第1章 电力拖动自动控制系统 运动控制系统(第5版)
电力拖动自动控制系统-运动控制系统-阮毅-陈伯时思考题和课后习题答案
电力拖动自动控制系统-运动控制系统〔阮毅伯时〕课后答案包括思考题和课后习题第2章2-1 直流电动机有哪几种调速方法?各有哪些特点?答:调压调速,弱磁调速,转子回路串电阻调速,变频调速。
特点略。
2-2 简述直流 PWM 变换器电路的根本构造。
答:直流 PWM 变换器根本构造如图,包括 IGBT 和续流二极管。
三相交流电经过整流滤波后送往直流 PWM 变换器,通过改变直流 PWM 变换器中 IGBT 的控制脉冲占空比,来调节直流 PWM 变换器输出电压大小,二极管起续流作用。
2-3 直流 PWM 变换器输出电压的特征是什么?答:脉动直流电压。
2=4 为什么直流 PWM 变换器-电动机系统比 V-M 系统能够获得更好的动态性能?答:直流 PWM 变换器和晶闸管整流装置均可看作是一阶惯性环节。
其中直流 PWM 变换器的时间常数 Ts 等于其 IGBT 控制脉冲周期〔1/fc〕,而晶闸管整流装置的时间常数 Ts 通常取其最大失控时间的一半〔1/〔2mf〕。
因 fc 通常为 kHz 级,而 f 通常为工频〔50 或 60Hz〕为一周〕,m 整流电压的脉波数,通常也不会超过 20,故直流 PWM 变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。
2=5 在直流脉宽调速系统中,当电动机停顿不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流 PWM 变换器的输出。
电枢回路中还有电流,因为电枢电压和电枢电阻的存在。
2-6 直流 PWM 变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?答:为电动机提供续流通道。
假设二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。
2-7 直流 PWM 变换器的开关频率是否越高越好?为什么?答:不是。
因为假设开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开场下降了,从而导致平均电流总小于负载电流,电机无法运转。
电力拖动自动控制系统-第五版 课后习题答案
习题解答(供参考)2.1试分析有制动电流通路的不可逆PWM 变换器进行制动时,两个VT 是如何工作的?解:减小控制电压,使U g1得正脉冲变窄,负脉冲变宽,从而使平均电枢电压U d 降低,使得E>U d ,电机流过反向电流,电机进入制动状态。
0≤t< t on 时,通过二极管VD1续流,在t on ≤t<T 期间U g2为正,VT2导通,流过反向制动电流。
因此在制动状态时,VT2和VD1轮流导通,VT1始终关断。
2.2 系统的调速范围是1000~100min r ,要求静差率s=2%,那么系统允许的静差转速降是多少?解:10000.022.04(1)100.98n n n rpm rpm D s ⨯∆===-⨯系统允许的静态速降为2.04rpm 。
2.3 某一调速系统,在额定负载下,最高转速特性为min 1500m ax 0r n =,最低转速特性为 0min 150min n r =,带额定负载时的速度降落15min N n r ∆=,且在不同转速下额定速降 不变,试问系统能够达到的调速范围有多大?系统允许的静差率是多少?解:1)调速范围 maxminn D n =(均指额定负载情况下) max 0max 1500151485N n n n rpm =-∆=-= min 0min 15015135N n n n rpm =-∆=-=max min 148511135n D n ===2) 静差率 min 1510%150N n s n ∆===2.4 直流电动机为N P =74kW, N U =220V ,N I =378A ,N n =1430r/min ,Ra=0.023Ω。
相控整流器内阻Rrec=0.022Ω。
采用降压调速。
当生产机械要求s=20%时,求系统的调速范围。
如果s=30%时,则系统的调速范围又为多少??解: 2203780.0230.1478/1430N N a e N U I R C V rpm n --⨯===378(0.0230.022)1150.1478N e I R n rpm C ⨯+∆===当s=20%时 14300.23.1(1)115(10.2)N n s D n s ⨯===∆-⨯-当s=30%时 14300.35.33(1)115(10.3)N n s D n s ⨯===∆-⨯-2.5 某龙门刨床工作台采用V-M 调速系统。
