色谱法定量分析方法及原理

合集下载

色谱定量和定性方法

色谱定量和定性方法
I = 100 [ Z + lg X i − lg X Z ] lg X ( Z +1) − lg X Z
(2)求出未知物的Ii,并与文献值对照定性 2.2.2.3注意 在文献上所述色谱条件下计算未知物的Ii 2.2.2.3特点 重现性好,不需要纯物质相对照
8
2.2.3双柱定性法 双柱定性法
2.2.3.1依据 依据
3.3.2.1 方法 将一种纯物质作为标准物(S)加入到待测样品中进行色谱定量的一种方 法,组分含量的计算为: ms f i Ai
Xi % = mf E AE × 100%
式中:ms 、m 分别为加入内标物的量和试样的质量。i 代表被测峰,E代表内标峰。
3.3.2.2适用范围 适用于少量组分的含量测定,样品中各组分不能完全出峰,或只需对样品 中几个出峰的组分进行分析 3.3.2.3特点 不必准确进样,因此较准确,但操作复杂,每次进样都要准确称量内标物 和样品的质量,事先测得相对校正因子;色谱分离要求高; 3.3.2.4内标物选择 能和被测样品互溶,内标物和待测组分完全分开,最好是被分析物质的一 个同系物,内标物的浓度应与被测组分浓度相近,且内标物的色谱峰 位置最好邻近待测组分。
色谱定性不能直接给出物质的直接信息 未知物的保留值与已知物的保留值相同,未知 物可能是已知物,但不能肯定是已知物 未知物的保留值与已知物的保留值不同,则未 知物肯定不是已知物
10
3.色谱定量分析 色谱定量分析
3.1依据 依据 被测物质(i)的量与它在色谱图上的峰面积 (或峰高)成正比:mi=fi×Ai,fi—定量校正 因子。
峰面积
800 700 600 500 400 300 200 100 0 0 1 2 3 4 浓度 5 6 7 8

色谱定性定量分析方法

色谱定性定量分析方法

(1)绝对校正因子 某组分i通过检测器的量与检测器对该组分的响应信号之比
测定方法:将已知量的被测标准物质注入色谱仪,根据进样 量及色谱图上的峰面积或峰高计算出绝对校正因子
(2)相对校正因子 组分i与基准物(标准物)s的绝对校正因子之比
检测器不同,所选用的基准物不同 热导检测器——苯 氢火焰离子化检测器——正庚烷
(3)内标法
若试样中所有组分不能全部出峰,或仅需测定试样中某个或 某几个组分的含量时,可以采用内标法 将一定的标准物(内标物s)加入到一定量的试样中,混合均 匀后进样,从色谱图上分别测出组分i和内标物s的峰面积 (或峰高)
或:
内标法中常以内标物为基准,即fs=1.0,则:
■ 内标法最关键是选择合适的内标物,对内标物的 要求:
1.定量校正因子
■ 色谱定量分析是基于被测物质的量与其峰面积的 正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以两个相等量的物质出的峰面 积往往不相等,或者说,相同的峰面积并不意味 着相等物质的量。这样就不能用峰面积来直接计 算物质的量。
■ 因此,在计算组分的量时需将面积乘上一个换算 系数,使组分的面积转换成相应物质的量。即必 须将峰面积A乘上一个换算系数进行“校正”。
例:苯、甲苯、乙苯的相对校正因子的测定:分别称取一定 量的三种物质,在25 mL容量瓶中定容。取一定量注入色谱 仪,获得色谱图,测量其峰面积,以苯为基准物,计算各组 分相对校正因子。
组分 质量/g 1
峰面积/mm2
2
3
平均
相对校 正因子
苯(标 准物)
2.22
442
Hale Waihona Puke 440438440
甲苯 2.22 429
例:试样混合物中仅含有甲醇、乙醇和正丁醇,测得峰高分

