液相浸渍法制备CC复合材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液相浸渍法制备C/C复合材料
002-1-7 8:30
[关键词]炭素技术材料分析
1、前言
C/C复合材料具有耐高温、抗腐蚀、热膨胀系数低、热冲击性能好、比强度高、耐疲劳性能好等一系列优点,是固体火箭和航天飞行器理想的热结构材料,其应用已逐渐扩展到汽车刹车片、发热体、人体器官等重要民用领域及飞机盘式制动装置,其总量的60%以上用作飞机刹车盘,C/C复合材料刹车片的热容是钢刹车片的2.5倍以上,同时重量减轻40%,使用寿命延长一倍以上。
在C/C复合材料制备的初级阶段或在后来的炭化阶段,容易在样品中产生孔隙,在制备时,主要产生开孔,而在炭化过程中出现的孔隙是开孔或闭孔,复合材料中所有这些结构缺陷对它的性能产生有害的影响,因此需要通过化学气相沉积(CVD)或用液相浸渍炭化的方法来增密。
这些过程的目标是填充浸渍剂能达到的孔隙,而且必须重复几次才能达到要求的密度、要求的机械性能。
CVD是一种填充小孔的非常有效的工艺,然而,在有大孔的材料中这种技术的缺点是能产生闭孔,液相浸渍使用热固性树脂或煤焦油沥青作浸渍剂,是一种经济、简单的工艺,而且可能避免在加工过程中形成闭孔。
2、浸渍剂
目前主要有二类浸渍剂:沥青类和树脂类。
液相浸渍的先驱体应有较高的残炭率,这意味着炭化过程中低的失重。
用于焦炭浸渍的液相先驱体应有较低粘度,对炭基质有很好的润湿性,并需要在炭化前固化,以限制进一步加热过程中液态沥青的流出,浸渍过程的一个重要因素是先驱体能润湿孔壁,沥青有这种性质,就树脂而言,缺少很好的粘结引起在高温处理后,从树脂形成的碳相与孔壁不接触,仅仅填充孔中心,因此需要多次浸渍和炭化完全填充孔隙,而沥青与气孔壁有良好的润湿的粘结性,炭化后残留的炭沿孔壁收缩,有利于二次再浸渍和再炭化。
研究表明:
缩短C/C复合材料的耗能过程达到要求的机械性能的方法之一是同时使用这两种浸渍方法。
如果把孔壁上良好的粘结归于沥青、不好的粘结归于树脂,就过于简化了问题,更重要的是纤维的表面活性,可以理解需要多次的浸渍/炭化把孔隙填充完全。
3、沥青浸渍法
3.1沥青先驱体的性质
用于C/C复合材料致密化的沥青母体具有低软化点、低粘度和高残炭率的特点,其热解过程由低分子化合物挥发、聚合反应分子结构的解理与重排(<400C);形核和长大(>400C)以及石墨化(>2000C)等过程完成。
沥青含有多种芳环和杂环物,其常压炭化时残炭量一般低于树脂,在热处理过程中形成易石墨化的中间相,具有更优异的力学性能,特别是模量高。
在浸渍过程中随着温度的升高呈现出流变特性粘度下降,润湿性得到改善,接触角0减小,易与孔壁粘结等特点。
10.13MPa 下裂解时,沥青残碳率可高达90%。
采用沥青基体先驱体,如石油沥青或煤焦油沥青在2000C以上热处理时,可制得超2.1g/cm3的高密度基体的C/C复合材料。
3.2沥青浸渍机理
煤焦油沥青是合适的基体先驱体,很廉价。
在沥青浸渍/炭化的2--DC/C坯体的增密过程中,炭布层间相对扁的、薄片状的裂缝为沥青进入坯体提供了方便的通道,接着进入束间裂纹,并由表面张力的作用进入纤维束内更小的裂纹网。
而即使在第一个处理周期中,沥青不能填充氦能达到的所有孔隙。
在接下来的热处理阶段,沥青热解反应和气体的副产品的粗放的裂纹中产生炭。
