微波的性质及实际应用
大学物理实验 微波光学特性及布拉格衍射
极小
类别
Xi=i
Xi=i*i
yi=Xi+1
Yi^2=Xi+1^2
Xiyi
1
1
1
22.823
520.889
22.823
2
2
4
37.225
1385.700
74.45
3
3
9
53.685
2882.079
161.055
∑
6
14
113.733
4788.668
258.328
平均
2
4.67
37.911
1596.223
根据记录数据,画出单缝衍射强度与衍射角度的关系曲线。并根据微波衍射强度一级极小角度和缝宽 ,计算微波波长 和其百分误差(表中 、 是相对于0刻度两边对应角度的电压值)。
3.微波的双缝干涉
按需要调整双缝干涉板的缝宽。将双缝缝干射板安置在支座上时,应使双缝板平面与载物圆台上 指示线一致。转动小平台使固定臂的指针在小平台的 处。此时相当于微波从双缝干涉板法线方向入射。这时让活动臂置小平台 处,调整信号使液晶显示器显示较大,然后在 线的两侧,每改变1~3度读取一次液晶显示器的读数,并记录下来,然后就可以画出双缝干涉强度与角度的关系曲线。并根据微波衍射强度一级极大角度和缝宽 ,计算微波波长 和其百分误差。
由已知的晶格常数a和微波波长λ,估算出(100)面和(110)面衍射极大的入射角;调整发射喇叭和接收喇叭的天线正对,调节衰减器;
将模型固定在载物台上,晶面法线与刻度盘0°重合,发射臂指针的读数即为入射角,将接受臂转至0°另一侧同一度数,即得到入射角等于反射角。在理论峰值附近寻找电流最大的入射角。。
原始数据记录及分析:
微波的波长
微波的波长微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性.微波量子的能量为1 99×l0 -25~1.99×10-22j.微波的性质微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
一、穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。
微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。
二、选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。
介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。
由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。
物质不同,产生的热效果也不同。
水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。
而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。
因此,对于食品来说,含水量的多少对微波加热效果影响很大。
三、热惯性小微波对介质材料是瞬时加热升温,能耗也很低。
另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。
微波的产生微波能通常由直流电或50MHz交流电通过一特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。
微波材料的制备及应用研究
微波材料的制备及应用研究微波技术是一种广泛应用于通信、雷达、加热等领域的高频电磁波。
而微波材料作为一种特殊的材料,其在微波技术中具有非常重要的作用。
微波材料的制备及应用研究一直是当前研究的热点。
本文将从微波材料的基本概念、制备方法、性质特点及应用等方面进行论述。
一、微波材料的基本概念微波材料是一种在微波频段具有特定电磁特性的材料。
微波电磁波是一种波长在1mm~1m之间的电磁波。
微波材料的种类非常多,其中主要包括但不限于金属、绝缘体、半导体、合金、复合材料等。
微波材料种类的不同,其电磁波的特性也会有所不同。
二、微波材料的制备方法1、化学合成法化学合成法是制备微波材料最常用的方法之一。
具体而言,是通过溶胶凝胶法、水热法、共沉淀法等方法将一些金属氧化物中的金属离子进行还原或析出,制备出具有特定结构、组成、尺寸的微波吸收材料。
2、物理制备法物理制备法包括等离子体喷涂(PLS)、电弧等离子熔喷(PII)、射频磁控溅射(RF sputtering)等技术,这些技术可以用来制备金属、合金、氧化物、纳米复合材料等微波材料。
3、复合材料法在微波吸收材料的制备中,通过选用不同的功能材料,将其与基本材料进行复合,形成具有特殊微波吸收特性的复合材料。
其中,功能材料可以是一些导电性较强的石墨、碳纤维等材料;基本材料可以是一些无机盐、聚合物等材料。
三、微波材料的性质特点1、电磁波吸收特性强微波材料的电磁波吸收特性可以很好地应用于防雷和防电磁干扰等领域。
由于微波材料的吸波带宽较大,且在特定的吸波点处具有较高的吸收值,可以方便地选择合适的吸波频率。
2、热稳定性好由于微波材料的吸波作用发生在电磁波的能量转化成热能时,因此具有良好的热稳定性。
在高温环境下,微波材料的吸波效果不会大幅度降低,因此在一些特殊场合下使用更加稳定可靠。
3、机械性能优异微波材料作为一种特殊的材料,往往需要具有较好的机械性能。
由于其在特殊的应用领域中需要承受一定的机械负荷,因此往往要求具有较高的弹性、耐磨损、抗拉伸等特性。
微波的在生活中应用及原理
微波的在生活中应用及原理1. 应用领域广泛•烹饪领域:微波炉是最常见的微波应用之一。
通过向食物中施加微波辐射,可以迅速加热食物,节省烹饪时间。
此外,微波炉还可以解冻食物,蒸汽蔬菜和煮熟坚果。
•通信领域:微波技术在通信领域得到广泛应用。
微波信号能够在大气层的某些频率范围内进行传输,被用于卫星通信、无线通信、卫星广播等领域。
