⎪⎝⎭与n n x y ⎛⎫⎪⎝⎭的关系式并写成矩阵形式:11++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭n n n n x x A y y ; (2)设目前农村人口与城镇人口相等,即001212x y ⎛⎫ ⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,求n n x y ⎛⎫⎪⎝⎭.解答习题51.(1)1212112,4;,15λλξξ⎛⎫⎛⎫=-=== ⎪ ⎪-⎝⎭⎝⎭;(2)1231230011,2,2;(,,)210111λλλξξξ-⎛⎫ ⎪=-==-=- ⎪ ⎪⎝⎭;(3)1231231011,5;(,,)011111λλλξξξ⎛⎫ ⎪==-== ⎪ ⎪--⎝⎭; (4)12341234111111002,2;(,,,)10101001λλλλξξξξ-⎛⎫ ⎪⎪=-==== ⎪ ⎪⎝⎭. 3.9. 4.-25.6.A 不可对角化.7.100110,2;210,21112---⎛⎫⎛⎫ ⎪ ⎪==-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭a b P P AP .8.3=a .9.(1)12213332122,13335212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪=--=- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT ; (2)10102110,422411022-⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-⎪⎝⎭T T AT ;(3)12251153511452,115351052033-⎛⎫-- ⎪ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT ;(4)111112261211111122612,1211026123310212-⎛⎫-⎪ ⎪⎛⎫ ⎪-- ⎪⎪ ⎪⎪== ⎪ ⎪- ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT . 10.(1)11223221,02123-⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭P P AP ;(2)11223333221,03333212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 11.233453442--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A .12.12213331122,03331212333-⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 13.100001010⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .14.101100100100122002050(12)13⎛⎫⎪- ⎪= ⎪ ⎪- ⎪⎝⎭A. 15.(1)1111++-⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭n n n n x x p q y y p q ;(2)2()(1)12()2()(1)⎛⎫⎛⎫+---= ⎪⎪++---⎝⎭⎝⎭n n n n x q p q p q y p q p q p p q .习题61.证明:123000000a a a ⎛⎫⎪ ⎪ ⎪⎝⎭与23100000a a a ⎛⎫ ⎪⎪ ⎪⎝⎭合同. 2.写出下列二次型的矩阵表示: (1)121323422f x x x x x x =-++;(2)2224424f x xy y xz z yz =+++++;(3)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+-.3.设A 是一个n 阶对称矩阵.如果对任一个n 维列向量x ,都有0Tx Ax =,试证0A =. 4.用拉格朗日配方法化下列二次型为标准形. (1)123422x x x x -;(2)22121213222x x x x x x ++-.*5.用初等变换法化下列二次型为标准形.(1)12132346x x x x x x -+;(2)222123232334x x x x x +++.6.用正交变换法化下列二次型为标准形.(1)22212312132325228x x x x x x x x x +++++;(2)121314232434 222222x x x x x x x x x x x x +--++. 7.求一个正交变换把二次曲面的方程22234545101x xy y xz z yz ++-+-=化成标准方程.8.化下列二次型为规范形.(1)22212312133524x x x x x x x +++-;(2)22212312232422x x x x x x x +++-.9.证明:秩等于r 的对称矩阵可以表成r 个秩等于1的对称矩阵之和. 10.判别下列二次型是否正定:(1)2221231231223(,,)2342f x x x x x x x x x x =+-++;(2)2222123412341213142434(,,,)3919242612f x x x x x x x x x x x x x x x x x x =+++-++--.11.t 满足什么条件时,下列二次型是正定的:(1)222123123121323(,,)5224f x x x x x x tx x x x x x =+++-+; (2)2221231231223(,,)2322f x x x x x x tx x x x =++-+.12.试证:如果A 是正定矩阵,那么A 的主子式全大于零. 13.试证:如果A 是正定矩阵,那么 (1)(0)kA k >是正定矩阵; (2)1A -是正定矩阵.14.试证:如果,A B 是同阶正定矩阵,那么A B +也是正定矩阵.*15.试证:实二次型12(,,,)n f x x x 是半正定的充分必要条件是12(,,,)n f x x x 的正惯性指数等于它的秩.*16.试证:实二次型12(,,,)T n f x x x x Ax = 是半正定的充分必要条件是A 的特征值全大于或等于零.解答习题62.(1)112323021(,,)201110x f x x x x x -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭;(2)121(,,)242121x f x y z y z ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭;(3)1212343411211132(,,,)23101201x x f x x x x x x --⎛⎫⎛⎫ ⎪⎪-- ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭.4.(1)1132133244242222222222222222x y yx y yx y yx y y⎧=+⎪⎪⎪=-⎪⎪⎨⎪=+⎪⎪⎪=-+⎪⎩,22221234f y y y y=+--;(2)112322323x y y yx yx y y=+-⎧⎪=⎨⎪=-+⎩,222123f y y y=--.5.(1)112321233233626526x y y yx y y yx y y⎧=--⎪⎪⎪=--⎨⎪⎪=+⎪⎩,222123f y y y=+-;(2)1122332311221122x yx y yx y y⎧⎪=⎪⎪=+⎨⎪⎪=-⎪⎩,22212325f y y y=++.6.(1)11232233323x y y yx y yx y=-+⎧⎪=-⎨⎪=⎩,2221235f y y y=+-;(2)1124212431344134111222111222111222111222x y y yx y y yx y y yx y y y⎧=++⎪⎪⎪=-+-⎪⎪⎨⎪=-++⎪⎪⎪=+-⎪⎩,222212343f y y y y=-+++.7.4133212133221213322x u v y u v w z u v w ⎧=+⎪⎪⎪=-++⎨⎪⎪=-+⎪⎩,222111u v +=.8.(1)112322323522122x y y y x y x y y ⎧=-+⎪⎪⎪=⎨⎪⎪=-+⎪⎩,222123f y y y =-+; (2)112322333111222222212x y y y x y y x y ⎧=--⎪⎪⎪=+⎨⎪⎪=⎪⎩222123f y y y =++. 10.(1)负定;(2)正定. 11.(1)0.80t -<<;(2)151533t -<<.。

2014海南高考数学线性代数题及答案解析

2014海南高考数学线性代数题及答案解析

2014海南高考数学线性代数题及答案解析一、题目解析2014年海南高考数学试卷中,线性代数部分是其中的一个重要部分。

以下是针对该部分题目的解析和答案分析。

1.选择题题目一:已知方程组:\[ \begin{cases} x - y + 2z = 4 \\ 2x + y + kz = 7 \\ 3x + 4y + 5z = 15\end{cases} \]若方程组有唯一解,则实数$k$的取值范围是:解析:首先,我们需要判断方程组的解的情况。

通过计算可知,若行列式的值为零,则方程组无解;若值不为零,则方程组有唯一解。

计算行列式:\[ \begin{vmatrix} 1 & -1 & 2 \\ 2 & 1 & k \\ 3 & 4 & 5 \end{vmatrix} = 31k - 14 \]要使得行列式的值不为零,即解存在,使得\[ 31k - 14 \neq 0 \]所以,$k \neq \frac{14}{31}$。

因此,实数$k$的取值范围是$k \neq \frac{14}{31}$。

题目二:已知二次型\[ f(x,y,z) = 2x^2 + 2y^2 + 2z^2 - 2xy + 2xz - 4yz \]则对于任意的实数$a$,当且仅当$a \geqslant \frac{5}{3}$时,二次型$f(x,y,z)$正定。

解析:对于一个二次型,判断其正定还是负定,需要计算其特征值。

特征值公式为:\[ \begin{vmatrix} 2-\lambda & -1 & 1 \\ -1 & 2-\lambda & -2 \\ 1 & -2 & 2-\lambda \end{vmatrix} = 0 \]计算得到特征方程:\[ (\lambda-1)(\lambda-3)(\lambda-5) = 0 \]所以,该二次型的特征值为$1, 3, 5$。

线性代数(第一~三章)习题解答

线性代数(第一~三章)习题解答

习 题 一1.解:(1)31542的逆序数=2+0+2+1+0=5(2)264315的逆序数=1+4+2+1+0+0=8 (3)54321的逆序数=4+3+2+1=10(4))12)(32(135)2)(22(246---n n n n =1+2+3+…(2n -1)=2)1(+n n 2.解:四阶行列式中含有31a 的项可表示为42142143121)1()1(j j j j j j a a a a τ-,其中421,,j j j 为2,3,4的全排列。

故带有负号的项有:43312412a a a a -,44312213a a a a -,42312314a a a a -3.解:xx x x x x 347165423112展开式中含有4x 的项必须每行都取含x 的项相乘,即41863x x x x x =⋅⋅⋅=,含有3x 的项为x x x x x x ⋅⋅⋅-+⋅⋅⋅-2)1(763)1()1324()4231(ττ3128x -=4.证明:(反证法)假设该行列式不为零,则不为零的元素的个数≥n ,从而为零的元素的个数≤n n -2,与已知行列式中有n n -2个以上元素为零矛盾。