电力拖动自动控制系统PPT课件
晶闸管整流器是毫秒级,这将大大提高系统的
动态性能。
2021/3/8
42
• V-M系统的问题
– 由于晶闸管的单向导电性,它不允许电 流反向,给系统的可逆运行造成困难。
– 晶闸管对过电压、过电流和过高的dV/dt 与di/dt 都十分敏感,若超过允许值会在 很短的时间内损坏器件。
– 由谐波与无功功率引起电网电压波形畸 变,殃及附近的用电设备,造成“电力 公害”。
本章提要11直流调速系统用的可控直流电源12晶闸管电动机系统vm系统的主要问题13直流脉宽调速系统的主要问题14反馈控制闭环直流调速系统的稳态分析和设计15反馈控制闭环直流调速系统的动态分析和设计16比例积分控制规律和无静差调速系统11直流调速系统用的可控直流电源根据前面分析调压调速是直流调速系统的主要方法而调节电枢电压需要有专门向电动机供电的可控直流电源
电力拖动自动控制系统
电气信息学院
2021/3/8
1
绪论
自动控制系统的几个概念 自动控制系统的分类 自动控制系统的组成 自动控制系统的性能指标 研究自动控制系统的方法 本课程与其它课程的连接本课程的主要内容 计算机控制系统的概念
2021/3/8
2
一.自动控制系统的几个概念
1.自动控制 Automatic control 在无人直接参与的情况下,利用控制装
例子:计算机控制系统。 数学模型用差分方程描述
2021/3/8
13
二.自动控制系统的分类
4.按系统有无反馈环节分类 ①开环控制系统 ②闭环控制系统
5.按系统控制对象和方式分类,又可分为 拖动控制系统(电气控制系统、机械控 制系统)和过程控制系统(石油,化工, 制药等)
2021/3/8
电力拖动自动控制系统运动控制系统第5版
K)
n0cl
ncl
式中, n0cl 表示闭环系统的理想空载转速, ncl 表示闭环系统的稳态速降。
(3-3)
转速负反馈闭环直流调速系统稳态结构框图
(1)闭环系统静特性可以比开环系统 机械特性硬得多
• 在同样的负载扰动下,
开环系统的转速降落 闭环系统的转速降落
nop
RI d Ce
• 它们的关系是
ncl
第3章 转速闭环控制的直流调速系 统
第3章 目录
• 3.1有静差的转速闭环直流调速系统(系统 结构与静特性分析,闭环直流调速系统的 反馈控制规律,稳定性分析)
• 3.2 无静差的转速闭环直流调速系统(比例 积分控制规律、稳态参数计算)
• 3.3 转速闭环直流调速系统的限流保护 • 3.4 转速闭环控制直流调速系统的仿真
RI d Ce (1
K)
ncl
nop 1 K
(3-4)
(2)闭环系统的静差率要比开环系统 小得多
• 闭环系统的静差率为
scl
ncl n0cl
• 开环系统的静差n0op n0cl 时,
scl
sop 1 K
(3-5)
(3)如果所要求的静差率一定,则 闭环系统可以大大提高调速范围
• 如 率果都电是s动,机可的得最高转速都是nN,最低速静差
开环时,
Dop
nN s nop (1 s)
闭环时,
Dcl
nN s ncl (1
s)
• 得到
Dcl (1 K )Dop (3-6)
• 结论:比例控制的直流调速系统可以获得比 开环系统硬得多的稳态特性,即负载引起的 转速降落减小了,从而保证在一定静差率的 要求下,能够获得更宽的调速范围.
《电力拖动自动控制系统—运动控制系统(第5版)》教学课件—05直流调速系统的数字控制
综合这两种测速方法的特点,产生了M/T测速 法,它无论在高速还是在低速时都具有较高的 分辨能力和检测精度。
5.2.5 M/T法测速-原理
图5-6 M/T法测速原理示意图
5.2.5 M/T法测速
关键是和计数同步开始和关闭,实际的检测时 间与旋转编码器的输出脉冲一致,能有效减小 测速误差。
5.2.3 M法测速
图5-4 M法测速原理示意图
由系统的定时器按采样周期的时间定期地发出一 个采样脉冲信号,
计数器记录下在两个采样脉冲信号之间的旋转编 码器的脉冲个数。
5.2.3 M法测速
M法测速分辨率为
Q 60(M1 1) 60M1 60
ZTc
ZTc ZTc
(5-4)
M法测速的分辨率与实际转速的大小无关。
M法的测速误差率的最大值为
60M 1 60( M 1 1 )
max ZTc
ZTc 60M 1
ZTc
100% 1 100%
M1
(5-5)
δ大m。ax与M1成反比。转速愈低,M1愈小,误差率愈
5.2.4 T法测速
T法测速是测出旋转编码器两个输出脉冲之 间的间隔时间来计算转速,又被称为周期法测 速。
5.2.4 T法测速
T法测速误差率的最大值为
60 f0
60 f0
m低ax 速 Z时(M,2 编6Z10)M码f02 器ZM相2 邻脉100冲%间 M隔21时1间1长00%,(测5得-9的)