液相色谱法定量分析与案例分享

液相色谱法定量分析与案例分享

液相色谱法定量分析与案例分享
定量分析是在定性分析的基础上,需要纯物质作为标准样品。

液相色谱的定量是相对的定量方法,即:由已知的标准样品推算出被测样品的量。

液相色谱法定量的依据
被测组分的量(W)与响应值(A)(峰高或峰面积)成正比,W=f×A。

定量校正因子(f):是定量计算公式的比例常数,其物理意义时单位响应值(峰面积)所代表的被测组分的量。

由已知标准样品的量和其响应值可以求得定量校正因子。

测定未知组分的响应值,通过定量校正因子即可求得该组分的量。

定量分析常用术语:
样品(sample):含有带测物,供色谱分析的溶液。

分为标样和未知样。

标样(standard):浓度已知的纯品。

未知样(unknow):浓度待测的混合物。

样品量(sampleweight):待测样品的原始称样量。

稀释度(dilution):未知样的稀释倍数。

组分(componance):欲做定量分析的色谱峰,即含量未知的被测物。

组分的量(amount):被测物质的含量(或浓度)。

积分(integerity):由计算机对色谱峰进行的峰面积测量的计算过程。

校正曲线(calibrationcurve):组分含量对响应值的线性曲线,由已知量的标准物建立,用于测定待测物的未知含量。

常用的定量方法
1外标法
标准曲线法,分为外标法和内标法。

外标法在液相色谱中用的最多。

内标法准确但是麻烦,在标准方法中用的最多。

色谱法定量分析方法及原理

色谱法定量分析方法及原理

色谱法定量分析方法及原理定量分析就是要确定样品中某一组分的准确含量。

色谱定量分析与绝大部分的仪器定量分析一样,是一种相对定量方法,而不是绝对定量方法。

它是根据仪器检测器的响应值与被测组分的量,在某些条件限定下成正比的关系来进行定量分析的。

也就是说,在色谱分析中,在某些条件限定下,色谱峰的峰高或峰面积(检测器的响应值)与所测组分的数量(或浓度)成正比。

一、原理色谱法定量分析的根据是组分i通过检测器时产生的信号大小,即组分i的峰面积A(或组分i的峰高h i)与进入检测器的组分i的质量mi成正比A x m 或h i x mi,由此得到:A=Sm; h i=S(h)m 或者m=A/S i=Af i ; m=h/S i(h)=hf 心)式中A i -------- 组分i的峰面积,mm;m i -------- 组分i进入检测器的量,g或mol数;h i -------------- 组分i的峰高,mmS i——组分i的绝对响应值;f i -------------- 组分i的绝对校正因子;S i(h)——组分i的峰高绝对响应值;f i(h)-----组分i的峰高绝对校正因子。

二、色谱定量分析的方法1、归一化法定量分析。

归一化法定量是色谱分析法中常用而且简单准确的方法。

归一化法只适用于样品中所有组分都能从色谱柱流出并被检测器检出,且都在线性范围内,同时又能测定或查出所有组分相对校正因子的样品。

各组分含量的计算公式为:f i A iX i 100%Z f i A i式中,X,f i,A分别为试样中被测组分的百分含量、相对质量校对因子和色谱峰面积,这个式子也称为面积校正归一化法。

归一化法定量的特点是比较简单、方便,其结果与进样量无关,仪器的操作条件稍有变动对结果影响不大。

当所有组分的校正因子都相同时,上式可简化为:A iX i 100%、A i此式又称为面积归一化法,在FID上,各种烃类的f i都很相近,在计算时采用此式给定量分析带来了极大的方便。

3.色谱定性、定量分析

3.色谱定性、定量分析

一、色谱定性分析qualitative analysis in chromatograph二、色谱定量分析quantitative analysis in chromatograph第三节色谱定性、定量分析qualitative and quantitative analysis in chromatograph一、色谱定性鉴定方法1.利用纯物质定性的方法利用保留值定性:通过对比试样中具有与纯物质相同保留值的色谱峰,来确定试样中是否含有该物质及在色谱图中的位置。