所以该行列式为零。

5.解:(1)2456323652-=⨯-⨯=+ (2)))(())((22222222b ab a b a b ab a b a ba b a b ab a b ab a ++--+-+=+-+++-33b a +=3332)(b b a =--(3)022=bababa (4)45500251190221242513122113-=-----r r r r (5)3711107403112311740532224332453213312213=-----↔-----r r r r r r r r(6)))((0))((0111121212222c b a a c a c c b a a b a b bca ar r r r abc c acb bbca a ++--++-------- 0)(10)(101))(()()(232=++++-----c b a c b a bca aa c ab ac r a b r 提取提取(7)43123524323556485437r r r r --23214123524031102115437r r r r r r -+--3524010002111400---24100011302410000111000524343231-按第一行展开--++-r r r r r r22411=-按第三列展开 (8)132141873754169521321r r r r r ---1226400622069521321r r ---2312226400622043101321r r r r ----346400240043101321r r -----16400240043101321=---(9)4321c c c c xa b c a x c b b c x a c b a x +++----xa b x c b a a x c x c b a bc x x c b a cb a xc b a --++--++--++-++131214 )(r r r r r r x c b a ----++ 提取cx b a a b c a b x a c cb bc a x c b a x c b a -------------++0001)(4223c c c c ++c x b c a x ca c ab x cb c b a x b c a x ca b c a x c b a --+----+----+---+---++-++000001)( 432c c c --cx b c a x c a c a b x cx a b ca b c a x c b a --+----+---++-++-++00000001)( 按第一列展开cx b c a x ca c ab xc x a b x c b a --+-------++--++0|00)())()()(()1()321(x a c b c b a x b c a x x c b a +-++---+----++-=τ ))()()((x c b a x b a c x c a b x c b a ----------++=6.解:(1) 证明:cb a a cb c b a cba cb a ++++++222并提取公因式321c c c ++c b a a b c b a ba++++++21211c)b 2(ac b a c b a bac b a c c c c ++++++--00001)(213123)(2c b a ++=(2)bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++5行列式性质bz ay by ax az by ax bx az ay bx az bz ay ax +++++++bz ay by ax bx by ax bx az bz bxaz bz ay by ++++++ 提取公因式bz ay by ax z by ax bx az y bxaz bz ay xa +++++++bzay by ax xby ax bx az z bx az bz ay yb ++++++5行列式性质ay by ax zax bx az y az bz ay x a ++++bz by ax zby bx az ybx bz ay x a ++++bz ay ax xby ax az zbxaz ay y b ++++bz ay by x by ax bx z bxaz bz y b +++y by ax z x bx az y zbzay x a +++2+++00bz ay y xby ax x zbxaz z yb +++25行列式性质y ax z x azy z ay x a 2+y by z x bx y zbzx a 2+ayy x ax x zazz yb 2+bz y x by x zbxz y b 2yxzx z y zy x a 3+++00zy x y xzx z yb 3 1223,c c c c ↔↔第二个行列式y xzx z y z y xb a )(33+ (3)用数学归纳法①当1=n 时,1)11(22x x x D n +===,命题成立;②设k n ≤时命题成立,即k k x k D )1(+=,则1+=k n 时,)1()1(22222100020000002100002100002+⨯+=k k n x x x x x x x x x D=kk x x x x x x x x x x⨯210002000000210000210000222222kk x x x x x x x ⨯-210020000020000122221212)1(22--⋅-+⋅=-=k k k k kx x x k x D x xD 11)2()22(+++=-+k k x k x k k n x n )1(+=综合①、②可得对一切自然数n ,都有n n x n D )1(+=. 7.解:(1)1444414444144441 =n D),,3,2(1n i r r i =+14444144441434343434 ----n n n n)34()34(--n n 提取1444414444141111 )34(,3,2 4 1-=-n ni r r i 300030000301111---)34()3(1--=-n n(2)121212555333321321321321---=n n n n n n n n Dni i c i ,3,2=提取2222224442223213213211111!---n n n n n n n∏≤<≤-nj i j i n 122)(! 式行列利用范德蒙(3)递推法nn n n a a a a a a a a D -------=-+11000010000001100001100001132211112r r +nn n a a a a a a a ------11000100000011000010000113221D n展开按第一列nn n a a a a a a a ------11001000000110000100001143321a -11-a 1Dnn 2=(4)nnn n n n nnn d c d c d c b a b a b a D 111111112----=行取第一行和第拉普拉斯定理n 2nn nnd c b a .11111111----n n n n d c d c b a b a22)( --n n n n n D c b d a 421111))((-------n n n n n n n n n D c b d a c b d a 可得类似111133331111)())((d c b a c b d a c b d a c b d a n n n n n n n n -------∏=-ni i i i i c b d a 1)((5)na xxxx a x xx x a x x x x a3211,2,1 1-=-+n i c c i inn n a a x x x a x x a a x x x a a x x x a -------- 000000 00 00 001332212,1, 1 -=--n n i r r i ixa a a x x a x a a a x x a a a x xx a n n n n -------------1132321212 000 000002000 020 00∏∏=-+=---+-ni i i n n i i a a x x x a n 2111)2()1()( 展开列按第 ∏∏=-=-++-ni i i ni i x a a x x a 211)2()(8.解:(1)计算系数行列式232142234321212r r r r D --=51050321430-=----5321032143031-+--r r 210321200=-101312173237323211r r r r D --=01240310211=----2321242274331212r r r r D --=311050331450r r -----31105033160r r ----302321342734321112r r r r D --==----5503215303131103215305r r +---101103212005=-- 所以方程组有唯一解011==D D x , 322==D Dx , 133-==DD x (2)计算系数行列式4352323211431121----=D 101110740064112132141312------++r r r r r r 10111010402021104424123------++-r r r r r r6114022111=---展开按c 43513232114711231----=D 24232143r r r r r r +-+01212901919114700610--- 324241212919190610)1(r r c +----+展开按60121290121006101413122224312322211731131r r r r r r D --+----=1421505440001041131c c -------11501440001040131-----390144000104013134---+r r 3900104131)1(434---+展开按c3131r r +303900104001)1(43-=--+41523232174313213--=D 141312223r r r r r r ---2510541042201321-------2423225105410211013212)2(r r r r r -+--------提取06003300211013212----- 0603302112C 1----展开按36=- 13522232714331214--=D 141312223r r r r r r ---5110441024203121-------2423251104410121031212)2(r r r r r -+--------提取61003200121031212----- 613201212C 1----展开按18= 所以方程组有唯一解1011==D D x , 522-==D D x , 633-==D D x , 344==DDx (3)计算系数行列式5733856155334231=D 343214131222716043307160423133r r r r r r r r r r ++--------17004330150042312004330150001013124---r r r r 64310)1(20204331502331=-⨯+展开按展开按r C3412125738856855364233r r r r D --=24232123230856831304233r r r r r r -++----0100270831301303--13123442320833013)1(r r r r r -+---+展开按600203913-=--57838581556342312=D 022435713022043507130423131131224---------展开按c r r r r r r11420720253232313---+r r r r r 提取12-58338861563343313=D 020453736020045307360433131131224---------展开按c r r r r r r 6=87338561653332314=D 220533316220053303160323131131224---------展开按c r r r r r r122275)1(3220533750212121=-⨯++展开按c r r所以方程组有唯一解111-==D D x , 222-==D D x , 133==D D x , 244==DDx9.解:(1)λλλλ--=3111211D 1232rr c c --λλλλλ----3321022132122332021---+---λλλλλλλ展开按r )2)(2()22)(2()3)(2(2---=--+--=λλλλλλλλ)1()2(2+--=λλ当0=D 时,即时=-或12λλ=,齐次方程组有非零解. (2)324124122-+--=λλλD 32423601221212---+-----λλλλλr r c cλλλλλλλ--+--+-----2460)1(3223621展开按r [])6)(4)(1()23)(2()6(32-+---++--=λλλλλλ)4)(2)(3(241423-++-=+-=λλλλλλ+-当0=D 时,即时=或-或423λλλ=-=,齐次方程组有非零解.习 题 二1. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛---=+776491056532B AB (2)⎪⎪⎪⎭⎫ ⎝⎛------=-4332412332E AB T2.解:(1)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--000046696432 (2)⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛834231413121342(3)()⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎭⎫ ⎝⎛-339226113113321 (4)()2321113-=⎪⎪⎪⎭⎫⎝⎛--(5)⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛------777468505642531432321234643755467 (6)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113332222112331221111x x x x a x a x a x a x a x a x a x a x a)()()(233332233113233222222112133112212111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++=3.解:⎪⎪⎪⎭⎫ ⎝⎛---=210143321TA , ⎪⎪⎭⎫ ⎝⎛=234112T B(1)⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=112143213142210143321B A T(2)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛=124113213142031234112A B T(3)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛==1165511210143321234112)(TT T A B AB4.解:从321321,,,,x x x y y y 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321y y y A x x x ,其中⎪⎪⎪⎭⎫ ⎝⎛---=352143231A ;从321321,,,,y y y z z z 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z B y y y ,其中⎪⎪⎪⎭⎫ ⎝⎛=231341652B ,所以从321321,,,,x x x z z z 到的线性变换可表示为:=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z AB x x x ⎪⎪⎪⎭⎫ ⎝⎛---352143231⎪⎪⎪⎭⎫ ⎝⎛231341652=⎪⎪⎪⎭⎫ ⎝⎛321z z z ⎪⎪⎪⎭⎫ ⎝⎛--312823111⎪⎪⎪⎭⎫ ⎝⎛321z z z 所以,从321321,,,,x x x z z z 到的线性变换为: ⎪⎩⎪⎨⎧+-=++=+-=32823 321332123211z z z x z z z x z z z x5.解:(1)E A A A f 43)(2+-=⎪⎪⎭⎫ ⎝⎛--=2321⎪⎪⎭⎫ ⎝⎛--2321-3⎪⎪⎭⎫ ⎝⎛--2321E 4+=⎪⎪⎭⎫⎝⎛8008 (2) 2201310111)(2--=--=x x x x x x f=--=E A A A f 22)(2⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛-02112E 2-⎪⎪⎭⎫⎝⎛---=01216.(1)∵222))(()(B BA AB A B A B A B A +++=++=+ ∴要使2222)(B AB A B A ++=+,则必须AB BA = (2) ∵22))((B BA AB A B A B A -+-=-+∴要使22))((B A B A B A -=-+,则必须0=+-BA AB ,即AB BA = (3) 当AB BA =时,用数学归纳法证明kk k B A AB =)(①1=k 时,显然kk k B A AB =)(2=k 时,222)()()()(B A B AB A B AB A ABAB AB AB k =====,所以kk k B A AB =)(②设n k =时,有kk k B A AB =)(,则1+=n k 时B BA B A B A B A AB B A AB AB AB AB n n n n n n n n K)()()()()()(1!-+=====B AB B A n n )(1-=21)(B A B A n n -=11)(++===n n n n B A B AB A可见,1+=n k 时,也有k k k B A AB =)(所以,当AB BA =时,对一切正整数k 都有 k k k B A AB =)(7.解:(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛----111122221111n n n n n(2) ∵⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--100123122∴⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--为奇数为偶数n n n 2312 10012312 (3) ∵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100112,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100113⎪⎪⎪⎭⎫⎝⎛100110011⎪⎪⎪⎭⎫⎝⎛=100310331 =⎪⎪⎪⎭⎫ ⎝⎛41001100113100110011⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛100110011⎪⎪⎪⎭⎫ ⎝⎛=100310331⎪⎪⎪⎭⎫⎝⎛100110011 ⎪⎪⎪⎭⎫ ⎝⎛=100410641 ∴⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛100102)1(1100110011n n n n n8.证明:∵A 、B 为对称矩阵,∴=T A A ,=TB B(1) ∵ AC C C A C AC C T T T T T T T ==)()(∴ AC C T是对称矩阵(2) ∵ ABABA A B A B A ABABA TT T T T T ==)(∴ ABABA 是对称矩阵(3) ∵E E AA TT ==-)(1,=T A A∴==--T T T A A AA )()(11A A E A A T 11)(--== ∴ 11)(--=A A T ∴ 1-A 是对称矩阵9.解:(1) ∵027342≠=∴⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-23477342173421⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛-23472173421(2) ∵01cos sin sin cos cos sin 22≠=+=-θθθθθθ∴ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--θθθθθθθθsin cos cos sin 11sin cos cos sin 1⎪⎪⎭⎫⎝⎛-=θθθθsin cos cos sin (3) ∵232132643321532r r r r --01320321110≠-=---- ∴⎪⎪⎪⎭⎫⎝⎛643321532可逆 又∵0643211==A , 3633112=-=A , 2432113-==A 2645321=-=A , 3635222-==A , 1433223=-=A 1325331-==A , 1315232-=-=A , 1213233==A ∴⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-1121331206433215323323133222123121111A A A A A A A A A(4) ⎪⎪⎪⎭⎫⎝⎛-------=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-----11133131121212113123233323133222123121111A A A A A A A A A(5) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----1212335123240634332311(6) 把⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000210032104321D 分块为⎪⎪⎭⎫ ⎝⎛B C A 0, 其中⎪⎪⎭⎫ ⎝⎛=1021A ,⎪⎪⎭⎫ ⎝⎛=1021B ,⎪⎪⎭⎫⎝⎛=3243C , 则01≠==B A D ,∴矩阵D 可逆。

一道线性代数证明题

一道线性代数证明题

一道线性代数证明题
高校学院上的线性代数收获颇丰,本文将探讨一道线性代数中的证明题。

题目:设A、B是实矩阵,证明A的逆矩阵乘以B的逆矩阵,等于B乘以A的逆矩阵。

一般来说,解决定系统的逆矩阵问题,可以考虑利用矩阵的乘法原理来求解。

由矩阵的乘法原理可知,A乘以B等于B乘以A,即(AB)=(BA)。

将B的逆矩阵(B^-1)两边同乘以A的逆矩阵(A^-1),可得:A^-1B^-
1=(B^-1A^-1)。

上式左右两边同乘以A,可得:A(A^-1B^-1)=A(B^-1A^-1);利用单位矩阵AA^-1=A^-1A=E可以把等号左边化简:(EA)B^-1=A(B^-1A^-1);
由此得出:AB^-1=B^-1A^-1,所以可以得到结论:A的逆矩阵乘以B的逆矩阵,等于B乘以A的逆矩阵。

经过数学分析,上述证明的结论是正确的,也就是说,A的逆矩阵乘以B的逆矩阵,等于B乘以A的逆矩阵,这在线性代数中得到了证明。

高校的研究生所学的线性代数,不仅涉及实列表数、矩阵和向量,而且还有更复杂的概念,如证明题中提及的A、B。

从表面上来看,证明一道线性代数题并不容易,然而在详细地分析、推算、证明的过程中,可以发现它们拥有相当复杂的内涵,从而更加深入地理解线性代数的教学理论和知识结构,从而为高校学子提供有助于理解、思考和加深知识的有益提示。

