神奇的数字--从数字赏数学之美共36页

合集下载

浅谈数学之美

浅谈数学之美

浅谈数学之美【摘要】数学美是自然美的客观反映,是科学美的核心。

“那里有数学,哪里就有美”,数学美不是什么虚无缥缈、不可捉摸的东西,而是有其确定的客观内容.数学美的内容是丰富的,如数学概念的简单性、统一性,结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等,都是数学美的具体内容。

本文主要围绕数学美的三个特征:简洁性、和谐性和奇异性进行阐述。

【关键词】数学,数学美,美学特征数学美的表现形式是多种多样的,从外在形象上看:她有体系之美、概念之美、公式之美;从思维方式上看:她有简约之美、无限之美、抽象之美、类比之美;从美学原理上看:她有对称之美、和谐之美、奇异之美等.此外,数学还有着完美的符号语言、特有的抽象艺术、严密的逻辑体系、永恒的创新动力等特点。

但这些都离不开数学美的三大特征,即:简洁性、和谐性和奇异性。

1简洁性是数学美的首要特点爱因斯坦说:“美,本质上终究是简单性",“只有既朴实清秀,又底蕴深厚,才称得上至美”。

简洁本身就是一种美,而数学的首要特点在于它的简洁性.数学中的基本概念、理论和公式所呈现的简单性就是一种实实在在的简洁美。

数学家莫德尔说过:“在数学里美的各个属性中,首先要推崇的大概是简单性了”.数学的简洁性在人们生活中屡见不鲜:钱币只须有一分、二分、五分、一角、二角、五角、一元、二元、五元、十元……就可简单的构成任何数目的款项;圆的周长公式:C=2πR,就是“简洁美”的典范,它概括了所有圆形的共同特性;把一亿写成l08,把千万分之一写成10—7;二进制在计算机领域的应用……化繁为简,化难为易,力求简洁、直观。

数学不仅仅是在运算上要求这样,论证说明也更是如此。

显然,数学的公式与公理就是简洁美的最佳证据之一.1.1简洁性之一:符号美实现数学的简洁性的重要手段是使用了数学符号.符号对于数学的发展来讲是极为重要的,它可使人们摆脱数学自身的抽象与约束,集中精力于主要环节,没有符号去表示数及其运算,数学的发展是不可想象的。

数学之美论文2000数学之美论文

数学之美论文2000数学之美论文

数学之美论文2000数学之美论文数学之美论文篇一人类对数学的认识最早是从自然数开始的。

这看似极普通的自然数里面,其实就埋藏着数不尽的奇珍异宝。

古希腊的毕达哥拉斯学派对自然数很有研究,当他们将这数不尽的奇珍异宝的一部分挖掘出来并呈现于人类面前时,人们就为这数的美震撼了。

其实,“哪里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价。

一、简洁美数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。

如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。

欧拉给出的公式:V-E+F=2堪称“简单美”的典范。

世间的多面体有多少没有人能说清楚。

但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。

二、和谐美古希腊数学家毕达哥拉斯有一句至理名言:“凡是美的东西都具有共同的特性,这就是部分与部分、部分与整体之间的和谐性。

”三、对称美毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。

圆是中心对称图形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。

对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。

如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。

数学美学中的对称美并不局限于客观事物外形的对称。

它着重追求的是数学对象乃至整个数学体系的合理,匀称与协调。

数学概念,数学公式,数学运算,数学方程式,数学结论甚至数学方法中,都蕴含着奇妙的对称性。

数学中的美

数学中的美

数学中美的欣赏数学美是一种蕴涵的美,它需要从深处去挖掘。

关于数学美的内容很多,本文是为了从浅层阐述数学的美,让学生初步感受数学中美的存在,所以本文就主要从数学美的概念、数学美与其它美的区别、数学美的内容和它在数学教育中的体现这几个方面作以下的阐述。

一、数学美的概念美是人类创造性实践活动的产物,是人类本质力量的感性显现。

通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。

数学美是自然美的客观反映,是科学美的核心。

简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。

历史上许多学者、数学家对数学美从不同的侧面作过生动的阐述。

普洛克拉斯早就断言:“哪里有数,哪里就有美。

”亚里士多德也曾讲过:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。

因为美的主要形式家是“秩序、匀称和确定性”,这些正是数学研究的原则。

”徐利治教授说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。

数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性,对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。