不适用于不同仪器上获得的数据之间的对比。

利用加入法定性:将纯物质加入到试样中,观察各组分色谱峰的相对变化。

2.利用文献保留值定性利用相对保留值r定性21仅与柱温和固定液性质有关。

在色谱手相对保留值r21册中都列有各种物质在不同固定液上的保留数据,可以用来进行定性鉴定。

3.保留指数又称Kovats指数(Ⅰ),是一种重现性较好的定性参数。

测定方法:♣将正构烷烃作为标准,规定其保留指数为分子中碳原子个数乘以100(如正己烷的保留指数为600)。

♣其它物质的保留指数(I X)是通过选定两个相邻的正构烷烃,其分别具有Z和Z+1个碳原子。

被测物质X的调整保留时间应在相邻两个正构烷烃的调整保留值之间如图所示:保留指数计算方法)lg lg lg lg (')(')(')(')(')(')(')(Z t t t t I t t t Z R Z R Z R X R X Z R X R Z R +--=>>++111004.与其他分析仪器联用的定性方法小型化的台式色质谱联用仪(GC-MS;LC-MS)色谱-红外光谱仪联用仪;组分的结构鉴定Sample Sample 58901.0DEG/MINHEWLETTPACKARDHEWLETT PACKARD5972AMassSelective DetectorD CB AABCDGas Chromatograph (GC)Mass Spectrometer (MS) Separation IdentificatiBA CD二、色谱定量分析方法1.峰面积的测量(1)峰高(h)乘半峰宽(Y1/2)法:近似将色谱峰当作等腰三角形。

色谱法的原理及其应用

色谱法的原理及其应用

色谱法的原理及其应用一、色谱法的原理色谱法是一种常用的分析技术,它基于样品分离的原理,通过不同化学物质与固定相之间的相互作用,将混合物中的各种组分进行分离、检测和定量分析。

色谱法的原理可以概括为以下几个方面:1.固定相选择:在色谱柱中包含有固定相,可以根据待分析样品的性质选择不同的固定相。

常见的固定相有气相色谱中的固定相填充于毛细管或填充柱内的吸附剂,液相色谱中的液体固定相填充于柱内的填充剂。

2.样品进样:样品在进入色谱柱之前,需要经过一系列的前处理步骤,包括样品的制备、萃取和预处理等。

进样方式有不同的选择,如气相色谱常用的进样方式有体积型进样、滴定型进样和蒸气型进样等。

3.分离机理:色谱法的分离机理主要包括吸附色谱、分配色谱和离子色谱等。

其中,吸附色谱基于样品成分与固定相之间的化学吸附作用进行分离,分配色谱依据样品成分在液相与固定相之间的分配作用实现分离,离子色谱通过样品离子与色谱固定相或由反离子与离子之间的作用进行分离。

4.检测方法:根据分析目标和待测物质的特性,色谱方法可以选择不同的检测方法。

常见的检测方法包括紫外可见吸收检测、荧光检测、电化学检测等。

二、色谱法的应用色谱法具有高灵敏度、高选择性和高分辨率等优点,在各个领域中得到广泛的应用。

以下是一些常见的色谱法应用领域的列举:1.环境分析:色谱法在环境领域的应用非常广泛,可以用于监测空气中的有机污染物、水体中的重金属以及土壤中的农药等。

通过色谱法,可以对这些环境污染物进行定量分析,为环境保护和污染治理提供科学依据。

2.食品分析:色谱法在食品领域的应用主要包括食品中的添加剂、农药残留、食品中有毒成分等的检测。

通过色谱法的分析,可以保证食品的质量和安全,保护消费者的权益。

3.医药分析:色谱法在制药领域的应用非常重要,可以用于药物的纯度分析、药物代谢产物的检测以及药物的质量控制等。

色谱法在医药领域的应用对于保证药品的质量和安全具有重要的意义。

4.石油化工分析:色谱法在石油化工行业中被广泛应用,可以用于原油和石油产品的分析、燃料中的有毒物质的检测以及石油加工过程中的控制等。

色谱的定量分析

色谱的定量分析

色谱的定量分析1.色谱分析有几种定量方法色谱分析常用的定量方法:归一化法、内标法和内加(增量)内标法、外标法。

1、面积归一化法优点是简便、准确,当操作条件变化时对结果影响较小,宜于分析多组分试样中各组分的含量。

但是试样中所有组分必须全部出峰,因此,此法在使用中受到一定限制。

2、外标法是用纯物质配成一系列不同浓度的标准溶液(或直接购买不同浓度标准溶液)分别取一定体积,注入色谱仪,根据峰面积和浓度做标准曲线。

在分析未知样时按与标准曲线相同的操作条件和方法,由标准曲线查出所需组分的浓度(现在在工作站上直接就能求出浓度)。

此法要求进样准确,操作条件稳定,分析样品和标准曲线条件必须一致。

3、内标法是试样中所有组分不能全部出峰或只要求测定试样中某个或某几个组分时,可采用此法。

内标法是在准确称取一定量的试样中,加入一定的标准物质(内标物),根据内标物和试样的质量以及色谱图上的相应峰面积,计算待测组分的含量。

内标法的关键是选择合适的内标物,内标物应是试样中不存在的纯物质,物质与被测物质相近,能溶于样品中,但不能于样品发生反应。

此法比较费事,一般不使用于快速分析。

2.常用的层析分析方法有哪些在分离分析特别是蛋白质分离分析中,层析是相当重要、且相当常见的一种技术,其原理较为复杂,对人员的要求相对较高,这里只能做一个相对简单的介绍。