•医疗领域:医学领域使用微波技术进行诊断和治疗。
例如,通过使用微波成像技术,可以检测和诊断肿瘤。
此外,微波还用于物理治疗,例如通过热疗治疗肿瘤。
•雷达技术:雷达是一种使用微波辐射并接收其反射信号来探测目标的技术。
雷达的应用范围广泛,包括气象预报、空中和海上监视、导航系统等。
2. 微波的原理微波是一种电磁波,其频率范围在300 MHz到300 GHz之间,波长约为1 mm 到1 m之间。
微波具有以下特点:•高频率:相比于无线电波、可见光和红外线等其他类型的电磁波,微波波长较短,频率较高。
这种高频率使得微波在传输和处理信息时更加高效。
•穿透力强:微波可以穿透许多以及不导电材料,例如塑料、玻璃、陶瓷等。
这使得微波在烹饪和通信领域的应用更为方便和广泛。
•与水分子相互作用:微波与水分子之间存在相互作用。
水分子具有极性,在外加微波辐射下,水分子会不断地定向旋转。
这种运动导致了水分子之间的摩擦和碰撞,转化为热能。
这正是微波炉加热食物的原理。
3. 微波炉的工作原理微波炉利用微波与水分子相互作用的原理来加热食物。
其工作原理如下:1.微波炉内部有一个称为磁控管的装置,该装置产生微波的电磁场。
2.微波在磁控管中产生,并通过一个称为波导的管道传输到微波炉的内腔。
3.微波炉的内腔由金属材料制成,可以反射和保持微波。
4.当微波通过食物时,微波与水分子相互作用,导致水分子的定向旋转和摩擦。
这种运动将能量转化为热能,使食物加热。
5.微波在金属内壁上反射,确保微波被完全吸收和利用,而不会逃离微波炉。
6.微波炉内部还配备了一个旋转的托盘,以确保食物均匀加热。
微波加热的原理
微波加热的原理微波加热是一种常见的加热方式,它利用微波的特殊性质来加热食物和其他物体。
微波加热的原理是通过微波与被加热物质分子之间的相互作用来产生热量,从而使被加热物质温度升高。
在本文中,我们将详细介绍微波加热的原理及其应用。
首先,让我们来了解一下微波的性质。
微波是一种电磁波,其波长在毫米到米的范围内。
微波具有穿透性,能够穿过一些材料,如玻璃、陶瓷和塑料,但被水分子、脂肪分子和一些其他极性分子吸收。
这种特性使得微波能够有效地加热含有水分和脂肪的食物。
当微波通过食物时,它会与其中的水分子、脂肪分子等极性分子发生作用。
这些分子会试图跟随微波的变化而快速转动,这种转动导致了分子之间的摩擦,从而产生热量。
这就是微波加热的基本原理,微波与分子的相互作用导致分子的运动,进而产生热量。
除了食物,微波加热还被广泛应用于其他领域,如材料加工、医疗设备等。
在材料加工中,微波加热可以快速、均匀地加热材料,提高生产效率。
在医疗设备中,微波加热被用于治疗肿瘤等疾病。
微波加热的原理虽然简单,但是在实际应用中需要注意一些问题。
首先,由于微波的穿透性,需要使用适当的容器来加热食物,以防止微波泄漏。
其次,由于微波加热是通过分子的运动来产生热量的,因此加热不均匀是一个常见的问题。
为了解决这个问题,可以采用旋转盘、搅拌等方式来促进食物的均匀加热。
总的来说,微波加热是一种高效、快速的加热方式,其原理是通过微波与被加热物质分子的相互作用来产生热量。
微波加热不仅在食品加工领域有着广泛的应用,还在其他领域发挥着重要作用。
然而,在实际应用中需要注意微波泄漏和加热不均匀等问题。
通过对微波加热原理的深入了解,我们可以更好地应用微波加热技术,提高生产效率,改善生活质量。
微波的作用原理及应用领域
微波的作用原理及应用领域1. 微波的作用原理微波是指波长在1mm至1m之间的电磁波,在电磁波谱中位于射频波和红外线之间。
微波是一种高频电磁波,具有短波长和高频率的特点。
微波的作用原理主要是基于电磁波通过物质的相互作用产生的热效应。
一般情况下,微波具有以下作用原理:•电磁场的辐射作用:微波通过产生电磁场的辐射,与物质中的电荷相互作用,并产生相应的热效应。
这种作用原理常用于微波炉中,通过微波的辐射作用对食物进行加热。
•电磁场的激励作用:微波可以激励物质内部的分子和原子共振,使其产生相应的运动和振动,从而改变物质的性质和状态。
这种作用原理常用于微波通信中,通过微波的激励作用进行信号传输。
•电磁场的反射和散射作用:微波在物体表面的反射和散射会产生电磁波的相位变化,从而引起能量耗散和传递。
这种作用原理常用于无线电天线和雷达系统中,通过微波的反射和散射作用进行信号接收和目标探测。
2. 微波的应用领域微波作为一种高频电磁波,在科学研究和工业应用中有着广泛的应用领域。
以下是微波的主要应用领域:2.1 通信领域微波在通信领域中应用广泛,主要包括以下几个方面:•微波通信:微波通信是指通过微波的辐射和激励作用进行信息传输和通信。
由于微波具有较高的频率和较长的传输距离,因此在卫星通信、雷达通信和无线通信等领域有着重要的应用。
•微波天线:微波天线是指接收和发射微波信号的天线设备。
微波天线主要用于卫星通信、雷达系统和军事通信等领域,能够实现远距离的信号接收和目标探测。
2.2 加热领域微波的辐射作用可以产生热效应,因此在加热领域中有着广泛的应用:•微波炉:微波炉是一种使用微波辐射来加热食物的家用电器。
微波炉通过产生的微波辐射对食物中的水分子进行运动和振动,从而产生热效应,使食物快速加热。
•工业加热处理:微波的加热效果快速且均匀,因此在工业领域中被广泛应用于材料的干燥、烘焙和加热处理等过程。
2.3 医疗领域微波在医疗领域中有着多种应用方式,主要包括以下几个方面:•物理治疗:微波被广泛用于物理治疗中,如微波热疗和微波电疗等。
微波实验报告
微波实验报告微波实验报告引言:微波是一种电磁波,波长在1mm到1m之间,频率范围为300MHz到300GHz。
微波在通信、雷达、医学、食品加热等领域有着广泛的应用。
本实验旨在通过实际操作和观察,了解微波的特性和应用。
实验一:微波传播特性实验目的:观察微波在不同介质中的传播特性。