以上的论述可见,数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。

二、数学美与其它美的区别数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。

美国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。

”数学美与其它美的区别还在于它是蕴涵在其中的美。

打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。

我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。

探寻神奇的幻方

探寻神奇的幻方
鲁教版义务教育教科书数学六年级上册综合实践课
淄博第五中学 雷建环
背景分析
如果将抽象、枯燥的数字,按一定规律摆 成一个整齐的数字方阵,则会出现奇特的现象, 使人绞尽脑汁,而又感到妙趣横生,其乐无穷。 你可知道这图充满了许许多多的数学学问,并
且有着广泛的应用。这就是数学中的一个珍品——幻方。
本节课从最简单的三阶幻方入手,感受数学的神奇与魅力, 开发学生的计算能力,提高学生的思维推理能力,使枯燥无味的 数学变得有味。幻方人人都懂,但是研究起来困难重重。因此, 我对幻方这节的内容进行了如下处理,把两个“议一议”的内容 整合,再完成“想一想”的内容。通过设计一系列由易到难的问 题串,引导学生在轻松愉悦的氛围中积极主动的投入到本节综合 实践活动课中来。
(2)如果把和相等的每一组数分别连线,这些连线段会构成一个怎样 的图形?描述你得到的图形有什么特点?
图形均衡对称,和谐美丽
展示交流
(3)你能否改变上述幻方中数字的位置,使它们仍然满足你发现的那 些相等关系?
834 159 672
618 753 294
276 951 438
816 357 492
672 159 834
将9个数填在3×3(三行三列)的方格中, 如果满足每个横行、每个竖行和每条对角 线上的三个数之和都相等,这样的图为广 义的三阶幻方。
合作探究(2)
你能用-4,-3,-2,-1,0,1, 2, 3, 4这九个数构造一个 广义的三阶幻方吗?
(1)在这九个数中,三个不同的数相加,和等于0 的算式有哪些?(经过运用加法交换律后相同的 式子视为同一个算式)
把每列数字看成一个三位数则这个三位数之和等于它们的逆转数之和2769514386721598341665把中间一行中间一列每条对角线上的数字看成一个三位数则每个三位数与它的逆转数之和都等于111035775395115925885245665411101中心方格中的数是每行每列和每条对角线上的三个数之和的13或者是另两个数的和的12

数学文化之旅------神奇的斐波那契数列与黄金分割

数学文化之旅------神奇的斐波那契数列与黄金分割

神奇的斐波那契数列与黄金分割石家庄二中南校区孟柳比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),中世纪意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。

列奥纳多的父亲Guilielmo(威廉),外号Bonacci.因此列奥纳多就得到了外号斐波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。

1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,当时仍是小伙子的列奥纳多已经开始协助父亲工作,因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

于是他就学会了阿拉伯数字。

他是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。

主要著作有《算盘书》《几何实践》《花朵》《平方数书》斐波那契在《算盘书》中提出了一个有趣的兔子问题:一般而言,兔子在出生两个月后就具有了繁殖能力,一对兔子每个月能生出一对兔子,如果兔子都不死,那么一年后能有多少对兔子?拿新出生的一对兔子研究:第一个月兔子没有繁殖能力,两个月后生下一对小兔总数共有两对;三个月后,老兔子生下又一对,因为上一轮的小兔没有繁殖能力,所以总数是三对;…………..1,1,2,3,5,8,13,21,34,55,89,144……依次类推下去,你会发现,它后一个数等于前面两个数的和。

在这个数列中的数字,就被称为斐波那契数。

2是第3个斐波那契数。

斐波那契数列还满足一下特点:1.任一项的平方数都等于与它相邻的两项乘积相差12.相邻的4个数,内积与外积相差13.前一项与后一项的比大约是0.6184.后一项比前一项大约是1.618经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

神奇的数字

神奇的数字

西西弗斯串在古希腊神话中,科林斯国王西西弗斯被罚将一块巨石推到一座山上,但是无论他怎么努力,这块巨石总是在到达山顶之前不可避免地滚下来,于是他只好重新再推,永无休止。

著名的西西弗斯串就是根据这个故事而得名的。

什么是西西弗斯串呢?也就是任取一个数,例如35962,数出这数中的偶数个数、奇数个数及所有数字的个数,就可得到2(2个偶数)、3(3个奇数)、5(总共五位数),用这3个数组成下一个数字串235。