高高频 。时钟脉冲M2个数多,误差率小,测速精度
T法测速更适用于低速段。
5.2.5 M/T法测速
在M法测速中,随着电动机的转速的降低,计 数值减少,测速装置的分辨能力变差,测速误 差增大。
电力拖动自动控制系统--动控制系统(1)-
1.2 晶闸管-电动机系统(V-M系统)的主要问题
on
• ton不变,变 T —脉冲频率调制(PFM); • t 和 T 都可调,改变占空比—混合型。
on
40
• PWM系统的优点
1 主电路线路简单,需用的功率器件少; 2 开关频率高,电流容易连续,谐波少,电机损耗及发热
都较小; 3 低速性能好,稳速精度高,调速范围宽,可达1:10000左
右; 4 若与快速响应的电机配合,则系统频带宽,动态响应快
可调的直流电压。 • 直流斩波器或脉宽调制变换器——用恒定直流电源或不
控整流电源供电,利用电力电子开关器件斩波或进行脉 宽调制,以产生可变的平均电压。
28
1.1.1 旋转变流机组( G-M系统, Ward-Leonard系统)
图1-1旋转变流机组供电的直流调速系统(G-M系统)
29
• G-M系统特性
15
4. 电枢绕组的反电势
E是电枢旋转时,绕组切割主磁通Φ的结果,故和Φ与转速n的乘积
成正比。
式中:Ke—电动势结构系数,Ce —恒磁通电动势结构系数;
n—电动机转速,在此转速下,电动机的电磁转矩
Te正好与负
载转矩Tl相平衡,系统处于稳定运行状态。
16
5. 直流电动机的机械特性方程
1 理想空载转速n0 当Te=0时,n=n0;
34
35
➢ 晶闸管对过电压、过电流和过高的dV/dt与di/dt 都十分敏感,若超过允许 值会在很短的时间内损坏器件。 ➢ 当系统处在深调速状态,即在较低速运行时,晶闸管的导通角很小,使得 系统的功率因数很低,并产生较大的谐波电流,引起电网电压波形畸变,殃 及附近的用电设备。由谐波与无功功率引起电网电压波形畸变,殃及附近的 用电设备,造成“电力公害”。
电力拖动自动控制系统PPT课件
– 异步电动机变压变频调速时需要进行电压(或 电流)和频率的协调控制,有电压(或电流) 和频率两种独立的输入变量。在输出变量中, 除转速外,磁通也是一个输出变量。
2021/1/21
7
6.1 异步电动机动态数学模型的 性质
• 异步电动机的动态数学模型是一个高阶、 非线性、强耦合的多变量系统。
• 作如下的假设:
– 忽略空间谐波,三相绕组对称,产生的磁动势 沿气隙按正弦规律分布。
– 忽略磁路饱和,各绕组的自感和互感都是恒定 的。
– 忽略铁心损耗。 – 不考虑频率变化和温度变化对绕组电阻的影响
。
2021/1/21
9
6.2 异步电动机的三相数学模型
• 无论异步电动机转子是绕线型还是笼型的 ,都可以等效成三相绕线转子,并折算到 定子侧,折算后的定子和转子绕组匝数相 等。
• 定、转子相对位置变化产生的与转速成正 比的旋转电动势
dL i d
2021/1/21
24
电压方程
• 转矩方程
T e n p L m ( i A s i a i B i b i C i c ) si ( n i A i b i B i c i C i a ) si 1 n ) 2 ( ( i A i c i B i a i C i b ) si 1 n ) 2 ( 0
ia R r
d a dt
ub
ib R r
d b dt
uc
ic R r
d c dt
2021/1/21
21
电压方程
• 将电压方程写成矩阵形式
u
Ri
dψ
dt
uA Rs 0 0 0 0 0 iA
电力拖动自动控制系统运动控制系统(第5版)
主要章节
第二篇 交流调速系统 第6章 基于稳态模型的异步电动机调
速系统 第7章 基于动态模型的异步电动机调
速系统 第8章绕线转子异步电机转子变频控制
系统 第9章同步电动机变压变频调速系统
主要章节
第三篇 伺服系统 第10章 伺服系统
讲课学时
本书按讲课64学时编写,根据编者的教 学经验,在64学时内,难以全部完成九 章内容的教学。
电力拖动自动控制系统 —运动控制系统(第5版)
阮毅 杨影 陈伯时 编 机械工业出版社
前言
本书适用于高等院校电气工程与自动化、 电气工程及其自动化、自动化专业本科 “运动控制系统”或“电力拖动自动控制 系统”课程教学。
其深入部分也可作为电力电子与电力传动、 工业自动化等相关学科硕士研究生用书。
考虑到各校相应专业对课程的要求不同, 在实际教学中可选用部分内容,以第2、 3、4、5、6、7章为重点,带*部分可作 为选讲内容。
谢谢使用
在编写过程中,我们虽然花了不 少精力,仍难免有错误与不足之 处,殷切期望广大教师和读者批 评指正。
主要思路