线性代数考研中的证明题方法总结

线性代数考研中的证明题方法总结

三、计算题与证明题1.(1987—Ⅰ,Ⅱ)问,a b 为何值时,线性方程组123423423412340,221,(3)2,321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩ 有唯一解,无解,有无穷多组解?并求出有无穷多组解时的通解.【考点】非齐次线性方程组解的理论的应用.解 方法一:[]111100122100101010rB A b a b a ⎡⎤⎢⎥⎢⎥=→⎢⎥-+⎢⎥-⎣⎦. (1)当()41R A a =⇔≠时,方程组有惟一解;(2)当1a =时,方程组无解或无穷多解,此时[]11110012210000100000rB A b b ⎡⎤⎢⎥⎢⎥=→⎢⎥+⎢⎥⎣⎦.①当1b =-时,()()24R A R B ==<,方程组有无穷多解;此时[]10111012210000000rB A b ---⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎣⎦, 方程组的通解为1212111221,,100010x k k k k -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦为任意常数; ②当1b ≠-时,()2,()3R A R B ==,方程组无解.综上可得:(1)当1a ≠时,方程组有惟一解; (2)当1,1a b ==-时,方程组有无穷多解;(3)当1,1ab =≠-时,方程组无解.方法二:方程组的系数行列式2(1)A a =-.(1)当2(1)1A a a =-⇔≠时,方程组有惟一解;(2)以下同方法一.【注意】(1)含有参数的线性方程组的解的讨论都是用方法一或方法二解决.但方法一具有普遍性,即这类问题都可用方法一求解;方法二具有特殊性,其适用范围是: ①方程的个数等于未知数的个数; ②方程组的系数行列式含参数.(2)求解这类问题的关键点是先讨论方程组有惟一解的情形,再讨论无解或无穷多解.切记切记.2.(1987—Ⅱ;1990—Ⅳ)设A 为n 阶矩阵,1λ和2λ是A 的两个不同的特征值;12,x x 是分别属于1λ和2λ的特征向量,试证明12x x +不是A 的特征向量.【考点】特征值的定义,性质及向量组线性相(无)关的定义. 解 反证法:假设12x x +是A 的特征向量,则存在数λ,使得1212()()A x x x x λ+=+,则1122()()0x x λλλλ-+-=.因为12λλ≠,所以12,x x 线性无关,则11220λλλλλλ-=⎧⇒=⎨-=⎩.矛盾.【注】矩阵的不同的特征值所对应的特征向量线性无关.3.(1987—Ⅳ,Ⅴ)设矩阵A 和B 满足关系式2AB A B =+,其中423110123A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,求矩阵B .【考点】解矩阵方程.解 由12(2)BA B B A E A -=+⇒=-1434233861531102961641232129----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦.4.(1987—Ⅳ,Ⅴ)解线性方程组12341341231342434,3,31,773 3.x x x x x x x x x x x x x -+-=-⎧⎪+-=-⎪⎨++=⎪⎪+-=⎩ 【考点】求解非齐次线性方程组.解21434101031011301208(|)3110100016707330r B A b ---⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦. 由()()34R A R B ==<,得方程组有无穷多解.方程组的解132333286x x x x x =-+⎧⎪=-⎨⎪=⎩,令3x k =得方程组的通解12343182,0160x x k k x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦为任意常数.5.(1987—Ⅳ,Ⅴ)求矩阵312014101A --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.【考点】求矩阵的特征值及特征向量. 解2(1)(45)A E λλλλ-=-++,得A 的实特征值1λ=.解()0A E x -=得其对应的特征向量021x k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中k 为不为零的任意常数. 6.(1988—Ⅰ,Ⅱ)已知AP PB =,其中100100000,210001211B P ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求A 及5A .【考点】解矩阵方程及求矩阵的幂.解1100200611A P P B A P B P -⎡⎤⎢⎥=⇒==⎢⎥⎢⎥--⎣⎦.5511A PB P PBP A --===.【注意】若1A PBP -=,则1k k A PB P -=;一般地,设10()m m x a x a x a ϕ=+++,则方阵A 的多项式110()()m m A a A a A a E P B P ϕϕ-=+++=.7.(1988—Ⅰ,Ⅱ)已知矩阵20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与20000001B y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似:(1)求x 与y ;(2)求一个满足1P AP B -=的可逆矩阵P .【考点】相似矩阵的性质及一般矩阵的对角化方法. 解 (1)方法一:A 与B 相似,则A E B Eλλ-=-,即22(2)(1)(2)((1))x y y λλλλλλ---=-+--,比较系数,得1011x y x y y -=-=⎧⎧⇒⎨⎨-=-=⎩⎩.方法二:B 的特征值为2,,1y -.由A 与B 相似,则A 的特征值为2,,1y -.故2(1)2002(1)21y x x y A y ++-=++⎧=⎧⎪⇒⎨⎨⋅⋅-==-=⎪⎩⎩.【注意】方法一具有一般性;方法二具有特殊性(为什么?)如果利用方法二得到的不是惟一解,则方法二失效.但方法二比较简单,建议:做填空题与选择题时用方法二,做解答题时用方法一.(2)分别求出A 的对应于特征值1232,1,1λλλ===-的线性无关的特征向量为1231000,1,1011p p p ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.令可逆矩阵[]123100011011Pp p p ⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则1P AP B -=.8.(1988—Ⅳ) 设3阶方阵A 的伴随矩阵为*A ,且21=A ,求*12)3(A A --.【考点】矩阵运算的性质.解1*11112(3)2233A A A A A A -----=-=-,所以1*131228116(3)2()332727A A A A A ----=-=-=-⋅=-.或*1*1***114(3)222333A A A A A A A A ---=-=⋅-=-,则311**3*446416(3)2()332727A A A A A ---=-=-=-⋅=-. 【注意】求解此类问题,一般是将行列式中的式子先化简,再求行列式.此处用到矩阵的如下性质:111(),0kA A k k --=≠;*11*11*1;;;.n A A A A A A A A A A----====9.(1988—Ⅳ,Ⅴ) 设向量组)2(,,,21≥ss ααα 线性无关,且=+=+=-1322211,,,s βααβααβ 11,s s s s ααβαα-+=+,讨论向量组s βββ,,,21 的线性相关性.【考点】向量组的线性相关性的判别方法. 解 方法一:设11220s s x x x βββ+++=,即111221()()()0s s s s x x x x x x ααα-++++++=.因为12,,,s ααα线性无关,则1121000s s s x x x x x x -+=⎧⎪+=⎪⎨⎪⎪+=⎩,其系数行列式11000111001(1)0110000011s A -==+-. (1)当s 为奇数,20A =≠,方程组只有零解,则向量组s βββ,,,21 线性无关; (2)当s 为偶数,0A =,方程组有非零解,则向量组s βββ,,,21 线性相关.方法二:显然1212121000111000(,,,)(,,,)(,,,)0110000011s s s s s K βββαααααα⨯⎛⎫⎪ ⎪⎪== ⎪ ⎪ ⎪⎝⎭,因为12,,,s ααα线性无关,则1212(,,,)min{(,,,),()}()s s R R R K R K βββααα≤=(1)1()1(1)0s R K s K s -=⇔=+-≠⇒为奇数时,12(,,,)s R sβββ=,则向量组s βββ,,,21 线性无关;(2)1()1(1)0s R K s K s -<⇔=+-=⇒为偶数时,12(,,,)s R s βββ<,则向量组s βββ,,,21 线性相关.【注意】(1)已知12,,,m βββ可由12,,,m ααα线性表示的具体表达式,且12,,,m ααα线性无关时,用方法二求解一般较简便.(2)若B 可逆,则()()R AB R A =.一般地()min{(),()}R AB R A R B ≤,即乘积矩阵的秩不小于每一个因子的秩.10.(1988—Ⅳ,Ⅴ) 设线性方程组为⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132k x x x x x x k x x x x x x x x x x ,问1k 与2k 各取何值时,方程组无解?有惟一解?有无穷多解?有无穷多解时,求其一般解.【考点】含参数的线性方程组解的讨论. 解 方法一:(一般情形)112211231112311361301212(|)311530022415101235r B A b k k k k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==→⎢⎥⎢⎥---+⎢⎥⎢⎥--+⎣⎦⎣⎦.(1)当11()()4202R A R B k k ==⇔-+≠⇔≠时,方程组有惟一解;(2)当12k =时,21123101212000120001rB k ⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦,则 ①当21k ≠时,()3()4R A R B =≠=,方程组无解;②当21k =时,()()34R A R B ==<,方程组有无穷多解,且10008012030001200000rB -⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎣⎦, 则通解(一般解)为12348032,0120x x k k x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦为任意常数. *综上:当12k ≠时,方程组有惟一解;当12k =且21k ≠时,方程组无解;当12k =且21k =时,方程组有无穷多解,且一般解为*式.方法二:(特殊情形)方程组的系数行列式16(2)A k =-.(1)当116(2)02A k k =-≠⇒≠时,方程组有惟一解;以下同方法一.11. (1988—Ⅴ)已知n 阶方阵A 满足矩阵方程2320A A E --=.证明A 可逆,并求出其逆矩阵1A -.【考点】抽象矩阵是求逆. 解 由23202A E AA E A E A ---=⇒⋅=⇒可逆,且12A EA --=.12.(1989—Ⅰ,Ⅱ)问λ为何值时,线性方程组13123123,422,6423x x x x x x x x λλλ+=⎧⎪++=+⎨⎪++=+⎩ 有解,并求出解的一般形式.【考点】含参数的非齐次线性方程组解的讨论及非齐次线性方程组的求解.解[]101101412201232614230001rB A b λλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==+→--+⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦.线性方程组有解()()R A R B ⇔=101λλ⇔-+=⇒=,其通解为1121,11x k k -⎡⎤⎡⎤⎢⎥⎢⎥=+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦为任意常数.13.(1989—Ⅰ,Ⅱ)假设λ为n 阶可逆矩阵A 的一个特征值,证明:(1)1λ为1A-的特征值; (2)Aλ为A 的伴随矩阵*A 的特征值.【考点】特征值的概念. 证 (1)设A 对应于特征值λ的特征向量为x ,则11111()()Ax x A Ax A x A x x A x x λλλλλ≠----=⇒=⇒=⇒=.(2)****()()AAx x A Ax A x A x A x A x x λλλλλ≠=⇒=⇒=⇒=.14.(1989—Ⅳ,Ⅴ)已知B AX X +=,其中⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=350211,101111010B A ,求矩阵X .【考点】解矩阵方程.解12111311()321202030115311X E A B ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦. 15. (1989—Ⅳ)设),3,1(),3,2,1(),1,1,1(321t ===ααα.(1)问当t 为何值时,向量组321,,ααα线性无关? (2)问当t 为何值时,向量组321,,ααα线性相关?(3)当向量组321,,ααα线性相关时,将3α表示为1α和2α的线性组合.【考点】含参数的向量组线性相关性的讨论及求向量由向量组线性表示的具体表示式.解 方法一:(一般情形)123111111(,,)12301213005rT T TA t t ααα⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦. (1)当5t ≠时,123123123(,,)(,,)3,,T T TR R ααααααααα==⇒线性无关;(2)当5t=时,123123123(,,)(,,)23,,T T T R R ααααααααα==<⇒线性相关;(3)当5t =时,123111101(,,)12301213000rT T Tt ααα-⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则 31231222T T Tαααααα=-+⇒=-+.方法二:(特殊情形)321,,ααα线性无关123111,,12350513A t t tααα⇔===-≠⇔≠;当5t =时,321,,ααα线性相关;令311223122x x αααααα=+⇒=-+.【注意】方法二只有在向量组所含向量的个数等于向量的维数时才适用.16.(1989—Ⅳ,Ⅴ)设⎪⎪⎪⎭⎫ ⎝⎛-----=122212221A . (1)试求矩阵A 的特征值;(2)利用(1)的结果,求矩阵1-+A E 的特征值,其中E 是三阶单位矩阵.【考点】特征值的计算及特征值的性质. 解 (1)2(1)(5)A E λλλ-=--+,则A 的特征值为1,1,5-.(2)设λ为可逆矩阵A 的特征值,x 为对应的特征向量,则1111()(1)Ax x A x x E A x x λλλ----=⇒=⇒+=+,即11λ-+为1-+A E 的特征值.所以1-+A E 的特征值为42,2,5.17. (1989—Ⅴ)讨论向量组123(1,1,0),(1,3,1),(5,3,)t ααα==-=的线性相关性.【考点】含参数的向量组线性相关性的讨论. 解 参考15. (1989—Ⅳ).答案:当1t ≠时线性无关;当1t =时线性相关.18.(1990—Ⅰ,Ⅱ)设四阶矩阵1100213401100213,,0011002100010002B C -⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦且矩阵A 满足关系式1()T T A E C B C E --=,其中E 为四阶单位矩阵,1C -表示C 的逆矩阵,TC 表示C 的转置矩阵,将上述关系式化简并求矩阵A .【考点】解矩阵方程及矩阵的运算. 解 111()[()]()()T TT TT T TA E CBC E A C C B C EA CBC C E----=⇒-=⇒-=1()()()T T T A C B CC E A C B E -⇒-=⇒-=110001100[()]12100121T A C B -⎡⎤⎢⎥-⎢⎥⇒=-=⎢⎥-⎢⎥-⎣⎦. 【注意】在解矩阵方程时,如果矩阵方程中含有已知矩阵A 的逆矩阵1A -或伴随矩阵*A ,利用11AA A A E --==或**AA A A E ==化掉1A -或*A .19.(1990—Ⅰ,Ⅱ)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准形.【考点】利用正交变换化二次型为标准形的方法.解 (1)写出二次型的矩阵:122244244A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦.(2)求A 的特征值:2(9)A E λλλ-=-⇒A 的特征值为1,230,9λλ==.(3)求A 的两两正交且单位化的特征向量:对应于特征值1,20λ=的线性无关的特征向量为1210ξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,2201ξ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,正交化得1210η⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,221455η-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位化得12,0p p ⎡⎢⎢⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.对应于特征值1,20λ=的线性无关的特征向量为3122ξ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,单位化得3132323p ⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.(4)构造正交变换:令正交矩阵[]123132,,3203P p p p ⎤⎥⎥⎥==-⎥⎥⎢⎥⎢⎥⎣⎦,则所求正交变换为1122331323203x y x y x y ⎤⎥⎥⎡⎤⎡⎤⎥⎢⎥⎢⎥=-⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦. (5)写出二次型的标准形:二次型的标准形为239f y =.【注意】利用正交变换化二次型为标准形的步骤: (1)写出二次型的矩阵;(2)求A 的特征值;(3)求A 的两两正交且单位化的特征向量;(4)构造正交变换; (5)写出二次型的标准形.20.