对235重复上述程序,就会得到1、2、3,将数串123再重复进行,仍得123。

对这个程序和数的"宇宙"来说,123就是一个数字黑洞。

是否每一个数最后都能得到123呢?用一个大数试试看。

例如:88883337777444992222,在这个数中偶数、奇数及全部数字个数分别为11、9、20,将这3个数合起来得到11920,对11920这个数串重复这个程序得到235,再重复这个程序得到123,于是便进入"黑洞"了。

这就是数学黑洞"西西弗斯串"。

孔雀开屏数:(20+25)的平方=2025类似的数还有两个:(30+25)的平方=3025(98+01)的平方=9801 与此相类似的还有:(2+4+0+1)的4次方=2401(5+1+2)的立方=512(8+1)的平方=81回归数英国大数学家哈代(G.H.Hardy,1877-1947)曾经发现过一种有趣的现象:153=1^3+5^3+3^3371=3^3+7^3+1^3370=3^3+7^3+0^3407=4^3+0^3+7^3他们都是三位数且等于各位数字的三次幂之和,这种巧合不能不令人感到惊讶.更为称奇的是,一位读者看过哈代的有趣发现后,竟然构造出其值等于各位数字四(五,六)次幂之和的四(五,六)位数:1634=1^4+6^4+3^4+4^454748=5^5+4^5+7^5+4^5+8^5548834=5^6+4^6+8^6+8^6+3^6+4^6注:3位3次幂回归数又称位“水仙花数”像这种其值等于各位数字的n 次幂之和的n 位数,称为n 位n 次幂回归数.本文只讨论这种回归数,故简称为回归数,人们自然要问:对于什么样的自然数n 有回归数?这样的n 是有限个还是无穷多个?对于已经给定的n ,如果有回归数,那么有多少个回归数?1986年美国的一位数学教师安东尼.迪拉那(Anthony Diluna)巧妙地证明了使n 位数成为回归数的n 只有有限个.设An 是这样的回归数,即:An=a1a2a3...an=a1^n+a2^n+...+an^n (其中0<=a1,a2,...an<=9)从而10^n-1<=An<=n9^n 即n 必须满足n9^n>10^n-1 也就是(10/9)^n<10n (1)随着自然数n 的不断增大,(10/9)^n 值的增加越来越快,很快就会使得(1)式不成立,因此,满足(1)的n 不能无限增大,即n 只能取有限多个.进一步的计算表明:(10/9)^60=556.4798...<10*60=600 (10/9)^61=618.3109...>10*61=610对于n>=61,便有(10/9)^n>10n由此可知,使(1)式成立的自然数n<=60.故这种回归数最多是60位数.迪拉那说,他的学生们早在1975年借助于哥伦比亚大学的计算机得到下列回归数:一位回归数:1,2,3,4,5,6,7,8,9二位回归数:不存在三位回归数:153,370,371,407四位回归数:1634,8208,9474五位回归数:54748,92727,93084六位回归数:548834七位回归数:1741725,4210818,9800817八位回归数:24678050,24678051但是此后对于哪一个自然数n (<=60)还有回归数?对于已经给定的n ,能有多少个回归数?最大的回归数是多少?3 153 370 371 4074 1634 8208 94745 54748 92727 930846 5488347 1741725 4210818 9800817 99263158 24678050 24678051 885934779 146511208 472335975 534494836 91298515310 467930777411 82693916578 44708635679 94204591914 32164049651 42678290603 40028394225 32164049650 4938855060612 无解13 无解0564240140138(只有广义解一组)14 2811644033596715 无解16 4338281769391371 433828176939137017 35641594208964132 21897142587612075 35875699062250035 233411150132317(广义解)18 无解19 4498128791164624869 4929273885928088826 3289582984443187032 151784154330750503920 14543398311484532713 6310542598859969391621 128468643043731391252 44917739914603869730722 无解23 21887696841122916288858 28361281321319229463398、27879694893054074471405 35452590104031691935943 27907865009977052567814数学黑洞6174数学黑洞是古希腊的一个国王偶然发现的。