实验器材:微波发生器、微波接收器、不同介质样品(如玻璃、木头、金属等)。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将不同介质样品放置在微波传播路径上,观察微波的传播情况。
实验结果:观察到微波在不同介质中的传播情况不同。
在玻璃中,微波能够较好地传播,而在金属中,微波会被完全反射或吸收。
实验二:微波反射和折射实验目的:观察微波在不同介质间的反射和折射现象。
实验器材:微波发生器、微波接收器、反射板、折射板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将反射板放置在微波传播路径上,观察微波的反射情况。
3. 将折射板放置在微波传播路径上,观察微波的折射情况。
实验结果:观察到微波在反射板上会发生反射,反射角等于入射角。
在折射板上,微波会发生折射,根据折射定律,入射角和折射角之间存在一定的关系。
实验三:微波干涉实验目的:观察微波的干涉现象。
实验器材:微波发生器、微波接收器、干涉板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将干涉板放置在微波传播路径上,观察微波的干涉情况。
实验结果:观察到微波在干涉板上会出现明暗相间的干涉条纹。
根据干涉现象的特点,可以推测微波是一种具有波动性质的电磁波。
实验四:微波加热实验目的:观察微波对物体的加热效果。
实验器材:微波发生器、微波接收器、食物样品。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将食物样品放置在微波传播路径上,观察微波对食物的加热效果。
实验结果:观察到微波对食物样品有较好的加热效果,食物在微波的作用下能够迅速加热。
微波技术的原理及应用范围
微波技术的原理及应用范围1. 微波技术的原理微波技术是一种利用微波能量进行通信、遥测、雷达和加热等应用的技术。
其原理主要基于以下几个方面:1.1 微波的定义微波是指频率范围在300MHz至300GHz之间的无线电波。
相比于较低频率的无线电波,微波具有更短的波长和更高的频率。
微波能量可以在空气和某些物质中传播,由此带来了微波技术的应用。
1.2 微波的传播特性微波在空气和物质中的传播特性与传统的无线电波有很大的不同。
微波在大气中的传播损耗较低,几乎不受天气的影响。
在物质中的传播特性受到物质的介电常数和导电性质的影响。
这些特性使得微波可以在不同环境中进行远距离的传输并且能够穿透一些物质。
1.3 微波的发射和接收微波的发射和接收需要使用专门的设备和天线。
发射设备通过电源提供能量,将电能转化为微波能量并发射出去。
接收设备通过天线接收传输中的微波信号,并将其转化回电能进行处理和分析。
2. 微波技术的应用范围微波技术的应用范围非常广泛,包括通信、雷达、遥测以及加热等领域。
以下是微波技术的一些典型应用:2.1 微波通信微波通信是微波技术最常见的应用之一。
利用微波进行通信可以实现高速、高带宽的数据传输,特别适用于需要远距离传输和大容量数据传输的场景。
微波通信广泛应用于卫星通信、无线电通信以及移动通信等领域。
2.2 微波雷达雷达是利用无线电波进行探测和跟踪的技术,而微波雷达则是利用微波进行探测和跟踪。
微波雷达具有高分辨率、远距离、不受天气影响等优势,被广泛应用于航空、航天、军事等领域。
2.3 微波遥测微波遥测是通过微波技术对远程目标进行监测和测量的方法。
利用微波遥测可以实现对距离较远的目标进行精确的测量,并且可以在复杂环境下进行测量。
微波遥测在天文学、地球物理学、气象学等领域发挥着重要作用。
2.4 微波加热微波加热是利用微波能量对物体进行加热的技术。
微波加热可以实现快速、均匀的加热效果,并且可以在短时间内加热到较高温度。
微波的工作原理特点及应用
微波的工作原理特点及应用1. 微波的工作原理微波是指波长为1mm至1m之间的电磁波,其频率范围在300MHz至300GHz之间。
微波经常被用于通信、雷达、杀菌、加热等领域中,其工作原理与传统的电磁波有所不同。
微波的工作原理主要涉及以下几个方面:•微波的产生:微波通常通过微波发生器产生,常见的发生器包括磁控管发生器、半导体发生器以及谐振腔发生器等。
这些发生器会将直流电源转换为高频的微波信号。
•微波的传输:微波在传输过程中会受到传输介质的影响,常见的传输介质包括空气、电缆、波导等。
由于微波的特殊性质,其在传输过程中遇到障碍物时会出现反射、折射等现象。
•微波的接收:微波的接收一般通过天线进行,天线将微波能量转换为电信号。
常见的微波接收器包括天线接收器和微波谐振腔接收器等。
2. 微波的特点微波具有以下几个显著的特点:•高频率和短波长:微波的频率范围高于无线电波,其具有更高的传输速度和更短的波长。
这使得微波具有较强的穿透力和高分辨率的能力。
•高方向性:微波具有较高的方向性,可以通过天线进行精确的定向传输和接收。
这使得微波在通信和雷达等领域中具有重要的应用价值。
•容易被吸收和反射:微波在传输过程中容易被吸收和反射,这使得微波在杀菌和加热等领域中得到广泛应用。
3. 微波的应用微波在许多领域中都有广泛的应用,以下列举了几个典型的应用:•通信:微波被广泛用于无线通信领域,如卫星通信、无线电通信等。
微波的高频率和短波长使其能够提供更高的传输速度和更稳定的信号质量。
•雷达:微波被广泛应用于雷达系统中,用于检测和跟踪目标。
微波的高方向性和较高的分辨率使其在雷达系统中具有重要的地位。
•工业加热:微波加热技术已经在食品加工、化工及材料加工等领域得到广泛应用。
微波的能量可以使材料内部迅速升温,提高加热效率和产品质量。
•医疗领域:微波在医疗领域中也得到了应用,如肿瘤治疗、医疗成像等。
微波的穿透力使其可以被用于治疗和诊断。
综上所述,微波具有独特的工作原理和显著的特点,使其在通信、雷达、加热和医疗等领域中得到广泛应用。
简明微波知识点总结
简明微波知识点总结一、微波的产生微波是电磁波的一种,其频率范围通常定义为300MHz至300GHz。
