参数方程知识讲解及典型例题

合集下载

直线的参数方程及其应用举例

直线的参数方程及其应用举例

-.直线的参数方程及应用问题1:〔直线由点和方向确定〕求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向〕过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 那么P 0Q =P 0Pcos α Q P =P 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos αQ P =0y y -∴0y y -=t sin α 即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从点P 0(00,y x )到点P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合;③ 当t<0时,点P 在点P 0的下方;特别地,假设直线l 的倾斜角α=0⎧+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合;⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系?我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.xx- . 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,那么P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t-t ∣问题4:假设P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,那么t 1、t 2 根据直线l 参数方程t 的几何意义,P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P|=|P 2P| P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0 一般地,假设P 1、P 2、P 3是直线l 上的点,所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 那么t 3=221t t +〔∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,∴P 1P 3= t 3-t 1,P 2P 3=t 3-t 2,∴t 3-t 1=-(t 3-t 2,) 〕总结:1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点.(2)假设P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,那么P 1P 2=t 2-t 1∣P 1P 2∣=∣t 2-t 1∣(3) 假设P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3那么P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)假设P 0为P 1P 2的中点,那么t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是 ⎩⎨⎧+=+=bty y at x x 00 〔t 为参数〕 x例题:1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33 设倾斜角为α,tg α=-33,α=π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 〔t 为参数〕t 是直线1l 上定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的长.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t 313y t x 〔t 为参数〕为普通方程,并求倾斜角, 说明∣t ∣的几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t31 (1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x ∣t ∣是定点M 0〔3,1〕到t 对应的点M(y x ,)的有向线段M M 0的长的一半.点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为⎩⎨⎧+=+-= t 313y t x 是非标准的形式,12+(3)2=4≠1,此时t 的几何意义是有向线段M M 0的数量的一半.你会区分直线参数方程的标准形式吗?例3:直线l 过点M 0〔1,3〕,倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211〔t 为参数〕和方程⎩⎨⎧+=+= t331y t x 〔t 为参数〕是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 的的普通方程 0333=+--y x ,所以,以上两个方程都是直线l 的参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0的数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能区分其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t 331y t x 能否化为标准形式? 是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331y t x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段 M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y at x x 00〔t 为参数〕, 斜率为a b tg k ==α(1)当22b a +=1时,那么t 的几何意义是有向线段M M 0的数量.(2) 当22b a +≠1时,那么t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 那么可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量.例4:写出经过点M 0〔-2,3〕,倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标. 解:直线l 的标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222〔t 为参数〕〔1〕 设直线l 上与点M 0相距为2的点为M 点,且M 点对应的参数为t, 那么| M 0M|=|t| =2, ∴t=±2 将t 的值代入(1)式当t=2时,M 点在 M 0点的上方,其坐标为〔-2-2,3+2〕;当t=-2时,M 点在 M 0点的下方,其坐标为〔-2+2,3-2〕.点拨:假设使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+= 20cos 420sin 3t y t x 〔t 为参数〕的倾斜角 . 解法1:消参数t,的34--x y =-ctg20°=tg110°解法2:化为标准形式:⎩⎨⎧-+=-+= 110sin )(4110cos )(3t y t t x 〔-t 为参数〕 ∴此直线的倾斜角为110°根底知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x 〔t 为参数〕,那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 521511〔t 为参数〕的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 21 4、 直线⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ〔λ≠-1〕,那么P 所对应的参数是.5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 〔t 为参数〕A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣ B22b a +∣t 1-t 2∣ C 2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.例6:直线l 过点P 〔2,0〕,斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P 〔2,0〕,斜率为34,设直线的倾斜角为α,tg α=34 cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532〔t 为参数〕* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中,整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM|=221t t +=1615 ∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M 〔1641,43〕 (3) |AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比拟灵活和简捷. 例7:直线l 经过点P 〔1,-33〕,倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.解:(1)∵直线l 经过点P 〔1,-33〕,倾斜角为3π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t|=| PQ|,∴| PQ|=4+23.(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 那么t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点A, B 所对应的参数值,那么|t 1|=| PA|,|t 2|=| PB|,所以| PA|·| PB|=|t 1 t 2|=12点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘- . 积〔或商〕的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为〔a ,2〕 方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B(-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a )a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2,α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 525511〔t 为参数〕 ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得:75212542--+t P t =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣= 222114)(t t t t -+=4104354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)〔对称性〕由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程〔含P 一个未知量,由弦长AB 的值求得P 〕.(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。

参数方程大题及答案

参数方程大题及答案

参数方程大题及答案【篇一:高考极坐标参数方程含答案(经典39题)】p class=txt>a,b两点.(1)求圆c及直线l的普通方程.(224.已知直线lc(1)求圆心c的直角坐标;(2)由直线l上的点向圆c引切线,求切线长的最小值.l,且ll分别交于b,c两点.在极坐标系(与直角坐标系5.在直角坐标系xoy 中,直线lxoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆c的方程为??4cos?. (Ⅰ)求圆c在直角坐标系中的方程;(Ⅱ)若圆c与直线l相切,求实数a的值.6.在极坐标系中,o为极点,已知圆c(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线l和直线l(Ⅱ)求|bc|的长.3.在极坐标系中,点m轴为x轴的正半轴建立平面直角坐标系,斜率是?1(1)写出直线l的参数方程和曲线c的直角坐标方程;(2)求证直线l和曲线c相交于两点a、b,并求|ma|?|mb|的值.cr=1,p在圆c上运动。

(i)求圆c的极坐标方程;(ii)在直角坐标系(与极坐标系取相同的长度单位,且以极点o为原点,以极轴为x轴正半轴)中,若q为线段op的中点,求点q轨迹的直角坐标方程。

l的极坐7.在极坐标系中,极点为坐标原点o,已知圆c(1)求圆c的极坐标方程;(2)若圆c和直线l相交于a,b两点,求线段ab的长.9.在直角坐标平面内,以坐标原点o为极点,x轴的正半轴为极轴建立极坐标系,曲线c的极坐标方程是??4cos?,直线lt为参数)。

求极点在直线l上的射影点p的极坐标;若m、n分别为曲线c、直线l10.已知极坐标系下曲线c的方程为??2cos??4sin?,直线l?x?4cos??y?sin?8.平面直角坐标系中,将曲线?(?为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线c1 .以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线c2的方程为??4sin?,求c1和c2公共弦的长度.(Ⅰ)求直线l在相应直角坐标系下的参数方程;(Ⅱ)设l与曲线c相交于两点a、b,求点p到a、b两点的距离之积.11.在直角坐标系中,曲线c1的参数方程为??x?4cos?(?为参数).以坐标原点为极点,x轴的正?y?3sin?14.已知椭圆cf1,f2为其左,右焦点,直线l的参数半轴为极轴的极坐标系中.曲线c2(1)分别把曲线c1与c2化成普通方程和直角坐标方程;并说明它们分别表示什么曲线.(2)在曲线c1上求一点q,使点q到曲线c2的距离最小,并求出最小距离.12.设点m,n分别是曲线??2sin??01)求直线l和曲线c的普通方程;(2)求点f1,f2到直线l的距离之和.?x?3cos?15.已知曲线c:?,直线l:?(cos??2sin?)?12.y?2sin??⑴将直线l的极坐标方程化为直角坐标方程;⑵设点p在曲线c上,求p点到直线l距离的最小值.m,n间的最小距离.16.已知?o1的极坐标方程为??4cos?.点a的极坐标是(2,?).(Ⅰ)把?o1的极坐标方程化为直角坐标参数方程,把点a的极坐标化为直角坐标.(Ⅱ)点m(x0,y0)在?o1上运动,点p(x,y)是线段am的中点,求点p运动轨迹的直角坐标方程.求曲线c2上的点到直线l距离的最小值.19.在直接坐标系xoy中,直线l的方程为x-y+4=0,曲线c的参数方程为(1)已知在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,点p17.在直角坐标系xoy中,直线l为参数),若以o为极点,x轴正半轴为极轴建立极坐标系,则曲线c的极坐标方程为?长.18.已知曲线c1的极坐标方程为??4cos?,曲线c2p与直线l的位置关系;,求直线l被曲线c所截的弦(2)设点q 是曲线c上的一个动点,求它到直线l的距离的最小值.20l交曲线c:?比数列,求直线l的方程.?x?2cos?(?为参数)于a、b?y?2sin?的方程是4x?y?4, 直线l的参数方程22(t为参数).(1)求曲线c1的直角坐标方程,直线l的普通方程;(2)21.已知曲线c1的极坐标方程是,曲线c2的参数方程是(1)写出曲线c和直线l的普通方程;(2)若|pm|,|mn|,|pn|成等比数列,求a的值.1)写出曲线c1的直角坐标方程和曲线c2的普通方程;(2)求t 的取值范围,使得c1,c2没有公共点.22.设椭圆e24.已知直线lc(1)设y?sin?,?为参数,求椭圆e的参数方程;(2)点p?x,y?是椭圆e 上的动点,求x?3y的取值范围.23.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线a2c?s??,已知过点0p??2,?4?的直线l的参数方程为?oal与曲线c(i)求圆心c的直角坐标;(Ⅱ)由直线l上的点向圆c引切线,求切线长的最小值.25.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方弦长.?x?2cos?c的参数方程为?(?为对数),求曲线c截直线l所得的?y?sin? c:?si2n??分别交于m,n【篇二:2015高考理科数学《参数方程》练习题】lass=txt>一、选择题?x=1+3t,1.若直线的参数方程为?答案:d?x=3t+2,2.参数方程为?2?y=t-1a.线段 c.圆弧2(t为参数),则直线的倾斜角为( )y-2-3t3(0≤t≤5)的曲线为( )b.双曲线的一支 d.射线解析:化为普通方程为x=3(y+1)+2,即x-3y-5=0,由于x =3t2+2∈[2,77],故曲线为线段.故选a. 答案:a3.曲线?解析:曲线化为普通方程为答案:c4.若直线2x-y-3+c=0与曲线?x2b.3 d.2312+y218=1,∴c=6,故焦距为26.b.6或-4-----欢迎登陆明师在线浏览更多的学习资讯!-----c.-2或8解析:将曲线?22d.4或-6|-3+c|=0与圆x+y=5相切,可知=5,解得c=-2或8.5答案:c5.已知曲线c:??x=t,?y=t+b(t为参数,b为实数),若曲线c上恰有3个点到直线l的距离等于1,则b=( )a.2 c.0解析:将曲线c和直线l的参数方程分别化为普通方程为x2+y2=4和y=x+b,依题意,若要|b|使圆上有3个点到直线l的距离为1,只要满足圆心到直线的距离为1即可,得到=1,解得b=答案:d?x=4t,6.已知点p(3,m)在以点f为焦点的抛物线??y=4ta.1 c.3b.2 d.42(t为参数)上,则|pf|=( )解析:将抛物线的参数方程化为普通方程为y2=4x,则焦点f(1,0),准线方程为x=-1,又p(3,m)在抛物线上,由抛物线的定义知|pf|=3-(-1)=4.答案:d 二、填空题??x=-2-2t,7.(2014年深圳模拟)直线??y=3+2t?坐标是________.??x=-2-2t,1222??y=3+2t2222(t为参数)上与点a(-2,3)的距离等于2的点的(t-----欢迎登陆明师在线浏览更多的学习资讯!-----为参数),得所求点的坐标为(-3,4)或(-1,2).答案:(-3,4)或(-1,2)8.(2014年东莞模拟)若直线l:y=kx与曲线c:?解析:曲线c化为普通方程为(x-2)2+y2=1,圆心坐标为(2,0),半径r=1.由已知l与圆相切,则r=|2k|333解析:利用直角坐标方程和参数方程的转化关系求解参数方程. 1?21?2x-+y=将x+y-x=0配方,得?2?4?22所以圆的直径为1,设p(x,y),?2210.已知曲线c的参数方程为?24??-----欢迎登陆明师在线浏览更多的学习资讯!-----(1)将曲线c的参数方程化为普通方程;解析:(1)由?2x2+y=1,x∈[-1,1].4???x+y+2=0,?2?x+y=1得x2-x-3=0.解得x=[-1,1],故曲线c与曲线d无公共点.2?x=2cos t,11.已知动点p、q都在曲线c:?(1)求m的轨迹的参数方程;m的轨迹的参数方程为?212.(能力提升)在直角坐标系xoy中,圆c1:x+y=4,圆c2:(x-2)+y=4.(1)在以o为极点,x轴正半轴为极轴的极坐标系中,分别写出圆c1,c2的极坐标方程,并求出圆c1,c2的交点坐标(用极坐标表示);222-----欢迎登陆明师在线浏览更多的学习资讯!-----3(2)解法一由?得圆c1与c2交点的直角坐标分别为(1,3),(1,-3).?x=1,故圆c1与c2的公共弦的参数方程为??y=t,?x=1,(或参数方程写成??y=y,-3≤t≤3.-3 ≤ y ≤3)解法二将x=1代入?于是圆c1与c2的公共弦的参数方程为 ?x=1,?======*以上是由明师教育编辑整理======------欢迎登陆明师在线浏览更多的学习资讯!-----【篇三:坐标系与参数方程典型例题(含高考题----答案详细)】ass=txt>一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. ⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程:①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.二、基础知识归纳总结:?x????x,(??0),1.伸缩变换:设点p(x,y)是平面直角坐标系中的任意一点,在变换?:?的作用下,?y???y,(??0).?点p(x,y)对应到点p?(x?,y?),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

