最新离散数学-第二章命题逻辑等值演算习题及答案
离散数学,命题逻辑等值演算
任何命题公式都存在与之等值的主 析取范式和主合取范式,并且是唯 一的。
证明: (1)存在性:等值演算 (2)唯一性:反证法
例题与练习
【例2.8】求主析取范式与主合取范式: (p→q)↔r
合取范式 (p∨r) ∧ (¬q∨r) ∧ (¬p∨q∨¬r)
析取范式 (p∧¬q∧¬r)∨( ¬p∧r )∨( q∧r )
p(qr)
1 1 1 1 1 1 0 1
(pq)r
0 1 0 1 1 1 0 1
(p∧q)r
1 1 1 1 1 1 0 1
十六组重要的等值式(模式)
• 1.双重否定律 A¬¬A
• 2.幂等律 A∧A A,A∨A A
• 3.交换律 A∨B B∨A,A∧B B∧A
• 4.结合律 (A∨B)∨C A∨(B∨C) (A∧B)∧C A∧(B∧C)
2.3 联结词的完备集
定义2.6
n元真值函数F:{0,1}n →{0,1}
定理
• 每个真值函数,都一一对应一个真值表。每个真 值函数,都存在许多与之等值的命题公式。反之, 每个命题公式对应唯一的与之等值的真值函数。
定义2.7
• 设S是联结词集合,如果任何n元真值函数 都可以由仅含S中的联结词构成的公式表 示,则称S是联结词完备集。
p∧q∧r
成真赋值
000 001 010 011 100 101 110 111
名称
m0 m1 m2 m3 m4 m5 m6 m7
极大项
极大项
p∨q∨r p∨q∨¬r p∨¬q∨r p∨¬q∨¬r ¬p∨q∨r p∨q∨¬r ¬p∨¬q∨r ¬p∨¬q∨¬r
成假赋值 名称
000
M0
001
离散数学课后习题答案(第二章)
(3) 寻求下列各式的真假值。 A) (∀x)( P( x) ∨ Q( x)) ,其中 P( x) : x = 1, Q( x) : x = 2 ,且论域是 {1, 2} B) (∀x)( P → Q( x)) ∨ R( a) , 其中 P : 2 > 1, Q( x) : x ≤ 3, R( x) : x > 5 而 a : 5 , 论域是 {−2,3, 6} 解:a) (x)(P(x)∨Q(x))⇔(P(1)∨Q(1))∧(P(2)∨Q(2)), 但 P(1)为 T,Q(1)为 F,P(2)为 F,Q(2)为 T, 所以(x)(P(x)∨Q(x))⇔(T∨F)∧(F∨T) ⇔T。 b) (x)(P→Q(x))∨R(a)⇔ ((P→Q(−2))∧(P→Q(3))∧(P→Q(6)))∨R(a) 因为 P 为 T,Q(−2)为 T,Q(3)为 T,Q(6)为 F,R(5)为 F, 所以(x)(P→Q(x))∨R(a)⇔((T→T)∧(T→T)∧(T→F))∨F⇔ F (4) 对下列谓词公式中的约束变元进行换名。 A) ∀x∃y ( P ( x, z ) → Q ( y ) � S ( x, y ) B) (∀xP( x) → ( R( x) ∨ Q( x))) ∧ ∃xR( x)) → ∃zS ( x, z) 解:a)(u)(v)(P(u,z)→Q(v))S(x,y) b)(u)(P(u)→ (R(u)∨Q(u))∧(v)R(v))→(z)S(x,z) (5) 对下列谓词公式中的自由变元进行代入。 A) (∃yA( x, y ) → ∀xB ( x, z )) ∧ ∃x∀zC ( x, y , z ) B) (∀yP( x, y ) ∧ ∃zQ( x, z )) ∨ ∀xR( x, y) 解:a)((y)A(u,y)→(x)B(x,v))∧(x)(z)C(x,t,z) b)((y)P(u,y)∧(z)Q(u,z))∨(x)R(x,t) 习题 2-5 (1)考虑以下赋值,论域:
离散数学 第2章 习题解答
第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域.(1) 令x(是鸟xF:)(会飞翔.G:)xx命题符号化为xF∀.Gx→)())((x(2)令xx(为人.F:)(爱吃糖G:)xx命题符号化为xFx→G⌝∀))()((x或者Fx⌝x∧∃)))(((xG(3)令xx(为人.F:)G:)(爱看小说.xx命题符号化为xF∃.Gx∧(x())()(4) x(为人.xF:)(爱看电视.G:)xx命题符号化为Fx⌝∧⌝∃.xG()())(x分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。
(1)-(4)中的)F都是特性谓词。
(x2°初学者经常犯的错误是,将类似于(1)中的命题符号化为Fx∀Gx∧())()(x即用合取联结词取代蕴含联结词,这是万万不可的。
将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。
”因而符号化应该使用联结词→而不能使用∧。
若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。
”这显然改变了原命题的意义。
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。
2.2 (1)d (a),(b),(c)中均符号化为)(x xF ∀其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。
(2) 在)(),(),(c b a 中均符号化为)(x xG ∃其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。
(3)在)(),(),(c b a 中均符号化为)(x xH ∃其中.15:)(=x x H 此命题在)(),(b a 中均为假命题,在(c)中为真命题。
分析 1°命题的真值与个体域有关。
2° 有的命题在不同个体域中,符号化的形式不同,考虑命题“人都呼吸”。
离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算
名称
M0 M1 M2 M3
20
实例
由三个命题变项 p, q, r 形成的极小项与极大项.