一、吸附层析1、吸附柱层析吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。

2、薄层层析薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。

这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。

3、聚酰胺薄膜层析聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。

这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。

层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。

因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。

色谱定性分析原理

色谱定性分析原理

色谱定性分析原理
色谱定性分析是一种常用的分析方法,它可以用来确定样品中化合物的种类和数量。

其原理基于溶液中不同组分在固定相上的分配和吸附特性不同。

在色谱定性分析中,通常会使用色谱柱和移动相。

色谱柱是由固定相填充的管状结构,而移动相是溶解样品的液体。

当样品溶液被注射到色谱柱上时,各种化合物会因其在固定相上的亲和性不同而被分离。

较亲和于固定相的化合物会在色谱柱上停留时间更长,而较不亲和于固定相的化合物则会被迅速洗脱。

接下来,为了分析移动相中的化合物,会将柱上的化合物转移到检测器上进行检测。

常见的检测器包括紫外-可见吸收光谱仪和质谱仪等。

这些检测器可以通过检测样品中化合物的吸收光谱或质量谱图,来确定其种类。

此外,色谱定性分析还可以利用不同化合物的保留指数进行定性分析。

保留指数是通过对已知化合物进行色谱分析,测量其停留时间与某个参考标准物质的停留时间之间的比值得到的。

这样,对比样品中未知化合物的保留指数和已知化合物的保留指数,就可以确定未知化合物的种类。

总而言之,色谱定性分析利用化合物在固定相上的不同亲和性以及其中的分离和检测技术,能够确定样品中化合物的种类,并为定量分析提供依据。

色谱定性定量分析方法

色谱定性定量分析方法

⑥稳定性(stability):
意义: 考察分析样品与试剂在一定时间内稳定性。 内容:
根据样品与试剂测定时实际可能所处的环 境进行考察。
⑦耐用性( robustness ):
意义: 考察测定条件发生小变动时测定结果的变化。
内容:
流动相的组成和pH、商品柱的品牌尺寸、 柱温等
广泛用于药物中的杂质、体内外代谢产物的结构鉴定
重现性: 不同实验室,不同人测定的精密度 1、色谱信号的测量:
意义: 待测物浓度与响应值成线性关系的浓度范围;
相对保留值 α, (t-t0)/(tr -t0)
2、选择合适的离子源,利用LC-MS获得杂质的准分量不同浓度的对照品,比较测定值和加入值确定。
ELSD响应的自然对数与样品的浓度或质量呈线 性关系;
质谱(MS-ESI)检测器高浓度时的响应与样品 的质量可能呈二次或更复杂的方式。
四、色谱分析方法验证
目的:
证明所采用的色谱分析方法适合于相应的检验 要求,判断能否用于药品分析。
效能指标:评价分析方法的尺度
效能指标包括: 精密度、准确度、专属性、检测限、定量限、
tr
内容: LC-ESI-MS的
要求,判断能否用于药品分析。 内容: 药物制剂含量测定时的专属性考察内容:
重复性 广药泛品用 质于量药标物准中分的析杂方质法:、验体证内外代同谢产一物的实结构验鉴定室,同一人多次测定的精密度
中间精密度 2药、品选质择量合标适准的分离析子方源法,验利证用LC:-MS同获得一杂质实的准验分子室离子,峰。不同人,不同仪器测定的精密度
线性与范围、耐用性、稳定性、系统适用性等
不同分析测定方法的要求
药品质量标准分析方法验证 药物制剂人体生物利用度和生物等效性试验