极坐标和参数方程的典型例题

极坐标和参数方程的典型例题

极坐标和参数方程的典型例题在数学中,极坐标和参数方程是研究平面曲线的重要工具。

极坐标是一种用极径和极角来表示平面上点位置的坐标系统,而参数方程则是用一个或多个参数来表示曲线上的点的坐标。

在本文中,我们将通过一些典型例题来探讨如何使用极坐标和参数方程解决问题。

例题一:极坐标下的圆首先让我们考虑一个非常简单的例子,即极坐标下的圆。

圆的极坐标方程为:$$ \\begin{cases} r = a \\\\ \\theta \\in [0, 2\\pi) \\end{cases} $$其中,r表示极径,a表示圆的半径,$\\theta$表示极角。

这个方程说明了圆上的每个点都满足极径等于半径a,并且极角可以在0到$2\\pi$之间取值。

例题二:参数方程下的抛物线接下来,我们考虑一个使用参数方程描述的曲线:抛物线。

抛物线的参数方程为:$$ \\begin{cases} x = at^2 \\\\ y = 2at \\end{cases} $$其中,a为常数,t为参数。

根据这个参数方程,我们可以看到x和y都是t的二次函数。

这个参数方程给出了抛物线上的每个点的坐标。

例题三:极坐标和参数方程的转换有时候,我们需要在极坐标和参数方程之间进行转换。

下面的例题将展示如何将一个极坐标方程转换为参数方程。

考虑极坐标方程:$$ \\begin{cases} r = 2\\cos\\theta \\\\ \\theta \\in [0, \\pi] \\end{cases} $$我们可以使用三角恒等式来将这个极坐标方程转换为参数方程。

首先,我们注意到r是$\\theta$的函数,而x和y是r的函数。

根据极坐标和直角坐标之间的关系,我们有下面的关系式:$$ \\begin{cases} x = r\\cos\\theta \\\\ y = r\\sin\\theta \\end{cases} $$将极坐标方程中的r代入上述关系式,我们得到参数方程:$$ \\begin{cases} x = 2\\cos(\\theta)\\cos(\\theta) = 2\\cos^2(\\theta) \\\\y = 2\\cos(\\theta)\\sin(\\theta) = \\sin(2\\theta) \\end{cases} $$ 通过这个转换,我们将极坐标方程转换为了参数方程。

专题75 参数方程(解析版)

专题75 参数方程(解析版)

2020年领军高考数学一轮复习(文理通用)专题75参数方程最新考纲1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.基础知识融会贯通1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程重点难点突破【题型一】参数方程与普通方程的互化【典型例题】已知曲线C1:(t为参数),C2:(θ为参数)(Ⅰ)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t,Q为C2上的动点,求PQ中点M到直线C3:(t 为参数)距离的最小值.【解答】解:(Ⅰ)C1:(x+4)2+(y﹣3)2=1,C2:y2=1C1为圆心是(﹣4,3),半径是1的圆C2为中心是坐标原点,焦点在x轴上,长半轴长是,短半轴长是1的椭圆(Ⅱ)当t时,P(﹣4,4),Q(cosθ,sinθ),故M(﹣2cosθ,2)C3为直线x﹣y﹣5=0,M到C3的距离d|sin(θ)+9|,从而当sin(θ)=﹣1时,d取得最小值4.【再练一题】在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),把曲线C1上的点的横坐标缩短到原来的倍数,纵坐标伸长到原来的2倍后得到曲线C2.(1)求曲线C1和C2的普通方程;(2)直线l的参数方程是(t为参数),直线l过定点P(0,1)且与曲线C2交于A,B两点,求|P A|•|PB|的值.【解答】(1)线C1的参数方程为(φ为参数),得到:x2+y2=4.把曲线C1上的点的横坐标缩短到原来的倍数,纵坐标伸长到原来的2倍后得到曲线C2.(φ为参数)转换为直角坐标方程为:.(2)把直线l的参数方程(t为参数),转换为标准的参数方程为:(t为参数)代入,得到:(t1和t2为A和B对应的参数),故:,故:.思维升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.【题型二】参数方程的应用【典型例题】已知直线l:(t为参数),曲线C1:(θ为参数).(1)设直线l与曲线C1相交于A,B两点,求劣弧AB的弧长;(2)若把曲线C1上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线C2,设点P是曲线C2上的一个动点,求点P到直线l的距离的最小值,及点P坐标.【解答】解:(1)由l:,得;由曲线C1:,得x2+y2=1;联立,解得或,则两交点为(1,0),(,).∴|AB |,则劣弧AB 的弧长为;(2)设P 点坐标为(,),点P 到直线l 的距离d . 当sin ()=﹣1时,d 取得最小值为,此时P (,).【再练一题】在平面直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t 为参数).(1)求曲线C 和直线l 的普通方程,(2)直线l 与曲线C 交于A ,B 两点,若|AB |=1,求直线l 的方程.【解答】解:(1)由曲线C 和直线l 的参数方程可知,曲线C 的普通方程为x 2+y 2=1. 直线l 的普通方程:当cos α=0时为x =2;当cos α≠0时为y =tan α(x ﹣2). (2)把x =2+t cos α,y =t sin α代入x 2+y 2=1,得t 2+4t cos α+3=0, 因为△=16cos 2α﹣12>0,所以cos 2α.设A ,B 对应的参数为t 1,t 2,因为t 1+t 2=﹣4cos α,t 1t 2=3,|AB |=|t 1﹣t 2|=1, 所以(t 1﹣t 2)2=(t 1+t 2)2﹣4t 1t 2=16cos 2α﹣12=1, 所以cos 2α,所以tan 2α, 所以tan α=±,即直线l 的斜率为±. 所以直线l 的方程为y x或yx.思维升华 (1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【题型三】极坐标方程和参数方程的综合应用【典型例题】在直角坐标系xOy中,曲线C1的参数方程为(α是参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线θ=β(0<β)与曲线C1交于O,A两点,与曲线C2交于O,B两点,求|OA|+|OB|取最大值时tanβ的值.【解答】解:(1)由(α是参数),得,∴,即,∴曲线C1的极坐标方程为.由ρ=4sinθ,得ρ2=4ρsinθ,将ρ2=x2+y2,y=ρsinθ代入得:x2+y2=4y,故曲线C2的直角坐标方程为x2+y2﹣4y=0.(2)设点A、B的极坐标分别为(ρ1,θ),(ρ2,θ),将θ=β(0<β)分别代入曲线C1、C2极坐标方程得:,ρ2=4sinβ,则|OA|+|OB|4sinβ(β+φ),其中φ为锐角,且满足sinφ,cosφ,当β+φ时,|OA|+|OB|取最大值,此时φ,tanβ=tan(φ).【再练一题】在直角坐标系xoy中,直线l的参数方程是(t为参数),曲线C的参数方程是(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l和曲线C的极坐标方程;(2)已知射线与曲线C交于O,M两点,射线与直线l交于N 点,若△OMN的面积为1,求α的值和弦长|OM|.【解答】解:(1)直线l 的参数方程是(t 为参数),消去参数t 得直角坐标方程为:. 转换为极坐标方程为:,即.曲线C 的参数方程是(φ为参数),转换为直角坐标方程为:,…………………………化为一般式得化为极坐标方程为:. ………………………(2)由于,得,.所以,所以, 由于,所以,所以.…………………………思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.基础知识训练1.在平面直角坐标系xOy 中,直线l的参数方程为322x t y t ⎧=−⎪⎪⎨⎪=⎪⎩(t 为参数)。