极小项
公式
成真赋值 名称
p q r 0 0 0 m0
p q r 0 0 1 m1
p q r 0 1 0 m2
p q r 0 1 1 m3
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p(qr) (pq) r p(qr) 不与 (pq) r 等值
2
等值式例题
例1 判断下列各组公式是否等值: (1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1Hale Waihona Puke 110 00111 1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
结论: p(qr) (pq) r
3
等值式例题
(2) p(qr) 与 (pq) r
p q r qr p(qr)
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
pq (pq)r
1
0
1
1
1
0
1
1
0
1
0
离散数学第2版课后习题答案
离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
离散数学第2章习题课
浙江师范大学
ZHEJIANG NORMAL UNIVERSITY
数理信息学院 王艳霞
第2章 内容回顾 章
1
浙江师范大学
ZHEJIANG NORMAL UNIVERSITY
数理信息学院
内容提要
等值式和基本等值式
等值式 基本等值式 等值演算 重言式与矛盾式的判别方法
2
浙江师范大学
ZHEJIANG NORMAL UNIVERSITY
5
浙江师范大学
ZHEJIANG NORMAL UNIVERSITY
数理信息学院
习题——等值演算 等值演算 习题
将公式p 化成与之等值且仅含{┐ 将公式 →(q → r)化成与之等值且仅含 , 化成与之等值且仅含 ∧}中联结词的公式 中联结词的公式
6
浙江师范大学
ZHEJIANG NORMAL UNIVERSITY
4
离散数学作业
-离散数学 专业班级 学号 姓名 第一章 命题逻辑的基本概念一、单项选择题1.下列语句中不是命题的有( ).A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗?D.我要努力学习。
2. 下列语句是真命题为( ).A. 1+2=5当且仅当2是偶数B. 如果1+2=3,则2是奇数C. 如果1+2=5,则2是奇数D. 你上网了吗?3. 设命题公式)(r q p∧→⌝,则使公式取真值为1的p ,q ,r 赋值分别是( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A ( 4. 命题公式q q p →∨)(为 ( )(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式5. 设p:我将去市里,q :我有时间.命题“我将去市里,仅当我有时间时”符号化为为( )q p q p q p p q ⌝∨⌝↔→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( )A. Q P ⌝→ ;B. Q P →⌝;C. P Q ⌝∧⌝ ;D. )(Q P ∧⌝二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化(1)中国有四大发明。
(2)2是有理数。
(3)“请进!”(4)刘红和魏新是同学。
(5)a+b(6)如果买不到飞机票,我哪儿也不去。
(8)侈而惰者贫,而力而俭者富。
(韩非:《韩非子∙显学》)(9)火星上有生命。
(10)这朵玫瑰花多美丽啊!二、将下列命题符号化,其中p:2<1,q:3<2(1)只要2<1,就有3<2。
(2)如果2<1,则3≥2。
(3)只有2<1,才有3≥2。
(4)除非2<1,才有3≥2。
(5)除非2<1,否则3≥2。
(6)2<1仅当3<2。
离散数学专业班级学号姓名三、将下列命题符号化(1)小丽只能从筐里拿一个苹果或一个梨。