(1990—Ⅳ,Ⅴ) 已知线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++2334562203235432154325432154321x x x x x b x x x x x x x x x a x x x x x (1)b a 、为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系; (3)方程组有解时,求出方程组的全部解. 【考点】含参数的线性方程组解的讨论.解 参考10.(1988—Ⅳ,Ⅴ),此题只能用方法一(一般情形)(为什么?请读者自己考虑).1111111111321130012263(|)012260000035433120000022r a aa B Ab b b a a ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦.(1)方程组有解301()()2203b a a R A R B a b -==⎧⎧⇔=⇒⇒⎨⎨-==⎩⎩;(2)当13a b =⎧⎨=⎩时,101152012263(|)00000000r B A b ----⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎣⎦,方程组的解13452345522263x x x x x x x x =++-⎧⎨=---+⎩. 方程组的导出组的解134523455226x x x x x x x x =++⎧⎨=---⎩,令3451000,1,0001x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,得方程组的导出组的一个基础解系123115226,,100010001ξξξ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.令345000x x x ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,得方程组的一个特解23000η-⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.则方程组的通解112233xk k k ηξξξ=+++,其中123,,k k k 为任意常数.21.(1990—Ⅳ) 已知对于n 阶方阵A ,存在自然数k ,使得0=k A .试证明矩阵A E -可逆,并写出其逆矩阵的表达式(E 为n 阶单位阵). 【考点】抽象矩阵求逆. 证 1()()k k kk E E A E A E A E A A -=-=-=-+++,所以A E -可逆,且11()k E A E A A ---=+++.22.(1990—Ⅴ)设A 为1010⨯矩阵10010000010000001100000A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦计算行列式A E λ-,其中E 为10阶单位矩阵,λ为常数.【考点】行列式的计算. 解101010A Eλλ--按第一列展开=.23.(1990—Ⅴ)设方阵A 满足条件T A A E =,其中T A 是A 的转置矩阵, E 为单位阵.试证明A 的实特征向量所对应的特征值的绝对值等于1. 【考点】特征值与特征向量的概念. 证 设A 的实特征向量0x ≠所对应的特征值为λ,则Ax x λ=.又22()()()()11T T T T Ax Ax x x x x x x λλλλλ=⇒=⇒=⇒=.(0)T x x x =≠【注】注意本题的A 是正交矩阵,由此有如下结论:实对称正交矩阵的特征值必为1±.24.(1991—Ⅰ,Ⅱ)已知123(1,0,2,3),(1,1,3,5),(1,1,2,1)a ααα===-+,4(1,2,4,8)a α=+及(1,1,3,5)b β=+.(1),a b 为何值时,β不能表示成1234,,,αααα的线性组合?(2),a b 为何值时,β有1234,,,αααα的唯一的线性表示式?并写出该表示式. 【考点】含有参数的向量可由向量组线性表示的讨论.解β可由1234,,,αααα线性表示⇔线性方程组11223344x x x x ααααβ+++=有解.12341111101121,,,2324335185T T T T T a b a ααααβ⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥++⎢⎥+⎣⎦11111011210010010r a b a ⎡⎤⎢⎥-⎢⎥→⎢⎥+⎢⎥+⎣⎦. (1)当1,0a b =-≠时,线性方程组无解,β不能由1234,,,αααα线性表示;(2)当1a ≠-时,线性方程组有惟一解,β可由1234,,,αααα惟一地线性表示.此时123421000110100,,,10010100010r T T T T Tb a a b a b a ααααβ⎡⎤-⎢⎥+⎢⎥++⎢⎥⎢⎥⎡⎤→+⎣⎦⎢⎥⎢⎥⎢⎥+⎢⎥⎣⎦,则123421,,,0111b a b bx x x x a a a ++=-===+++,所以 1234210111b a b ba a a βαααα++=-++++++.25.(1991—Ⅰ,Ⅱ)设A 是n 阶正定矩阵,E 是n 阶单位矩阵,证明A E +的行列式大于1. 【考点】正定矩阵的性质,特征值的性质,实对称矩阵的对角化理论.证 方法一:A 为n 阶正定矩阵,则A 的特征值120,0,,0n λλλ>>>.而A E +的特征值分别为1211,11,,11n λλλ+>+>+>,则12(1)(1)(1)1n A E λλλ+=+++>.方法二:A 为n 阶正定矩阵,则存在正交矩阵U ,使得112(,,,)n U AU diag λλλ-=Λ=,即1A U U -=Λ.其中12,,,n λλλ为A 的特征值,且120,0,,0n λλλ>>>.则1111()A E U U UEU U E U U E U ----+=Λ+=Λ+=⋅Λ+⋅12(1)(1)(1)1n E λλλ=Λ+=+++>.26.(1991—Ⅳ,Ⅴ)设有三维列向量⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛+=23210,111,111,111λλβλαλαλα,问λ取何值时:(1)β可由321,,ααα线性表示,且表达式惟一;(2)β可由321,,ααα线性表示,且表达式不惟一; (3)β不能由321,,ααα线性表示.【考点】含参数的向量可由向量组线性表示的讨论,等价于含有参数的线性方程组解的讨论.解 方法一:(一般情形)12321110(,,)111111λαααβλλλλ+⎛⎫⎪=+ ⎪ ⎪+⎝⎭221110(1)00(3)(12)r λλλλλλλλλλλ⎛⎫+⎪→-- ⎪ ⎪-+--⎝⎭. (1)当12312300(,,)(,,,)3(3)03R R λλααααααβλλλ≠≠⎧⎧==⇔⇒⎨⎨-+≠≠-⎩⎩时,β可由321,,ααα惟一地线性表示;(2)当0λ=时,123123(,,)(,,,)13R R ααααααβ==<,β可由321,,ααα线性表示,且表达式不惟一;(3)当3λ=-时,123123(,,)2(,,,)3R R ααααααβ=≠=,β不能由321,,ααα线性表示.方法二:2123111,,111(3)111λαααλλλλ+=+=++.(1)当1230,,03λαααλ≠⎧≠⇒⎨≠-⎩时,123(,,)3R ααα=,β可由321,,ααα惟一地线性表示;(2)当0λ=时,12311101110(,,)1110000011100000r αααβ⎛⎫⎛⎫⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 123123(,,)(,,,)13R R ααααααβ==<,β可由321,,ααα线性表示,且表达式不惟一;(3)当3λ=-时,123123(,,)2(,,,)3R R ααααααβ=≠=,β不能由321,,ααα线性表示.【注意】(1)向量β可由12,,,m ααα线性表示1122m m x x x αααβ⇔+++=有解12(,,,)m x αααβ⇔=有解Ax β⇔=有解,其中12(,,,)m A ααα=1212(,,,)(,,,)m m R R ααααααβ⇔=.(2)本题实质上等价为问λ取何值时,线性方程组 1231232123(1)0(1)(1)x x x x x x x x x λλλλλ⎧+++=⎪+++=⎨⎪+++=⎩有惟一解,无解,有无穷多解.27.(1991—Ⅳ)考虑二次型323121232221422x x x x x x x x x f +-+++=λ问λ取何值时,f为正定二次型?【考点】判别二次型正定的霍尔维茨定理.解 二次型的矩阵1142124A λλ-⎛⎫⎪= ⎪ ⎪-⎝⎭.则f 为正定二次型1223101402144(1)(2)0A λλλλλλ⎧∆=>⎪⎪⇔∆==->⇔-<<⎨⎪⎪∆==-+>⎩.28.(1991—Ⅳ)试证明n 维列向量n ααα,,,21 线性无关的充分必要条件是0212221212111≠=nTn T n T n nT T T n T T T D αααααααααααααααααα,其中Ti α表示列向量i α的转置,n i ,,2,1 =.【考点】线性无关的判别定理,分块矩阵的运算,矩阵的性质.证n 维列向量n ααα,,,21 线性无关⇔12,,,0n A ααα=≠.又()111121*********2,,,T T T T n T T T TT n n T T T Tn n n n n A A αααααααααααααααααααααααα⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则2T D A A A==,即00D A ≠⇔≠.29.(1991—Ⅴ)设n 阶矩阵A 和B 满足条件A B AB +=.(1)证明A E -为可逆矩阵; (2)已知130210002B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵A .【考点】证明抽象矩阵可逆及解矩阵方程.证 (1)由()()()()A B AB A E B A E E A E B E E +=⇒---=⇒--=,则A E -可逆.(2)由(1)得,111021()103002A B E E -⎛⎫ ⎪⎪ ⎪=-+=-⎪ ⎪ ⎪ ⎪⎝⎭.30.(1991—Ⅴ)已知向量(1,,1)T k α=是矩阵211121112A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵1A -的特征向量,试求常数k 的值.【考点】特征值与特征向量的概念. 解 设λ为对应于α的1A -的特征值,则1A A αλαλαα-=⇒=.解方程组得1k =或2-.【注意】(1)已知含参数的矩阵A 的特征值,求参数时,方法是运用特征值的性质或特征多项式求解;(2)已知含参数的矩阵A 的特征向量,求参数时,方法是运用特征值与特征向量的定义,得线性方程组再解之. 31.(1992—Ⅰ,Ⅱ)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论. 【考点】向量组线性相关的性质.解 (1)1α能由23,αα线性表出.事实上,234,,ααα线性无关,则23,αα线性无关,又123,,ααα线性相关,所以1α能由23,αα线性表出. (2)4α不能由123,,ααα线性表出. 方法一:123423423123(,,|)(,,)3(,)(,,)R R R R αααααααααααα≥=>=.方法二:假设4α能由123,,ααα线性表出.由(1)知1α能由23,αα线性表出,则4α能由23,αα线性表出,与234,,ααα线性无关矛盾.32.(1992—Ⅰ,Ⅱ)设三阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为1231111,2,3149ξξξ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,又向量113β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.(1)将β用123,,ξξξ线性表出; (2)求nAβ(n 为自然数).【考点】向量的线性表示,特征值与特征向量的概念.解 (1)解方程组111223312323(,,)x x x x x x ξξξβξξξβ⎛⎫⎪++=⇔= ⎪⎪⎝⎭得12322βξξξ=-+.(2)121123112233322232222223223n n n n n n n n n n n n n A A A A βξξξλξλξλξ+++++⎛⎫-+ ⎪=-+=-+=-+ ⎪ ⎪-+⎝⎭.33.(1992—Ⅱ)设,A B 为3阶矩阵,I 为三阶单位矩阵,满足2AB I A B +=+,又知101020101A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,求矩阵B .34.(1992—Ⅳ)设矩阵A 与B 相似,其中20010022,02031100A x B y --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.(1)求x 和y 的值; (2)求可逆矩阵P ,使1P AP B -=.【考点】已知矩阵的特征值求矩阵含参数;相似矩阵的性质;矩阵的相似对角化. 解 (1)方法一:A 与B 相似,则A E B Eλλ-=-,即2(2)((1)(2))(1)(2)()x x y λλλλλλ+-++-=+--,解得0,2x y ==-.方法二:显然B 的特征值为1,2,y -;A 有特征值2-.A 与B 相似,则A 与B 有相同的特征值,故2y =-.又(1)2(2)10y x x -++=-++⇒=(2)A 的对应于特征值1,2,2--的特征向量分别为1230012,1,0111p p p -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,令可逆矩阵123(,,)P p p p =,则1P AP B -=.【注意】(1) 对(1)求解时,若由(1)2(2)1(1)22(2)y x y A x -++=-++⎧⎪⎨-⋅⋅==--⎪⎩,得,x y 有无穷多解,此时这种方法失效.(2) 在(1)的解法中,方法二非常简便,它综合运用了特征值的性质,避免了烦琐的计算.读者不觉得好好玩味一下吗?35.(1992—Ⅳ)已知三阶矩阵B O ≠,且B 的每一个列向量都是以下方程组的解:123123123220,20,30.x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ (1)求λ的值; (2)证明0B =.【考点】线性方程组解的理论的应用.解 (1)由题意知,齐次线性方程组有非零解,则方程组的系数行列式122215(1)01311A λλλ-=-=-=⇒=-.(2)由题意,得0AB =.若00B A ≠⇒=,矛盾,所以0B =.或 由0()()3AB R A R B =⇒+≤;又0()1A R A ≠⇒≥,则()3R B <⇒0B =.【注意】 (1) 若0m s s n A B ⨯⨯=,则有下面两个常用的结论:①()()R A R B s +≤.②若B O ≠,则齐次线性方程组0m s A x ⨯=有非零解.(2)0()n n A R A n ⨯=⇔<,即非奇异矩阵就是降秩矩阵.36.(1992—Ⅳ)设,A B 分别为,m n 阶正定矩阵,试判定分块矩阵A O C O B ⎡⎤=⎢⎥⎣⎦是否是正定矩阵. 【考点】正定矩阵的判别定理.解 方法一:用定义证明.0x y ⎛⎫∀≠ ⎪⎝⎭,不妨设0x ≠,则0,0T T x Ax y By >≥,故()0TT T T T x x A O x C x y x Ax y By y y O B y ⎛⎫⎛⎫⎛⎫⎛⎫==+> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,即A O CO B ⎡⎤=⎢⎥⎣⎦是正定矩阵.方法二:用特征值证明.A E O C E A EB E OB Eλλλλλ--==-⋅--,即C 的特征值由,A B 的特征值的全部.而,A B 的特征值全大于零,则C 的特征值全大于零,即C 是正定矩阵.【注意】讨论抽象矩阵的正定性,一般用上面两种方法.37.(1992—Ⅴ)设矩阵101020101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵X 满足2AX I A X +=+,其中I为三阶单位矩阵.试求出矩阵X .【考点】解矩阵方程.解 由2()()()AXI A X A I X A I A I +=+⇒-=-+.又10A I -=-≠,则201030102X A I ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭.【注意】此题也可由12()()X A I A I -=--求解,但计算烦琐.在矩阵的运算时,应尽量应用矩阵的性质先化简.38.(1992—Ⅴ)设线性方程组123123123220,20,30x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ 的系数矩阵为A ,三阶矩阵B O ≠,且AB O =.试求λ的值.参考35.(1992—Ⅳ)的(1).39.(1992—Ⅴ)已知实矩阵33ij A a ⨯⎡⎤=⎣⎦满足条件:(1)ijij a A =(,1,2,3i j =),其中ij A 是ij a 的代数余子式;(2)110a ≠.计算行列式A.【考点】伴随矩阵及其性质;行列式按行(列)展开定理. 解 由23**0T T ij ij a A A A AA AA A E A A A =⇒=⇒==⇒=⇒=或1A =.又22211111212131311121301A a A a A a A a a a A =++=++≠⇒=.40.(1993—Ⅰ,Ⅱ)已知二次型222123232332(0)f x x x ax x a =+++>,通过正交变换化为标准形22212325f y y y =++,求参数a 及所用的正交变换矩阵.【考点】二次型理论;用正交变换化二次型为标准形的方法.解 二次型的矩阵2000303A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值为1231,2,5λλλ===.由22(2)(69)(1)(2)(5)2a A E a a λλλλλλλ>-=--+-=---⇒=.或 由2123952a A a a λλλ>=⇒-=⇒=.对应于特征值11λ=的特征向量1011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,单位化,得1110p ξξ⎛⎫⎪ ⎪ == ⎪ ⎪⎝⎭;对应于特征值22λ=的特征向量2100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得2100p ⎛⎫ ⎪= ⎪ ⎪⎝⎭;对应于特征值35λ=的特征向量3011ξ⎛⎫⎪= ⎪ ⎪⎝⎭,单位化,得3330p ξξ⎛⎫ ⎪ ⎪==.则所求的正交变换矩阵123010(,,)00P p p p ⎛⎫ ⎪ ⎪ == ⎝. 41.(1993—Ⅰ,Ⅱ)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中n m <,I 是n 阶单位矩阵.若AB I =,证明B 的列向量组线性无关.【考点】抽象向量组线性相关性的判别.证 方法一:用定义证明.设10()000m n n B x AB x Ix x ⨯⨯=⇒=⇒=⇒=,则B 的列向量组线性无关. 方法二:用矩阵的秩证明.