理论与实际相结合,应用自动控制理论解决 运动控制系统的分析和设计等实际问题。以 转速、转矩(电流)和磁链(磁通)控制规 律为主线,由简入繁、由低及高地循序渐进 ,按照从开环到闭环、从直流到交流、从调 速到伺服的层次论述运动控制系统的静、动 态性能和设计方法。
主要章节
第1章 绪论 第一篇 直流调速系统 第2章 转速开环控制的直流调速系统 第3章 转速闭环控制的直流调速系统 第4章 转速、电流双闭环控制的直流
《电力拖动自动控制系统—运动控制系统》习题答案
《电力拖动自动控制系统—运动控制系统》习题2-2调速系统的调速范围是1000~100r/min ,要求静差率s=2%,那么系统允许的稳态速降是多少?解:系统允许的稳态速降)min (04.2)02.01(10002.0)1(min r s sn n N =−×=−=∆2-5某龙门刨床工作台采用晶闸管整流器-电动机调速系统。
已知直流电动机kW P N 60=,V U N 220=,A I N 305=,min 1000r n N =,主电路总电阻Ω=18.0R ,r V C e min 2.0•=,求:(1)当电流连续时,在额定负载下的转速降落N n ∆为多少?(2)开环系统机械特性连续段在额定转速时的静差率N s 多少?(3)额定负载下的转速降落N n ∆为多少,才能满足%5,20≤=s D 的要求。
解:(1)当电流连续时,在额定负载下的转速降落)min (5.2742.018.0305r C R I n e N N =×==∆(2)开环系统机械特性连续段在额定转速时的静差率%5.21215.05.27410005.274=≈+=∆+∆=N N N N n n n s (3)额定负载下满足%5,20≤=s D 要求的转速降落)min (63.2)05.01(2005.01000)1(r s D s n n N N ≈−××=−=∆2-6有一晶闸管稳压电源,其稳态结构如图所示,已知给定电压,8.8*V U u =比例调节放大系数,2=p K 晶闸管装置放大系数,15=s K 反馈系数7.0=γ。
求:(1)输出电压d U ;(2)若把反馈线断开,d U 为何值?开环时的输出电压是闭环时的多少倍?(3)若把反馈系数减至5.30=γ,当保持同样的输出电压时,给定电压*u U 应为多少?解:(1)输出电压)V (128.87.015211521*=×××+×=+=u s p sp d U K K K K U γ;(2)若把反馈线断开,)V (2648.8152*=××==u s p d U K K U ;开环时的输出电压是闭环时的2212264=倍。
电机及拖动基础(第5版)课件:三相异步电动机的电力拖动
r1 r2'
s2
X1
X
' 2
2
当s, s0区间,Ts 当s继续至s1区间,T1/s
最 大 转 矩 点
临界转差率
sm
r2,
X1
X
' 2
最大转矩倍数
最大转矩
Tmax
m1 pU12
4f1
X1
X
' 2
过载能力
m
Tmax TN
一般:2.0~2.2
起动时,s=1,代入公式:
起动
转矩
Tst
m1 pU12 r2,
而在分析异步电动机的电力拖动时,是与直流电动 机对比,运用机械特性和基本方程对起动、制动和调速 分析其原理和进行相关计算,得出各种运行状态时的不 同的性能特点。
《电机及拖动基础》(第5版) 三相异步电动机的电力拖 动
第一节 三相异步电动机的电磁转矩表达式
描述电力拖动系统各种运行状态的有效工具是机械特
(3) 制动状态(s >1 )
当n1与n转向相反时,s>1
转子反向 s n1 ( n) 1 n1
产生的T与n转向相反,起制动 作用,此时电机处于制动状态 对应的T- s曲线是电动状态T- s曲线的延伸
三相异步电动机的T-s曲线
《电机及拖动基础》(第5版) 三相异步电动机的电力拖 动
例5-2 一台三相Y联结的绕线转子异步电动机,其UN=380V,fN=50Hz, nN=950r/min,参数r1=r’2=1.4,X1=3.12,X’2=4.25, 不计T0,试求:
定性讨论几种人为机械特性的特点。注意:定性画 人为机械特性时,只要先定性画出固有机械特性,然后 抓住人为机械特性的同步点、最大转矩点、起动点与固 有机械特性比较有何变化,最终通过这三个特殊点,定 性画出人为机械特性。
第9章,电力拖动自动控制系统,运动控制系统,第5版,阮毅
9.3.2梯形波永磁同步电动 机的自控变频调速系统
图9 -12 梯形波永磁同步电动机的等效电路及逆变器主电 路原理图
9.3.2梯形波永磁同步电动 机的自控变频调速系统
图9 -13 PWM逆变 器输出电压 图9 -14 梯形波永磁同步 电动机的转矩脉动
9.3.2梯形波永磁同步电动 机的自控变频调速系统
电力拖动自动控制系统 —运动控制系统
第 9章
同步电动机变压变 频调速系统
同步电动机变压变频调速系统