微波的产生主要有以下几种方式:1. 电子运动产生的微波:当高速电子在磁场或者电场中运动时,会产生微波辐射。
这种产生微波的方式叫做“同步辐射”,是一种重要的微波源。
2. 电子射频振荡器产生的微波:电子射频振荡器是一种专门用来产生微波的设备,其工作原理是通过调谐某些特定的谐振频率,使得电子在强电场中振荡产生微波。
3. 微波管放大器:微波管放大器是一种设备,通过将微波信号输入到管中,然后通过电磁场的作用来放大微波信号。
4. 光学激光器产生的微波:激光器可以通过频率加倍或者调制的方式产生微波。
二、微波的特点微波具有一些独特的特性,使得它在很多领域有着广泛的应用:1. 穿透性强:微波在穿透物质时,能力比可见光和红外线更强。
这使得微波可以穿透一些通常不透明的物质,如水、塑料、衣物等。
2. 热效应:微波在物质中的能量损耗主要表现为产生热效应,这种热效应可以被应用于微波加热、烤箱等领域。
3. 反射和折射:微波在遇到边界时,会发生反射和折射现象。
这种特性被广泛应用于雷达、卫星通信等领域。
4. 定向传播:微波可以通过定向天线进行传播,这使得微波通信有着更多的灵活性和可靠性。
三、微波的应用由于微波具有穿透性强、热效应明显、定向传播等特点,使得它在很多领域有着广泛的应用:1. 通信领域:微波被广泛应用于通信领域,如无线电、卫星通信、雷达等。
通过微波通信技术,可以实现远距离、高速、高效率的信息传输。
2. 医疗领域:微波被应用于医学诊断和治疗领域。
如微波成像技术、微波治疗设备等,已经成为现代医疗的重要技术手段。
3. 加热领域:微波加热技术被广泛应用于食品加热、工业加热等领域。
由于微波在物质中的能量损耗主要表现为产生热效应,因此可以实现快速、均匀的加热效果。
4. 安全检测领域:微波成像技术被应用于安全检测领域,如机场安检、建筑结构探测等。
微波理论知识点总结
微波理论知识点总结微波是指波长在1毫米至1米之间的电磁波,它具有许多独特的特性和应用。
微波理论是研究微波的产生、传播、接收和应用的相关理论。
在通信、雷达、无线电频谱、天文学和材料加工等方面都有着广泛的应用。
1. 微波的概念和特性微波是电磁波的一种,波长范围在1毫米至1米之间。
与可见光波长相近,但由于其波长较短,因此具有许多独特的特性。
例如,微波能够穿透云层、雾气和一些障碍物,因此在雷达和通信中有着重要的应用。
此外,微波不会像可见光那样受到大气的散射和吸收,因此可以在大气层中进行远距离的传播。
2. 微波的产生和接收微波可以通过多种方式产生,常见的方法包括使用微波发射器、微波天线和微波放大器等。
微波接收则通过微波接收天线和微波接收器进行。
微波天线的设计对于接收微波信号具有重要影响,通常设计成具有较高的方向性和增益。
3. 微波传播微波在空间中的传播受到地形、大气条件和电磁波干扰等因素的影响。
通常情况下,微波的传播距离受到频率和天线高度的影响,高频率的微波传播距离较短,而低频率的微波传播距离较远。
此外,微波还受到地形和大气层的影响,例如山脉、建筑物和大气湍流都会对微波的传播产生影响。
4. 微波器件和电路微波器件和电路是指在微波频段内工作的元器件和电路。
常见的微波器件包括微波天线、微波滤波器、微波耦合器、微波终端等。
微波电路主要由微波传输线、微波振荡器、微波放大器和微波混频器等组成,用于实现微波信号的处理、分析和放大。
5. 微波通信和雷达系统微波通信和雷达系统是微波技术的两个重要应用领域。
微波通信系统通过微波传输线、微波天线和微波接收器等设备实现无线通信。
雷达系统则利用微波的穿透能力和高精度进行目标探测、跟踪和识别,广泛应用于军事、航空、气象和海洋领域。
6. 微波在材料加工中的应用微波在材料加工中有着广泛的应用,例如微波加热、微波干燥和微波辐照等。
微波加热是利用微波能量对材料进行加热,通常应用于食品加工、化工和材料处理中。
真空微波技术及设备简介
真空微波技术及设备简介真空微波技术是一种先进的加工技术,广泛应用于材料加工、食品工业、化学工业等领域。
它利用微波的特殊性质,在真空环境中对物料进行加热、干燥、熔融、蚀刻等处理,以达到特定的工艺效果。
首先,让我们来了解一下微波技术的原理。
微波是指频率在300MHz-300GHz之间的电磁波,具有穿透性和非穿透性两种特性。
在真空环境中,微波的传播不受空气的影响,可以更好地集中能量,提高加工效率。
同时,微波的频率和功率可以根据需要进行调整,以满足不同工艺的需求。
真空微波技术的应用范围非常广泛。
在材料加工领域,它可以用于制备纳米材料、陶瓷材料、金属材料等高性能材料,以及进行表面处理、蚀刻等精细加工。
在食品工业中,它可以用于杀菌、灭菌、干燥、加热等工艺,提高食品的卫生安全性和保存期限。
在化学工业中,它可以用于合成高纯度化学品、催化剂、药物等,提高产品的质量和纯度。
相比传统技术,真空微波技术具有许多优点。
首先,它可以实现快速、均匀的加热,提高了加工效率和产品质量。
其次,它在真空环境中进行加工,避免了空气中的氧气、水蒸气等杂质对加工过程的影响,可以得到更加纯净的产品。
此外,真空微波技术还可以实现自动化、连续化生产,降低了生产成本和人工操作的风险。
图1可称重式真空微波干燥试验机微波真空干燥百合(左)蒲公英(右)微波真空设备特点1) 效率高:其干燥效率为常规干燥的4-10倍;2) 热分布好:由于微波对水分子的选择性加热,物料内部水分高,加热时由内向外,与水分扩散方向一致而且内外温差小,不会出现常规干燥热分布不匀的现象;3) 易于控制:微波发生真空度调整即可通过触摸屏操作控制,也可以通过电脑控制,设备装有专用的针孔摄像头,观察干燥的全过程;4) 红外与光纤实时测温,实现温度精准自动控制;5) 实现在线实时称重,全程了解干燥中物料重量的变化规律和变化参数;6) 干燥腔体采用304不锈钢材质,抛光处理,耐腐蚀,耐压,安全可靠,易清洗;7) 设备集成化程度高,功能齐全,能耗经济。