神奇的数字数学

神奇的数字数学

• 完全数的全部因子的倒数和都等于2,如:
• 逻辑美,思辨美
3.14159926
• 至1999年,已经算到小数点后2061亿位. • 从小数点后第71,0100位起连续出现6个3;小数点后一 千万位中,连续出现6个同一数字的有87次: • 前六位有效数字314159是个素数,把它反过来 (951413)还是素数;314159恰好是三个素数31、41、 59连写而成,这三个素数的和,它们的立方和,以及五 次方和也都是素数. • (奇异美)
………………
如此循环, 18个9除以7等于多少呢? 等于57142857142857 —三组“142857” 24个9除以7呢? 是142857142857142857142857— 组“142857”....... 不信的按按计算器
—四
亲和数
• 亲和数——正整数M(N)的全部正因子(去掉其 本身)之和,恰为N(M),则称M和N为一对亲 和数.(奇异美) • 毕达哥拉斯时代就知道220和284是一对亲和数
• 1636年皮勒发现并公布了第二对亲和数 17296和18416, • 阿拉伯数学家本· 科拉建立了一个亲和数公 式:设
其中n是大于1的正整数,如果 全是 素数,那么 与 便是一对亲 和数. (统一美)
142857x142857=20408122449
• 再把20408122449分解两组数字,20408和 122449 ,它们之和是:
20408+122449=142857
• 它发现于埃及金字塔内 • 它是一组神奇的数字 • 它证明一星期有7天 • 它自我累加一次,就由它的6个数字,依顺序轮值 一次,到了第7天,他们就放假,由999999去代 班,数字越加越大,每超过一星期轮回,每个数 字需要分身一次,你不需要计算机,只要知道它 的分身方法,就可以知道继续累加的答案 • 它还有更神奇的地方等待你去发掘! • 也许,它就是宇宙的密码

神奇数字与股市预测——斐波纳契数

神奇数字与股市预测——斐波纳契数

介绍把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。

由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。

这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

作黄金分割点的一种方法 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”。

特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。

作黄金分割点的一种方法 斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

即f(n)/f(n-1)-→0.618…。

由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。

但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

一个很能说明问题的例子是五角星/正五边形。

五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。

正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。

神奇的数学

神奇的数学

死理性派的小编经常会被问到的一个问题:数学到底哪里有趣了,数学之美又在哪里?这篇文章精心选择了10 个老少咸宜的算术问题,以定理、趣题甚至未解之谜等各种形式带领大家窥探数学世界的一角。

不少问题背后都蕴含了深刻的数学知识,触及到数学的各个领域。

希望从小数学就不及格的朋友们能够喜欢上数学这门充满乐趣的学科。

1.数字黑洞6174任意选一个四位数(数字不能全相同),把所有数字从大到小排列,再把所有数字从小到大排列,用前者减去后者得到一个新的数。

重复对新得到的数进行上述操作,7 步以内必然会得到6174。

例如,选择四位数6767:7766 - 6677 = 10899810 - 0189 = 96219621 - 1269 = 83528532 - 2358 = 61747641 - 1467 = 6174……6174 这个“黑洞”就叫做Kaprekar 常数。

对于三位数,也有一个数字黑洞——495。

2.3x + 1 问题从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加1 。

你会发现,序列最终总会变成4, 2, 1, 4, 2, 1, … 的循环。

例如,所选的数是67,根据上面的规则可以依次得到:67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17,52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...数学家们试了很多数,没有一个能逃脱“421 陷阱”。

但是,是否对于所有的数,序列最终总会变成4, 2, 1 循环呢?这个问题可以说是一个“坑”——乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。

已经中招的数学家不计其数,这可以从3x + 1 问题的各种别名看出来:3x + 1 问题又叫Collatz 猜想、Syracuse 问题、Kakutani 问题、Hasse 算法、Ulam 问题等等。

神奇的数字黑洞

神奇的数字黑洞

神奇的数字黑洞神奇的数字黑洞人教版小学数学五年级上册第31页的“你知道吗?”谈到了数字黑洞6174。

这个数字黑洞是印度数学家卡普耶卡于1949年发现的。

类似的数字黑洞还有许多。

黑洞原本是天文学中的概念,表示这样一种天体:它的引力场非常强,任何物质甚至是光,一旦被它吸入就再也休想逃脱出来。

数学中借用这个词,正像文中所说的那样,“数学黑洞是指自然数经过某种数学运算之后陷入一种循环的境况。

”下面再介绍几个有趣的数字黑洞。

1、数字黑洞153任意取一个是3的倍数的数。

求出这个数各个数位上数字的立方和,得到一个新数,然后再求出这个新数各个数位上数字的立方和,又得到一个新数,如此重复运算下去,最后一定落入数字黑洞“153”。

如,取63。

63+33=216+27=243, 23+43+33=8+64+27=99,93+93=729+729=1458, 13+43+53+83=1+64+125+512=702,73+03+23=243+0+8=351, 33+53+13=153, 13+53+33=153,……再如,取219。