同步电动机直接投入电网运行时, 存在失步与起动困难两大问题,曾 制约着同步电动机的应用。 同步电动机的转速恒等于同步转速, 所以同步电动机的调速只能是变频 调速。
同步电动机变压变频调速系统
变频技术的发展与成熟不仅实现了同 步电动机的调速,同时也解决了失步 与起动问题,使之不再是限制同步电 动机运行的障碍。随着变频技术的发 展,同步电动机调速系统的应用日益 广泛。 同步电动机调速可分为自控式和他控 式两种,适用于不同的应用场合。
Te max
图9 -3 隐极同步电动机的矩角特性
3U s Es m xd
9.1.4 同步电动机的稳定运 行
0
2
能够稳定运行
图9 -4 隐极同步电动机的矩角特性
9.1.4 同步电动机的稳定运 行
2
不能稳定运行, 产生失步现象。
图9 -5 隐极同步电动机的矩角特性
9.1.5 同步电动机的起动
9.3.1自控变频同步电动机
需要两套 可控功率 单元,系 统结构复 杂。
图9 -9 自控变频同步电动机调速原理图 UI——逆变器 BQ——转子位置检测器
9.3.1自控变频同步电动机
电力拖动自动控制系统运动控制系统(阮毅陈伯时)课后参考答案(仅供参考)
第五章思考题5-1 对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范围越大吗?答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0<S<S m 所以调速范围不大。
电动机机械特性越软,调速范围不变,因为S m 不变。
5-2 异步电动机变频调速时,为何要电压协调控制?在整个调速范围内,保持电压恒定是否可行?为何在基频以下时,采用恒压频比控制,而在基频以上保存电压恒定?答:当异步电动机在基频以下运行时,如果磁通太弱,没有充分利用电动机的铁心,是一种浪费;如果磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时还会因绕组过热而损坏电动机。
由此可见,最好是保持每极磁通量为额定值不变。
当频率从额定值向下调节时,必须同时降低E g 使14.44常值SgS N mN E N K f ϕ=⨯⨯=,即在基频以下应采用电动势频率比为恒值的控制方式。
然而,异步电动机绕组中的电动势是难以直接检测与控制的。
当电动势值较高时,可忽略定子电阻和漏感压降,而认为定子相电压s g U E ≈。
在整个调速范围内,保持电压恒定是不可行的。
在基频以上调速时,频率从额定值向上升高,受到电动机绝缘耐压和磁路饱和的限制,定子电压不能随之升高,最多只能保持额定电压不变,这将导致磁通与频率成反比地降低,使得异步电动机工作在弱磁状态。
5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式?为什么?所谓恒功率或恒转矩调速方式,是否指输出功率或转矩恒定?若不是,那么恒功率或恒转矩调速究竟是指什么?答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。
5-4基频以下调速可以是恒压频比控制、恒定子磁通、恒气隙磁通和恒转子磁通的控制方式,从机械特性和系统实现两个方面分析与比较四种控制方法的优缺点。
电力拖动自动控制系统第一章课件
n n0 n3 n2 n1 nN
N 1 2 3
O
TL
调压调速特性曲线
Te
三种调速方法的性能与比较 对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(额定转 速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往以 调压调速为主。
1.1.1 旋转变流机组
图1-1 旋转变流机组和由它供电的直流调速系统(G-M系统)原理图
• G-M系统工作原理
由原动机(柴油机、交流异步或同步 电动机)拖动直流发电机 G 实现变流, 由 G 给需要调速的直流电动机 M 供电, 调节G 的励磁电流 if 即可改变其输出电 压 U,从而调节电动机的转速 n 。 这样的调速系统简称G-M系统,国际 上通称Ward-Leonard系统。
PWM系统的优点(续)
(5)功率开关器件工作在开关状态,导通
损耗小,当开关频率适当时,开关损
耗也不大,因而装置效率较高。
(6)直流电源采用不控整流时,电网功率
因数比相控整流器高。
小
结
三种可控直流电源,V-M系统在20 世纪60~70年代得到广泛应用,目前主要 用于大容量系统。 直流PWM调速系统作为一种新技术, 发展迅速,应用日益广泛,特别在中、 小容量的系统中,已取代V-M系统成为 主要的直流调速方式。
•V-M系统主电路的输出
ud
ua ub uc ud Ud E