《离散数学》02命题逻辑等值演算
2.2 析取范式和合取范式
定理2.1 (1)一个简单析取式是重言式当且仅当它同时含有某个命题
变项及它的否定式。 (2)一个简单合取式是矛盾式当且仅当它同时含有某个命题
变项及它的否定式。 定义2.3 (1)由有限个简单合取式构成的析取式称为析取范式
A∨1 1,A∧0 0 A∨0 A,A∧1 A A∨┐A 1 A∧┐A 0 A→B ┐A∨B AB (A→B)∧(B→A) A→B ┐B→┐A AB ┐A┐B (A→B)∧(A→┐B) ┐A
对偶原理
一个逻辑等值式,如果只含有┐、∨、∧、0、1 那么同时
把∨和∧互换 把0和1互换 得到的还是等值式。
(A∨B)∨C A∨(B∨C) (A∧B)∧C A∧(B∧C)
A∨(B∧C) (A∨B)∧(A∨C) (∨对∧的分配律)
A∧(B∨C) (A∧B)∨(A∧C) (∧对∨的分配律)
┐(A∨B) ┐A∧┐B ┐(A∧B) ┐A∨┐B
A∨(A∧B) A,A∧(A∨B) A
基本等值式
8.零律 9.同一律 10.排中律 11.矛盾律 12.蕴涵等值式 13.等价等值式 14.假言易位 15.等价否定等值式 16.归谬论
例2.5 解答
(1) (p→q)∧p→q
(┐p∨q)∧p→q
(蕴涵等值式)
┐((┐p∨q)∧p)∨q
(蕴涵等值式)
(┐(┐p∨q)∨┐p)∨q
(德摩根律)
((p∧┐q)∨┐p)∨q
(德摩根律)
((p∨┐p)∧(┐q∨┐p))∨q (分配律)
(1∧(┐q∨┐p))∨q
离散数学第二章 命题逻辑等值演算
范式存在定理
定理2.3 任何命题公式都存在着与之等值的析取范式与合 定理 取范式. 取范式. 求公式 的范式的步骤 的范式的步骤: 证 求公式A的范式的步骤: (1) 消去 中的→, ↔ 消去A中的 中的→ A→B⇔¬ ∨B ⇔¬A∨ → ⇔¬ A↔B⇔(¬A∨B)∧(A∨¬ ∨¬B) ↔ ⇔ ¬ ∨ ∧ ∨¬ (2) 否定联结词¬的内移或消去 否定联结词¬ ¬ ¬A⇔ A ⇔ ⇔¬A∧¬ ¬(A∨B)⇔¬ ∧¬ ∨ ⇔¬ ∧¬B ⇔¬A∨¬ ¬(A∧B)⇔¬ ∨¬ ∧ ⇔¬ ∨¬B
真值表法
例1 判断 ¬(p∨q) 与 ¬p∧¬q 是否等值 ∨ ∧ 解 p q 0 0 0 1 1 0 1 1 ¬p ¬q 1 1 0 0 1 0 1 0 p∨q ¬(p∨q) ¬p∧¬q ¬(p∨q)↔(¬p∧¬q) ∨ ∨ ∧ ∨ ↔¬ ∧ 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
实例(续)
(2) (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) 解 (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) ∨¬p) ⇔ (¬p∨q)↔(q∨¬ ¬ ∨ ↔ ∨¬ ⇔ (¬p∨q)↔(¬p∨q) ¬ ∨ ↔¬ ∨ ⇔1 该式为重言式. 该式为重言式 (蕴涵等值式) 蕴涵等值式) (交换律) 交换律)
实例(续)
(3) ((p∧q)∨(p∧¬ ∧r) ∧¬q))∧ ∧ ∨ ∧¬ 解 ((p∧q)∨(p∧¬ ∧r) ∧ ∨ ∧¬ ∧¬q))∧ (分配律) 分配律) (排中律) 排中律) (同一律) 同一律) ∨¬q))∧ ⇔ (p∧(q∨¬ ∧r ∧ ∨¬ ⇔ p∧1∧r ∧ ∧ ⇔ p∧r ∧ 成假赋值. 成假赋值 总结:A为矛盾式当且仅当 ⇔ 为重言式当且仅当A⇔ 总结 为矛盾式当且仅当A⇔0; A为重言式当且仅当 ⇔1 为矛盾式当且仅当 为重言式当且仅当 说明:演算步骤不惟一, 说明 演算步骤不惟一,应尽量使演算短些 演算步骤不惟一
离散数学第1-2章参考答案-命题逻辑谓词逻辑
Page 49 第17题解:(1)令①P:李明学习努力;②Q:李明成绩好;③R:李明不热衷于玩扑克;(2)已知条件符号化,即①P→Q:如果李明学习努力,那么他成绩好;②R→P:如果李明不热衷于玩扑克,那么他就努力学习;(3)所求结论符号化,即①¬Q→¬R:李明成绩不好,所以李明热衷于玩扑克;(4)证明:原命题符号化为P→Q,R→P ¬Q→¬R;①P→Q P规则;②R→P P规则;③R→Q T规则①②;④Q∨¬R T规则③;⑤¬Q→¬R T规则④;(5)得证。