参数方程与普通方程互化例题和知识点总结

参数方程与普通方程互化例题和知识点总结

参数方程与普通方程互化例题和知识点总结在数学的学习中,参数方程与普通方程的互化是一个重要的知识点,它不仅在解析几何中有着广泛的应用,对于解决实际问题也具有重要的意义。

下面我们将通过一些例题来深入理解参数方程与普通方程的互化,并对相关知识点进行总结。

一、参数方程的概念参数方程是指在平面直角坐标系中,如果曲线上任意一点的坐标\(x\)、\(y\)都是某个变数\(t\)的函数,并且对于\(t\)的每一个允许的取值,由方程组确定的点\((x,y)\)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数\(x\)、\(y\)的变数\(t\)叫做参变数,简称参数。

例如,圆的参数方程为:\(\begin{cases}x = r\cos\theta \\ y= r\sin\theta\end{cases}\)(\(\theta\)为参数),其中\(r\)为圆的半径。

二、普通方程的概念普通方程是指用\(x\)和\(y\)直接表示其关系的方程。

例如,圆的普通方程为:\(x^2 + y^2 = r^2\)。

三、参数方程与普通方程互化的方法1、消去参数消去参数的方法主要有代入消元法、加减消元法、利用三角函数的恒等式消元法等。

例如,对于参数方程\(\begin{cases}x = t + 1 \\ y =t^2\end{cases}\),可以通过将\(x = t + 1\)变形为\(t = x 1\),然后代入\(y = t^2\)中,得到普通方程\(y =(x 1)^2\)。

2、利用三角函数的恒等式对于形如\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)的参数方程,可以利用三角函数的平方和恒等式\(\cos^2\theta +\sin^2\theta = 1\)进行消参。

例如,将\(x = a\cos\theta\)两边平方得\(x^2 =a^2\cos^2\theta\),将\(y = b\sin\theta\)两边平方得\(y^2 =b^2\sin^2\theta\),然后将两式相加可得:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)。

高中数学选修4-4(人教A版)第二讲参数方程2.1知识点总结含同步练习及答案

高中数学选修4-4(人教A版)第二讲参数方程2.1知识点总结含同步练习及答案

描述:例题:高中数学选修4-4(人教A版)知识点总结含同步练习题及答案第二讲 参数方程 一 曲线的参数方程一、知识清单参数方程二、知识讲解1.参数方程曲线的参数方程定义设平面上取定了一个直角坐标系,把坐标系,表示为第三个变量的函数如果对于的每一个值(),式所确定的点都是在一条曲线上;而这条曲线上的任一点,都可由的某个值通过式得到,则称式为该曲线的参数方程,其中变量称为参数.直线的参数方程直线的参数方程的一般形式是.圆的参数方程若圆心在点,半径为,则圆的参数方程为 . 圆锥曲线的参数方程若椭圆的中心不在原点,而在点,相应的椭圆的参数方程为.抛物线的参数方程抛物线的参数方程为.双曲线的参数方程双曲线的参数方程为.摆线的参数方程一圆沿一直线作无滑动滚动式,圆周上的一定点的轨迹称为摆线.设半径为的圆在轴上滚动,开始时定点在原点处.取圆滚动时转过的角度(以弧度为单位)为参数.当圆滚过角时,圆心为,圆与轴的切点为,.所摆线的参数方程为.xOy x y t {a ≤t ≤b .(2−3)x =f (t )y =g (t )t a ≤t ≤b (2−3)M (x ,y )M (x ,y )t (2−3)(2−3)t {t ∈R x =+lt x 0y =+mty 0(,)M 0x 0y 0R {0≤θ≤2πx =+R cos θx 0y =+R sin θy 0(,)M 0x 0y 0{0≤t ≤2πx =+a cos t x 0y =+b sin ty 0{x =2p t 2y =2pt{x =a sec θy =b tan θM a x M O t t B x A ∠ABM =t {x =a (t −sin t )y =a (1−cos t )下列方程中可以看成参数方程的是( )A. B. C.x −y −t =0+−2ax −9=0x 2y 2{=x 2t 2y =2t −1。

高三数学参数方程知识点

高三数学参数方程知识点

高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。

本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。

一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。

通常用t作为参数,表示自变量的取值范围。

在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。

二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。

1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。

例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。

2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。

例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。

三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。

下面分别介绍参数方程在平面曲线和空间曲线中的应用。

1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。

通过参数方程,可以对曲线的形状和性质进行更深入的研究。

例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。

通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。

2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。

通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。

四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。

高中数学函数参数方程解析

高中数学函数参数方程解析

高中数学函数参数方程解析一、引言在高中数学学习中,函数参数方程是一个重要的知识点。

本文将从基础概念出发,通过具体题目的举例,分析解题思路和考点,并给出一些解题技巧,帮助读者更好地理解和应用函数参数方程。

二、函数参数方程的基本概念函数参数方程是指用参数表示的函数方程。

一般形式为:y = f(x, a),其中a为参数。

参数可以是任意实数,通过改变参数的取值,可以得到不同的函数图像。

三、函数参数方程的应用举例1. 例题一:求参数方程y = a^2 - x^2的图像。

解析:将参数方程转化为直角坐标系下的函数方程。

令y = f(x, a) = a^2 - x^2,其中a为参数。

通过改变参数a的取值,可以得到不同的图像。

当a = 1时,函数图像为一个单位圆;当a = 2时,函数图像为一个半径为2的圆。

可以通过改变参数a的取值,观察图像的变化规律。

2. 例题二:求参数方程x = a + t,y = a - t的图像。

解析:将参数方程转化为直角坐标系下的函数方程。

令x = f(t, a) = a + t,y = g(t, a) = a - t,其中a为参数。

通过改变参数a的取值,可以得到不同的图像。

当a = 0时,函数图像为直线y = -x;当a = 1时,函数图像为直线y = 1 - x。

可以通过改变参数a的取值,观察图像的变化规律。

四、函数参数方程的考点分析1. 参数的取值范围:在解题过程中,需要注意参数的取值范围,以保证函数有意义。

例如,在例题一中,参数a不能取负值,否则函数图像将不存在。

2. 函数图像的特点:通过观察函数图像的特点,可以发现一些规律。

例如,在例题一中,当参数a取不同的值时,函数图像的形状和大小都会发生变化。

这表明参数a对函数图像具有一定的控制作用。

3. 函数图像的对称性:在解题过程中,可以通过观察函数图像的对称性来简化问题。

例如,在例题一中,函数图像y = a^2 - x^2关于y轴对称,这可以帮助我们更好地理解和绘制函数图像。

参数方程知识讲解及典型例题

参数方程知识讲解及典型例题

参数方程一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数t 的函数,即 ⎩⎨⎧==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数.注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵坐标与参数间的关系。

二、二次曲线的参数方程 1、圆的参数方程:特殊:圆心是(0,0),半径为r 的圆:θθsin cos r y r x ==一般:圆心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数,θ的几何意义为圆心角),Eg1:已知点P (x ,y )是圆x 2+y 2-6x-4y+12=0上的动点,求:(1)x 2+y 2的最值;(2)x+y 的最值;(3)点P 到直线x+y-1=0的距离d 的最值。

Eg2:将下列参数方程化为普通方程(1) x=2+3cos θ (2) x=sin θ (3) x=t+t1y=3sin θ y=cos θ y=t 2+21t总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程:中心在原点,焦点在x 轴上的椭圆:θθsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0)椭圆的参数方程: θθsin cos 00b y y a x x +=+=Eg :求椭圆203622y x +=1上的点到M (2,0)的最小值。

3、双曲线的参数方程:中心在原点,焦点在x 轴上的双曲线:θθtan sec b y a x == (θ为参数,代表离心角),中心在(x 0,y 0),焦点在x 轴上的双曲线: θθtan sec 00b y y a x x +=+=4、抛物线的参数方程:顶点在原点,焦点在x 轴正半轴上的抛物线:pt y pt x 222== (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。

参数方程] · [基础] · [知识点+典型例题]

参数方程] · [基础] · [知识点+典型例题]