电力拖动与运动控制系统第一章课后答案
1-2有一V-M 调速系统,电动机参数为:PN=2.5kW ,UN=220V ,IN=15A ,nN=1500r/min,电枢电阻Ra=2Ω,整流装置内阻Rrec=1Ω,触发整流环节的放大倍数Ks=30。
要求系统满足调速范围D=20,静差率s ≤10%。
(1)计算开环系统的静态速降Δnop 和调速要求所允许的闭环静态速降Δncl 。
(2)采用转速负反馈组成闭环系统,试画出系统的原理图和静态结构框图。
(3)计算放大器所需的放大倍数。
解:(1)(2)r V n I R U C N N a N e min/127.01500152220•=⨯-=-=()()min /33.354127.01512r C I R R ne N rec a op =+=+=∆ ()()m in /33.81.01201.015001r S D s n n N cl =-⨯=-=∆(3)1-7 某直流调速系统,其额定数据如下:60kW ,220V ,305A ,1000r/min ,Ra=0.05,电枢回路总电阻R=0.18 ,如果要求调速范围 D = 20,静差率s<= 5%,问开环系统能否满足要求?解:如果要求D=20,S<=5%, 所以,开环不能满足要求。
54.41133.833.3431=-=-∆∆=cl op n n K 79.802.030127.054.41=⨯⨯==αs e p K KC K 205.0100005.0305220=⨯-=-=∴-=N a N a N N n R I U Ce CeR I U n min /8.267205.018.0305r Ce R I n N N =⨯==∆m in /63.2)05.01(2005.01000)1(r D s s n n N N =-⨯≤-=∆1-8 带电流截止负反馈的转速负反馈单闭环有静差调速系统,已知:最大给定电压Unm=15v 。
直流电机额定数据如下:30kW ,220V ,160A ,1000r/min ,Ra=0.1,电枢回路总电阻R=0.4 ,Ks=40。
电力拖动自动控制系统—运动控制系统第1章绪论
03 电力拖动系统基础知识
电力拖动系统概述
电力拖动系统的定义
利用电动机将电能转换为机械能,实 现对机械运动过程的控制。
电力拖动系统的组成
电力拖动系统的分类
根据电动机类型、传动方式和控制要 求等不同,可分为直流电力拖动系统 和交流电力拖动系统。
包括电动机、传动机构、控制设备和 电源等部分。
直流电机与交流电机原理及应用
插补功能
根据预设轨迹生成中间点,实 现平滑运动。
输入输出处理
接收外部信号并处理,输出控 制信号给执行器。
传感器与执行器
传感器类型
包括光电编码器、磁编码器、霍尔传感器等。
传感器与执行器的匹配
根据被控对象和控制要求选择合适的传感器 和执行器。
执行器类型
包括直流电机、交流电机、步进电机、伺服 电机等。
性能参数
为了提高跟踪精度和响应速度,常采 用先进的控制算法,如自适应控制、 滑模变结构控制等。
关节控制系统通过接收来自上位控制器的指 令,驱动伺服电机或步进电机等执行机构, 实现关节的精确角速度或角位移跟踪。
包装机械中物料传输线速度调节
包装机械中的物料传输线负责 将待包装物品传输到包装工位, 其速度调节对于保证包装效率 和质量至关重要。
智能化、网络化的发展推动了运 动控制系统的变革和升级,但同 时也需要解决相关的技术难题和
安全问题。
未来研究方向和热点问题探讨
新型传感器和执行器的研发与应用
探索新型传感器和执行器的原理、结构、制造工艺等关键技术,提高 其性能、可靠性和寿命。
先进控制策略的研究与优化
针对复杂非线性系统,研究更为先进的控制策略,提高系统的控制精 度和稳定性。
性能指标定义及分类
电力拖动自动控制系统——运动控制系统 复习指导必考
电力拖动自动控制系统——运动控制系统1、电力拖动实现了电能与机械能之间的能量转换,电力拖动自动控制系统——运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量。
P12、运动控制系统由电动机、功率放大与变换装置、控制器及相应的传感器等构成。
P13、运动控制系统的任务就是控制电动机的转速和转角,对于直线电动机来说是控制速度和位移。
要控制转速和转角,唯一的途径是控制电动机的电磁转矩T e,转矩控制是运动控制的根本问题。
P54、有三种调节电机转速的方法:1)调节电枢供电电压U;2)减弱励磁磁通Φ;3)改变电枢回路电阻R。
P76、在动态过程中,晶闸管触发与整流装置看成是一个纯滞后环节,其滞后效应是由晶闸管的失控时间引起的。
P147、一个调速系统的调速范围,是指在最低速时还能满足系统所需的静差率的转速可调范围。