Page 50 第32题(2)解: P∨(¬P→(Q∨(¬Q→R)));⇔ P∨(P∨(Q∨(Q∨R)));⇔P∨Q∨R;①主合取范式为:P∨Q∨R;因为 P∨Q∨R ⇔∏M0 ⇔∑m1,2,3,4,5,6,7;②主析取范式为:∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R);Page 50 第32题(4)解: (P∧¬Q∧R)∨(¬P∧Q∧¬S);⇔ ((P∧¬Q∧R)∧(S∨¬S))∨((¬P∧Q∧¬S)∧(R∨¬R));⇔(P∧¬Q∧R∧S)∨(P∧¬Q∧R∧¬S)∨(¬P∧Q∧R∧¬S)∨(¬P∧Q∧¬R∧¬S);①主析取范式为:(¬P∧Q∧¬R∧¬S)∨(¬P∧Q∧R∧¬S)∨(P∧¬Q∧R∧¬S)∨(P∧¬Q∧R∧S) ⇔∑m4,6,10,11⇔∏M0,1,2,3,5,7,8,9,12,13,14,15;②主合取范式为:(¬P∨¬Q∨¬R∨¬S)∧(¬P∨¬Q∨¬R∨S)∧(¬P∨¬Q∨R∨¬S) ∧(¬P∨¬Q∨R∨S)∧(¬P∨Q∨¬R∨S)∧(¬P∨Q∨R∨S)∧(P∨¬Q∨¬R∨¬S) ∧(P∨¬Q∨¬R∨S)∧(P∨Q∨¬R∨¬S)∧(P∨Q∨¬R∨S)∧(P∨Q∨R∨¬S)∧(P∨Q∨R∨S);Page 50 第32题(6)解: (P→Q)→(P∨R);⇔¬(¬P∨Q)∨(P∨R);⇔(P∧¬Q)∨(P∨R);⇔(P∨R)∧(P∨¬Q∨R);⇔ ((P∨R)∨(¬Q∧Q))∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R)∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R);①主合取范式为:(P∨¬Q∨R)∧(P∨Q∨R);⇔∏M0,2;⇔∑m1,3,4,5,6,7;①主合取范式为:(¬P∨¬Q∨R)∧(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R);Page 51 第37题(2)解: P→Q P→(P∧Q)①P P规则(附加前提);②P→Q P规则;③Q T规则①,②,I;④P∧Q T规则①,③,I;⑤P→(P∧Q) CP规则;Page 51 第37题(4)解: (P∨Q)→R ⇒ (P∧Q)→R①P∧Q P规则(附加前提);②P T规则①,I;③P∨Q T规则②,I;④(P∨Q)→R P规则;⑤R T规则③,④,I;⑥(P∧Q)→R CP规则;Page 51 第38题(3)解:﹁(P→Q)→﹁(R∨S),((Q→P)∨﹁R),R ⇒ P↔Q①﹁(P↔Q) P规则(假设前提);②﹁((P→Q)∧(Q→P)) T规则①,I;③R P规则;④((Q→P)∨﹁R) P规则;⑤R→(Q→P) T规则④,I;⑥(Q→P) T规则③⑤,I;⑦R∨S T规则③,I;⑧﹁(P→Q)→﹁(R∨S) P规则;⑨(R∨S)→(P→Q) T规则⑧,I;⑩(P→Q) T规则⑦⑨,I;⑪(P→Q)∧(Q→P) T规则⑥⑩,I;⑫得证间接证明法②⑪;Page 51 第39题(1)解:(1)符号化已知命题①P:明天是晴天;②Q:明天下雨;③R:我去看电影;④S:我不看书;条件符号化:P∨Q,P→R,R→S;结论符号化:①﹁S→Q(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P→R P规则;②R→S P规则;③P→S T规则①②;④﹁S→﹁P T规则③,I;⑤P∨Q P规则;⑥﹁P→Q T规则⑤,I;⑦﹁S→Q T规则④⑥,I;Page 51 第39题(2)解:(1)符号化已知命题①P:明天不下雨;②Q:能够买到车票;③R:我去参观计算机展览会;条件符号化:P∧Q→R;结论符号化:①﹁R→﹁P(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P∧Q→R P规则;②﹁R P规则(附加前提);③﹁(P∧Q) T规则①②;④﹁P∨﹁Q T规则③,I;⑤也就是说或者明天下雨或者买不到票,所以原命题说不能参加计算机展览的原因只是明天下雨是不完全的,故原命题无效。