()()()()n R B R AB R I n R B n ≥≥==⇒=,则B 的列向量组线性无关.42.(1993—Ⅱ)已知3R 的两个基为1231111,0,0111ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦与1231232,3,4143βββ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,求由基123,,ααα到基123,,βββ的过渡矩阵P .【考点】过渡矩阵的概念;矩阵的运算.解1123123123123234(,,)(,,)(,,)(,,)010101P P βββααααααβββ-⎛⎫⎪=⇒==- ⎪ ⎪--⎝⎭. 【注意】由基12,,,r ααα到基12,,,r βββ的过渡矩阵P 定义为1212(,,,)(,,,)r r P βββααα=,即P 是向量组12,,,r βββ由12,,,r ααα线性表示的系数矩阵.43.(1993—Ⅳ)k 为何值时,线性方程组12321231234,,24,x x kx x kx x k x x x ++=⎧⎪-++=⎨⎪-+=-⎩ 有唯一解,无解,有无穷多组解?在有解情况下,求出其全部解. 【考点】含参数的线性方程组解的讨论.解 方法一:(一般情形)21141124()1102281124(4)(1)00(4)2r kB A b k k k k k k k ⎛⎫⎪--⎛⎫ ⎪⎪==-→- ⎪ ⎪ ⎪ ⎪---+⎝⎭- ⎪⎝⎭.(1)方程组有惟一解(4)(1)()()3012k k R A R B k -+⇔==⇔≠⇒≠-且4k ≠,此时222100124010120011r k k k k k B k k k ⎛⎫+ ⎪+ ⎪⎪++→ ⎪+⎪⎪-⎪+⎝⎭则解为221232242,,111k k k k kx x x k k k +++===-+++.(2)当1k =-时,()2()3R A R B =≠=,方程组无解.(3)当4k=时,()()23R A R B ==<,方程组有无穷多解,此时103001140000rB ⎛⎫⎪→ ⎪ ⎪⎝⎭解为132334x x x x =-⎧⎨=-+⎩,则通解为034101x c -⎛⎫⎛⎫⎪ ⎪=+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,其中c 为任意常数.方法二:(特殊情形)方程组的系数行列式(4)(1)A k k =-+.(1)当01A k ≠⇒≠-且4k ≠时,方程组有惟一解,由Crammer 法则得解为221232242,,111k k k k k x x x k k k +++===-+++.(2)当1k =-时,11141124()1111023811240005r B A b ---⎛⎫⎛⎫⎪⎪==--→-⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, ()2()3R A R B =≠=,方程组无解.(3)当4k =时,11441124()14116022811240000r B A b --⎛⎫⎛⎫⎪⎪==-→⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, ()()23R A R B ==<,方程组有无穷多解,且103001140000rB ⎛⎫⎪→ ⎪ ⎪⎝⎭,解为132334x x x x =-⎧⎨=-+⎩,则通解为034101x c -⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中c 为任意常数.44.(1993—Ⅳ)设二次型222123122313222f x x x x x x x x x αβ=+++++经正交变换x Py =化成22232f y y =+,其中12(,,,)T n x x x x =和12(,,,)T n y y y y =都是三维列向量,P 是三阶正交矩阵.试求常数,αβ.【考点】二次型理论.解 二次型的矩阵11111A ααββ⎛⎫⎪=⎪ ⎪⎝⎭,其特征值为0,1,2,则(0)(1)(2)(1)(2)0A E λλλλλλλαβ-=---=---⇒==.(这里为什么不能用特殊方法,请读者自己思考).45.(1993—Ⅴ)已知三阶矩阵A 的逆矩阵1111121113A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为,试求其伴随矩阵*A 的逆矩阵.【考点】矩阵运算.解*1111521()()220101AA A A A------⎛⎫⎪===- ⎪ ⎪-⎝⎭.46.(1993—Ⅴ)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,E 是n 阶单位矩阵(m n >),已知BA E =.试判断A 的列向量组是否线性相关?为什么?参考(1993—Ⅰ,Ⅱ).47.(1994—Ⅰ,Ⅱ)设四元齐次线性方程组(Ⅰ)为12240,0.x x x x +=⎧⎨-=⎩又已知某齐次线性方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1)k k +-; (1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.【考点】齐次线性方程组的基础解系;两个线性方程组的公共解.解 (1)线性方程组(Ⅰ)的解为14243344x x x x x x x x =-⎧⎪=⎪⎨=⎪⎪=⎩.取3410,01x x ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得所求基础解系()()120,0,1,0,1,1,0,1ξξ==-.(2)将方程组(Ⅱ)的通解代入方程组(Ⅰ),得1212120k k k k k k +=⎧⇒=-⎨+=⎩.当120k k =-≠时, 方程组(Ⅰ)和(Ⅱ)有非零公共解,且为222(0,1,1,0)(1,2,2,1)(1,1,1,1)(1,1,1,1)x k k k k =-+-=-=-其中k 为不为零的任意常数.【注意】求两个线性方程组1Axb =和2Bx b =的公共解的方法.(1)若已知两个方程组1Ax b =和2Bx b =,则求它们的公共解就是求12Ax b Bx b =⎧⎨=⎩的解;(2)若已知一个方程组1Ax b =和另一个方程组2Bx b =的通解(方程组2Bx b =未知),则求它们的公共解的方法是:将2Bxb =的通解代入到已知方程组1Ax b =中,解出2Bx b =的通解中任意常数的条件(如果任意常数无解,则无公共解),再代入2Bx b =的通解中,从而得到方程组1Ax b =和2Bx b =的公共解;(3)若已知两个方程组1Ax b =和2Bx b =的通解(两个方程组未知),则求它们的公共解的方法是:令两个方程组的通解相等,只要解出一个方程组(不妨设为1Ax b =)的通解中的任意常数的条件(如果任意常数无解,则无公共解),再代入1Ax b =的通解中,从而得到方程组1Ax b =和2Bx b =的公共解.(4)对于两个齐次线性方程组,由于它们总有公共的零解,因此关于它们公共解的讨论为它们是否有公共的非零解.本题是第二种情形.为了让读者了解两个方程组公共解的求法,下面举两例说明第一和第三种情形.(它们是本题的变形)例1 求线性方程组122400x x x x +=⎧⎨-=⎩和14230x x x x +=⎧⎨-=⎩的公共的非零解.解 这是第一种情形.所求公共的非零解即为方程组122414230000x x x x x x x x +=⎧⎪-=⎪⎨+=⎪⎪-=⎩的非零解,可求得为(1,1,1,1)x k =-,其中k 为不为零的任意常数.例2 已知齐次线性方程组(Ⅰ)的通解为()()120,0,1,01,1,0,1x l l =+-,又已知某齐次线性方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1)k k +-.求线性方程组(Ⅰ)和(Ⅱ)的非零公共解.解 令()()1212(0,1,1,0)(1,2,2,1)0,0,1,01,1,0,1k k l l +-=+-,解得12k k =-.当120k k =-≠时, 方程组(Ⅰ)和(Ⅱ)的非零公共解为222(0,1,1,0)(1,2,2,1)(1,1,1,1)(1,1,1,1)x k k k k =-+-=-=-其中k 为不为零的任意常数. 请读者比较本题与例1和例2的解题思路,条件不同,解题方法也不同,虽然目的是一样的. 48.(1994—Ⅰ,Ⅱ)设A 为n 阶非零矩阵,*A 是A 的伴随矩阵,T A 是A 的转置矩阵.当*T A A =时,证明0A ≠.【考点】矩阵的乘法;伴随矩阵的性质.证 由**T T A A AA AA A E =⇒==.假设0T A AA O =⇒=.考虑T AA 的主对角线上的元素,令()T ij AA B b ==,则222121200ii i i in i i in b a a a a a a =+++=⇒====,即A 的第i行的元素全为零,由i 的任意性,得A 的元素全为零,即A O =,矛盾.49.(1994—Ⅱ)设A 是n 阶方阵,2,4,,2n 是A 的n 个特征值,I是n 阶单位阵.计算行列式3A I-的值.【考点】特征值的性质或矩阵的对角化. 解 方法一:由特征值的定义,马上得到:若λ为A 的特征值,则3λ-为3A I-的特征值(为什么?).所以3A I-的特征值为1,1,3,,23n --,故3(1)13(23)[(23)!!]A I n n -=-⨯⨯⨯⨯-=--.方法二:A 有n 个不同的特征值,则A 能对角化,即存在可逆矩阵P ,使得11(2,4,,2)P AP diag n A P P --=Λ=⇒=Λ.1133(3)3[(23)!!]A I P P I P I P I n ---=Λ-=Λ-=Λ-=--.50.(1994—Ⅳ) 设线性方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++=++34324241333232313232222131321211a x a x a x a x a x a x a x a x a x a x a x a x (1)证明:若4321,,,a a a a 两两不相等,则此线性方程组无解;(2)设1324,(0)a a k a a k k ====-≠,且已知21,ββ是该方程组的两个解,其中⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=111,11121ββ,写出此方程组的通解. 【考点】非齐次线性方程组有解的判别定理;非齐次线性方程组解的性质及结构;范德蒙行列式.证 (1)()3R A ≤(更进一步()3R A =,为什么?),而14()0()4i j j i Ba a R B ≤<≤=-≠⇒=∏范氏行列式因为()()R A R B ≠,所以线性方程组无解.(2)经计算得()()23R A R B ==<,方程组有无穷多解,且对应的齐次方程组的基础解系所含解向量个数为()321n R A -=-=个,取为12(2,0,2)T ξββ=-=-,则此方程组的通解为1x k βξ=+,其中k 为任意常数. 【注意】(1)求矩阵的秩时不要动不动就是初等行变换,如果变换很繁,想想能否从定义和秩的性质推导.请读者仔细体会本题的(1);(2)已知方程组的特解求其通解时,第一感应该是利用解的性质和解的结构去解决;有时对选择题或填空题还可观察出方程组的解.不管方程组是否具体知道.不要动不动就去解方程组(特别是方程组含参数时).切记切记.51.(1994—Ⅳ,Ⅴ)设⎪⎪⎪⎭⎫ ⎝⎛=0011100y x A 有三个线性无关的特征向量,求x 和y 应满足的条件.【考点】特征值与特征向量.解2(1)(1)A E λλλ-=--+1,231,1λλ⇒==-.对于二重特征值1,21λ=应有两个线性无关的特征向量,则()1R A E -=0x y ⇒+=.【注意】(1)此类问题的理论根据是:重特征值有重数个线性无关的特征向量,即设λ为n 阶矩阵A 的r 重特征值,则A 有属于λ的r 个线性无关的特征向量()R A E n r λ⇔-=-.关键是考虑重特征值情形,最后转化为含参数的矩阵的秩的讨论.(2)矩阵A 能对角化(与对角矩阵相似)A ⇔的重特征值有重数个线性无关的特征向量.(3)本题的等价问题是:设⎪⎪⎪⎭⎫ ⎝⎛=0011100y x A 能对角化(与对角矩阵相似) ,求x 和y 应满足的条件.52.(1994—Ⅴ)设123,,ααα是齐次线性方程组0Ax =的一个基础解系.证明122,ααα+331,ααα++也是该方程组的一个基础解系.【考点】基础解系的概念.证 显然0Ax =的基础解系含三个线性无关的解向量.由齐次线性方程组解的性质,知122,ααα+331,ααα++为0Ax =的解.只须证明122,ααα+331,ααα++线性无关.122331123123101(,,)(,,)110(,,)011K αααααααααααα⎛⎫⎪+++== ⎪ ⎪⎝⎭而122331123()3(,,)(,,)3R K R R ααααααααα=⇒+++==,即122,ααα+331,ααα++线性无关. 【注意】要证明12,,,r ααα为齐次线性方程组0Ax =的基础解系,必须说明:(1)12,,,r ααα是0Ax =的解;(2)r=齐次线性方程组0Ax =的未知数的个数()R A -;(3)12,,,r ααα线性无关.53.(1995—Ⅰ,Ⅱ)设三阶实对称矩阵A 的特征值为1231,1λλλ=-==,对应于1λ的特征向量为1011ξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求A.【考点】实对称矩阵对角化理论.解 设对应于特征值231λλ==的特征向量为x ,则1ξ与x 正交,即10T x ξ=,其基础解系为23100,101ξξ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭.令可逆矩阵()123,,P ξξξ=,则1123(,,)P AP diag λλλ-=Λ=,故1100001010A P P -⎛⎫⎪=Λ=- ⎪ ⎪-⎝⎭.【注意】此类问题为已知矩阵A 的特征值和特征向量,求矩阵A .问题的关键是利用矩阵与对角矩阵相似.包括两种情形:(1)已知矩阵A 的全部特征值和全部线性无关的特征向量,求矩阵A .这时A 不一定是对称矩阵,只能由1P AP -=Λ求A ;(见本题解法)(2)已知矩阵A 的全部特征值和部分线性无关的特征向量,求矩阵A .这时A 一定是对称矩阵.在求出A 的全部线性无关的特征向量后(利用实对称矩阵不同的特征值对应的特征向量正交),可以两种方法处理:①同(1).由1P AP -=Λ求A .(此时需求逆矩阵)②求出A 的全部两两正交且单位化的特征向量,构造正交矩阵U.由1T UAU U AU -==Λ得T A U U =Λ.(此时不需要求逆矩阵,但多了向量组的正交单位化过程)③建议读者用方法①,以便统一处理这类问题. 54.(1995—Ⅰ,Ⅱ)设A 是n阶矩阵,满足T AA I =(I是n阶单位矩阵,TA 是A 的转置矩阵),0A <,求A I+.【考点】矩阵的运算性质.解()()T T T A I A A A A I A A A T A AI +=+=+=⋅+=⋅+(1)00A A A I A I <⇒-+=+=.55.(1995—Ⅳ)已知向量组321,,)(αααI ;4321,,,)(ααααII ;5321,,,)(ααααIII,如果各向量组的秩分别为4)(,3)()(=I I I =I I =I R R R .证明:向量组45321,,,ααααα-的秩为4.【考点】向量组线性相关的性质;向量组秩的计算. 解 方法一:要证向量组45321,,,ααααα-的秩为4,等价于证明45321,,,ααααα-线性无关.由()()3R R I =II =,得123,,ααα线性无关,而1234,,,αααα线性相关,则4α可由123,,ααα线性表示,即存在123,,k k k ,使得4112233k k k αααα=++.令112233454()0x x x x ααααα+++-=,则14112422343345()()()0x x k x x k x x k x αααα-+-+-+=.又()4R III =,则1235,,,αααα线性无关,故1412421234343400000x x k x x k x x x x x x k x -=⎧⎪-=⎪⇒====⎨-=⎪⎪=⎩,则45321,,,ααααα-线性无关,所以向量组45321,,,ααααα-的秩为4.方法二:由()()3R R I =II =,得123,,ααα线性无关,而1234,,,αααα线性相关,则4α可由123,,ααα线性表示,即存在123,,k k k ,使得4112233k k k αααα=++.则41,2,3123541235(,,,)(,,,)j jc k c j ααααααααα+=-→所以123541235(,,,)(,,,)4R R ααααααααα-==.56.(1995—Ⅳ)已知二次型323121232232184434),,(x x x x x x x x x x x f +-+-=.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准型,并写出相应的正交矩阵.【考点】二次型的矩阵;用正交变换把二次型化为标准型的方法.解 (1) 二次型的矩阵022244243A -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,则二次型f 的矩阵表达式T f x Ax =.(2)A 的特征多项式(6)(1)(6)A E λλλλ-=-+--,则A 的特征值1236,1,6λλλ=-==.16λ=-对应的正交单位化特征向量1Tp =;21λ=对应的正交单位化特征向量2T p =;36λ=对应的正交单位化特征向量3Tp =.令正交矩阵123(,,)0P p p p⎛==⎝,所求正交变换112233x yx P yx y⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,二次型f的标准型22212366f y y y=-++.57.(1995—Ⅴ)对于线性方程组1231231233,2,2.x x xx x xx x xλλλλ++=-⎧⎪++=-⎨⎪++=-⎩讨论λ取何值时,方程组无解,有唯一解和无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.【考点】含参数的线性方程组解的讨论.解方法一(一般情形):113112 (|)112011011200(1)(2)3(1)rB A bλλλλλλλλλλ--⎛⎫⎛⎫⎪ ⎪==-→--⎪ ⎪⎪ ⎪--+-⎝⎭⎝⎭(1)方程组有惟一解()()31R A R Bλ⇔==⇒≠且2λ≠-;(2)当1λ=时,11120000()()130000rB R A R B-⎛⎫⎪→⇒==<⎪⎪⎝⎭,方程组有无穷多解,且1232x x x=---则方程组的通解12211010,001x k k---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=++⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,k k为任意常数;(3)当2λ=-时,()2()3R A R B=≠=,方程组无解.方法二(特殊情形):方程组的系数行列式2(1)(2)Aλλ=-+.(1)当0A≠,即1λ≠且2λ≠-时方程组有惟一解;(2)当1λ=时,11120000()()130000rB R A R B-⎛⎫⎪→⇒==<⎪⎪⎝⎭,方程组有无穷多解,且。