色谱的定性和定量分析

色谱的定性和定量分析

定量准确度决定于 2.求相对校正因子 一.峰面积
1. 对称峰:
2.不对称峰 A = 1/2 式中W0.15和 W0.85
分别为峰高0.15倍和0.85倍处的峰宽
二.定量校正因子f 为什么要用f? ∵不同 组分有不同的响应值
例如用TCD,N2作载气测O2,H2的百分含量 若H2、O2峰面积相同, 百分含量相同就不对。 不能用下式计算:
i
/ Ai
准确定量分析时,应该用自己测定的校正因子,而不用文献 值∵ 校正因子随检测器类别,使用载气的不同而不同
3. 相对校正因子的测定方法
f’值可引用文献值,也可以自己测定。 标准物质,TCD是苯, FID是正庚烷。 准确称量被测组分wi和标准组分ws的重量
在线线范围内进样测 Ai,As
求f’ w或f’
则H 2
AH 2 AH 2 AO2
50%
∵H2的热导系数大,TCD响应大,但 实际含量小∴必须用校正因子.
A H2 500 C 50% f 0.1
O2 50
50%
1
, H2 , O2
则H 2 %
AH 2 f AH 2 f
, H2
AO2 f
500 0.1 50% 500 0.1 50 1
全知峰(有所有组分的标准品)
2. 外标法(标准曲线法) 用待测组分的纯样制标准曲线
优点:快速简单, 只要待测组分出峰且完全分离即可 缺点:绝对法, 进样量,操作条件要不变
3. 内标法(外加标准法)
不能全出峰或只需测某几个组分时采用 方法:准确称取样品,加入一定量内标物,根据重量及 峰面积求出某组分的含量
M
多次测定,求平均值。
三.定量方法

色谱定量计算三种方法,归一化法,内标法和外标法

色谱定量计算三种方法,归一化法,内标法和外标法

色谱法是根据色谱峰的面积或高度进行定量分析的。

色谱定量计算方法很多,目前比较广泛应用的有归一化法、内标法和外标法。

1. 归一化法如果试样中所有组分均能流出色谱柱并显示色谱峰,则可用此法计算组分含量。

设试样中共有n个组分,各组分的量分别为m1,m2,……,m n,则i种组分的百分含量为:归一化法的优点是简便、准确,进样量的多少不影响定量的准确性,操作条件的变动对结果的影响也较小,对组分的同时测定尤其显得方便。

缺点是试样中所用的组分必须全部出峰,某些不需定量的组分也需测出其校正因子和峰面积,因此应用受到一些限制。

2. 内标法当试样中所有组分不能全部出峰,或只要求测定试样中某个或几个组分时,可用此法。

准确称取m(g)试样,加入某种纯物质ms(g)作为内标物,根据试样和内标物的质量比m s/m及相应的色谱峰面积之比,基于下式可求组分i的百分含量W i%:因为所以内标物的选择条件是:内标物与试样互溶且是试样中不存在的纯物质;内标物的色谱峰既处于待测组分峰附近,彼此又能很好地分开且不受其它峰干扰;加入量宜与待测组分量相近。

内标法的优点是定量准确,操作条件不必严格控制,且不象归一化法那样在使用上有所限制。

缺点是必须对试样和内标物准确称重,比较费时。

3. 外标法(亦称标准曲线法)该法是在一定色谱操作条件下,用纯物质配制一系列不同的浓度的标准样,定量进样,按测得的峰面积对标准系列的浓度作图绘制标准曲线。

进行试样分析时,在与标准系列严格相同的条件下定量进样,由所得峰面积从标准曲线上即可查得待测组分的含量。

外标法的优点是操作和计算简便,不需要知道所有组分的相对校正因子,其准确度主要取决于进样量的准确和重现性,以及操作条件的稳定性。

第十一章 色谱分析法——定性定量分析

第十一章 色谱分析法——定性定量分析
知识目标:
气相色谱法的定性分析
1、知道气相色谱流出曲线及常用的基本术语。 2、知道气相色谱的定性和定量方法
一、色谱流出曲线
色谱流出曲线:以组分电信号为纵坐标,流出时间为横坐标所得的曲线称为色谱流 出曲线或色谱图。该曲线反映了试样在色谱柱分离的效果,是组分定性和定量的依 据,同时也是研究色谱动力学和热力学的依据。
空气峰有时有,有时没有。
tM
②保留时间(tR):组分从进样到柱后出现浓度极大值时所需的时间。
③调整保留时间(t R ’): (1) t′R = tR-tM (2)反映组分在固定相中停 留的时间
(3)在实验条件一定时, t′R 决定于组分的性质,是定性 的基本参数。
(2) 相对保留值r21 组分2与组分1调整保留值之比:
内标法 当组分不能全部流出色谱柱,或检测器对样品中某些组分不产生信号,或只测
定样品中某一组分,采用内标法可获得准确结果。
1、测定步骤 (1)称取样品m样(其中:样品中待测组分i的质量用mi表示) (2)选定内标物。称取内标物ms。 (3)将内标物加入到已准确称量的样品中去。 (4)进样,测定待测组分的峰面积Ai和内标物的峰面积As。
气相色谱的定量分析 一、定量依据
样品中组分的质量与组分色谱峰的面积或峰高成正比。
m i = f i ·A i 或 m i = f i ·h i