离散数学答案第二章习题解答
离散数学答案第二章习题解答第二章谓词逻辑习题与解答1、将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业就是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(就是火车, x x C :)(就是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。
(2) 取论域为所有物质的集合。
令x x M :)(就是金属, x x L :)(就是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y xD y L y x M x ∧?→?。
(3) 论域与谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。
(4) 取论域为所有事物的集合。
令x x M :)(就是人, x x J :)(就是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→?(5)论域与谓词与(4)同。
“有些职业就是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。
2、取论域为正整数集,用函数+(加法),?(乘法)与谓词<,=将下列命题符号化:(1) 没有既就是奇数,又就是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不就是偶数。
解先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。
离散数学 第2章 命题逻辑
6
程序解法:
#include "stdio.h" #include "conio.h" main() { int p,q,r,A1,A2,A3,B1,B2,B3,C1,C2,C3,E; for(p=0;p<=1;p++) for (q=0;q<=1;q++) for(r=0;r<=1;r++) { A1=!p&&q;A2=(!p&&!q)||(p&&q);A3=p&&!q; B1=p&&!q;B2=(p&&q)||(!p&&!q);B3=!p&&q; C1=!q&&r;C2=(q&&!r)||(!q&&r);C3=q&&r; E=(A1&&B2&&C3)||(A1&&B3&&C2)||(A2&&B1&&C3)||(A2&&B3&&C1)||(A3&&B1&&C2)||(A3 &&B2&&C1); if (E==1) printf("p=%d\tq=%d\tr=%d\n",p,q,r); } getch(); }
复合命题: E=(A1 ∧B2 ∧C3) ∨ (A1 ∧B3 ∧C2) ∨ (A2 ∧B1 ∧C3) ∨ (A2 ∧B3∧C1) ∨ (A3 ∧B1 ∧C2) ∨ (A3 ∧B2 ∧C1)
A1 ∧B2 ∧C3 = (p ∧q ) ∧ ((p ∧ q) ∨(p ∧ q) ) ∧(q ∧ r) 0 A1 ∧B3 ∧C2 = (p ∧q ) ∧ ( p ∧ q) ∧( (q ∧ r) ∨(q ∧ r ) ) p ∧q ∧ r A2 ∧B1 ∧C3 =A2 ∧B3∧C1 = A3 ∧B2 ∧C1 = 0 A3 ∧B1 ∧C2 p ∧ q ∧ r E (p ∧q ∧ r) ∨ (p ∧ q ∧ r) 所以王教授是上海人。
离散数学 等值式 范式 消解算法
2
等值式例题
例1 判断下列各组公式是否等值:
(1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
0
1
0
1
0
1
20
极小项与极大项
定义2.4 在含有n个命题变项的简单合取式(简单析取式) 中,若每个命题变项均以文字的形式在其中出现且仅出现 一次,而且第i个文字出现在左起第i位上(1in),称这 样的简单合取式(简单析取式)为极小项(极大项).