参数方程知识讲解一、参数定义:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数.二、参数方程与普通方程的互化1.参数方程化为普通方程代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围!2.普通方程化为参数方程注:普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.三、常见参数方程1.直线l 的常用参数方程为:cos sin x m t y n t θθ=+⎧⎨=+⎩,t ∈R 为参数,其中θ为直线的倾斜角,(,)m n 为直线上一点.2.圆222()()x a y b r -+-=的常用参数方程为:cos ,[0,2π)sin x a r y b r θθθ=+⎧∈⎨=+⎩为参数; 3.椭圆22221x y a b +=的常用参数方程为:cos ,[0,2π)sin x a y b θθθ=⎧∈⎨=⎩为参数. 【引申】:参数方程和之前我们讲过的还原法有一个相同的“易错点”,就是一定要注意:新引进的参数的范围!【重点】:参数方程最主要的是抓住到底“参数是谁”!典型例题一.选择题(共11小题)1.(2018•朝阳区一模)直线l的参数方程为(t为参数),则l的倾斜角大小为()A.B.C.D.【解答】解:根据题意,直线l的参数方程为(t为参数),则到直线的方程为,所以直线的斜率为,倾斜角为,故选:C.2.(2018•大兴区一模)直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.4【解答】解:由,得x﹣,由,得(x﹣1)2+y2=1.∴圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.而圆心(1,0)在直线x﹣上,∴直线与曲线相交的弦长为2.故选:B.3.(2018•奉贤区二模)已知曲线的参数方程为(0≤t≤5),则曲线为()A.线段B.双曲线的一支C.圆弧D.射线【解答】解:由(0≤t≤5),消去参数t,得x﹣3y=5.又0≤t≤5,故﹣1≤y≤24.故该曲线是线段.故选:A.4.(2017秋•天心区校级期末)直线的参数方程为(t为参数),M0(﹣1,2)和M(x,y)是该直线上的定点和动点,则t的几何意义是()A.有向线段M0M的数量B.有向线段MM0的数量C.|M0M|D.以上都不是【解答】解:根据题意,直线的参数方程化为标准形式为,则﹣t表示有向线段M0M的数量,即t表示有向线段MM0的数量;故选:B.5.(2018春•郑州期末)若P(2,﹣1)为圆(θ为参数且0≤θ<2π)的弦的中点,则该弦所在的直线方程为()A.x﹣y﹣3=0 B.x+2y=5 C.x+y﹣1=0 D.2x﹣y﹣5=0【解答】解:把圆(θ为参数且0≤θ<2π)消去参数,化为直角坐标方程为(x﹣1)2+y2=25,表示以C(1,0)为圆心、半径等于5的圆.再根据所求直线和直线CP垂直,可得所求直线的斜率为﹣=﹣=1,可得所求直线的方程为y+1=1•(x﹣2),即x﹣y﹣3=0,故选:A.6.(2017秋•天心区校级期末)已知曲线(θ为参数,0≤θ≤π)上一点P,原点为O,直线PO的倾斜角为,则P的坐标是()A.(3,4) B., C.(﹣3,﹣4)D.,【解答】解:∵原点为O,直线PO的倾斜角为,∴tan=1,∵曲线(θ为参数,0≤θ≤π),∴tanθ=,∴cosθ=,sinθ=,∵曲线(θ为参数,0≤θ≤π)上一点P,∴代入得P的坐标为,.故选:D.7.(2017秋•东湖区校级期末)曲线C1:(t为参数),曲线C2:(θ为参数),若C1,C2交于A、B两点,则弦长|AB|为()A.B. C.D.4【解答】解:曲线C1:(t为参数),化为普通方程为x+y﹣2=0,即y=2﹣x①曲线C2:(θ为参数),化为普通方程得,,②将①代入②,得5x2﹣16x+12=0,x1+x2=,x1x2=,则弦长|AB|==.故选:B.8.(2017秋•天心区校级期末)已知椭圆的参数方程为(θ为参数),则它的离心率为()A.B.C.D.【解答】解:依据题意,椭圆的参数方程为,将椭圆的参数方程化成普通方程为+=1,其中a=4,b=2,故c==2,所以离心率e===;故选:A.9.(2018春•海珠区期末)若曲线C的参数方程为(t为参数),则下列说法正确的是()A.曲线C是直线且过点(﹣1,2) B.曲线C是直线且斜率为C.曲线C是圆且圆心为(﹣1,2) D.曲线C是圆且半径为|t|【解答】解:曲线C的参数方程为(t为参数),消去参数t得曲线C的普通方程为=0.把(﹣1,2)代入,成立,斜率是.∴曲线C是直线且过点(﹣1,2),斜率是.故选:A.10.(2018春•青山区校级期末)参数方程(t为参数)表示什么曲线()A.一个圆B.一个半圆C.一条射线D.一条直线【解答】解:∵参数方程(t为参数),消去参数t,化为普通方程是2(x﹣1)+(y﹣1)=0(x≥1),即2x+y﹣3=0(x≥1);它表示端点为(1,1)的一条射线.故选:C.11.(2018春•桑珠孜区校级期中)点(1,2)在圆的()A.内部B.外部C.圆上D.与θ的值有关【解答】解:根据题意,圆,其普通方程为:(x+1)2+y2=64,又由:(1+1)2+(2﹣0)2=16<64,则点(1,2)在圆的内部;故选:A.二.填空题(共5小题)12.(2017•松江区二模)直线(t为参数)对应的普通方程是x+y ﹣1=0.【解答】解:两个方程相加得x+y﹣1=0,故答案为:x+y﹣1=0.13.(2017•闵行区校级模拟)已知直线l的参数方程是(t为参数),则它的普通方程是3x﹣4y+5=0.【解答】解:直线l的参数方程是(t为参数),可得,可得3x﹣4y+5=0.故答案为:3x﹣4y+5=0.14.(2017•徐汇区二模)参数方程为(t为参数)的曲线的焦点坐标为(1,0).【解答】解:根据题意,曲线的参数方程为(t为参数),则其普通方程为:y2=4x,即该曲线为抛物线,其焦点在x轴上,且p=2;则其焦点坐标为(1,0);故答案为:(1,0)15.(2016春•淮安校级期末)参数方程(t为参数)化为普通方程为x+2y+9=0.【解答】解:由y=﹣2t﹣5,可得2y=﹣4t﹣10,与x=4t+1相加可得:x+2y=﹣9,即x+2y+9=0.故答案为:x+2y+9=0.16.(2016春•无锡期末)直线(t为参数)的倾斜角为50°.【解答】解:根据直线(t为参数),得x+1=(y﹣3)tan40°,∴x﹣ytan40°+1+3tan40°=0,∴该直线的斜率k==tan50°,∴该直线的倾斜角为50°,故答案为:50°.三.解答题(共4小题)17.(2012•天山区校级模拟)已知在直角坐标系xOy内,直线l的参数方程为(t为参数).以Ox为极轴建立极坐标系,圆C的极坐标方程为.(1)写出直线l的普通方程和圆C的直角坐标方程;(2)判断直线l和圆C的位置关系.【解答】解:(1)消去参数t,得直线l的直角坐标方程为y=2x﹣3;(4分),即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),消去参数θ,得⊙C的直角坐标方程为:(x﹣1)2+(y﹣1)2=2(8分)(2)圆心C到直线l的距离<,所以直线l和⊙C相交.(10分)18.求椭圆(θ为参数)的左焦点坐标.【解答】解:∵椭圆的参数方程为,∴cosθ=(x﹣1),sinθ=y,∵cos2θ+sin2θ=1,∴+=1,∴已知椭圆可看作+=1向右平移1个单位得到,又易得+=1的左焦点为(﹣,0),∴已知椭圆的左焦点坐标为(1﹣,0),19.(1)在直角坐标系中,曲线C1:(其中θ为参数),直线C2:(其中t为参数).点F(﹣4,0),曲线C1与直线C2相交于点A、B,求|FA|•|FB|的值.(2)在极坐标系中,直线l:ρcos(θ﹣)=2,与以点M(4,π)为圆心,以5为半径的圆相交于P、Q两点,求|PQ|的值.【解答】解:(1)由,得,把代入上式,得369t2﹣1440t﹣2025=0.∴|FA|•|FB|=;(2)由ρcos(θ﹣)=2,得,即.以点M(4,π)为圆心,以5为半径的圆的直角坐标方程为(x+4)2+y2=25.圆心(﹣4,0)到直线的距离为d=,∴|PQ|=2.20.已知极坐标的极点在平面直角坐标的原点O处,极轴与x轴的正半轴重合,且长度单位相同,若点P为曲线C:(θ为参数)上的动点,直线l 的极坐标方程为ρcos(θ+)=m(m>2)(1)将曲线C的参数方程化为普通方程,直线l的极坐标方程化为直角坐标方程;(2)若曲线C上有且只有一点P到直线l的距离为2,求实数m的值和点P的坐标.【解答】解:(1)曲线C:(θ为参数),利用平方关系可得普通方程:+y2=1.直线l的极坐标方程为ρcos(θ+)=m(m>2),展开可得:ρ(cosθ﹣sinθ)=m,化为直角坐标方程:x﹣y﹣m=0.(2)设与直线x﹣y﹣m=0平行且与椭圆相切的直线方程为x﹣y+t=0.把y=x+t代入椭圆方程可得:4x2+6tx+3t2﹣3=0,令△=36t2﹣48(t2﹣1)=0,解得:t=±2.当t=2时,方程为(2x+3)2=0,解得x=﹣,代入椭圆方程可得:=1,取y=,可得切点P,,则=2,解得m=﹣2±2.经过验证都满足条件.当t=﹣2时,方程为(2x﹣3)2=0,解得x=,代入椭圆方程可得:=1,取y=﹣,可得切点P,,则=2,解得m=2±2.经过验证都满足条件.综上可得:取点P,,m=﹣2±2.取点P,,m=2±2.。

新课标高考真题,参数方程典型例题,高考必考

新课标高考真题,参数方程典型例题,高考必考

1、(08)选修4-4:坐标系与参数方程已知曲线C 1:cos ()sin x y θθθ=⎧⎨=⎩为参数,曲线C 2:222()22x t t y t⎧=-⎪⎪⎨⎪=⎪⎩为参数。

(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C 。

写出1'C ,2'C 的参数方程。

1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由。

【试题解析】 (1)C1时圆,C2是直线C1的普通方程为221x y +=,圆心C1(0,0),半径1r =; C2的普通方程为20x y -+=,因为圆心C1到直线20x y -+=的距离为1,所以C1与C2只有一个公共点;(2)压缩后的参数方程分别为()()''122cos 22::1sin 224x x t C C t y y t ⎧=θ=-⎧⎪⎪⎪θ⎨⎨=θ⎪⎪⎩=⎪⎩为参数,为参数化为普通方程为'2'1212::22C x C y x =+2+4y =1,,联立消元得:222210x x ++=,其判别式()2224210∆=-⨯⨯=;所以压缩后的直线与椭圆仍然只有一个公共点,和原来相同;【高考考点】参数方程与普通方程的互化及应用 2、(09)选修4—4:坐标系与参数方程。