23+13+93=8+1+729=738,73+33+83=343+27+512=882,83+83+23=512+512+8=1032,13+03+33+23=1+0+27+8=36,33+63=27+216=243,23+43+33=8+64+27=99,93+93=729+729=1458,13+43+53+83=1+64+125+512=702,73+03+23=343+0+8=351,33+53+13=27+125+1=153,13+53+33=153,……数字黑洞153又叫“圣经数”,这个奇妙的数“153”是一位叫科恩的以色列人发现的。

科恩是一位基督徒。

一次,他在读圣经《新约全书》的“约翰福音”第21章时,当他读到:耶稣对他们说:“把刚才打的鱼拿几条来。

”西门·彼得就去把网拉到岸上。

为什么说“0.618”是一个极为迷人而神秘的数字?

为什么说“0.618”是一个极为迷人而神秘的数字?

为什么说“0.618”是⼀个极为迷⼈⽽神秘的数字?为什么说“0.618”是⼀个极为迷⼈⽽神秘的数字?0.618,⼀个极为迷⼈⽽神秘的数字,⽽且它还有着⼀个很动听的名字——黄⾦分割律,它是古希腊著名数学家毕达哥拉斯于2500多年前发现的。

古往今来,这个数字⼀直被后⼈奉为科学和美学的⾦科⽟律。

在艺术史上,⼏乎所有的杰出作品都不谋⽽合地验证了这⼀著名的黄⾦分割律,⽆论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与⽔平线之间竟然完全符合黄⾦分割律的⽐例。

⽽黄⾦定律的发现竟是源⾃⼀次偶然的际遇。

有⼀次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。

这清脆悦⽿的声⾳中隐藏着什么秘密呢?毕达哥拉斯⾛进作坊,测量了铁锤和铁砧的尺⼨,发现它们之间存在着⼗分和谐的⽐例关系。

回到家⾥,他⼜取出⼀根线,分为两段,反复⽐较,最后认定1:0.618的⽐例最为优美。

于是毕达哥拉斯从铁匠打铁时发出的具有节奏和起伏的声响中测出了不同⾳调的数的关系,并通过在琴弦上所做的实验找出了⼋度、五度、四度和谐的⽐例关系。

在对“数”特别是⾳乐的研究过程中,毕达哥拉斯发现和谐能够产⽣美感效果,和谐是由⼀定数的⽐例关系中派⽣出来的。

后来⼈们把这种数的⽐例关系推⼴到⾳乐、绘画、雕刻、建筑等各个⽅⾯,⽐如达·芬奇的《最后的晚餐》。

0.618这个数值,数学史上称之为黄⾦分割数或黄⾦⽐。

下⾯是与0.618有关的⼀些事物,可见其美感⾊彩之⼀斑。

在⾳乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处:⼆胡要获得最佳⾳⾊,其“千⽄”则须放在琴弦长度的0.618处。

另外,根据⼴泛调查,所有让⼈感到赏⼼悦⽬的矩形,包括电视屏幕、写字台⾯、书籍、门窗等,其短边与长边之⽐⼤多为0.618,甚⾄连⽕柴盒、国旗的长宽⽐例,都恪守0.618⽐值。

所以,建筑物的门、窗通常均设计成长⽅形,其短边占长边的⽐值均为0.618,给⼈以⼀种稳定、和谐的感觉。

神奇有趣的10个数学小魔术——方法与原理

神奇有趣的10个数学小魔术——方法与原理

神奇有趣的10个数学小魔术——方法与原理一、67读心术规则:1、两位数(含)以下的:你心中在0—100间随意想一个数,将这个数乘以67,告诉我结果的后两位,我将你告诉我的数乘以3,得出结果的后两位就是你心中所想之数了。