《线性代数》常见证明题型及常用思路

《线性代数》常见证明题型及常用思路

(2)乘可逆矩阵不改变矩阵的秩
(3)阶梯形的秩
(4)几个公式(最好知道如何证明):常用来证明关于秩的不等式
r( A B) r( A) r(B);
r( AB) min{r( A), r(B)};
r( A) r( AT ) r( AT A);
max{r(
A),
r(B)}
r(
A,
B)
r
AT BT
n
r
(
AB)
r
En
AB
r
En A
AB
r
En A
B 0
r(
A)
r(B)
上面第二个等号是用 A 左乘第一个分块矩阵的第一行,然后加到第
二行所得;第三个等号是用 B 又乘第二个分块矩阵的第一列,然后
加到第二列所得。
(6)利用齐次线性方程组解的结构( dim N ( Amn ) n r( A) ),
题型 2. 关于欧氏空间常用结论 (1)内积的定义 (2)单位正交基的定义
(3)设 B {1,,n} 是单位正交基,
uB (x1,, xn ), vB ( y1,, yn ) 。则 (u, v) x1 y1 xn yn 5
题型 3. 关于矩阵的秩的证明中常用的结论
(1)初等变换不改变矩阵的秩
(2) 1,,m 线性相关当且仅当其中之一可用其他向量线性表
示。
(3)如果1,,m F n ,则可通过矩阵的秩等方面的结论证明。 ( 4) 如 果 我 们 有 两 个 线 性 无 关 组 , 1,,m W1, 1,, t W2 , 且 W1,W2 是同一个线性空间的两个子空间,要证 1,,m , 1,, t 线性无关。这种情况下,有些时候我们设 11 mm 11 t t 0, 11 mm , 11 t t 。 根 据 题 设 条 件 往 往 能 得 到 0 , 进 而 由 1,,m W1, 1,, t W2 的线性无关得到系数全为零。

(完整word版)线性代数题目及解析。

(完整word版)线性代数题目及解析。

一. 判断题(正确打√,错误打×)1若s α不能由121,,,-s ααα 线性表示,则s ααα,,,21 线性无关. (×)解答:反例:取01=α,02≠α,则2α不能由1α线性表示,但21,αα线性相关。

2。

如果β可由321,,ααα唯一线性表示,则321,,ααα线性无关。

(√) 解答:向量β能由向量组A 唯一线性表示的充分必要条件是m R R m m ==),,,(),,,,(2121αααβααα ; 所以3),,(321=αααR ,所以321,,ααα线性无关. 3。

向量组的秩就是它的极大线性无关组的个数。

(×)解答:正确结论:向量组的秩就是它的极大线性无关组所含向量的个数。

4。

若向量组γβα,,只有一个极大无关组,则γβα,,线性无关. (×) 解答:反例:取0,0==≠γβα,则向量组γβα,,只有一个极大无关组α,但γβα,,线性相关.正确命题:若γβα,,线性无关,则γβα,,只有一个极大无关组. 二. 单项选择题1.设向量组(1):321,,ααα与向量组(2):21,ββ等价,则( A )。

(A ) 向量组(1)线性相关; (B )向量组(2)线性无关;(C )向量组(1)线性无关; (D )向量组(2)线性相关. 解答:因为等价的向量组具有相同的秩,所以32),(),,(21321<≤=ββαααR R ,所以向量组(1)线性相关. 2. 3维向量组1234,,,αααα中任意3个向量都线性无关,则向量组中(A) (A )每一个向量都能由其余三个向量线性表示; (B )只有一个向量能由其余三个向量线性表示; (C)只有一个向量不能由其余三个向量线性表示;(D )每一个向量都不能能由其余三个向量线性表示.解答:因为4个3维向量线性相关,所以1234,,,αααα线性相关,而1234,,,αααα中任意3个向量都线性无关,所以每一个向量都能由其余三个向量线性表示。

线性代数解题技巧及典型题解析01-求解线性方程组_16

线性代数解题技巧及典型题解析01-求解线性方程组_16

解 方程组中未知量个数 n 3,又方程组 AX 0 有惟一零解,
所以 r ( A) n,故 r ( A) 3.
例3 设 n 元非齐次线性方程组 AX b 有解,其中 A 为(n 1) n 矩阵,求|A|.
解 因为 AX b 有解,故 r ( A ) r ( A) n n 1,从而 | A | 0.
求axb的通解特殊方程组的求解与方程组的基本理论有关的问题含参数的方程组与向量组的线性表示有关的问题与方程组有关的证明题1写出系数矩阵a并对其作初等行变换化为行最简形式同时得到ra这样也就可以确定基础解系所含解向量的个数
线性方程组的主要内容——求解线性方程组
1. 求 AX=O 的通解或基础解系 2. 求 AX=b 的通解 特殊方程组的求解 与方程组的基本理论有关的问题 含参数的方程组
1 (1, 2,1, 0)T , 2 (1, 1, 0,1)T .
方程组的通解为 * k11 k22 , k1 , k2 为任意常数.
1. 在求解线性方程组时,一定要将系数矩阵或增广矩阵化为行最 简形式,这样有利于求解. 2. 若根据同解方程组(1)式写导出组的基础解系一定不要将常 数加进去.因此一般建议写出导出组的同解方程组(2)求基础解 系.
a=0
1 2 1 2 设A 0 1 t t , 且方程组 AX 0 的基础解系含有两个解向量, 求 AX 0 的通解. 1 t 0 1
1 1 a 1 设A 1 a 1 , 1 ,若线性程组AX 有解但不唯一. a 1 1 2 求:(1)a的值; (2)方程组AX 的通解.
A (n+1)a n .
特殊方程组的求解最重要的是分析出其解的结构来!