微波技术实验
微波技术实验微波技术是近代发展起来的一门尖端技术,以其高效、均匀、节能、环保等诸多优点受到普遍关注,在科学研究中也是一种重要的观测手段,并广泛应用于国防军事、科学研究、医疗卫生等领域。
随着社会向信息化、数字化的迈进,作为无线传输信息的主要手段,微波技术将发挥更为重要的作用。
本实验旨在通过观测微波的产生和传播的特性,使同学们了解微波的基本知识,掌握常用微波元器件的原理和使用方法,学习若干种微波测量方法,并理解微波通信的基本原理,为从事与微波有关的工作打下基础。
一、微波的性质微波是无线电波中波长最短的电磁波,其波长在1mm~1m范围,频率范围处于光波和广播电视所采用的无线电波之间,为300MHz~300GHz。
微波又分为分米波、厘米波和毫米波。
微波具有电磁波的一切特性,但因其波长的特殊性,微波在产生、传输、接收和应用等方面跟其他波段很不相同,具有下述几个独特的性质,主要表现在:(1)波长短。
其波长比地球上一般物体的几何尺寸小得多或在同一数量级上,具有直线传播的特性。
利用这个特点能在微波波段制成方向性极强的无线系统,也可以接收到地面和宇宙空间各种物体发射回来的微弱回波,从而确定物体的方位和距离,广泛用于通信、雷达、导航等领域。
(2)频率高。
微波的频率很高,电磁振荡周期(10-9~10-12s)很短,与电子在电真空器件中的渡越时间相似。
因此,低频的电子器件在微波阶段都不能使用,而必须采用原理上完全不同的微波电子管、微波固体器件和量子器件来代替。
在不太大的相对带宽下可用带宽很宽,所以信息容量大。
此外,作为能量,可用于微波加热、微波武器等。
(3)量子特性。
在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,能被很多的原子分子吸收或发射,成为研究物质结构的重要手段,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和极为准确的分子钟与原子钟。
(4)似光性,微波介于一般无线电波与光波之间,它不仅具有无线电波的性质,还具有光波的性质,以光速直线传播,有反射、衍射、干涉等现象。
微波(电磁波)—搜狗百科
微波(电磁波)—搜狗百科微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。
微波透入介质时,由于微波能与介质发生一定的相互作用,以微波频率2450兆赫兹,使介质的分子每秒产生24亿五千万次的震动,介质的分子间互相产生摩擦,引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。
[2]选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。
介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。
由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。
物质不同,产生的热效果也不同。
水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。
而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。
因此,对于食品来说,含水量的多少对微波加热效果影响很大。
热惯性小微波对介质材料是瞬时加热升温,升温速度快。
另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。
似光性和似声性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
试述微波加热的原理及应用
试述微波加热的原理及应用原理微波加热是一种利用微波辐射来加热物体的技术。
微波是一种电磁波,其频率在300 MHz到300 GHz之间,波长在1 mm到1 m之间。
微波加热原理基于物体内的水分子对微波辐射的吸收,从而产生热能。
微波加热的原理主要有以下几个方面:1.电磁波与物质的相互作用: 微波辐射通过物质时,会与物质内的水分子相互作用。
水分子是极性分子,可以产生电偶极矩。
当微波通过时,会使水分子发生共振,从而产生摩擦和热量。
2.分子内摩擦: 微波的频率和水分子的自然频率相近,因此水分子在微波电场的作用下,会不断变换方向,从而导致分子内部发生摩擦。
摩擦会产生热能,使物体温度上升。
3.局部加热: 由于微波辐射的特性,它主要在物体表面和外层区域吸收能量,逐渐向内部传导。
这导致微波加热是一种局部加热方式,可以对食物、液体和其他材料进行快速加热。
应用微波加热技术在许多领域都有广泛的应用。
以下是一些常见的应用:食品加热1.家用微波炉: 家用微波炉是最常见的微波加热应用之一。
它能够快速加热食物,并且由于加热是局部的,因此不会过热物体表面。
2.工业食品加热: 微波加热在食品加工业中也得到了广泛应用。
它可以用于解冻、烹饪、杀菌和干燥食品。
医疗领域微波加热在医疗领域也有一些应用。
1.癌症治疗: 微波加热被用于治疗某些类型的癌症。
通过将微波能量传递到患者体内的癌细胞,可以加热和杀死这些细胞。
2.物理疗法: 微波加热还被用于物理疗法中,用于治疗肌肉疼痛、关节炎等疾病。
材料处理微波加热可以用于处理各种材料,以改变其物理和化学性质。
1.涂层和干燥: 微波加热可以用于涂层材料的干燥,例如油漆和涂料。
2.橡胶加热: 微波加热可以加热橡胶,使其软化,以便进一步加工。
3.陶瓷和玻璃加热: 微波加热可以高效地对陶瓷和玻璃进行加热,以改变其性能。
实验室应用微波加热在实验室中也有一些特定的应用。
1.样品制备: 微波加热可以用于样品处理和制备,例如溶解、提取和反应。
微波的工作频率