几点说明: n个命题变项有2n个极小项和2n个极大项 2n个极小项(极大项)均互不等值 用mi表示第i个极小项,其中i是该极小项成真赋值的十进制
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p q r
1 1 1 m7
极大项
公式
成假赋值 名称
pqr
0 0 0 M0
p q r 0 0 1 M1
p q r 0 1 0 M2
p q r 0 1 1 M3
p q r 1 0 0 M4
p q r 1 0 1 M5
Bj Bj(pipi) (Bjpi)(Bjpi) 重复这个过程, 直到所有简单析取式都是长度为n的极 大项为止 (3) 消去重复出现的极大项, 即用Mi代替MiMi (4) 将极大项按下标从小到大排列
26
实例
离散数学命题逻辑练习题及答案
离散数学命题逻辑练习题及答案1. 命题逻辑基础1.1 命题逻辑概念1.什么是命题?答案:命题是可以判断真假的陈述句。
2.命题的两个基本操作是什么?答案:命题的两个基本操作是合取和析取。
1.2 命题逻辑表达式3.将以下中缀表达式转换为后缀表达式:((P ∧ Q) → (R ∨ S)) ∨ T答案:后缀表达式为P Q ∧ R S ∨ → T ∨4.使用真值表验证以下命题逻辑公式是否为重言式(永远为真):(P ∨ Q) ∧ (¬P ∨ Q) ⟺ Q答案:P Q(P ∨ Q) ∧ (¬P ∨ Q)QT T T TT F T FF T T TF F F F结论:命题逻辑公式(P ∨ Q) ∧ (¬P ∨ Q)是重言式。
1.3 命题逻辑推理5.使用命题逻辑进行推理,判断以下论断是否成立(推理过程可用真值表验证):P → Q, Q → R ∈ L, ∴ P → R答案:P Q R P → Q Q → R P → R T T T T T TT T F T F FT F T F T TT F F F T FF T T T T TF T F T F TF F T T T TF F F T T T结论:论断P → R成立。
2. 命题逻辑的应用2.1 命题逻辑在计算机科学中的应用6.命题逻辑在计算机科学中有哪些应用?答案:命题逻辑在计算机科学中的应用包括逻辑电路设计、计算机程序的正确性验证、控制流分析等。
7.请简要说明命题逻辑在逻辑电路设计中的应用。
答案:命题逻辑在逻辑电路设计中用于描述逻辑电路的功能和工作原理。
通过使用命题逻辑符号和逻辑运算,可以建立逻辑电路的逻辑模型,进而进行电路的设计、优化和验证。
2.2 命题逻辑推理的应用8.请举一个命题逻辑推理在实际生活中的应用例子。
答案:命题逻辑推理在实际生活中的一个应用例子是法庭判案。
法庭根据掌握的事实和证据,通过进行命题逻辑推理来确定被告是否犯罪或无罪,从而作出最终的判决。
最新离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案_文档
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
离散数学第二章命题逻辑等值演算
再如 ┑p ∨ q 既是p →q的析取范式又是它的的合取范式
如果公式的范式不唯一则对于将公式按等值进行分类的利用价值就不高
p q (p → q)∧(q→p) (p∧q)∨(┓p∧┓q)
00
1
1
01
0
0
10
0
0
11
1
1
(0,0)与(1,1)为公式的成真赋值。 (0,1)与(1,0)为公式的成假赋值
命题公式的分类(根据公式在赋值下的真值情况进行分类) 1)若命题公式在它的各种赋值下取值均为真,则称命题公式是重言
式或永真式。 2)若命题公式在它的各种赋值下取值均为假,则称命题公式是矛盾
2
如:┐Q∧(P→Q) → ┐P
4
分析1:若要得出:当设 A为真,B为
假的情况不会出现,
5
那么A →B 为永真式。
6
可证明:设前件为真
7
分析2: 还可以从设 B为假,推出A
为真的情况不会出现(A为假),
9
证明: 设后件为假
8
那么A →B 为永真式。
1 0
((P→Q)∧( Q→R)) →(P→R)
不同真值表的公式 1)当命题变元确定后,通过五个连接词及其命题变元可以构成 无数个不 同表现形式的命题公式。 问题:这些不同形式的命题公式的真值表是否都不相同? 先看变元仅有两个p,q 那么关于这两个变元的公式的赋值仅有4组
(┐p ∨ q)∧(┐q∨┐p∨r)∧┐q
是含三个简单析取式的合取范式.