已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。

(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t=+⎧⎨=-+⎩ (t 为参数)距离的最小值。

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(

A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan

为参数,
[0, 2 ) 且
, 2
3 2

参数方程及答案

参数方程及答案

答案1.在直角坐标系xOy中,直线l的参数方程为{x =3−√22t,y =√5+√22t(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2√5sin θ. (1)求圆C的圆心到直线l的距离;(2)设圆C与直线l交于点A,B,若点P的坐标为(3,√5),求|PA|+|PB|. 解:(1)因为C:ρ=2√5sin θ,所以C:ρ2=2√5ρsin θ, 所以C:x 2+y 2-2√5y=0,即圆C的标准方程为x 2+(y-√5)2=5. 直线l的普通方程为x+y -√5-3=0.所以,圆C的圆心到直线l的距离为d=|0+√5-√5-3|√2=3√22. (2)联立{x 2+(y -√5)2=5,y =−x +√5+3,解得{x =1,y =√5+2或{x =2,y =√5+1.所以|PA|+|PB|=√(3-1)2+(√5-√5-2)2+√(3-2)2+(√5-√5-1)2 =3√2.2.已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为{x =12+√32t y =12+12t(t为参数),点A的极坐标为(√22,π4),设直线l与圆C交于点P,Q两点. (1)写出圆C的直角坐标方程; (2)求|AP|·|AQ|的值..解:(1)圆C的极坐标方程为ρ=2cos θ即ρ2=2ρcos θ,即(x -1)2+y 2=1,表示以C(1,0)为圆心、半径等于1的圆. (2)因为点A的直角坐标为(12,12),所以点A在直线{x =12+√32t,y =12+12t(t为参数)上.把直线的参数方程代入曲线C的方程可得 t 2+1−√32t-12=0. 由韦达定理可得t 1·t 2=-12<0,根据参数的几何意义可得|AP|·|AQ|=|t 1·t 2|=12. 因此|AP|·|AQ|的值为12. 3.已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cos θ. (1)求圆C的直角坐标方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求1|PA|+1|PB|的最大值和最小值..解:(1)由ρ=4cos θ,得ρ2=4ρcos θ,即x 2+y 2=4x, 所以圆C的直角坐标方程为(x -2)2+y 2=4, 直线l过点P(1,0),且倾斜角为α,所以直线l的参数方程为{x =1+tcosα,y =tsinα(t为参数). (2)将{x =1+tcosα,y =tsinα代入(x -2)2+y 2=4, 得t 2-2tcos α-3=0,Δ=(2cos α)2+12>0, 设A,B两点对应的参数分别为t 1,t 2, 则1|PA|+1|PB|=|AB||PA|·|PB|=|t 1-t 2||t 1t 2|=√(t 1+t 2)2-4t 1t 23=2√cos 2α+33,因为cos α∈[-1,1],所以1|PA|+1|PB|的最大值为43,最小值为2√334.在极坐标系中,已知圆C的圆心C(√2,π4),半径r=√3. (1)求圆C的极坐标方程;(2)若α∈[0,π4),直线l的参数方程为{x =2+tcosα,y =2+tsinα(t为参数),直线l交圆C于A,B两点,求弦长|AB|的取值范围. 解:(1)因为C(√2,π4)的直角坐标为(1,1), 所以圆C的直角坐标方程为(x -1)2+(y-1)2=3. 化为极坐标方程是ρ2-2ρ(cos θ+sin θ)-1=0.(2)将{x =2+tcosα,y =2+tsinα代入圆C的直角坐标方程(x -1)2+(y-1)2=3, 得(1+tcos α)2+(1+tsin α)2=3, 即t 2+2t(cos α+sin α)-1=0.所以t 1+t 2=-2(cos α+sin α),t 1·t 2=-1. 所以|AB|=|t 1-t 2|=√(t 1+t 2)2-4t 1·t 2=2√2+sin2α.因为α∈[0,π4),所以2α∈[0,π2), 所以2√2≤|AB|<2√3.即弦长|AB|的取值范围是[2√2,2√3).5.在直角坐标系xOy中,曲线C 1的参数方程为{x =cosα,y =sinα(α为参数),曲线C 1经过坐标变换{x'=2x,y'=y 后得到的轨迹为曲线C 2. (1)求C 2的极坐标方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=π6与C 1的异于极点的交点为A,与C 2的异于极点的交点为B,求|AB|. 解:(1)曲线C 1的参数方程为{x =cosα,y =sinα(α为参数), 转化为直角坐标方程为x 2+y 2=1,曲线C 1经过坐标变换{x'=2x,y'=y 后得到的轨迹为曲线C 2. 即x'24+y′2=1,故C 2的直角坐标方程为x 24+y 2=1. 转化为极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1.(2)曲线C 1的参数方程为{x =cosα,y =sinα(α为参数),转化为极坐标方程为ρ1=1,由题意得到A(1,π6), 将B(ρ2,π6)代入坐标方程ρ2cos 2θ4+ρ2sin 2θ=1.得到ρ2=4√77, 则|AB|=|ρ1-ρ2|=4√77-1. 6.在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,曲线C 1的极坐标方程为ρ=2,正三角形ABC的顶点都在C 1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0). (1)求点B,C的直角坐标;(2)设P是圆C 2:x 2+(y+√3)2=1上的任意一点,求|PB|2+|PC|2的取值 范围..解:(1)因为曲线C 1的极坐标方程为ρ=2,所以曲线C 1的直角坐标方程为x 2+y 2=4,因为正三角形ABC的顶点都在C 1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0),所以B点的坐标为(2cos 120°,2sin 120°),即B(-1,√3), C点的坐标为(2cos 240°,2sin 240°),即C (-1,-√3). (2)因为圆C 2:x 2+(y+√3)2=1,所以圆C 2的参数方程{x =cosα,y =−√3+sinα,0≤α<2π, 设点P(cos α,-√3+sin α),0≤α<2π,所以|PB|2+|PC|2=(cos α+1)2+(sin α-2√3)2+(cos α+1)2+sin 2α=16+4cos α-4√3sin α=16+8cos(α+π3), 所以|PB|2+|PC|2的取值范围是[8,24].7.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程..解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点. 当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,所以2=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,所以2=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+.8.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.【答案】(1)()()22240x y x -+=≠;(2)2+.(2)设点B 的极坐标为()(),0B B ραρ>,由题设知2,4cos B OA ρα==,于是OAB △的面积S =13sin 4cos |sin()|2|sin(2)|2 3.2332B OA AOB ραααππ⋅⋅∠=⋅-=--≤+ 当12απ=-时,S 取得最大值23+,所以OAB △面积的最大值为23+. 9.答案没找到10.在直角坐标系xOy 中,曲线C 1的参数方程为(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程; (II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:⑴ cos 1sin x a ty a t =⎧⎨=+⎩(t 均为参数)∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程 ⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=即()2224x y -+=②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C∴210a -= ∴1a =11. 答案没找到12.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.13.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程. 解:(1)的直角坐标方程为.当时,与交于两点. 当时,记,则的方程为与交于两点当且仅当,解得或,即或. 综上,的取值范围是.(2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足2cos sin 0αα+=l tan 2k α==-xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P O 221x y +=2απ=l O 2απ≠tan k α=l y kx =-lO ||1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A t Bt 2sin 10t α-+=A B t t α+=P t α=P (,)x y cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩所以点的轨迹的参数方程是为参数,.14.(2016年全国II高考)在直角坐标系中,圆的方程为.(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;(Ⅱ)直线的参数方程是(为参数), 与交于两点,,求的斜率.解:⑴整理圆的方程得2212110x y+++=,由222cossinx yxyρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C的极坐标方程为212cos110ρρθ++=.⑵记直线的斜率为k,则直线的方程为0kx y-=,=,即22369014kk=+,整理得253k=,则k=.所以l 的斜率为15315、(2016年全国III高考)在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为P2,2xyαα⎧=⎪⎪⎨⎪=⎪⎩(α44απ3π<<)xOy C22(6)25x y++=x C lcossinx ty tαα=⎧⎨=⎩t l C,A B ||AB=lxOy1C()sinxyθθθ⎧=⎪⎨=⎪⎩为参数x2Csin()4ρθπ+=(I)写出的普通方程和的直角坐标方程; (II)设点P 在上,点Q 在上,求|PQ |的最小值及此时P 的直角坐标.1C 2C 1C 2C。

参数方程最全版

参数方程最全版

参数方程1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是(t 为参数) (2)一般式 :过定点P 0(x 0,y 0)斜率k=tg α=的直线的参数方程是 (t 不参数) 2.圆的参数方程圆心在(a,b),半径为r 的圆的参数方程是(φ是参数)a,b 是圆的圆心坐标,半径为r 的圆,标准方程为:3.椭圆椭圆(a >b >0)的参数方程是(φ为参数)得出圆的方程4.极坐标互化公式常用的公式:sin(α±β)=sin αcos β±cos αsin β.⎩⎨⎧+=+=a t y y at x x sin cos 00ab⎩⎨⎧+=+=bt y y atx x 00⎩⎨⎧+=+=ϕϕsin cos r b y r a x ()()222r b y a x =-+-12222=+by a x ⎩⎨⎧==ϕϕsin cos b y a x 12222=+by a x ⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρcos(α±β)=cos αcos β∓sin αsin β.1、已知直线的参数方程为,圆C 的参数方程为. (1)求直线和圆C 的普通方程; (2)若直线与圆C 有公共点,求实数的取值范围.2.. 在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y2=4x 相交于A ,B 两点,求线段AB 的长.3在平面直角坐标系xOy 中, 直线的参数方程为(t 为参数),曲线C 的参数方程为 (为参数).试求直线和曲线C 的普通方程, 并求出它们的公共点的坐标.4.在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为,直线的极坐标方程为,且点A 在直线上。

参数方程知识加例题(原创)

参数方程知识加例题(原创)

参数方程(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 îíì==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:(二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线:的直线: aa sin cos 00t y y t x x +=+= (t 为参数)为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.间的有向距离.根据t 的几何意义,有以下结论.的几何意义,有以下结论. ○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ×--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +.2.中心在(x 0,y 0),半径等于r 的圆:的圆: qq sin cos 00r y y r x x +=+= (q 为参数)为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:轴)上的椭圆: qq sin cos b y a x == (q 为参数)为参数) (或(或qq sin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)a a a (.sin ,cos 00îíì+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:轴)上的双曲线:qq tg sec b y a x == (q 为参数)为参数) (或(或qq ec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为a 的直线的参数方程是的直线的参数方程是 îíì+=+=aasin cos 00t y y t x x (t 为参数). 参数方程例题例1.讨论下列问题:讨论下列问题:1、已知一条直线上两点()111,yxM、()222,y xM ,以分点M (x ,y )分21MM 所成的比l 为参数,写出参数方程。

