一元二次方程求根公式

合集下载

一元二次方程求根公式c++

一元二次方程求根公式c++

一元二次方程求根公式c++一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知的实数,且a不等于0。

求解一元二次方程的根可以使用求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)该公式中的±表示两个解,即方程可能有两个不同的实数根,重根(重复根)或无实数根。

计算这两个根的公式中包括平方根,需要注意判别式b^2 - 4ac是否大于等于0。

如果判别式大于等于0,则该方程有两个不同的实数根,若等于0,则有两个重根,否则没有实数根。

以下是一个使用C++编写的一元二次方程求根函数的示例:```cpp#include <iostream>#include <cmath>void solveQuadraticEquation(double a, double b, double c) {double discriminant = b * b - 4 * a * c;if (discriminant >= 0) {double root1 = (-b + sqrt(discriminant)) / (2 * a);double root2 = (-b - sqrt(discriminant)) / (2 * a);std::cout << "Two roots: " << root1 << " and " << root2 << std::endl;} else {std::cout << "No real roots." << std::endl;}}int main() {double a, b, c;std::cout << "Enter the coefficients of the quadratic equation (ax^2 + bx + c = 0):" << std::endl;std::cout << "a: ";std::cin >> a;std::cout << "b: ";std::cin >> b;std::cout << "c: ";std::cin >> c;solveQuadraticEquation(a, b, c);return 0;}```使用该程序,用户可以输入一元二次方程的系数,然后程序会计算并输出方程的根。

一元二次方程求根公式推导过程

一元二次方程求根公式推导过程

一元二次方程求根公式推导过程
一元二次方程求根是数学中的一个常见问题,它的数学表达式为
ax²+bx+c=0,这里a、b、c是未知数,且a≠0。

要求解这个方程,就要根据a、b、c来求解二次方程的两个根。

解求方法增添一个变量Δ,Δ=b²-4ac,可以有三种不同的情况。

第一种是,Δ>0,此时二次方程有两个不相等的实数根,其求根
公式为x₁= [-b+√Δ]/2a、x₂= [-b-√Δ]/2a。

第二种情况下,Δ=0,此时二次方程有一个重根,求根公式为x= -b/2a 。

第三种情况,Δ<0,此时二次方程没有任何实数根,只有复根,
即无解。

因此,一元二次方程求根公式就是这样的,当Δ>0时,根为
x₁=[-b+√Δ]/2a、x₂=[-b-√Δ]/2a;当Δ=0时,根为x=-b/2a;
当Δ<0时,方程无实数根。

通过改变a、b、c的值,可以实际求解一
元二次方程的根。

一元二次方程的解法求根公式的使用技巧

一元二次方程的解法求根公式的使用技巧

一元二次方程的解法求根公式的使用技巧一元二次方程的解法是数学中的基础知识,在解决实际问题时起到了重要的作用。

其中,求根公式是一种常见的解法,它可以帮助我们快速求解一元二次方程的根。

本文将介绍一元二次方程的求根公式的使用技巧。

一、一元二次方程的形式一元二次方程通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c为实数,并且a ≠ 0。

根据这个方程的形式,我们可以使用求根公式来求解方程的根。

二、一元二次方程的求根公式一元二次方程的求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,√表示开方运算。