2、性质:
1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式
2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式
┐p ∧ P ∨ ┐ q∧ q ⇔ 0 ∨ 0 ⇔ 0
离散数学屈婉玲课后习题答案
离散数学屈婉玲课后习题答案【篇一:离散数学第四版课后答案】xt>第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然??,但是??”、“不仅??,而且??”、“一面??,一面??”、“??和??”、“??与??”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月 13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
离散数学 第2章 命题逻辑等值演算
A00
A0A. A1A
ABAB AB(AB)(BA) ABBA ABAB (AB)(AB) A
等价否定等值式
注意:要牢记各个等值式,这是继续学习的基础
以上 16 组等值式包含了 24 个重要等值式。 由于 A,B,C 可以 代表任意的命题公式,因而以上各等值式都是用元语言符号 书写的,称这样的等值式为等值式模式,每个等值式模式都 给出了无穷多个同类型的具体的等值式。 例如,在蕴涵等值式(2.12)中, 取 A=p,B=q 时,得等值式: p→q ┐p∨q 当取 A=p∨q∨r,B=p∧q 时,得等值式: (p∨q∨r)→(p∧q) ┐(p∨q∨r)∨(p∧q) 这些具体的等值式都被称为原来的等值式 模式的代入实例。
mi 与 Mi 的关系由书上定理 2.4 给出,即 mi Mi, Mi mi
2. 主析取范式与主合取范式 定义 2.5 (1)主析取范式——由极小项构成的析取范式 (2) 主合取范式——由极大项构成的合取范式 例如,n=3, 命题变项为 p, q, r 时, (p q r) (p q r) m1m3 ——主析取范式 (p q r) (p q r) M7M1——主合取范式 3. 命题公式 A 的主析取范式与主合取范式 (1) 与 A 等值的主析取范式称为 A 的主析取范式;与 A 等值的主合 取范式称为 A 的主合取范式. (2) 主析取范式的存在惟一定理 定理 2.5 任何命题公式都存在着与之等值的主析取范式和主合取 范式,并且是惟一的
由最后一步可知, (1)为矛盾式.
(2)(pq)(qp) (pq)(qp) (pq)(pq) 1 由最后一步可知, (2)为重言式. 问:最后一步为什么等值于 1? 说明: (2)的演算步骤可长可短,以上演算最省. (蕴涵等值式) (交换律)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章作业
评分要求:
1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分
2. 给出每小题得分(注意: 写出扣分理由)
3. 总得分在采分点1处正确设置.
一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):
说明
证
1. p ⇔(p ∧q)∨(p ∧¬q)
解逻辑方程法
设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:
⎩⎨⎧=⌝∧∨∧=0
)()(1)1(q p q p p 或者 ⎩
⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.
等值演算法
(p ∧q)∨(p ∧¬q)
⇔ p ∧(q ∨¬q)
∧对∨的分配率
⇔ p ∧1 排中律
⇔ p 同一律
真值表法
2. (p→q)∧(p→r)⇔p→(q∧r)
等值演算法
(p→q)∧(p→r)
⇔(¬p∨q)∧(¬p∨r)蕴含等值式
⇔¬p∨(q∧r)析取对合取的分配律
⇔p→(q∧r)蕴含等值式
3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)
等值演算法
¬(p↔q)
⇔¬( (p→q)∧(q→p) )等价等值式
⇔¬( (¬p∨q)∧(¬q∨p) )蕴含等值式
⇔¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律
⇔(p∨q)∧¬(p∧q)德摩根律
4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)
等值演算法
(p∧¬q)∨(¬p∧q)
⇔(p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律
说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.
等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.
二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):
1.
2.
3.
4.
1. (¬p→q)→(¬q∨p)
解
(¬p→q)→(¬q∨p)
⇔(p∨q)→(¬q∨p)蕴含等值式
⇔(¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律
⇔(¬p∧¬q)∨¬q ∨p结合律
⇔p∨¬q吸收律, 交换律
⇔M1
因此, 该式的主析取范式为m0∨m2∨m3
2. (¬p→q)∧(q∧r)
解逻辑方程法
设(¬p→q)∧(q∧r) =1, 则¬p→q=1且q∧r=1,
解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6
等值演算法
(¬p→q)∧(q∧r)
⇔ (p∨q)∧(q∧r) 蕴含等值式
⇔ (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律
⇔ (p∧q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r) 同一律, 矛盾律, ∧对∨分配律
⇔m7∨ m3
主合取范式为M0∧M1∧M2∧M4∧M5∧M6
3. (p↔q)→r
解逻辑方程法
设(p↔q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7
等值演算法
(p↔q)→r
⇔ ((p→q)∧(q→p))→r 等价等值式
⇔⌝((p→q)∧(q→p))∨r 蕴含等值式
⇔ (p∧⌝q)∨(q∧⌝p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)
⇔ (p∨q∨r)∧(⌝q∨⌝p∨r) ∨对∧分配律, 矛盾律, 同一律
⇔M0∧ M6
主析取范式为m1∨m2∨m3∨m4∨m5∨m7
4. (p→q)∧(q→r)
解
等值演算法
(p→q)∧(q→r)
⇔ (⌝p∨q)∧(⌝q∨r) 蕴含等值式
⇔ (⌝p∧⌝q)∨(⌝p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律
⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r) ∨ (⌝p∧q∧r)∨(⌝p∧⌝q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r)
⇔m1∨ m0∨ m3∨ m7
主合取范式为M2∧ M4∧ M5∧ M6.