高考数学三角函数参数方程历年真题2024精讲

高考数学三角函数参数方程历年真题2024精讲

高考数学三角函数参数方程历年真题2024精讲一、概述在高考数学中,三角函数参数方程是一个重要的考点。

本文将针对高考数学历年真题中关于三角函数参数方程的题目进行精讲,并提供详细的解题思路和步骤。

二、题型解析三角函数参数方程的题目一般分为两种类型:一种是已知参数方程,求函数表达式;另一种是已知函数表达式,求参数方程。

1. 已知参数方程,求函数表达式在这类题目中,通常给出一个或多个参数方程,要求将其转化为函数表达式。

解题的关键在于利用三角函数的基本属性和变换公式。

示例题目:【题目】已知参数方程:$\begin{cases}x=\sin(t)\\y=\cos(t)\end{cases}$求函数表达式。

解题思路:由已知参数方程可得:$x^2+y^2=\sin^2(t)+\cos^2(t)=1$因此,得到函数表达式为:$x^2+y^2=1$2. 已知函数表达式,求参数方程在这类题目中,题目一般给出一个函数表达式,要求将其转化为参数方程。

解题的关键在于根据已知函数表达式,找到合适的参数和参数的取值范围。

示例题目:【题目】已知函数表达式:$y=\sin(x)$,求参数方程。

解题思路:对于给定的函数表达式$y=\sin(x)$,我们可以将$x$作为参数,将其取值范围限定在$[-\pi, \pi]$之间,然后令$y$为$\sin(x)$的取值。

这样就可以得到参数方程:$\begin{cases}x=t\\y=\sin(t)\end{cases}$其中$t \in [-\pi, \pi]$三、历年真题精讲接下来,我们将通过历年高考数学真题,给出更多关于三角函数参数方程的题目解析。

【例题1】(广东省高考数学试题)【题目】已知参数方程:$\begin{cases}x=\sin(2t)\\y=\cos(t)\end{cases}$求函数表达式。

解题思路:将$x=\sin(2t)$和$y=\cos(t)$代入$x^2+y^2=1$,可以得到:$\sin^2(2t)+\cos^2(t)=1$利用三角函数的倍角公式和平方恒等式,可以整理得到:$\sin^2(2t)+\cos^2(t)=\frac{1}{2}(1-\cos(4t))+\frac{1}{2}(1+\cos(2t))=1 $化简得:$\frac{1}{2}\cos(4t)+\frac{1}{2}\cos(2t)=0$进一步化简得:$\cos(4t)+\cos(2t)=0$利用三角函数的和差化积公式,可得:$2\cos(3t)\cos(t)=0$解得$\cos(3t)=0$或$\cos(t)=0$。

经典好题:参数方程中的取值范围与最值问题(详解答案)

经典好题:参数方程中的取值范围与最值问题(详解答案)