这个公式中的分子部分可以分为两个部分,分别是-b和√(b^2 - 4ac)。

根据这个公式,我们可以通过将方程中的系数代入公式中,快速求得方程的根。

三、使用技巧在使用一元二次方程的求根公式时,有一些技巧可以帮助我们更加高效地求解方程的根。

1. 化简方程在应用求根公式之前,我们可以先对方程进行化简。

例如,如果方程的系数存在公因子,我们可以将其提取出来,以简化计算过程。

2. 辨别方程的根的性质根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的性质。

- 当Δ>0时,方程有两个不相等的实数根;- 当Δ=0时,方程有两个相等的实数根;- 当Δ<0时,方程没有实数根,但存在两个共轭复数根。

通过辨别方程的根的性质,我们可以在求根过程中有所侧重,提高求解的效率。

3. 使用解根公式的步骤使用一元二次方程的求根公式时,可以按照以下步骤进行:Step 1: 计算判别式Δ的值。

Δ = b^2 - 4acStep 2: 根据Δ的值进行分类讨论。

- 当Δ>0时,应用求根公式计算两个不相等的实数根;- 当Δ=0时,应用求根公式计算两个相等的实数根;- 当Δ<0时,应用求根公式计算两个共轭复数根。

Step 3: 将方程系数代入求根公式,计算出根的近似值。

计算一元二次方程的公式

计算一元二次方程的公式

计算一元二次方程的公式
一元二次方程是指含有一个未知数,并且未知数的最高次数为2的方程。

一般形式为:
ax^2 + bx + c = 0
其中,a、b、c为已知实数系数,且a≠0。

根据一元二次方程的根与系数的关系,我们可以得到求根公式:
x = (-b ± √(b^2 - 4ac)) / (2a)
这个公式被称为"一元二次方程的求根公式"或"二次公式"。

要求解一元二次方程,我们需要将给定方程的系数代入公式中,然后计算出方程的两个根。

例如,对于方程2x^2 - 3x + 1 = 0,我们有:
a = 2
b = -3
c = 1
将这些值代入公式,我们得到:
x = (-(-3) ± √((-3)^2 - 4*2*1)) / (2*2)
x = (3 ± √(9 - 8)) / 4
x = (3 ± √1) / 4
x = (3 ± 1) / 4
该方程的两个根是:
x1 = 4/4 = 1
x2 = 2/4 = 1/2
需要注意的是,根据判别式值b^2 - 4ac的不同,方程可能没有实数根、有一个实数根或有两个不同的实数根。

一元二次方程求根公式

一元二次方程求根公式

一元二次方程求根公式一元二次方程是数学中常见的一种方程形式,其一般形式为ax^2 + bx + c = 0,其中a、b、c为已知的常数,x为未知数。

解一元二次方程的方法有很多种,其中最常用的方法之一就是利用求根公式来求解。

本文将详细介绍一元二次方程求根公式的推导过程和应用方法。

一、求根公式的推导。

我们先来推导一元二次方程的求根公式。

设一元二次方程为ax^2 + bx + c = 0,我们要求出方程的根。

首先,我们假设方程有两个根x1和x2,那么根据因式分解的性质,我们可以将方程写成(x x1)(x x2) = 0的形式。

展开这个式子得到x^2 (x1 +x2)x + x1x2 = 0。

比较这个式子和原方程ax^2 + bx + c = 0的系数,我们可以得到以下关系:x1 + x2 = -b/a。

x1x2 = c/a。

接下来,我们要解出x1和x2的具体值。

我们可以利用上面的两个关系式来求解。

首先,我们可以将x1表示成-x2,然后代入第二个关系式中,得到x1 = (-b +√(b^2 4ac)) / (2a),同理可得x2 = (-b √(b^2 4ac)) / (2a)。

这就是一元二次方程的求根公式,也称为根的公式。

二、求根公式的应用。

一元二次方程的求根公式在实际问题中有着广泛的应用。

比如在物理学中,当我们需要求解抛体运动的轨迹方程时,就会遇到一元二次方程。

又比如在工程学中,当我们需要求解某些结构的受力情况时,也会用到一元二次方程的求解。

下面我们通过一个例子来说明一元二次方程求根公式的应用。

例,已知一元二次方程x^2 3x + 2 = 0,求出方程的根。

根据一元二次方程的求根公式,我们可以直接代入a=1,b=-3,c=2,然后带入公式x1 = (-b + √(b^2 4ac)) / (2a)和x2 = (-b √(b^2 4ac)) / (2a)中进行计算。

计算的结果为x1=2,x2=1,所以方程的根为x1=2和x2=1。

一元二次方程的求根公式

一元二次方程的求根公式
一元二次方程的求根公式
教学目标:
1、会用配方法解方程ax2+bx+c=0 (a≠0)
2、理解方程ax2+bx+c=0(a≠0)的求根公式
复习: 用配方法解方程2x -5x+2=0
2
5 解:两边都除以2,得 x x 1 0 2
2
系数化为1 移项 配方
5 移项,得 x x 1 2 2
2
2
5 25 5 配方,得 x x 1 2 16 4
5 9 x 即 4 16
2
5 3 开方,得 x 4 4
,x2=2
开方
1 x2 2
∴ x1 2
定解
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
(1)系数化为1 (2)移项 (3)配方 (4)开方 (5)求解 (6)定根
=
用配方法解一般形式的一元二次方程 ax2+bx+c=0
(a≠0)
∵a≠0 4a2>0 ∴当b2-4ac≥0 时
用配方法解一般形式的一元二次方程 ax2+bx+c=0
(a≠0)
∵a≠0 当b2-4ac≥0 时
一元二次方程的求根公式: 一元二次方程 ax2+bx+c=0 (a≠0)的求根公式为:
利用这个求根公式可 以求出所有一元二次 方程的根。
总结:
1、配方法解方程:ax2+bx+c=0 (a≠0)
2、一元二次方程的求根公式的推导。