P238、调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的办法是减少负载所引起的转速降落Δn N。
P259、反馈控制规律:1)比例控制的反馈控制系统是被调量有静差的控制系统。
2)反馈控制系统的作用是:抵抗扰动,服从给定。
3)系统的精度依赖于给定的反馈检测精度。
P3110、反馈控制系统对它们都有抑制作用,但是有一种扰动除外,如果在反馈通道上的测速反馈系数α受到某种影响而发生变化,它非但不会能够得到反馈控制系统的抑制,反而会造成被调量的误差。
P3111、信号的离散化是微机数字控制系统的第一个特点。
信号的数字化是微机数字系统的第二个特点。
P4112、M法和T法测速特点与适用范围。
M法测速是在一定时间内测取旋转编码器输出的脉冲个数来计算转速;M法测速适用与高速段。
T法测试是测出旋转编码器两个编码器输出脉冲之间的间隔时间来计算转速;T法测速适用与低速段。
M/T法测速无论是在高速还是在低速都有较强的分辨能力。
P43-4513、从闭环结构上看,电流环在里面,称为内环;转速环在外边,称作外环。
电力拖动自动控制系统随堂练习
电力拖动自动控制系统.随堂练习第一章绪论·1.1 运动控制系统组成制的是A、双极性;B、单极性C、受限单极性;D、受限双极性参考答案:C3.直流脉宽调速系统的性能优于V-M系统的原因是 ;A、使用了不可控整流电路B、整流电路采用了二极管C、电磁时间常数小D、开关电路滞后时间短参考答案:D第二章转速反馈控制的直流调速系统·2.2 稳态调速性能指标和直流调速系统的机械特性1.系统的静态速降△ned一定时,静差率S越小,则;A 调速范围D越小B 额定转速ned越大C 调速范围D越大D 额定转速ned越大参考答案:A2.静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,则静差率 A.越小 B.越大 C.不变 D.不确定参考答案:A3.电机的调速范围D可以由以下哪一项表示 ;A. B. C. D.参考答案:C4.静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,则静差率 A.越小 B.越大 C.不变 D.不确定参考答案:A5.控制系统能够正常运行的首要条件是A.抗扰性 B.稳定性 C.快速性 D.准确性参考答案:B6.调速系统的稳态性能指标的是指 ;A、超调量B、调速范围和静差率C、动态降落D、加减速参考答案:B第二章转速反馈控制的直流调速系统·2.3 转速反馈控制的直流调速系统1.异步电动机由电网供电并以电动状态以拖动负载运行时,说法正确的是A从电网输入馈入电功率, 轴上输入机械功率B从电网输入馈出电功率, 轴上输出机械功率C从电网输入馈入电功率, 轴上输出机械功率D从电网输入馈出电功率, 轴上输入机械功率参考答案:C2.异步电机运行时其转子相电动势和频率分别为A,f1 B, sf1 C, sf1 D, f1参考答案:B3.在绕线转子异步电动机转子串电阻调速时,转子电流 Ir 会在外接电阻上产生一个交流电压,这一交流电压与转子电流的关系是A频率相同,相位相同 B频率相同,相位不同C频率不同,相位相同 D频率不同,相位不同参考答案:A第七章绕线转子异步电动机双馈调速系统·7.2绕线型异步电动机串级调速系统1.在异步电动机转子回路附加交流电动势调速的关键就是在转子侧串入的电源要满足A可变频以及不变幅B不变频以及可变幅C可变频以及可变幅D不变频以及不变幅参考答案:C2.绕线异步电机稳定运行时,必有A B C D参考答案:A3.在绕线转子异步电动机转子串电阻调速时,以下说法正确的是A减小β角可以增加电动机转速 B减小β角可以减低电动机转速C调节β角不能实现平滑调速Dβ角的变化与电动机转速无关参考答案:B第七章绕线转子异步电动机双馈调速系统·7.3 串级调速的机械特性3.对于同步电动机,不失速要满足的条件是A 转矩角B 转矩角C 转差频率vs<vsmaxD 以上都不对参考答案:A第八章同步电动机变压变频调速系统·8.2 他控变频同步电动机调速系统1.同步电机他控变频调速系统的特点不包括 ;A结构简单 B 同时多台调速 C 根本上消除失步 D价格低廉参考答案:C2.大功率同步电动机的转速系统,为了保证同步电动机顺利起动,可采用A 恒压频比控制B 调整定子电压C 调整转子电流 D调整定子电源频率参考答案:A第八章同步电动机变压变频调速系统·8.3 自控变频同步电动机调速系统1.对于无刷直流电动机系统,正确的是A 电动机是直流电动机B 系统中的直流电动机通过巧妙设计取消了电刷C 电动机的转子采用瓦型磁钢D 电动机的定子采用瓦型磁钢参考答案:C2.自控变频同步电动机之所以能从根本上杜绝失步现象,是因为根据转子位置直接控制变频装置的;A 输出电压或电流的频率B 输出电压或电流的幅值C 输出电压或电流的相位D 以上都不对参考答案:C3.自控变频同步电动机的组成不包括A 转子位置检测器BQB 速度传感器C 控制器D 逆变器UI参考答案:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硬件电路标准化程度高 控制规律体现在软件上,修改灵活 方便 拥有信息存储、数据通信和故障诊 断等功能