经典好题:参数方程中的取值范围与最值问题 一、好题精讲典例:已知曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),点P 是曲线C 上的动点.(1)求曲线C 的普通方程;(2)已知点Q 是直线:2(0)l y x m m =+>上的动点,若P Q 、之间的距离PQ 最小m 的值. 名师指点:(1)曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),可得cos sin y αα==⎩,根据()()22sin cos 1αα+=,即可求得答案;(2)因为点P 是曲线C上的动点,可设点),sin Pαα,直线:2(0)l y x m m =+>,结合P Q 、之间的距离PQ公式和辅助角公式,即可求得答案. 满分解答: (1)曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数)可得cos sin y αα==⎩,故()()2222sin cos 1y αα+=+= ∴曲线C 的普通方程:2212x y +=(2)点P 是曲线C 上的动点,由曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),可设点),sin Pαα又Q 是直线:2(0)l y x m m =+>上的动点,要保证P Q 、之间的距离PQ 取最小值,只需保证点),sin Pαα到直线:2(0)l y x m m =+>距离最小设),sin Pαα到直线:20l x y m -+=距离为d根据点到直线距离公式可得:d==tan ϕ=0m >∴()sin 1αϕ-=时d 取最小值,=8m =或2m =-(舍)∴8m =名师点评:本题主要考查了参数方程化为直角方程和直线与椭圆动点距离最值问题,解题关键是掌握点到直线距离公式和辅助角公式,考查了分析能力和计算能力,属于中档题. 二、好题精练1.在直角坐标系xOy 中,曲线C 的方程为221124x y +=,以原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l ()cos 40a a πθ⎛⎫- ⎪⎝=>⎭. (1)求直线l 的直角坐标方程;(2)已知P 是曲线C 上的一动点,过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45°,若PA 的最大值为6,求a 的值.2.在直角坐标系xOy 中,曲线1C 的参数方程为2cos ,sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρθ=-.(1)求曲线2C 的直角坐标方程;(2)设曲线1C 与2C 交于,A B 两点,若(2,P ,求||||PA PB +的取值范围. 3.在平面直角坐标系中,直线l 的参数方程为102x ty t =⎧⎨=-⎩(t 为参数),以坐标原点为236(1)求直线l 的普通方程以及曲线C 的参数方程;(2)过曲线C 上任意一点M 作与直线l 的夹角为60︒的直线,交l 于点N ,求MN 的最小值4.在直角坐标系xOy 中,曲线C 1的参数方程为cos 2sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为22413sin ρθ=+.(1)写出曲线C 1和C 2的直角坐标方程;(2)已知P 为曲线C 2上的动点,过点P 作曲线C 1的切线,切点为A ,求|P A |的最大值.5.在中面直角坐标系xOy 中,已知1C:6x ty =-⎧⎪⎨=⎪⎩t 为参数),2C :2cos 22sin x y θθ=⎧⎨=+⎩(其中θ为参数).以O 为极点、x 轴的非负半轴为极轴建立极坐标系(两种坐标系的单位长度相同).(1)求1C 和2C 的极坐标方程;(2)设以O 为端点、倾斜角为α的射线l 与1C 和2C 分别交于A ,B 两点,求OA OB的最小值.6.以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为2cos sin 60ρθρθ+-=,曲线C 的参数方程为:2cos 3sin x y αα=⎧⎨=⎩(α为参数)(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)直线l 与x 轴、y 轴分别交于A ,B 两点,设点P 为C 上的一点,求PAB △的面积的最小值.7.在平面直角坐标系xOy 中,直线l的参数方程为1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,⊙O的极坐标方程为ρθ=. (1)写出⊙O 的直角坐标方程;(2)P 为直线上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.8.在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2212,1sin ρθ=+射线(0)4πθρ=≥交曲线C 于点A ,倾斜角为α的直线l 过线段OA 的中点B 且与曲线C 交于P 、Q 两点. (1)求曲线C 的直角坐标方程及直线l 的参数方程;(2)当直线l 倾斜角α为何值时, |BP |·|BQ |取最小值, 并求出|BP |·|BQ |最小值. 9.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.10.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin 26πρα⎛⎫+= ⎪⎝⎭,曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)以曲线C 上的动点M 为圆心、r 为半径的圆恰与直线l 相切,求r 的最大值. 11.在平面直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C的极坐标方程为ρ=.(1)直接写出曲线2C 的普通方程;(2)设A 是曲线1C 上的动点,B 是曲线2C 上的动点,求AB 的最大值.12.在直角坐标系xOy 中,曲线1C的参数方程是sin x y αα⎧=⎪⎨=⎪⎩(α是参数).以原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程是sin 4πρθ⎛⎫ ⎪⎭=⎝+(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,过P 点且与x 垂直的直线交2C 于点A ,求||PA 的最小值,并求此时点P 的直角坐标.13.在平面直角坐标系xOy 中,将曲线方程()()22221164x y -++=,先向左平移2个单位,再向上平移2个单位,得到曲线C .(1)点M (x ,y )为曲线C 上任意一点,写出曲线C 的参数方程,并求出12x 的最大值;(2)设直线l 的参数方程为22x ty t=⎧⎨=-⎩,(t 为参数),又直线l 与曲线C 的交点为E ,F ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段EF 的中点且与l 垂直的直线的极坐标方程.14.在平面直角坐标系中,曲线1C的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩(θ为参数,0πθ≤≤,π2θ≠),以标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,曲线2π:cos 4C ρθ⎛⎫-= ⎪⎝⎭(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)若点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最小值.参考答案1.解:(1cos 4a πθ⎛⎫- ⎪⎭=⎝cos cos sin sin 44a ππθθ⎛⎫+= ⎪⎝⎭, 即cos sin a ρθρθ+=. ∵cos x ρθ=,sin y ρθ=,∴直线l 的直角坐标方程为x y a +=,即0x y a +-=.(2)依题意可知曲线C的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩(α为参数).设(),2sin P αα,则点P 到直线l 的距离为:d ==∵0a >,∴当sin 13πα⎛⎫+=- ⎪⎝⎭时,max d =. 又过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45,∴cos 45dPA=,即PA =. ∴PAmax 6=6=.∵2a >,∴解得2a =. 2.解:解:(1)cos ,sin x y ρθρθ==,由ρθ=-,∴曲线2C的直角坐标方程为220x y ++=.(2)将曲线1C 的参数方程代入曲线2C 的直角坐标方程, 化简得24cos 10t t α++=,由>0∆,得21cos4α>. 设,A B 两点对应的参数分别为12,t t , 则12124cos ,10t t t t α+=-=>,12||||4|cos |PA PB t t α∴+=+=,又1cos 12α<≤,24|cos |4α∴<≤, ||||PA PB ∴+的取值范围为(2,4].3.解:(1)将直线l 的参数方程消去参数t , 可得直线l 的普通方程为210x y +-=0.将222p x y =+,cos x ρθ=代入曲线C 的极坐标方程,可得曲线C 的直角坐标方程为229436x y +=,即22149x y +=故曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)(2)设()2cos ,3sin M ϕϕ,则M 到l 的距离d ==,其中tan 43r =.如图,过点M 作MP l ⊥于点P ,则d MP =,则在Rt MNP △中,sin60||dMN ︒==. 当()sin 1r ϕ+=时,d故MN=4.解:(1)由cos 2sin x y αα=⎧⎨=+⎩(α为参数),消去参数α,可得22(2)1x y +-=.∴曲线C 1的直角坐标方程为22(2)1x y +-=; 由22413sin ρθ=+,得ρ2+3ρ2sin 2θ=4, 即x 2+y 2+3y 2=4,即2214x y +=.∴曲线C 2的直角坐标方程为2214x y +=;(2)∵P 为曲线C 2上的动点,又曲线C 2的参数方程为2cos sin x y αα=⎧⎨=⎩∴设P (2cos α,sin α), 则P 与圆C 1的圆心的距离d ===. 要使|P A |的最大值,则d 最大,当sin α23=-时,d∴|P A |==. 5.解:(1)在6x ty =-⎧⎪⎨=⎪⎩中,消去参数t,得)6y x =-0y +-=.由cos x ρθ=,sin y ρθ=,得)sin ρθθ+=,所以1C的极坐标方程为πsin 3ρθ⎛⎫+= ⎪⎝⎭(未化成这种形式可不扣分)在2cos 22sin x y θθ=⎧⎨=+⎩中,消去参数θ,得()2224x y +-=,即2240x y y +-=. 由cos x ρθ=,sin y ρθ=,得24sin 0ρρθ-=,即4sin ρθ=.(2)射线l 的极坐标方程为θα=,则OA =4sin OB α=.所以OAOB==12sin 26α=+- ⎪⎝⎭. 故OA OB当且仅当πsin 216α⎛⎫-= ⎪⎝⎭即π3α=时取得. 6.解:(1)直线l 的直角坐标方程为260x y +-=;因为22cos sin 1αα+=,所以曲线C 的普通方程为22149x y +=;(2)对直线l ,令0y =可得3x =,则(3,0)A ;令0x =可得6y =,则(0,6)B , 设(2cos ,3sin )P αα,点P 到直线l的距离d ==其中34cos ,sin 55ϕϕ==, PAB △的面积35sin()611222S AB d αϕ⨯+-=⋅⋅=⨯=, 当sin()=1αϕ+时,PAB △的面积取得最小值32. 7.解:(1)由222,sin x y y ρρθ=+=得222sin x y ρθρθ=⇒=⇒+=,即⊙O 的直角坐标方程为220x y +-=,即22(3x y +=;(2)设P 点坐标为1(3)2t +,P 到圆心C 的距离d ==≥=当0t =时,P 到圆心C 的距离取最小值 此时(3,0)P .8.解:(1)由题,因为22121sin ρθ=+,即()221sin 12ρθ+=, 因为222sin x y y ρρθ⎧=+⎨=⎩, 所以22212x y y ++=,即22212x y +=,则曲线C 的直角坐标方程为221126x y +=,因为射线(0)4πθρ=≥交曲线C 于点A ,所以点A 的极坐标为4π⎛⎫⎪⎝⎭, 则点A 的直角坐标为()2,2,所以OA 的中点B 为()1,1,所以倾斜角为α且过点B 的直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数).(2)将直线l 的参数方程1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数)代入曲线C 的方程221126x y+=中,整理可得()()222cos2sin 2cos 4sin 90t t αααα+++-=,设P 、Q 对应的参数值分别是1t 、2t ,则有12229cos 2sin t t αα-=+, 则1222299cos 2sin 1sin BP BQ t t ααα⋅===++, 因为(]0,απ∈,当sin 1α=,即2πα=时,BP BQ ⋅取得最小值为929.解:(Ⅰ)∵曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数), ∴曲线C 的普通方程为22149x y +=, ∵直线l 的极坐标方程是:12cos sin 6θθρ+=, ∴2cos sin 6ρθρθ+=,∴直线l 的直角坐标方程为260x y +-=.(Ⅱ)∵点P 是曲线C 上的动点,∴设()2cos ,3sin P ϕϕ,则P 到直线l 的距离:d ==,∴当()sin 1ϕθ+=-时,点P 到直线l距离取最大值max 5d ==; 当()sin 1ϕθ+=时,点P 到直线l距离取最小值min 5d ==. 10.解:(1)由sin 26πρα⎛⎫+=⎪⎝⎭1sin cos 22αρα+=, 将sin y ρα=,cos x ρα=代入上式,得直线l 的直角坐标方程为40x +-=.由曲线C 的参数方程2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数), 得曲线C 的普通方程为22143x y +=.(2)设点M 的坐标为()2cos θθ,则点M 到直线l :40x +-=的距离为2cos 3sin 42d θθ+-==2tan 3ϕ=,ϕ为锐角), 当d r =时,圆M 与直线l 相切,故当()sin 1θϕ+=-时,r 取最大值,且r的最大值为42+. 11.解:(1)曲线2C 的普通方程为2214y x +=; (2)由曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数), 得曲线1C 的普通方程为2224x y -+=(), 它是一个以20C (,)为圆心,半径等于2的圆, 则曲线2C 的参数方程为:cos (2sin x y βββ=⎧⎨=⎩为参数), ∵A 是曲线1C 上的点,B 是曲线2C 上的点, ∴max max 2AB BC =+.设cos 2sin B ββ(,),则BC, ∴当2cos =3β-时,max 3BC∴max 23AB =+. 12.解:(1)由曲线1:sin x C y αα⎧=⎪⎨=⎪⎩,可得:cos sin y αα⎧=⎪⎨⎪=⎩两式两边平方相加可得:曲线1C 的普通方程为:2213x y +=.由曲线2:sin 4C πρθ⎛⎫+= ⎪⎝⎭(sin cos )ρθθ+= 即()sin cos 8ρθθ+=,所以曲线2C 的直角坐标方程为:80x y +-=. (2)由(1)知椭圆1C 与直线2C 无公共点,椭圆上的点),sin P αα到直线80x y +-=的距离为d ==, 当sin 13πα⎛⎫+= ⎪⎝⎭时,d的最小值为 此时||PA 的最小值为6,此时点P 的坐标为31,22⎛⎫⎪⎝⎭. 13.解:(1)将曲线方程()()22221164x y -++=,先向左平移2个单位,再向上平移2个单位,得到曲线C 的方程为()()2222221164x y -++-+=, 即221164x y +=, 故曲线C 的参数方程为42x cos y sin θθ=⎧⎨=⎩(θ为参数);又点M (x ,y )为曲线C 上任意一点,所以12x =2cos θθ-=4cos (3πθ+).所以12x 的最大值为4; (2)由(1)知曲线C 的直角坐标方程为221164x y +=, 又直线l 的参数方程为22x t y t =⎧⎨=-⎩,(t 为参数), 所以直线l 的普通方程为x +2y ﹣4=0,所以有222401164x y x y +-=⎧⎪⎨+=⎪⎩, 解得40x y =⎧⎨=⎩或02x y =⎧⎨=⎩.所以线段EF 的中点坐标为(402022++,), 即线段EF 的中点坐标为(2,1),直线l 的斜率为12-, 则与直线l 垂直的直线的斜率为2,故所求直线的直角坐标方程为y ﹣1=2(x ﹣2), 即2x ﹣y ﹣3=0,将x =ρcos θ,y =ρsin θ代入,得其极坐标方程为2ρcos θ﹣ρsin θ﹣3=0.14.解:(1)由已知可得222224tan 2tan 112tan 1x y θθθ⎧=⎪⎪+⎨⎪=⎪+⎩, 所以2222x y +=,又0θπ≤≤且2πθ≠,所以(]0,1y =,故1C 普通方程为2212x y +=(01y <≤),由2π:cos 4C ρθ⎛⎫-= ⎪⎝⎭cos sin 20ρθρθ+-=, 所以2C :20x y +-=.(2)设),sin P ϕϕ,(0ϕπ<<). 则点P 到直线20x y +-=的距离2d -+===,其中tan α=当()sin 1ϕα+=时,min d ==.所以PQ。

圆锥曲线的参数方程(有答案)

圆锥曲线的参数方程(有答案)

r2 XT2 x= acos (p(1)中心在原点,焦点在X轴上的椭圆丁+右=1的参数方程是@是参数),规左参数0的取值范a °ly=Dsin (p围是—[0,2K) ___ ・题型一、椭圆的参数方程的应用:求最值[例一]已知实数廿y满足石+話=1,求目标函数z=x—2〉,的嚴大值与最小值.y2 2 fx=5cos(p9[解]椭 fc + 7T=l的参数方程为・(0为参数).g ,0tv=4sin cp____ 8代入目标函数得z=5cos 0—8sin cp=A J524-82COS(^+^())=>/89cos(^+^(>)(tan 5)=§)・所以目标函数Zmin=—Znm = d^・1.已知椭圆养+£=1,点A的坐标为(3,0).在椭圆上找一点P,使点P与点A的距离最大.x=5cos 0解:椭圆的参数方程为1 (&为参数).设P(5cos& 4sin 0)9則v=4sin 0\PA\=yj(5cos3)2+(4sin ^)2=-\/9cos2^—30cos ^+25=-\/(3cos 5)2=l3cos &—5IW&当cos 0=— 1时,\PA\最大.此时,sin ^=0, A P的坐标为(—5,0)・题型二、椭圆参数方程的应用:求轨迹方程[例2]已知A, B分別是椭圆命+亍=1的右顶点和上顶点,动点C在该椭圆上运动,求AABC的重心G 的轨迹方程.[思路点拨]由条件可知,A, B两点坐标已知,点C在椭圆上,故可设出点P坐标的椭圆参数方程形式,由三角形重心坐标公式求解.[解]由题意知A(6.0)、B(0,3)・由于动点C在椭圆上运动,故可设动点C的坐标为(6cosg 3sin&),点G 的坐标设为(也y)9由三角形重心的坐标公式可得{6+0+6cos&(2)中心在(力,灯的椭圆普通方程为耳丄+上尹=1,则其参数方程为x=b + ocos(P.y=k+bsin <p(卩是参数).x= 3 ' _O+3 + 3sinO 尸 3 ,x=2+2cos 0, (x—2F 円+讹消去参数°得到于+07)i2. 已知椭圆方程是箱+罟=1,点&(6,6), P 是椭圆上一动点,求线段刖中点Q 的轨迹方程. 解:设 P(4cos 3sin 0)9Q(X 9 y),则有 x=2cos 0+3,即[尸1讪+3.小参数)艸一掰+那宀)5,即为所求.3. 设戸、F2分别为椭圆C :汀£=l(Qb>0)的左、右两个焦点.(1) 若椭圆C 上的点川1, |)到鬥,F?的距离之和等于4,写出椭圆C 的方程和焦点坐标:(2) 设点P 是(1)中所得椭圆上的动点,求线段Ff 的中点的轨迹方程.解:(1)由椭圆上点A 到Fi,鬥的距离之和是4,得2a=4,即“=2.31和又点A(l,豺在椭圆上,因此才+戸=1,得沪=3,于是c 2=a 2-b 2=\,2 。