一元二次方程的求根方法

一元二次方程的求根方法

一元二次方程的求根方法一元二次方程是数学中比较常见的一类方程,具有形式为ax^2 + bx + c = 0的特点。

解一元二次方程可以通过不同的方法,包括公式法、因式分解法、配方法等。

本文将重点介绍公式法,同时也会简要介绍其他两种方法。

公式法是一元二次方程求根最常用的方法,它的基本原理是通过一元二次方程的根与系数之间的关系,推导出方程的两个根的公式。

一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知的实数,且a≠0。

根据一元二次方程的求根公式:x = (-b ±√(b^2 - 4ac)) / (2a)首先,我们需要判断方程是否有解。

一元二次方程有解的条件是判别式(b^2 - 4ac)大于或等于0,即b^2 - 4ac ≥ 0。

当判别式大于0时,方程有两个不相等的实数根。

当判别式等于0时,方程有两个相等的实数根。

当判别式小于0时,方程没有实数根,此时方程的解为复数。

例如,求解方程2x^2 + 5x - 3 = 0。

首先,确定a、b、c的值:a = 2,b = 5,c = -3。

计算判别式:Δ = b^2 - 4ac = 5^2 - 4*2*(-3) = 25 + 24 = 49。

判别式大于0,所以方程有两个不相等的实数根。

带入求根公式计算:x = (-5 ± √49) / (2*2) = (-5 ± 7) / 4。

由于有两个根,所以解为x1 = (-5 + 7) / 4 = 1/2,x2 = (-5 - 7) / 4 = -3。

因此,方程2x^2 + 5x - 3 = 0的解为x = 1/2和x = -3。

公式法是一元二次方程求根最直接且简便的方法,但对于一些特殊的一元二次方程,可能更适合使用因式分解法或配方法来求解。

在一元二次方程的求根过程中,我们可以利用因式分解法将方程写成两个一次因式相乘的形式,从而得到方程的根。

例如,求解方程x^2 - 5x + 6 = 0。

一元二次方程求根公式

一元二次方程求根公式

一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

一元二次方程求根公式

一元二次方程求根公式

一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1 所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:①②③④⑤⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

一元二次方程求根公式推导

一元二次方程求根公式推导

一元二次方程求根公式推导一元二次方程求根公式推导:1.介绍一元二次方程指的是常数都为某个实数的二次函数,可以用$ax^2 +bx + c = 0$的形式表达,其中的$a,\ b,\ c$均为实数,但是$a$不能为零。

求解一元二次方程在数学中是十分重要的,它可以用一元二次方程求根公式进行求解。

2.一元二次方程的公式一元二次方程有两个解,可以用下面的公式求解:$$x=\frac{-b\pm \sqrt{b^2-4ac}} {2a}$$其中,$a,\ b,\ c$分别为二次项系数,一次项系数和常数项,$\pm$表示有两个解,$\sqrt{b^2-4ac}$表示二次式的判别式。

3.判别式的性质$$b^2-4ac=0$$如果判别式$b^2-4ac$等于零,则一元二次方程有一个重根,它的解为: $$x=-\frac{b}{2a}$$如果判别式$b^2-4ac$大于零,则一元二次方程有两个不同实数解,它们的解可以用上面的公式求出。