例如,你心中想83,乘67得5561,用61*3=183,去后两位就是83了。

2、多位数的:让对方心里随便想一个三位数。

让对方将该数乘以667,然后他最开始想的那个数是几位数,就让他告诉你乘积的后几位数。

这时,你用那个后几位数乘以三。

即可得到他最开始想的那个数。

(他最开始想的那个数是几位,就取你算得的乘积的后几位)。

这个算法是可以严格证明其正确性的。

另外,如果把667改成6667,那么对四位数也适用。

(67这个数字会出卖你的灵魂!)证明:当想的数是一位时,不防设为c,第一步:67c,令得到的数的十位以上的数为x,则个位为(67c-10x)第二步:3(67c-100x)=201c-300x=200c-300x+c,显然得到的个位上的数字为c当想的数是两位时,不妨设为bc,第一步:67bc,令得到的数的百位以上的数为y,则十个位为(67bc-100y)第二步:3(67bc-100y)=201bc-300y=200bc-300y+bc,显然得到的数的十个两位是bc当想的数是三位时,不妨设为abc,(三位数时乘以667)第一步:667abc,令得到的数的千位以上的数为z,则百十个位为(667abc-1000z)第二步:3(667abc-1000z)=2001abc-3000z=2000abc-3000z+abc,显然得到的数的百十个位为abc当想的数是四位时,三位数时乘以6667推广:上面我们利用了67*3=201,667*3=2001,6667*3=20001的特性。

我们也可以利用89*9=801,889*9=8001,8889*9=80001的特性设计游戏。

二、魔术与二元一次不定方程规则第一步:让学生在一副数字牌(36张)中随便抽取两张,不让老师看见。

小学数学《神奇的0.618》

小学数学《神奇的0.618》

神奇的0.618一、黄金分割率——0.618的产生说到小数,人们很自然会想到黄金分割数0.618,什么是黄金分割数呢?所谓为黄金分割是数学上的一种比例关系,历史上把这个比赋予一个美丽的名字——黄金分割比,0.618是黄金分割数。

公元前六世纪古希腊数学家毕达哥拉斯所发现,把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为 1.618 : 1或1 : 0.618。

也就是说把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值其小数点后三位的近似值是0.618。

由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。

若矩形的宽与长的比约等于0.618,那么这个矩形称为黄金矩形。

由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。

而计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,。

..后二数之比2/3,3/5,5/8,8/13,13/21,...近似值的。

黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。

这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利将中末比为神圣比例,并专门为此著书立说。

德国天文学家开普勒称黄金分割为神圣分割。

其实有关“黄金分割”,我国也有记载。

黄金分割率

黄金分割率

一、黄金分割率的由来:黄金分割率 0.618033988..., 是一个充满无穷魔力的的无理数. 它不但在数学中扮演着神奇的角色,而且在建筑, 美学, 艺术、军事, 音乐, 甚至在投机领域都可以找到这个神奇数字的存在.四千年前,古埃及人把黄金分割用在大金字塔的建造上. 两千三百年前, 古希腊数学家欧几理德第一次用几何的方法给出黄金分割率的计算. 米开朗基罗、达.芬奇把黄金分割融会于他们的绘画与雕塑,在贝多芬, 莫扎特, 巴赫的音乐里流动着黄金分割的完美和谐。

早在古希腊人们就注意到一个“神秘”数字。

假定有一个数x ,它有如下有趣的数学关系:002=-+x x x 即:012=-+x x解这个方程,有两个解:87...1.61803398 2)15(-≈+-=x或 87...0.61803398 215≈-=x注意:这两个数的小数部分是完全相同的。

正数解被称为黄金数或黄金分割率,通常用φ表示。

这是一个无理数(小数无限不循环,没法用分数来表示),而且是最无理的无理数。

二、黄金分割率的理论基础:在差不多二千年前希腊的数学家考虑了一个几何问题,这问题可以这样说:给出任何一个线段AB ,我们要在这上面找出一点,这一点把这线段分成长短二部份。

要求的是全线段的长和较长部份的比值是等于较长部分和较短部份的长的比值。

如果我们假设较长的部份是AC ,较短的部份是CB ,由于AB=AC+CB ,而且CB AB AC 2∙=,现在我们得到了一个代数方程,我们把这个方程化简它变成了012=-+x x (CACB =x ),解得:87...0.61803398 215≈-=x 即黄金数或黄金分割率。