参数方程与极坐标方程例题和知识点总结

参数方程与极坐标方程例题和知识点总结

参数方程与极坐标方程例题和知识点总结一、参数方程参数方程是在数学中常用的一种表示曲线的方式,它通过引入一个参数来描述曲线上点的坐标。

(一)参数方程的定义一般地,在平面直角坐标系中,如果曲线上任意一点的坐标$x$、$y$都是某个变数$t$的函数:\\begin{cases}x = f(t) \\y = g(t)\end{cases}\并且对于$t$的每一个允许的取值,由方程组所确定的点$(x,y)$都在这条曲线上,那么这个方程组就叫做曲线的参数方程,联系变数$x$、$y$的变数$t$叫做参变数,简称参数。

(二)参数方程的常见形式1、直线的参数方程若直线经过点$M(x_0,y_0)$,倾斜角为$\alpha$,则直线的参数方程为:\\begin{cases}x = x_0 + t\cos\alpha \\y = y_0 + t\sin\alpha\end{cases}\($t$为参数)2、圆的参数方程圆心在点$(a,b)$,半径为$r$的圆的参数方程为:\\begin{cases}x = a + r\cos\theta \\y = b + r\sin\theta\end{cases}\($\theta$为参数)3、椭圆的参数方程焦点在$x$轴上的椭圆:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$ ($a > b > 0$)的参数方程为:\\begin{cases}x = a\cos\varphi \\y = b\sin\varphi\end{cases}\($\varphi$为参数)(三)参数方程的应用1、求曲线的轨迹方程例:已知点$M(x,y)$在圆$x^2 + y^2 = 4$上运动,求点$N(2x 3, 2y + 4)$的轨迹方程。

设点$M(2\cos\theta, 2\sin\theta)$,则点$N(4\cos\theta 3, 4\sin\theta + 4)$所以$x = 4\cos\theta 3$,$y = 4\sin\theta + 4$消去参数$\theta$可得:$(x + 3)^2 +(y 4)^2 = 16$2、参数方程在物理中的应用在研究物体的运动时,常常使用参数方程来描述物体的位置、速度等随时间的变化关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l2 : 2x
4y
5 相交于点 B ,又点 A(1,2) ,则
AB _______________。
1
x2 t
4.直线
2 (t为参数 ) 被圆 x2 y2 4 截得的弦长为 ______________。
1
y1t
2
三、解答题
2
2
1.已知点 P( x, y) 是圆 x y 2 y 上的动点,
( 1)求 2 x y 的取值范围;
C. (2, 3)
D. (1, 3)
x 2 sin 2
3.将参数方程 y sin2
( 为参数 ) 化为普通方程为(

A. y x 2 B. y x 2 C. y x 2(2 x 3) D. y x 2(0 y 1)
4.化极坐标方程 2 cos
0 为直角坐标方程为(

A. x2 y 2 0或 y 1 B. x 1 C. x2 y 2 0或 x 1 D. y 1
,求其倾斜角 .
极坐标与参数方程练习题
[ 基础训练 A 组]
一、选择题
x 1 2t
1.若直线的参数方程为
(t为参数 ) ,则直线的斜率为(

y 2 3t
2
A.
3
2.下列在曲线
2
B.
3
3
C.
2
3
D.
2
x sin 2
( 为参数 ) 上的点是(

y cos sin
A. (1 , 2) 2
B. ( 3 , 1) 42
参数方程
一、定义:在取定的坐标系中,如果曲线上任意一点的坐标 x、 y 都是某个参数
t 的函数,即
x f (t ) y f (t ) ,其中, t 为参数,并且对于 t 每一个允许值,由方程
组所确定的点 M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方
程,联系 x、y 之间关系的变数 t 叫做参变数,简称参数.

y 1t
A. 98
二、填空题
1 B. 40
4
C . 82
D. 93 4 3
1.曲线的参数方程是
x11 t (t为参数 ,t
y 1 t2
0) ,则它的普通方程为 __________________ 。
x 3 at
2.直线
(t为参数 ) 过定点 _____________ 。
y 1 4t
3.点 P(x,y) 是椭圆 2 x2 3 y2 12 上的一个动点,则 x 2 y 的最大值为 ___________。
同心圆, M点的轨迹是椭圆,中心在( x0,y0)椭圆的参数方程: x x0 a cos y y0 b sin
x2
Eg:求椭圆
36
y2
=1 上的点到 M(2,0 )的最小值。
20
3、双曲线的参数方程:
x a sec 中心在原点,焦点在 x 轴上的双曲线:
y btan
( 为参数,代表离心角) ,
中心在( x0,y0),焦点在 x 轴上的双曲线: x x0 a sec y y0 b tan
5.点 M 的直角坐标是 ( 1, 3) ,则点 M 的极坐标为(

A. (2, ) 3
B. (2, ) 3
2 C. (2, )
3
D. (2,2 k
6.极坐标方程 cos 2sin 2 表示的曲线为(

),( k Z ) 3
A.一条射线和一个圆 二、填空题
B.两条直线 C.一条直线和一个圆
D .一个圆
D .两条射线
1 x1 t
2
3.直线
y 33
(t为参数 ) 和圆 x2 y2 16 交于 A, B 两点, 3
t 2
则 AB 的中点坐标为(

A. (3, 3)
B. ( 3,3) C . ( 3, 3) D . (3, 3)
4.圆 5cos 5 3 sin 的圆心坐标是(

A. ( 5, 4 ) B. ( 5, ) C. (5, ) D. ( 5, 5 )
3
3
3
3
xt
5.与参数方程为
(t为参数 ) 等价的普通方程为(

y 21 t
A. x2 y2 1 4
B. x2 y 2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D . x2 y2 1(0 x 1,0 y 2) 4
x
6.直线
2
t (t为参数 ) 被圆 ( x
3) 2
( y 1)2
25 所截得的弦长为(
16 9
2.已知直线 l 经过点 P(1,1), 倾斜角 ( 1)写出直线 l 的参数方程。

6
( 2)设 l 与圆 x2 y 2 4 相交与两点 A, B ,求点 P 到 A, B 两点的距离之积。
极坐标与参数方程练习题答案
[ 基础训练 A 组]
一、选择题 1. D 2. B 二、填空题
3.C
4. C 5. C
(2) x=sin y=cos
( 3) x=t+ 1 t
y=t
2+ 1
t2
总结:参数方程化为普通方程步骤: (1)消参( 2)求定义域
2、椭圆的参数方程:
中心在原点,焦点在 x 轴上的椭圆:
x a cos y b sin
( 为参数, 的几何意义是离心角,如图角 AON是离心角)
注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个
4.曲线的极坐标方程为
1
tan
,则曲线的直角坐标方程为 ________________ 。
cos
5.设 y tx (t为参数 ) 则圆 x2 y2 4 y 0 的参数方程为 __________________________ 。
三、解答题
x2 y2
1.点 P 在椭圆
1 上,求点 P 到直线 3x 4y 24 的最大距离和最小距离。
x 3 4t
1.直线
(t为参数 ) 的斜率为 ______________________ 。
y 4 5t
2.参数方程
x et e t y 2(et e t ) (t为参数 ) 的普通方程为 __________________ 。
x 1 3t
3.已知直线 l1 : y
2
(t为参数 ) 与直线 4t
2
2. (3, 1) 3. 22 4. x y
4t
x
2
1t
5.
4t 2
y 1 t2
x2
(tx )2
4tx
0 ,当 x
0 时, y
0 ;当 x
0 时, x
4t 1 t2

三、解答题
1.当 cos(
4t
而y
tx ,即 y
4t 2 1 t2
,得
x
1 t2 4t 2
y 1 t2
12
12
) 1 时, dmax
( 为参数, 的几何意义为圆心角) ,
Eg1:已知点 P( x , y )是圆 x 2+y2-6x-4y+12=0 上的动点,求:
( 1) x2+y2 的最值;( 2) x+y 的最值;( 3)点 P 到直线 x+y-1=0 的距离 d 的最值。
Eg2:将下列参数方程化为普通方程
( 1) x=2+3cos y=3sin
( 2)若 x y a 0 恒成立,求实数 a 的取值范围。
x 1t
2.求直线 l1 :
(t为参数 ) 和直线 l 2 : x y 2 3 0 的交点 P 的坐标, 及点 P
y 5 3t
与 Q (1, 5) 的距离。Fra bibliotekx2 y2
3.在椭圆
1 上找一点,使这一点到直线
16 12
x 2 y 12 0 的距离的最小值。
4、抛物线的参数方程:
顶点在原点,焦点在 x 轴正半轴上的抛物线:
x 2pt 2
y 2pt
(t 为参数, p> 0, t 的几何意义为过圆点的直线的斜率的倒数)
直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程
过定点 P0(x0,y 0),倾角为 的直线, P 是直线上任意一点,设 P0P=t,P0P 叫
(2 2) ;当 cos(
) 1时, dmin
(2
4
5
4
5
x 1 3t
2.解:( 1)
2
1
y1 t
2
(2) 2
2) 。
6.C
5
x2 y2
1.
2.
1,( x 2)
4
4 16
5
3.
2
4. 14
三、解答题
1.解:( 1)
5 1 2x y 5 1 ;( 2) a
21
2. 4 3
45
3.
5
[ 综合训练 B 组]
一、选择题 1. C 2. D 二、填空题
3.D 4. A
5. D
6. C
x( x 2)
1. y
2 (x 1)
(x 1)
[ 综合训练 B 组]
一、选择题
x at
1.直线 l 的参数方程为
y
b
(t为参数 ) ,l 上的点 t
P1 对应的参数是
t1,则点 P1 与 P(a,b )
之间的距离是(

A. t1
B. 2 t1
C. 2 t1
2
D.
t1
2
1
xt
相关文档
最新文档