微波的工作频率微波是指工作频率在300MHz(兆赫兹)至300GHz(千兆赫兹)之间的电磁波。
微波的频率较高,波长较短,具有许多独特的特性和广泛的应用领域。
本文将从微波的概念、特性、应用等方面进行阐述。
一、微波的概念微波是电磁波的一种,其频率介于无线电波和红外线之间。
微波的波长通常在1mm至1m之间,对应的频率范围为300MHz至300GHz。
相比于低频的无线电波,微波的波长更短,能量更高,传输速度更快。
二、微波的特性1. 穿透性强:微波对许多材料具有较强的穿透能力,如玻璃、塑料和陶瓷等。
这使得微波在通信和雷达等领域得到广泛应用。
2. 反射性强:微波在金属表面上的反射率很高,这使得微波可以用于炉灶、烤箱等加热设备。
3. 热效应:微波在物质中的传播会引起分子的振动和摩擦,产生热效应。
这种热效应被应用于微波炉等加热设备中。
4. 相对集中度高:由于微波的波长较短,微波信号可以被较小的天线接收和发送,从而实现信号的相对集中和定向传输。
三、微波的应用领域1. 通信领域:微波在通信领域有着广泛的应用,如无线电广播、卫星通信和移动通信等。
微波的高频率和较短波长使得它可以携带更多的信息,并且在传输过程中的信号衰减较低。
2. 雷达技术:雷达是一种利用微波进行探测和测距的技术。
微波的高频率和短波长使得雷达可以精确地测量目标的距离、速度和方位角等信息,广泛应用于军事、气象、航空等领域。
3. 医学领域:微波在医学领域有着重要的应用,如医学成像、无创治疗和物理疗法等。
微波可以穿透人体组织,通过测量微波的反射和散射来获取人体内部的结构和病变情况。
4. 加热和烘干领域:微波的热效应被广泛应用于食品加热、木材烘干和化工生产等领域。
微波加热可以更快地使物质内部达到所需温度,并且能够实现对物质的局部加热。
5. 导航和定位领域:微波导航系统(如全球定位系统)利用微波信号进行导航和定位,实现对地理位置的准确定位和导航。
6. 材料检测和无损检测:微波的穿透性和反射性使得它可用于材料的检测和无损检测。
微波频率及波导波长的测量
开放项目讲义微波频率及波导波长的测量1、微波的性质微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
微波的研究方法和测试设备都与无线电波的不同。
从图从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,因此它兼有两者的性质,因此它兼有两者的性质,却又区别于两者。
却又区别于两者。
与无线电波相比,微波有下述几个主要特点图1 1 电磁波的分类电磁波的分类(1).波长短(1m —1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
(2).频率高:频率高:微波的电磁振荡周期微波的电磁振荡周期(10-9一10-12s)很短,很短,已经和电子管中电子在电极间已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
微波固体器件和量子器件来代替。
另外,另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻,电容,电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
(3).微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。
(4).量子特性:.量子特性:在微波波段,在微波波段,在微波波段,电磁波每个量子的能量范围大约是电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。
微波与天线ppt课件
。
天线在雷达与导航中的应用
雷达天线
雷达是一种利用微波探测目标的电子设备。天线在雷达中起 到发射和接收信号的作用,通过分析反射回来的信号,可以 获得目标的位置、速度等信息。
卫星导航天线
卫星导航系统通过发射和接收微波信号,实现定位和导航。 天线在此过程中负责发射和接收信号,帮助用户获得位置信 息。
微波与天线在其他领域中的应用
微波与天线ppt课件
目录
CONTENTS
• 微波与天线概述 • 微波的基本理论 • 天线的基本原理 • 微波与天线的应用 • 微波与天线的未来发展
01
微波与天线概述
微波的定义与性质
微波是指频率在300 MHz到300 GHz之 间的电磁波。
它在通信、雷达、导 航、加热等领域得到 广泛应用。
微波具有波长在1米 到1毫米之间,以及 穿透性、反射性、折 射性等特点。
多天线技术
多天线技术是一种利用多个天线同时发送和接收信号的技术,可以显著提高无线通信系统的性能。未 来,多天线技术将在微波与天线领域发挥重要作用,实现更高的频谱效率和更稳定的传输。
MIMO技术
MIMO技术是一种利用多个天线同时发送和接收信号的技术,可以显著提高无线通信系统的性能。未 来,MIMO技术将成为微波与天线领域的重要研究方向,实现更高的频谱效率和更稳定的传输。
波动方程与麦克斯韦方程
波动方程
描述电磁波在空间中传播的基本 方程,包括电场强度E和磁场强度 H的波动特性。
麦克斯韦方程
一组描述电磁场变化和传播的方 程,包括高斯定理、安培定律、 法拉第定律和欧姆定律。
谐振腔与传输线理论
谐振腔
一种能够支持电磁振荡的封闭空间, 通常由金属壁构成,用于产生和储存 微波能量。
微波加热原理特性和技术优势
微波加热原理特性和技术优势微波加热是利用微波的特殊性质来实现加热的一种方法。
微波是一种电磁波,其频率在射频和红外之间,约为300MHz至300GHz。
微波加热有着独特的原理、特性和技术优势。
下面将详细介绍。
微波加热的原理是通过将电磁能转化成热能,从而使物质加热。
微波加热的机理是通过微波在物质内部的快速振动而产生的内摩擦热。
当物质吸收微波时,微波通过与分子之间的相互作用,使分子产生高速运动,从而使物质内部温度升高。