但是试图逸出复合物的气体从它进入的相同的低弯曲路径中排出沥青,产生了更深的沥青不能达到的孔隙,因此,浸渍效率下降了。
随着浸渍次数的增加,从通道里不断排出沥青,小些的孔隙优先被炭填充,而且随着薄片状孔隙的体积占所有孔隙的体积的比例的增加,增密效率在剧烈下降之前达到一个最大值,随着更小的孔隙被填充,能从通道(孔隙)中排出沥青的热解气体的体积下降,更少的沥青被排出,通道开始慢慢被碳填充,在五次浸渍后,更小的孔隙的原始体积的50%以上被炭填充。
同时,很大比例的通道的原始体积没被填充。
在浸渍过程中浸渍时间随孔径降低而延长,当孔径小于某一值时,其必要浸渍时间随孔径的缩小迅速增长,浸渍开始时,浸渍率随浸渍时间增长而增大,当浸渍时间达到一定值时,浸渍率接近100%,若再增加浸渍时间,浸渍效率的增加不明显。
同时,沥青浸渍的炭化压力对其残炭率也有很大影响,可使其残炭率由50%左右提高到90%。
这是由于高压抑制低分子重量混合物热解时的挥发,并消除了常压炭化下由于沥青的低熔解粘度引起的沥青-炭纤维复合材料的膨胀。
然而,在非常高的压力(200MPa)下,中间相不能交联形成高质量的C/C 复合材料,所以在C/C复合材料的高压工艺中通常选择约100MPa的适中压力。
过高的压力对石墨化度也有非常不利的影响,在10MPa的压力时,沥青或多或少有一定的可石墨化性,而在600MPa的压力时,层间距变化微乎其微,晶体尺寸下降很大。
这可能由于高压限制中间相形成过程中晶体生长和定向,不利于沥青形成流动相,发展石墨结构。
3.3沥青浸渍的增密效率
对在常压下炭化的复合材料,浸渍效率在第三次浸渍后剧烈下降,可能由于孔径变细、孔隙越来越曲折,沥青不能渗透到孔里。
此外,沥青的浸渍温度流动性也对浸渍效率的下降有很大影响,增密效率取决于浸渍效率和浸渍剂沥青的有效残炭率。
4、树脂浸渍法
4.1树脂先驱体的性质
而对于树脂浸渍而言,用作浸渍剂的树脂先驱体除了高的残炭率和容易浸渍纤维外,还应满足以下要求:首先,基体的炭化收缩不应该破坏纤维骨架;第二,树脂热解过程中形成的气孔必须是开孔,在下一步的浸渍能够达到,仅仅在这样的前提条件下,才能在接下去的工艺过程中,提高密度和机械性能;最后,热固性先驱体不应有一个低于分解/炭化很多的Tg,否则,材料将在有弹力的状态下炭化,热解气将使气体爆炸,例如酚醛树脂有一个比炭化温度起始点高得多的Tg,因此是理想的。
沥青炭为易石墨化炭,具有流动性的形貌特征。
而树脂炭通常为各向同性的,但是也可以高度取向,取向程度依赖树脂类型和工艺条
件。
酚醛树脂比糠醇更难以取向,而当加热到石墨化温度时,局部酚醛树脂和糠醛也能石墨化。
特别是当酚醛
树脂和炭纤维一起炭化时,由于受到炭化过程中张应力的作用,基体炭在2200C以上开始石墨化。
也能通过在C/C复合材料中加炭化硼,使硼以固溶体的形式存在于C/C复合材料,通过吸附电子而使C-C断健、代替碳原子消除缺陷等机理开工,使最难石墨化的玻璃炭和纤维炭达到石墨化。
4.2树脂浸渍机理
在浸渍树脂时需考虑大量因素,其中之一是浸渍效率,与复合材料的加工成本和机械性能紧密相关。
为提高浸渍效率,应考虑用适当的方法。
C/C复合材料坯体仅通过毛细管的浸润作用来浸渍,大多数小孔首先被浸渍,浸渍剂却不能渗透到大一些的孔隙里,随着孔半径的增大,毛细管压下降,当大孔里毛细管压不能克服进入孔隙的能量障碍时,不能有效浸渍坯体。
为了克服进入孔隙的能量障碍,浸渍过程中应施加高压。