解逻辑方程法
设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.
前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.
后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.
综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.
真值表法
公式(p → q) ∧ (q
从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6. 精彩名家小美文10篇
青春赋
[美国] 萨缪埃尔·沃尔曼
青春不是人生某一时期的标志,它是指人应有的心理状态。
要永葆青春,既要有坚强的意志、丰富的想象和激荡的热情,还必须有战胜胆怯的勇气和决不向困难妥协而敢于去冒险的希求。
人不是因岁月的流逝而老朽,当理想之火泯灭的时候,人生的“暮年”就开始了。
岁月的流逝会在皮肤上刻下皱纹,而热情的消失则在心灵上留下痕迹。
担心、疑惑、不自信、恐慌、绝望——这些东西正是夭折精神之树的元凶。
无论是到了古稀之年的老人,还是尚未成熟的少年,在人们的心目中,他们应该有对奇迹的憧憬,对人生乐趣的寻觅,对竞赛的追求,以及对灿若群星的事物和思想的感知;还要有不屈不挠的斗志和像孩子期待即将出现的事物般的好奇心……人与他的信念成比例地年轻,与疑惑成比例地衰老;与信心和希望成比例地年轻,与恐惧和绝望成比例地衰老。
谁能够从自然界、人类社会或神灵那里领悟到美丽、喜悦、勇气、高尚、力量……谁就富有青春的活力。
当失去所有的梦幻,心灵的花蕊被悲观之雪和沮丧之冰覆盖的时候,他就真正地“衰老”了。
这样的人,只有去乞求神灵的怜悯。
品尝:青春是美好的,谁把握了青春,谁就拥有了美好。
而我们要永葆青春,必须要有永不消退的热情和希望,因此“当失去所有的梦幻,心灵的花蕊被悲观之雪和沮丧之冰覆盖的时候,他就真正地“衰老”了。
”
青春的呼唤
[俄] 屠格涅夫
啊,青春,青春,你什么都不在乎,你仿佛拥有宇宙间一切的宝藏,连忧愁也给你安慰,连悲哀也对你有帮助,你自信而大胆,你说:“瞧吧,只有我才活着。
”可是你的日子也在时
时刻刻地飞走了,不留一点痕迹,白白地消失了,而且你身上的一切也都象太阳下面的蜡一样,雪一样地消灭了。
……也许你的魅力的整个秘密,并不在乎你能够做任何事情,而在于你能够想你做得到任何事情——正在于你浪费尽了你自己不知道怎样用到别处去的力量;正在于我们中间每个人都认真地以为自己是个浪子,认真地认为他有权利说:“啊,倘使我不白白耗费时间,我什么都办得到!”
我也是这样……那个时候,我用一声叹息,一种凄凉的感情送走了我那昙花一现的初恋的幻影的时候,我希望过什么,我期待过什么,我预见了什么光明灿烂的前途呢?
然而我希望过的一切,有什么实现了呢?现在黄昏的阴影已经开始笼罩到我的生命上来了,在这个时候,我还有什么比一瞬间消逝的春潮雷雨的回忆更新鲜,更可宝贵呢?
品尝:青春是容易消逝的,人啊,不要在青春消逝之后才来感叹:如果时间倒流,我也会办得到的。
这个时候还有什么用呢?不如我们年青的时候就去做,即使失败,我们也不会叹息的。
至少我们曾经走过,努力过。
友情
[日本] 矢内原伊
友情是一种特殊的人类关系。
恋人的关系,家族的纽带,尽管也是密切的,但在一定意义上来讲,它们有着自然的、本能的要素;而友情却是只有人类才具有的,是人的生活中不可缺少的宝物。