运动控制系统的控制器
模拟控制器
并行运行,控制器的滞后时间小。 微处理器数字控制器 串行运行方式,其滞后时间比模拟 控制器大得多,在设计系统时应予以 考虑。
运动控制系统的信号检测与处理
信号检测
1.2 运动控制系统的历史与发展
直流调速系统
直流电动机的数学模型简单,转 矩易于控制。 换向器与电刷的位置保证了电枢 电流与励磁电流的解耦,使转矩与 电枢电流成正比。
1.2 运动控制系统的历史与发展
交流调速系统
交流电动机(尤其是笼型感应电 动机)结构简单 交流电动机动态数学模型具有非 线性多变量强耦合的性质,比直流电 动机复杂得多。
交流调速系统
基于稳态模型的交流调速系统
转速开环的变压变频调速 转速闭环的转差频率控制系统 动态性能无法与直流调速系统相比
交流调速系统
基于动态模型的交流调速系统
矢量控制系统 直接转矩控制系统 动态性能良好,取代直流调速系统
1.2 运动控制系统的历史与发展
同步电动机交流调速系统
TL 常数
图1-3 恒转矩负载
恒功率负载
负载转矩与转 速成反比,而 功率为常数, 称作恒功率负 载
TL
mห้องสมุดไป่ตู้
PL
常数
m
图1-4 恒功率转矩负载
风机、泵类负载
负载转矩与转速 的平方成正比, 称作风机、泵类 负载
TL n
2 m
2
图1-5 风机、泵类负载
1.4 生产机械的负载转矩特性
生产机械的负载转矩是一个必然存
在的不可控扰动输入。 归纳出几种典型的生产机械负载转 矩特性,实际负载可能是多个典型 负载的组合,应根据实际负载的具 体情况加以分析。
恒转矩负载
负载转矩的大小 恒定,称作恒转 矩负载 a)位能性恒 转矩负载 b) 反抗性恒转 矩负载
电压、电流、转速和位置等信号 信号转换 电压匹配、极性转换、脉冲整形等 数据处理 信号滤波
1.2 运动控制系统的历史与发展
电力电子技术和微电子技术带动了
新一代交流调速系统的兴起与发展, 打破了直流调速系统一统高性能拖 动天下的格局。 进入21世纪后,用交流调速系统取 代直流调速系统已成为不争的事实。
1.3 运动控制系统转矩控制规律
转矩控制是运动控制的根本问
题
要控制转速和转角,唯一的途径就 是控制电动机的电磁转矩,使转速 变化率按人们期望的规律变化。
1.3 运动控制系统转矩控制规律
磁链控制同样重要
为了有效地控制电磁转矩,充分利 用电机铁芯,在一定的电流作用下 尽可能产生最大的电磁转矩,必须 在控制转矩的同时也控制磁通(或 磁链)。
1.3 运动控制系统转矩控制规律
当J为常数时,运动控制系统的基本
运动方程式 d m J Te TL D m K m dt d m m dt
1.3 运动控制系统转矩控制规律
忽略阻尼转矩和扭转弹性转矩,运
动控制系统的简化运动方程式
d m J Te TL dt d m m dt
电力电子型功率放大与变换装置
半控型向全控型发展 低频开关向高频开关发展 分立的器件向具有复合功能的功率 模块发展
运动控制系统的控制器
模拟控制器
物理概念清晰、控制信号流向直观 控制规律体现在硬件电路 线路复杂、通用性差 控制效果受到器件性能、温度等因 素的影响
运动控制系统的控制器
以微处理器为核心的数字控制器
电力拖动自动控制系统 —运动控制系统
第 1章
绪论
内 容 提 要
运动控制系统及其组成 运动控制系统的历史与发展
运动控制系统转矩控制规律 生产机械的负载转矩特性
现代运动控制技术
电机学、电力电子 技术、微电子技 术、计算机控制 技术、控制理论、 信号检测与处理 技术等多门学科 相互交叉的综合 性学科 。
同步电动机的转速与电源频率严 格保持同步,机械特性硬。 电力电子变频技术的发展,成功地 解决了阻碍同步电动机调速的失步 和启动两大问题。
1.3 运动控制系统转矩控制规律
运动控制系统的基本运动方程式
d ( J m ) Te TL Dm K m dt d m m dt
图1-1运动控制及其相关学科
1.1 运动控制系统及其组成
图1-2 运动控制系统及其组成
运动控制系统的控制对象—— 电动机
从类型上分
直流电动机、交流感应电动机(交流异 步电动机)和交流同步电动机。 从用途上分 用于调速系统的拖动电动机和用于伺服 系统的伺服电动机。
运动控制系统的功率放大与变 换装置