如果判别式$b^2-4ac$小于零,则一元二次方程没有实数解。

4.推导过程已知:一元二次方程可以表示为:$ax^2 + bx + c = 0$。

要求:求出它的解$x$把方程两边同时乘以$2a$得:$2ax^2 + 2bx + 2c = 0$再把方程两边同时同中间项抵消,就有:$2ax^2 - 2bx + 2c = 0$,可以看到这个方程是一元二次方程 ax² + (2c-2b)x + 2c = 0,可以发现X= $-\frac{2c-2b}{2a}$,把它代入到原方程,有:$a(2c-2b)^2 + b(2c-2b) + c = 0$,化简得:$4ac^2-4abc+b^2 = 0$,而$b^2-4ac=0$就是我们需要的判别式,而上述的解$x=\frac{-b\pm\sqrt{b^2-4ac}} {2a}$就是我们的一元二次方程的求根公式。

5.总结回顾一元二次方程求根公式的推导:我们分别通过把两边乘以2a,以及把中间项抵消来把原方程化简,得出$b^2-4ac=0$即一元二次方程的判别式,依据这个解法,就可以求得一元二次方程的求根公式:$x=\frac{-b\pm \sqrt{b^2-4ac}} {2a}$。

一元二次方程求根公式

一元二次方程求根公式

一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10 所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=- 1 所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ② ③ ④⑤ ⑥ ⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

一元二次方程求根公式定理

一元二次方程求根公式定理

一元二次方程求根公式定理一元二次方程求根公式定理,这可是数学学习中的一个重要“关卡”。

还记得我当年上中学的时候,数学老师在黑板上写下一个一元二次方程,然后神秘兮兮地告诉我们,有个神奇的公式能一下子求出它的根。

那时候的我,满心好奇,眼睛直勾勾地盯着黑板,等着老师揭开这个神秘的面纱。

一元二次方程的一般形式是:ax² + bx + c = 0(a ≠ 0)。

而求根公式就是:x = [-b ± √(b² - 4ac)] / (2a)。

这个公式看起来有点复杂,但是一旦你理解了它,就像是拥有了一把打开数学难题大门的万能钥匙。

先来说说这个公式里的每一项。

a 是二次项系数,b 是一次项系数,c 是常数项。

那个“±”可有意思啦,它表示有两个根,一个是加上根号里的式子,一个是减去根号里的式子算出来的。

咱们来举个例子吧。

比如说方程 x² - 5x + 6 = 0 ,这里 a = 1 ,b = -5 ,c =6 。

把这些值代入求根公式,先算根号里的式子:b² - 4ac = (-5)² - 4×1×6 = 25 - 24 = 1 。

然后 x = [ -(-5)± √1 ] / (2×1),也就是x = (5 ± 1)/ 2 。

所以,x₁ = 3 ,x₂ = 2 。

是不是很神奇?不过,使用求根公式的时候,得先判断一下 b² - 4ac 的值。

如果它大于 0 ,那就有两个不同的实数根;要是等于 0 ,就有两个相同的实数根;要是小于 0 ,那就没有实数根,只有虚数根啦。

这就像是给方程做了一个“体检”,先看看它的“健康状况”。

在实际解题中,求根公式可是大显身手。

比如说,遇到那种不太容易因式分解的一元二次方程,求根公式就能轻松搞定。

有一次考试,就有一道特别难的题目,我绞尽脑汁用各种方法都解不出来,最后想到了求根公式,一下子就把答案算出来了,那种成就感,简直爆棚!其实,学习一元二次方程求根公式定理,不仅仅是为了解题,更是培养我们逻辑思维和解决问题能力的好途径。

一元二次方程求根公式推导过程

一元二次方程求根公式推导过程

一元二次方程求根公式是数学中的一个重要知识点,下面总结了一元二次方程求根公式推导过程,供大家参考。

一元二次方程求根公式推导过程一元二次方程的根公式是由配方法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程如下,1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。

一元二次方程只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0).其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程求根公式当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。

它的标准形式为:ax²+bx+c=0(a≠0)其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程求根公式证明

一元二次方程求根公式证明

一元二次方程求根公式证明一元二次方程是初中数学中的重要内容,而求根公式更是解决这类方程的得力工具。

那咱们就来好好聊聊这个神奇的一元二次方程求根公式是怎么证明出来的。

先给大家复习一下一元二次方程的一般形式:ax² + bx + c = 0 (a ≠ 0)。

为了证明求根公式,咱们就来捣鼓捣鼓这个方程。

假设方程有两个根 x₁和 x₂,我们可以把方程写成:a(x - x₁)(x - x₂) = 0展开得到:ax² - a(x₁ + x₂)x + ax₁x₂ = 0对比一下一般形式,就有:-b/a = x₁ + x₂, c/a = x₁x₂接下来,咱们得想办法把 x₁和 x₂用 a、b、c 表示出来。