微波加热特性:1.均匀加热:微波能够均匀地穿透物质并加热其内部。
相比传统的加热方式,微波加热可以实现物质内外的温度均匀分布,避免了传统热传导加热的不均匀性。
2.快速加热:微波加热的速度比传统加热快得多。
微波能迅速将能量传递到物质中,从而快速升高温度。
这使得微波加热在工业生产中具有很大的优势,能够提高生产效率。
3.节能环保:微波加热只将能量传递给物质,没有烟尘和废气的产生,不会造成二次污染。
此外,由于微波加热速度快,可以减少加热时间和能源消耗,达到节能的目的。
4.适用于各种物质:微波加热适用于各种物质,包括固体、液体和气体。
不同于传统加热方式,微波能够在物质内部产生加热效果,对各种物质都有良好的加热效果。
5.易于控制:微波加热可以通过调节微波功率、加热时间和加热方式来控制加热过程。
这使得微波加热具有很好的可控性,可以满足不同加热要求。
微波加热技术优势:1.食品加热:微波加热技术在食品加工中具有明显优势。
微波加热可以快速且均匀地加热食物,保持食物的原始风味和营养成分,提高食品质量。
此外,微波加热可以实现连续加热,适应大规模生产需求,提高生产效率。
2.材料干燥:微波加热技术在材料干燥中也有广泛应用。
微波加热可以迅速且均匀地蒸发材料中的水分,实现快速干燥。
相比传统干燥方式,微波干燥具有节能、高效的优势。
3.化学反应:微波加热技术在化学反应中可以实现快速升温和可控的加热过程。
微波加热能够加速反应速率,提高反应效率,减少副反应的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)关键词 (1)Abstract (1)Key Words (1)引言 (1)1.微波概述 (1)2.微波的传输 (1)3.微波的性质 (2)3.1穿透性 (2)3.2选择性加热 (2)3.3热惯性小 (3)3.4似光性和似声性 (3)3.5非电离性 (3)3.6信息性 (3)4.微波的产生 (3)5.微波的应用 (4)5.1微波加热 (4)5.2雷达与通信 (4)5.3医疗卫生 (5)5.4微波萃取 (5)5.5武器战争方面 (5)结论 (6)参考文献 (6)微波的性质及其实际应用摘 要:微波作为电磁波的一种,频率范围介于光波和广播电视所采用的无线电波之间,它兼有两者的性质又区别于两者,有自己的特点. 关键词:微波;波导;电磁波;微波热效应The shallow properties and applications of microwave Abstract : Microwave is a kind of electromagnetic wave that frequency ranges from radio waves to television waves, it has the properties and difference in both ,and has its own characteristics.Key words: microwave; waveguide; electromagnetic wave; microwave heating effect引言1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。
随着人们对电磁波的研究逐步加深,电磁波的性质已被人们了解。
作为电磁波频率波段的微波在通信,食品,医疗等方面,也得到了广泛的应用。
本文就主要介绍微波的一些基本概念和应用。
1.微波概述微波是指频率为300MHz-3000GHz 的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到0.1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波[1]”。
微波作为一种电磁波也具有波粒二象性。
2.微波的传输微波是电磁波中的一段,因此它的规律性满足麦克斯韦方程组和介质的性能方程: •=ρ∇D0•=∇B=-t∂∇⨯∂B E =+t ∂∇⨯∂D H j (1) 并且D ,B ,j 满足:=εD E =μB H =γj E (2) 对于空气和导体的界面,由上述关系可以得到边界条件(左侧均为空气中场量)0t =E n n =/σεEt =H i 0n =H (3)方程组(3)表明,在导体附近电场必须垂直于导体表面,而磁场则应当平行于导体表面。
圆形或矩形截面的空心导体管构成波导,它是传输微波最常用的传输线之一[2]。
3.微波的性质微波的基本性质通常呈现为穿透、反射、吸收三个特性.对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:3.1穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。
微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。
3.2选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。
介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。
由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。
物质不同,产生的热效果也不同。
水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。
而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。
因此,对于食品来说,含水量的多少对微波加热效果影响很大。
3.3热惯性小微波对介质材料是瞬时加热升温,能耗也很低。
另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。