2024考研数学一线性代数历年真题全解析

2024考研数学一线性代数历年真题全解析

2024考研数学一线性代数历年真题全解析线性代数是数学中的一个重要分支,也是考研数学一科目的必考内容之一。

掌握线性代数的基本理论和解题方法,对于考研的成功至关重要。

本文将对2024年考研数学一线性代数历年真题进行全面解析,帮助考生更好地理解和掌握这一内容。

一、第一题:(2024年考研数学一真题)题目描述:设A、B为n阶方阵,且满足A^2=AB-B^2。

求证:可以得出B^2=BA-A^2。

解析:根据题目中的等式A^2=AB-B^2,我们可以推导出:A^3 = (AB-B^2)A = ABA-BA^2将B^2=BA-A^2代入上式,得到:A^3 = A(BA-A^2) = ABA-A^3移项化简可得:2A^3 = ABA进一步整理:2A^3 - ABA = 0因此,我们证明了B^2=BA-A^2。

二、第二题:(2023年考研数学一真题)题目描述:已知线性变换T:R^3->R^3的矩阵为A=[a1,a2,a3],其中a1、a2、a3分别为R^3的列向量,向量a3可以表示为a3=k1a1+k2a2,其中k1、k2为实数。

证明:线性变换T在R^3的任意向量上的投影运算P与反射运算S满足P^2=P,S^2=S。

解析:设矩阵A=[a1,a2,a3],且a3=k1a1+k2a2,根据题目条件可知向量a3可由a1、a2线性表示。

由此,我们可以得到矩阵A的列向量组线性相关。

由于投影运算P的定义为P^2=P,这意味着对于任意向量x,有P(P(x))=P(x),即P^2(x)=P(x)。

另一方面,反射运算S的定义为S^2=S,即S(S(x))=S(x),即S^2(x)=S(x)。

根据线性变换T的定义,我们有T(x)=Ax,其中A=[a1,a2,a3]。

根据题意,向量a3可由a1、a2线性表示,说明向量a3可以写为a3=k1a1+k2a2。

我们知道,投影运算P的定义为P(x)=A(A^TA)^(-1)A^Tx,反射运算S的定义为S(x)=2P(x)-x。

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。

线性代数证明题答案

线性代数证明题答案

第一章 行列式21 证明: 设112210)(----++++=n n n n x c xc x c c x f Λ )1()(n i b a f i i ≤≤=Θ⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++∴------------n n n n n n n nn n n n n n n n ba c a c a c cb ac a c a c c b a c a c a c c 11221021212222101111212110ΛM ΛΛ (1)(1)式是一个关于1210,,,--n n c c c c Λ的线性方程组,系数行列式∏≤<≤----==ni j j in nn n n a aa a a a a a D 11122111)(111ΛMM ΛΛ因为1221,,,--n n a a a a Λ是互不相同的实数,所以0≠D ,根据克拉默法则知(1)式有唯一解,即存在唯一的满足题意的多项式.第二章矩阵6 证明: 令ij E 是只有第i 行第j 列元素为1,其他全为0的n 阶方阵,则⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0000001ΛΛM M M ΛΛM M ΛΛni ii i ij a a a AE ,只有第j 列元素分别为ni i i a a a ,,,21Λ,其它元素全为0; 而⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0000001ΛΛM M M ΛΛMM ΛΛjn jj j ij a a a A E ,只有第i 行元素分别为jn j j a a a ,,,21Λ, 其它元素全为0;A E AE ij ij =Θ01,1,1,1,11============∴+-+-jn j j j j j ni i i i i i a a a a a a a a ΛΛΛΛ且jj ii a a =;取n j n i ,,1;,,1ΛΛ==,则可知:⎩⎨⎧≠====)(0),,1;,,1(j i a n j n i a a ijjj ii ΛΛ即A 为数量阵;若A 为数量阵,则kE A =,任给一n 阶方阵B ,则有: BA BkE kB kEB AB ==== 即A 与任一n 阶方阵B 可交换,综上所述,与任一n 阶方阵B 可交换的矩阵为数量阵。

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析一、选择题1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为多少?A. 1/2B. 2C. 1/4D. 1答案:C解析:根据行列式的性质,一个矩阵的逆矩阵的行列式等于原矩阵行列式的倒数。

因此,|A^(-1)| = 1/|A| = 1/2。

2. 向量α=(1,2,3)和β=(-1,0,1)是否共线?A. 是B. 否答案:A解析:若向量α和β共线,则存在一个实数k使得β=kα。

将向量α和β的对应分量相除,得到-1/1=0/2=1/3,显然不存在这样的实数k,因此向量α和β不共线。

二、填空题3. 设矩阵B是一个3×3的矩阵,且B的秩为2,则矩阵B的零空间的维数为____。

答案:1解析:矩阵B的零空间的维数等于矩阵的列数减去矩阵的秩,即3-2=1。

4. 若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于____。

答案:n解析:若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于未知数的个数n。

三、解答题5. 给定向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),求证向量组α1,α2,α3线性相关。

答案:证明:首先计算向量组α1,α2,α3的行列式:|α1 α2 α3| = |1 2 3||4 5 6||7 8 9| = 0由于行列式为0,根据行列式的性质,向量组α1,α2,α3线性相关。

6. 设矩阵C为3×3的矩阵,且C的行列式为0,求证矩阵C不可逆。

答案:证明:根据矩阵的逆矩阵的定义,若矩阵C可逆,则存在矩阵C^(-1)使得CC^(-1)=I。

但是,由于|C|=0,根据行列式的性质,不存在矩阵C^(-1)使得CC^(-1)=I,因此矩阵C不可逆。

四、计算题7. 计算矩阵D=\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 &9\end{bmatrix}的行列式。

《线性代数证明题》课件

《线性代数证明题》课件
一个二次矩阵,那么 $\det(\textrm{adj}(A)) = [\det(A)]^{n-1}$。
证明步骤
1. 计算 A 的伴随矩阵 2. 计算行列式 B = $\det(\textrm{adj}(A))$ 3. 导出等式 $\det(\textrm{adj}(A)) = [\det(A)]^{n-1}$
实例分析
例子:令矩阵 A 为一个实数 域上的 m × n 矩阵,则 A 矩 阵所在的空间就是 ℝm×n
线性变换定义及示例
什么是线性变换?
线性变换示例
线性变换是一个线性空间到另一个线性空间的映射, 同时保持向量空间中的线性结构。
矩阵线性变换,从 ℝn 到 ℝm 。
向量空间示例
空间中的一条直线或平面。
线性代数证明题1
1
题目描述
证明如果 V 是一个有限维向量空间,且 W 是其子空间,那么 $\dim(W) ≤ \dim(V)$。
2
证明步骤
1. 利用 W 的基扩充成向量空间 V' 2. 用线性无关的方式将 V 的基扩充成向量空间 V'' 3. 导出 $\dim(W) ≤ \dim(V)$ 的结论
线性代数证明题2
总结讲解
本课程总结了关于线性代数的皮克定理及证明,関 于线性代数方程组的解法以及线性变换的应用。
参考资料
相关学术论文 相关教材 其他相关资料
线性代数证明题3
1 题目描述
2 证明步骤
证明如果 T 是线性变换,且 $\det(T) = 0$,那 么 T 不是可逆变换。
1. 假设 T 是可逆变换 2. 利用线性变换与行列式的性质推导出矛盾
总结
证明题解答技巧
在证明题的解答中,首先需要寻找定理或公式,其 次是应当关注证明过程中需要注意的要点。

线性代数证明题答案

线性代数证明题答案

17、(本题 8 分) 证: 将 n 阶单位矩阵第 i 行与第 j 行交换后所得矩阵记为 Eij ,则 Ei−j 1 = Eij ,于是 B = Eij A ,
因为 B = EIJ A ≠ 0 ,所以 B 可逆。
( ) AB −1 = A Eij A −1 = AA−1Ei−j 1 = Eij 。
⎟ ⎟

ann ⎟⎠
⎛1⎞ ⎛ a ⎞ ⎛1⎞

A
⎜⎜1⎟⎟ ⎜⋮⎟
=
⎜ ⎜ ⎜
a ⋮
⎟ ⎟ ⎟
=
a
⎜⎜1⎟⎟ ⎜⋮⎟

⎜⎜⎝1⎟⎟⎠
⎜⎜ ⎝
a
⎟⎟ ⎠
⎜⎜⎝1⎟⎟⎠
⎛1⎞
对应于
λ
=
a
的特征向量为
⎜⎜1⎟⎟ ⎜⋮⎟

⎜⎜⎝1⎟⎟⎠
故 λ = a 是 A 的一个特征值。
14、(本题 8 分) 证: 由 A 是正交矩阵,知 A 2 = 1 , A−1 = AT ,
( ) l1α1 + l2α 2 , l1α1 + l2α 2 = 0 ⇒ l1α1 + l2α 2 2 = 0 ⇒ l1α1 + l2α 2 = o
因为 α1,α 2 线性无关,所以有 l1 = 0, l2 = 0 ,同理可得 l3 = 0, l4 = 0 , 故 α1,α 2,α 3,α 4 线性无关。
而 l1β1 + l2 β 2 + ⋯ + lr−1β r−1 + lr β r = l1 (α1 + k1α r ) + l2 (α 2 + k2α r ) + ⋯ + lr−1 (α r−1 + kr−1α r ) + lrα r = l1α1 + l2α 2 + ⋯ + lr−1α r−1 + (l1k1 + l2 k2 + ⋯ + lr−1kr−1 + lr )α r ,

线性代数解析及例题

线性代数解析及例题
.
由此可见
.
例4设

, ,
证明D=D1D2.
证记 ,
其中
dij=aij(i,j=1,2,…,k);
dk+i,k+j=bij(i,j=1,2,…,n);
di,k+j=0 (i=1,2,…,k;j=1,2,…,n).
考察D的一般项 ,R是排列 的逆序数,由于 (i=1,2,…,k;j=1,2,…,n),因此 均不可大于k值,否则该项为0,故 只能在1,2,…,k中选取,从而 只能在k+1,k+2,…,k+n中选取,于是D中不为0的项可以记作
我们观察到(1.2)式的右端是一些项的代数和,其中,每一项是位于不同行不同列的三个数相乘,这三个数的第一个下标是按自然顺序排列的,第二个下标则不按自然顺序排列.我们不禁要问:这个代数和的项数、每一项前的符号与第二个下标的排列顺序有无关系?有什么关系?为此我们引入全排列与逆序数等概念.
定义1由1,2,…,n组成的一个有序数组称为一个n级全排列(简称排列).
,
所以
.
推论行列式D中任一行(列)的元素与另一行(列)的对应元素的代数
余子式乘积之和等于零,即
(i≠j)

(i≠j).

.
当i≠j,因为 与行列式中第j行的元素无关,将上式中的 换成 (k=1,2,…,n),有
.
同理可证
(i≠j).
综上所述,即得代数余子式的重要性质(行列式按行(列)展开公式):