这时候,咱们可以用完全平方公式来搞事情。

先把方程 ax² + bx + c = 0 两边同时除以 a ,得到:x² + (b/a)x + c/a = 0然后配方:x² + (b/a)x + (b/2a)² - (b/2a)² + c/a = 0也就是:(x + b/2a)² - (b² - 4ac)/4a² = 0移项得到:(x + b/2a)² = (b² - 4ac)/4a²两边开平方:x + b/2a = ±√(b² - 4ac)/2a最后就得到求根公式:x = [-b ± √(b² - 4ac)] / 2a我记得我当初教学生这个求根公式的时候,有个小同学总是记不住,还闹了个笑话。

那天上课,我刚讲完求根公式,让大家做几道练习题巩固一下。

结果这个小同学一脸迷茫,我走到他旁边,发现他在本子上写的不是算式,而是在画小人,嘴里还嘟囔着:“这公式太难记啦,我要画个魔法小人帮我记住。

”我又好气又好笑,耐心地给他重新讲了一遍,还教给他一些记忆的小窍门。

一元二次方程求根公式

一元二次方程求根公式

一元二次方程的解法—————求根公式法一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一周知识概述
1、一元二次方程的求根公式
将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.
该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.
说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);
(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;
(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.
2、一元二次方程的根的判别式
(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;
(3)当b2-4ac<0时,方程没有实数根.
二、重难点知识
1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为
要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:
(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元
二次方程时,才能确定a、b、c,求出b2-4ac;
(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;
(3)根的判别式是指b2-4ac,而不是
三、典型例题讲解
例1、解下列方程:
(1);
(2);
(3).
分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,
解:(1)因为a=1,,c=10
所以
所以
(2)原方程可化为
因为a=1,,c=2
所以
所以.
(3)原方程可化为
因为a=1,,c=-1
所以
所以;
所以.
总结:
(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;
(2)用求根公式法解方程按步骤进行.
例2、用适当方法解下列方程:
① ②
③ ④
⑤ ⑥

分析:
要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。

⑴ 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为
要代入一元二次方程的求根公式求值,所以对某些方程,解法又显得复杂了。

如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。

⑵ 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。

若方程中的一次项系数有因数是偶数,则可使用,计算量也不大。

如②,因为224比较大,分解时较繁,此题中一次项系数是-2。

可以利用用配方法来解,经过配方之后得到,显得很简单。

⑶ 直接开平方法一般解符合型的方程,如第①小题。

⑷ 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。

解:①
两边开平方,得
所以

配方,得
所以
所以

配方,得
所以
所以

因为
所以 =4+20=24 所以
所以

配方:
所以
所以

整理,得
所以

移项,提公因式,得
所以
小结:
以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。

例3、已知关于x的方程ax2-3x+1=0有实根,求a的取值范围. 解:当a=0时,原方程有实根为
若a≠0时,当原方程有两个实根.
故,综上所述a的取值范围是.
小结:
此题要分方程ax2-3x+1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a≠0两种情况.
例4、已知一元二次方程x2-4x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
解:(1)因为方程x2-4x+k=0有两个不相等的实数根,
所以b2-4ac=16-4k>0,得k<4.
(2)满足k<4的最大整数,即k=3.
此时方程为x2-4x+3=0,解得x1=1,x2=3.
①当相同的根为x=1时,则1+m-1=0,得m=0;
②当相同的根为x=3时,则9+3m-1=0,得
所以m的值为0或
例5、设m为自然数,且3<m<40,方程有两个整数根求m的值及方程的根。

解:,
∵方程有整数根,
∴4(2m+1)是完全平方数。

∵3<m<40∴7<2m+1<81
∴2m+1值可以为9,25,49
∴m的值可以为4,12,24。

当m=4时方程为解得x=2或x=8
实用文档
当m=12时方程为解得x=26或x=16
当m=24时方程为解得x=52或x=38
总结:
本题先由整数根确定2m+1是完全平方数,再由3<m<40中m为整数确定m的值,再分别试验求x,是本题特点。

文案大全。

相关文档
最新文档