所以,炭坯体用抽真空接着施加等静压的方法来浸渍(2MPa),结果,直径小的孔隙浸渍得很好,另一方面,较大的孔隙仍然没被填充。
即使在吸入树脂前抽真空,在等静压浸渍时,还是有大量空气被压缩在孔隙里。
当在常压下从样品里移走过多的浸渍剂时,压缩空气将膨胀,排出没固化的浸渍树脂,重新形成大孔。
为解决这个问题,浸渍过程和固
化过程应在压力下连续进行,为此使用一个新的浸渍系统,使其从样品中排出多余树脂时,仍能保持压力,从而大大提高浸渍效率。
因此,为了得到较好的树脂浸渍,除了孔隙尺寸外,炭坯体应在高压下浸渍,接着在没有放压的情况下固化。
4.3树脂浸渍的增密效果
对于浸渍过程,有效的C/C加工的一个重要的先决条件是一个高残炭率的先驱体。
通过在给定温度下惰性气氛中加热一已知重量聚合物,称重残余物来计算聚合物的残炭率。
残炭率,简单地说,就是炭残留的重量与已知重量的比率,用百分比表示。
树脂的转化效率定义为炭残余物的重量与原始树脂中炭的数量的比率。
使用高残炭率树脂将减少达到要求密度的增密次数,但是由于减少炭化次数降低了加工费用,这样的树脂先驱体的价格非常高。
综合考虑加工,形成闭孔的情况和成本等因素,只有两种树脂:酚醛和呋喃,在C/C复合材料加工中得到非常广泛的应用。
4.4树脂先驱体的应力石墨化
用树脂浸渍的复合材料在炭化过程中,树脂体积收缩50%,而纤维在尺寸上几乎没什么变化,可以假设,“难石墨化”基体石墨化的驱动力是由基体和纤维之间热膨胀系数差引起的应力积累。
而从观察到的现象看,当压力大于300MPa时,各向同性炭石墨化性能显著改善,玻璃质的或各向同性炭通过添加天然石墨粉石墨化,因此,各向同性炭在高温时的石墨化是应力积累或施加的直接结果,由于这个原因,这个现象被称作应力石墨化。
大部分酚醛树脂焦的石墨化对应力的形式和水平敏感,但对预热处理温度不敏感。
加热时,基体/纤维膨胀或气孔里挥发气体引起的基体/纤维处的压缩应力,使夹在中间的基体里的基本面被优先排列成直线。
从另一个角度讲,在酚醛树脂热解过程中,由于酚醛树脂和炭纤维的收缩不同,在复合材料中产生的残余应力,这些残余应力通过形成基体裂纹的形式释放,而这特别影响复合材料的机械性能。
慢的加热速率能减少这些残余应力,同时,也使加工过程延长,提高了加工成本。
5、纤维/基体界面的粘结
无论是沥青浸渍还是树脂浸渍,在一个复合材料薄片或结构中,基体是有效转移载荷到增强纤维上去的媒体。
基体和纤维/基体界面的性能对复合材料的机械性能影响很大。
复合材料的失效最可能起始
于纤维/基体界面,因此,纤维/基体界面的粘结是很关键的。
由于强的共价键抑制碳原子的连结,炭纤维和基体之间甚至在高温时也存在相对弱的界面。
因为基体炭的失效应力比纤维的失效应力低得多,弱的纤维/基体界面在大多数情况下是有好处的。
由于基体失效使纤维在小应变的情况下失效,强的界面使复合材料在纤维方向上强度很低,弱的界面使产生的基体裂纹不通过纤维传播,所以纤维能继续承受载荷。
6、结论
(1)沥青浸渍的增密过程主要由它的浸渍效率和浸渍剂沥青的有效残炭率来控制;
(2)与树脂相比沥青与气孔壁有良好的润湿及粘结性,炭化后残留的炭沿气孔壁收缩,有利于再浸渍、再炭化;
(3)树脂浸渍时为了提高浸渍效率,C/C复合材料坯体应在压力下浸渍,接着在没有放压的情况下固化;
(4)各项同性炭在高温时由于应力积累产生应力石墨化现象;
(5)基体/纤维界面粘结对复合材料的机械性能影响很大。