三:黄金分割率的传统应用1.黄金分割率在投资中的运用:在股价预测中,根据该两组黄金比有两种黄金分割分析方法。

第一种方法:以股价近期走势中重要的峰位或底位,即重要的高点或低点为计算测量未来走势的基础,当股价上涨时,以底位股价为基数,跌幅在达到某一黄金比时较可能受到支撑。

1.走进美妙的数学世界(含答案)-

1.走进美妙的数学世界(含答案)-

1.走进美妙的数学世界知识纵横从蛮荒时代的结绳计数到现代通讯和信息时代神奇的数学,•人类任何时候都受到数学的恩惠和影响,数学科学是人类长期以来研究数、•量的关系和空间形式而形成的庞大科学体系.走进美妙的数学世界,我们将一起走进崭新的“代数”世界,•不断扩充的数系、奇妙的字母表示数、威力巨大的方程、不等式模型、运动变化的函数观念;走进美妙的数学世界,我们将一起走进丰富的“图形”世界,拼剪、折叠、平移、旋转,在操作与实验活动中,发现这些图形的奇妙的性质,用它们设计精美的图案;走进美妙的数学世界,我们将畅游在无边的“数据”世界,从图表中获取信息,并选择合适的图表来表达数据和信息;走进美妙的数学世界,它将开阔我们的视野,它提醒我们有无形的灵魂,它改变我们的思维方式,它涤尽我们的蒙昧与无知。

诺贝尔奖获得者、著名物理学家杨振宇说:“我赞美数学的优美和力量,它有战术的机巧与灵活,又有战略上的雄才远虑,而且,奇迹的奇迹,它的一些美妙概念竟是支配物理世界的基本结构。

”例题求解【例1】(1)我们平常用的数是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数的数码(又叫数字):0,1,2,3……9,在电子计算机中用的是二进制,只要两个数码0和1,如二进制中101=1×22+0×21+1等于十进制的数5,•那么二进制中的1101等于十进制的数_________. (2001年浙江省金华市中考题)(2)探究数学“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大,•吸引力强,任何物体到了它那里都别想再“爬”出来,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌,譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上数字再立方、求和……,重复运算下去,就能得到一个固定的数T=__________,•我们称之为数字“黑洞”。

xu

xu

数学之美摘要:世间万物皆有美,悠扬的音乐之美,精美的图画之美,幽雅的自然景观之美,当然还有我们的科学之美,数学之美。

数学美,无处不在,令人惊叹不已的是数字游戏,完美的几何对称结构,充满数字玄机的人文史,如此等等。

许多数学界的有名之士也对此深信不已,他们对数学之美阐述了他们的观点。

关键字:数学美有趣对称美数字美人文美人们常说:美,只可意会,不可言传。

世间万物皆有美,优美动听的音乐,变幻多彩的图画,清新优雅的大自然,许多科学中也蕴含着无穷的美感,数学就是如此。

也许大部分人都认为,数学何美之有,枯燥无味,无尽的验证,乏味的数字,根本无美感可言。

难道真的如此吗? 古今中外许多著名的数学家都曾以其亲身感受对这个问题有过深刻的论述,认为数学不仅与美学密切相关,而且数学中充满着美的因素,到处闪现着美的光辉。

美国数学家哈代说得好:“现在也许难以找到一个受过教育的人,对数学的魅力全然无动于衷,数学的美虽然难于定义,但它的确是一种真实的美,和任何其他的美一样。

比如对什么是一首美丽的诗,我们虽然不很清楚,但这并不妨碍我们读诗时去鉴赏它。

”我国著名数学家徐利治教授指出:“数学园地处处开放着美丽花朵,它是一片灿烂夺目的花果园,这片花果园正是按照美的追求开拓出来的。

”那么数学美究竟在什么地方呢?令如此多的人赞不绝口。

数学中的美是千姿百态、丰富多彩的,如美的形式符号、美的公式、美的曲线、美的曲面、美的证明、美的方法、美的理论等。

下面呢,我们就来认识一下数学中的魅力所在。

图形结构的对称之美。

它反映的是审美对象形态或结构的均衡性、匀称性或变化的周期性、节律性。

在现实世界中,形式上和内容上的对称性,广泛地存在于客观事物之中,既有轴对称、中心对称、平面对称等的空间对称,又有周期、节奏和旋律的时间对称,还有与时空坐标无关的更为复杂的对称。

数学的对称美,实质上是自然物的和谐性在量和量的关系上最直观的表现。

几何对称也许是我们最常见的对称之美,正方形,圆形,正三角形等等,其实,在我们的数学分析中,就有许多几何对称,例如双纽线,心形线,这些图形在我们的实际生活中也常看到,心形果冻,四瓣花,三叶草等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档