3.4似光性和似声性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似与声学喇叭,萧与笛;微波谐振腔类似于声学共鸣腔。
3.5非电离性微波的量子能量还不够大,不足与改变物质分子的内部结构或破坏分子之间的键。
再有物理学知道,分子原子和原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。
另一方面,利用这一特性,还可以制作许多微波器件。
3.6信息性由于微波频率很高,所以在不大的相对带宽下,其可用的频带很宽,可达数百甚至上千兆赫兹,这是低频无线电波无法比拟的。
这意味着微波的信息容量大,所以现代多路通信系统,包括卫星通信系统,几乎无例外都是工作在微波波段。
另外,微波信号还可以提供相位信息,极化信息,多普勒频率信息。
这在目标检测,遥感目标特征分析等应用中十分重要。
4.微波的产生微波能通常由直流电或50Hz交流电通过特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
半导体器件主要有体效应二极管和雪崩二极管。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管.在电真空器件中能产生大功率微波能量的有磁控管、多腔速调管、微波三、四极管、行波管等。
在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管[3]。
5.微波的应用在现代科学技术高度发展的形势下,微波的应用领域,除了人们十分熟悉的微波通信之外,还涉及到医药卫生,公路建设、航空航天、环境保护、能量传送等各个方面,以及人们的生活之中。
而且在节约能源、提高生产效率、改进产品质量及改善劳动条件方面都取得明显的经济效益和社会效益。
5.1微波加热介质材料由极性分子和非极性分子组成,在电磁场作用下,这些极性分子从原来的随机分布状态转向依照电场的极性排列取向。
而在高频电磁场作用下,这些取向按交变电磁的频率不断变化,这一过程造成分子的运动和相互摩擦从而产生热量。
此时交变电场的场能转化为介质内的热能,使介质温度不断升高。
微波炉利用微波加热的原理,微波提取也是利用微波加热的原理.微波加热有加热速度快,加热均匀,节能高效,低温杀菌、无污染的特点,在食品加工方面应用广泛。
5.2雷达与通信微波的最重要应用是雷达和通信。
雷达不仅用于国防,同时也用于导航、气象测量、大地测量、工业检测和交通管理等方面。
通信应用主要是现代的卫星通信和常规的中继通信。
由于微波的频率极高,波长又很短,其在空中的传播特性与光波相近,也就是直线前进,遇到阻挡就被反射或被阻断,因此微波通信的主要方式是视距通信,超过视距以后需要中继转发。
一般说来,由于地球幽面的影响以及空间传输的损耗,每隔50公里左右,就需要设置中继站,将电波放大转发而延伸。
这种通信方式,也称为微波中继通信或称微波接力通信。
长距离微波通信干线可以经过几十次中继而传至数千公里仍可保持很高的通信质量。
微波通信由于其频带宽、容量大、可以用于各种电信业务的传送,如电话、电报、数据、传真以及彩色电视等均可通过微波电路传输。
微波通信具有良好的抗灾性能,对水灾、风灾以及地震等自然灾害,微波通信一般都不受影响。
但微波经空中传送,易受干扰,在同一微波电路上不能使用相同频率于同一方向,因此微波电路必须在无线电管理部门的严格管理之下进行建设[4]。
5.3医疗卫生在医学领域微波可以用来治疗各种病症,为患者解除痛苦和精神负担。
一种极其细小的微波发生器,可以直接从小孔送入人体内,直接杀死癌细胞,可用于治疗胃、食道等处的癌症或脓肿。
若把极细的微波发生线圈直接送到血管里,就可以除去血管管壁的多余物质,使血管内壁变得光滑和富有弹性。
利用微波对蛋白质的热凝固作用,便肿瘤组织细胞凝固坏死。
现行的微波凝固疗法是在超声波的引导下,将针状电极从体外经皮肤直接插入肿瘤组织,通过电极放射的微波使肿瘤组织凝固,杀死肿瘤细胞。
该方法因无需做开腹手术,对患者身体的损伤较小,治疗费用也很低,受到医生和患者的欢迎。
5.4微波萃取利用微波能来提高萃取率的一种最新发展起来的新技术。
它的原理是在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中;微波萃取具有设备简单、适用范围广、萃取效率高、重现性好、节省时间、节省试剂、污染小等特点。
目前,除主要用于环境样品预处理外,还用于生化、食品、工业分析和天然产物提取等领域。
5.5武器战争方面微波武器在应用上一个很重要的作用就是对付电子设备。
现代战争中的电子设备,是各种武器在搜索目标、进行攻击中必不可少的制导体系,具有十分奇异的功能,采取其他武器很难对付它。
而微波武器则不然,由于它本身就是一种发射出的电磁波,很容易对电子振荡起到干扰和破坏作用,并能够导致整个电子工作系统的瘫痪,从而使武器系统丧失进攻和防御的能力。
随着科技的发展,各种隐身武器相继问世。
这些新型武器能够有效地避开雷达、红外等传感器的探测和跟踪。
然而,这些隐身武器遇到微波武器的高能波束就会遭殃。
涂敷在这些武器上的“隐身衣”,是一些特殊的涂料,会在很短的时间内被加热而导致毁坏,甚至可以在瞬间熔化。
这样的结果会使整个隐身武器遭到摧毁。
结论当然,微波的性质还远远不止这些,这就需要我们更加深入的去学习,去研究,掌握它们的性质,使它们更好的为人们服务。
参考文献[1]闫润卿,李英惠.微波技术基础[M].北京:北京理工大学出版社,1997:1~2.[2]郭硕鸿.电动力学[M].北京:高等教育出版社,2008:132~133.[3]王魁香,韩炜,杜小波.新编近代物理实验[M].北京:科学出版社,2007:103~104.[4]张瑜.电磁波空间传播[M].西安电子科技大学,2007:158~159.。