例11计算n阶行列式(递推公式法)
例如,以数k乘以第i行(列)上的元素加到第j行(列)对应元素上,记作 ,有
性质3—性质6的证明请读者自证.
例5计算四阶行列式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、试题序号:3212、题型:证明题3、难度级别:34、知识点:第二章 矩阵及其运算5、分值:86、所需时间:8分钟7、试题关键字:矩阵秩的性质 8、试题内容:设A 为一个n 阶方阵,E 为同阶单位矩阵且2A E =,证明:()()R A E R A E n ++-=. 9、答案内容:证明:2220()()0,()()()().().()().A E A E A E A E R A E R A E R A E R E A n R A E R E A R A E E A n R A E R A E n =⇒-=⇒+-=++-=++-≤≥++-=∴++-=由矩阵秩的性质则有同时,有(+)+(-)10、评分细则:由题设推出()()0A E A E +-=得2分;由矩阵秩的性质推出()()R A E R A E n ++-≤得2分;推出()()R A E R A E n ++-≥得2分;因而推出()()R A E R A E n ++-=得2分.----------------------------------------------------------------------------- 1、试题序号:322 2、题型:证明题 3、难度级别:34、知识点: 第五章 相似矩阵及二次型5、分值:86、所需时间:6分钟7、试题关键字:正交矩阵的特征值 8、试题内容:设A 为一个n 阶正交矩阵,且1A =-.证明:1λ=-是A 的特征值. 9、答案内容: 证明:,.1,(1)()()0(1)0.1.T T T T TTTT A A A E A A E A E A A A E A A E A A E A E AE A E A A E A E A λ∴==-∴--=+=+=+=+=-+=-+=-+=-+∴+=⇒--=∴=-是正交矩阵又是的特征值10、评分细则:推出()1T A E A AA --=+(2分)T E A =-+(2分)E A =-+(2分) 推出()10A E --=并说明1λ=-是A 的特征值(2分).---------------------------------------------------------------------------- 1、试题序号:323 2、题型:证明题 3、难度级别:44、知识点:第五章 相似矩阵及二次型5、分值:86、所需时间:10分钟7、试题关键字:二次型的正定性 8、试题内容:已知,A B 均为n 阶正定矩阵,试证明:分块矩阵00A B ⎛⎫⎪⎝⎭也为正定矩阵. 9、答案内容:()12112212,00.000000000.00TT T T T A B A B A A B B A B X A A f X X X B B X X X f AX BX A B ∴⎛⎫⎛⎫⎛⎫∴== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫∴ ⎪⎝⎭⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫∀≠⇒ ⎪⎝⎭>∴⎛⎫⎪⎝⎭T T 12TT 12证明是正定矩阵,,是对称矩阵.A00B 是对称矩阵.令=,此为所确定的二次型.0,X 中至少有一个不为0,则有=X +X 此二次型为正定二次型,则为正定矩阵.10、评分细则:由题设中条件推出00A B ⎛⎫⎪⎝⎭是对称矩阵(2分);令()112200TT X A f X X X B ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(2分);由()120TT X X ≠推出12,X X 中至少有一个不为零(2分).则有11220T T f X AX X BX =+>,推出f 1122T TX AX X BX =+为正定二次型(2分).因而有00A B ⎛⎫⎪⎝⎭为正定矩阵(2分).----------------------------------------------------------------------------1、试题序号:3242、题型:证明题3、难度级别:34、知识点:第五章 相似矩阵及二次型5、分值:86、所需时间:8分钟7、试题关键字:二次型的正定性 8、试题内容:设,A B 均为n 阶正定矩阵,试证明:A B +也为正定矩阵. 9、答案内容:证明:,.()().0,.,,.0.()T T T T T T TTT T T T T A B A A B B A B A B A B A B f x A B x x f x Ax x Bx A B x Ax x Bx f x Ax x Bx f x A B x ∴+=+=+⇒+=+∀≠=+∴=+>∴=+都是正定矩阵,=,=为对称矩阵.令则有是正定矩阵是正定二次型则有为正定二次型.则A+B 也为正定矩阵.10、评分细则:由题设中条件推出A B +为对称矩阵(2分);令()Tf x A B x =+(2分);00T T x f x Ax x Bx ∀≠⇒=+>(2分);推出()Tf x A B x =+为正定二次型(2分);因而有A B +为正定矩阵(2分).---------------------------------------------------------------------------- 1、试题序号:325 2、题型:证明题 3、难度级别:24、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:8分钟7、试题关键字:向量组的线性关系 8、试题内容:若向量β可由向量组12,,,r ααα线性表示,但β不能由121,,,r ααα-线性表示,试证:r α可由121,,,,r αααβ-线性表示.9、答案内容: 证明:2.0,.1.,.r r r r r r r r r βααααααββαααβαααααααβααααβ----∴==∴≠⇒=----∴1212r 1122r 1122r-1112112r-1r 11r rr r121可以由,,线性表示,存在一组数K,K,K,使得K+K++K=若K则K+K++K这与不能由,,线性表示矛盾.KKKK0KKKK可由,,线性表示10、评分细则:由题设中条件令1122r r k k k αααβ+++=(2分);假设0r k =推出β不能由121,,,r ααα-线性表示矛盾(2分);0r r k α∴≠⇒可以由121,,,r ααα-,β线性表示(4分).---------------------------------------------------------------------------- 1、试题序号:326 2、题型:证明题 3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:10分钟7、试题关键字:向量的线性关系与矩阵的秩 8、试题内容: 如果向量组12,,,s ααα线性无关,试证:向量组11212,,,s αααααα++++线性无关.9、答案内容: 证明:()()()()()(),..111011.01111011.001B R R A S αααααααααααααααααααααααα=++++∴==⎛⎫ ⎪⎪++++= ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭12S 11212S 12S 12S 11212S 12S 令A= ,,线性无关,令C=则有B=AC ,显然C 可逆.10、评分细则:令()12s A ααα=,()11212s B αααααα=+++(1分);由题设条件推出()R A s =(1分);令1111011001C ⎛⎫⎪⎪= ⎪⎪⎝⎭推出B AC =(2分);推出()()1A BC RB R A s -=⇒≥=(2分)又()()1121,,s R B s R B s ααααα≤⇒=⇒++线性无关(2分).----------------------------------------------------------------------------1、试题序号:3272、题型:证明题3、难度级别:34、知识点:第二章 矩阵及其运算5、分值:86、所需时间:8分钟7、试题关键字:奇异矩阵8、试题内容:已知矩阵22,A E B E ==,且0A B +=证明:A B +为奇异矩阵. 9、答案内容: 证明:22221, 1.01, 1.().()..0,A E A B E B A B A B A A B A B AB B A A A B B B A A A B B A B A B A B =⇒=±=⇒=±+=⇒=±=+=+=+∴+=+∴+=+∴-+=+又若则而则为奇异矩阵.10、评分细则:由题设中条件推出1,1A B =±=(1分);推出()A A B B B A +=+(3分);推出A A B B B A +=+(2分);推出0A B A B +=⇒+为奇异矩阵(2分).---------------------------------------------------------------------------- 1、试题序号:328 2、题型:证明题 3、难度级别:24、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:6分钟7、试题关键字:向量组的线性关系与矩阵的秩 8、试题内容:设n 维基本单位向量组12,,,n εεε可由n 维向量组12,,,n ααα线性表示,证明:12,,,n ααα线性无关.9、答案内容: 证明:()()()()()()121,.,,,,..,,,n aB AB R R n R A n R A n αααεεεεεεαααααα=∴=⇒≥=≤∴=⇒12n n n 2n 12n n 12n 令A=且E ,,可以由线性表示.存在一个n 阶方阵使得E A E 同时线性无关.10、评分细则:令()()1212,n n A E αααεεε==(2分);由题设条件推出存在一个n 阶矩阵B (2分);使得()AB E R A n =⇒=(4分).---------------------------------------------------------------------------- 1、试题序号:329 2、题型:证明题 3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:10分钟7、试题关键字:向量组的线性关系与矩阵的秩 8、试题内容: 设12,,,m ααα线性无关,1β可由12,,,m ααα线性表示,2β不可由12,,,m ααα线性表示,证明:1212,,,,m αααλββ+线性无关(其中λ为常数).9、答案内容: 证明:11122m m k k k βααα=++,()()1212122m m αααλββαααβ∴+.假设()122MR m αααβ≤,则有122,,,,m αααβ线性相关,因而与2β不能由12,,,m ααα线性表示矛盾.()122m R m αααβ∴>,()12121m R m αααλββ∴+=+1212,,,,m αααλββ∴+线性无关.10、评分细则:由题设中条件推出()()1212122m m αααλββαααβ+(2分);假设()122m R m αααβ≤由题设推出2β能由12,,m ααα线性表示,与题设矛盾(2分);()122m R m αααβ∴>推出()12121m R m αααλββ+=+(3分);推出1212,,,m αααλββ+线性无关(1分).---------------------------------------------------------------------------- 1、试题序号:330 2、题型:证明题 3、难度级别:24、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:6分钟7、试题关键字:向量组与矩阵的秩 8、试题内容:设A 为n m ⨯矩阵,B 为m n ⨯矩阵,n m <,若AB E =,证明B 的列向量组线性无关. 9、答案内容:证明:A 为n m ⨯矩阵,B 为m n ⨯矩阵,且AB E =,E 为单位矩阵.由矩阵秩的性质,则有()()R B R E n ≥=.又(),.n m R B n <∴≤()R B n ∴=B ∴ 的列向量组线性无关.10、评分细则:由题设推出()()R B R E n ≥=(2分);又有题设中()n m R B n <⇒≤(2分);()R B n ∴=(2分);所以B 的列向量组线性无关(2分). ----------------------------------------------------------------------------1、试题序号:3312、题型:证明题3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:10分钟7、试题关键字:向量组的线性关系与矩阵的秩 8、试题内容: 设121,,,n ααα-为1n -个线性无关的n 维列向量,12,ηη与121,,,n ααα-均正交,证明:12,ηη线性相关.9、答案内容:证明:12,ηη分别与121,,,n ααα-均正交,()1121200T n T ηαααη-⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭令()121n A ααα-=,12T T B ηη⎛⎫= ⎪⎝⎭,()()011BA R A n R B =⇒=-⇒≤12,ηη∴线性相关.10、评分细则:令()()12112,Tn A B αααηη-==(1分);由题设中条件推得()()0BA R A R B n =⇒+≤(2分);()()11R A n R B ∴=-⇒≤(1分);若()1200,0R B ηη=⇒==(1分);12,ηη∴线性相关(1分);若()()12112R B R ηη=⇒=<(1分),所以12,ηη线性相关(1分).---------------------------------------------------------------------------- 1、试题序号:332 2、题型:证明题 3、难度级别:24、知识点:第五章 相似矩阵及二次型5、分值:86、所需时间:6分钟7、试题关键字:正交向量组8、试题内容:已知n 阶实矩阵A 为正交矩阵,12,,,n ααα为n 维正交单位向量组,证明:12,,,n A A A ααα也是n 维正交单位向量组.9、答案内容:证明:A 是阶正交矩阵,则有12,,,n ααα是维正交向量组()()0,0,0T i i j TT T T i j i j i i jA A A A ααααααααα∴≠=≠===12,,n A A A ααα∴是正交向量组.10、评分细则:由题设中条件推出0,0,T i i j i j ααα≠=≠(2分);()()0jT T T T Ti j i j i j i A A A A E αααααααα====(2分);0i α≠且A 可逆,推得0i A α≠(2分);推得12,,,n A A A ααα是正交向量组(2分).---------------------------------------------------------------------------- 1、试题序号:333 2、题型:证明题 3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:10分钟7、试题关键字:向量组的秩与方程组的解 8、试题内容: 设12,,,s ααα是0Ax =的一个基础解系,β不是0Ax =的解,证明:12,,,,s ββαβαβα+++线性无关.9、答案内容: 证明:假设()121s R s βααα<+.这与β不是0Ax =的解矛盾()121s R s βααα∴=+ ()11s R s ββαβα++=+即1,,s ββαβα++线性无关.10、评分细则:由题设推出()()11s s R R ββαβαβαα++=(2分);假设()11s R s βαα<+,由题设中条件推出β可以由12,,,s ααα线性表示,与β不是0Ax =的解矛盾(2分);()11s R s ββαβα∴++=+(2分);1,,,s ββαβα∴++线性无关(2分).---------------------------------------------------------------------------- 1、试题序号:334 2、题型:证明题 3、难度级别:24、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:8分钟7、试题关键字:矩阵的秩与方程组的解 8、试题内容:设A 为n 阶矩阵,若0Ax =只有零解,证明:方程组0kA x =也只有零解,其中k 为正整数.9、答案内容: 证明:0Ax =只有零解⇒()R A n =A 为n 阶矩阵,A ∴可逆0.A ⇔≠则kkA A =0≠ 即kA 为可逆矩阵()0k k R A n A x ∴=⇒=只有零解.10、评分细则:由题设推出()R A n A =⇒可逆(3分);推出0kkA A =≠(2分);推得()0k k R A n A x =⇒=只有零解(3分).---------------------------------------------------------------------------- 1、试题序号:335 2、题型:证明题 3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:10分钟7、试题关键字:向量组的秩,矩阵的秩及方程组的解8、试题内容:设A 是m n ⨯矩阵,D 是m n ⨯矩阵,B 为m m ⨯矩阵,求证:若B 可逆且BA 的行向量的转置都是0Dx =的解,则A 的每个行向量的转置也都是该方程组的解. 9、答案内容:证明:设A 的行向量组为12,,,m ααα(I ) 设B 的行向量组为12,,,m βββ(II )则向量组(I )与(II )均为n 维向量组,BA C B =可逆1A B C -⇒=令1112121222112m m m m mm k k k k k k B k k k -⎛⎫⎪ ⎪=⎪⎪⎝⎭,则有1111211221222212m m m m m mm m k k k k k k k k k αβαβαβ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪⎪=⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭∴向量组(I )可以由(II )线性表示向量组(II )是0Dx =的解 ∴向量组(I )也是0Dx =的解 10、评分细则:令A 的行向量组12,,,m ααα(I),C 的行向量组为12,,,m βββ(II)(1分);1BA C A B C -=⇒=(2分);推得1111211221222212m m m m m mm m k k k k k k k k k αβαβαβ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪⎪=⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11121212221122m m m m m k k k k k k B k k k -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(2分)所以(I)可以由(II)线性表示(2分);由(II)是0Dx =的解推出(I)也是0Dx =的解(1分).---------------------------------------------------------------------------- 1、试题序号:336 2、题型:证明题3、难度级别:24、知识点:第四章 向量组的线性相关性5、分值:86、所需时间:6分钟7、试题关键字:向量组的线性关系与方程组的基础解系 8、试题内容:设非齐次线性方程组Ax b =的系数矩阵的秩为r ,12,,,n r ηηη-是其导出组的一个基础解系,η是Ax b =的一个解,证明:12,,,,n r ηηηη-线性无关.9、答案内容: 证明:假设12,,,,n r ηηηη-线性相关,12,,,n r ηηη-是0Ax =的基础解系, 12,,,n r ηηη-∴是线性无关的.由以上可得η可以由12,,,n r ηηη-线性表示.则η是0Ax =的解,与η是Ax b =的解矛盾.∴假设不成立,即,η12,,,n r ηηη-线性无关.10、评分细则:假设12,,,n r ηηηη-线性相关,由题设推得η可以由121,,r ηηη-线性表示(3分);所以η是0Ax =的解与η是Ax b =的解矛盾(3分);所以12,,,n r ηηηη-线性无关(2分).---------------------------------------------------------------------------- 1、试题序号:337 2、题型:证明题 3、难度级别:34、知识点:第五章 相似矩阵及二次型5、分值:86、所需时间:8分钟7、试题关键字:正定矩阵的逆矩阵与伴随矩阵 8、试题内容:设*A 为A 的伴随矩阵,若A 为正定的,试证*A 及1A -均为正定的. 9、答案内容: 证明:∵A 为正定矩阵,∴A 的特征值全为正数。

相关文档
最新文档