绝色

对谱

校峰

正面

因积

文献查出
①准确测定Ai和hi ②准确求出f i ③计算mi
峰 高
峰面积A 1、定义:色谱峰与峰底基线所围成区域的面积叫峰面积。
c.将所测组分的相对保留值ris与手册数据对比作出定性判断。

色谱定量分析方法(校正归一化法)—标准曲线法

色谱定量分析方法(校正归一化法)—标准曲线法

二、定量分析方法
2.内标法
内标法的优点是:进样量的变化、色谱条件的微小变化对内标法定量结果的影响不大, 特别是在样品前处理(如浓缩、萃取、衍生化等)前加入内标物,然后在进行前处理时, 可部分补偿欲测组分在样品前处理时的损失。若要获得很高的精密结果时,可以加入数 种内标物,以提高定量分析的精度。
作业
1. 色谱定量分析的基本公式是什么? 2. 什么是标准曲线法? 3. 标准曲线法有何优缺点? 4. 什么是内标法? 5. 内标法对内标物有哪些要求?
二、定量分析方法
1.标准曲线法
优 绘制好标准曲线后测定工作就变得相当简单,可直接从标准工作上读出含量,因为特别适合大 点 量样品的分析。
每次样品分析的色谱条件(检测器的影响性能,柱温,流动相流速及组成,进样量,柱效等)很
缺 点
难完全相同,因此容易出现较大误差。此外,标准曲线绘制时,一般使用欲测组分的标准样品
《色谱分析及操作》
色谱定量分析方法(标准曲线法、内标法)
01
定量分析
一、概述
定量分析就是要确定样品中某一组分的含量。色谱定量分析 与绝大部分是仪器定量分析一样,是一种相对定量分析,而 不是绝对定量分析。色谱分析是根据仪器检测的响应值与被 测组分的量进行分析,在某些条件限定下成正比的关系来进 行定量分析的,也就是说,在色谱分析中,在某些条件限定 下,色谱峰的峰高或峰面积与所测组分的数量成正比。因此, 色谱定量分析的基本公式为:ωi=fiAi或Ci=fihi
(或已知准确含量的样品),而实际样品的组成却千差万别,因此必将给测量带来一定的误差。
二、定量分析方法
2.内标法
若试样中所有组分不能全部出峰,或只要求测定试样中某个或某几个组分的含量时,可 以采用内标法定量。 所谓内标法就是将一定量选定的标准物(称内标物S)加入到一定量试样中,混合均匀 , 在一定操作条件下注入色谱仪,出峰后分别测量组分i和内标物S的峰面积(或峰高),按 下式计算组分i的含量。

药物的色谱分析

药物的色谱分析

药物的色谱分析药物的色谱分析是一种常用的药物分析方法,通过对药物中的成分进行分离、鉴定和定量,为药物的研发、质量控制和药效评价等方面提供重要的信息和数据。

本文将介绍色谱法的基本原理、常用色谱技术和应用案例等内容。

一、色谱法的基本原理色谱分析是基于物质在不同相(固定相和移动相)中的分配行为而建立的。

色谱分析中常用的固定相包括硅胶、脱水石墨、C18等,而移动相通常为溶剂或溶液。

根据不同的分离机理和原理,色谱分析主要分为气相色谱(GC)和液相色谱(LC)两大类。

气相色谱(GC)是利用气体作为载气相,将待测物质通过固定相柱进行分离的方法。

GC主要适用于描写挥发性和热稳定性较好的化合物分析,如有机化合物、描写挥发性和热稳定性较好的化合物分析、如有机化合物、环境污染物、药物代谢产物等。

液相色谱(LC)则是通过液体作为移动相,将待测物质在固定相上进行分离的方法。

LC相比GC在分析范围上更广泛,涵盖了无机物、有机物、生物大分子等多种化合物的分离与鉴定。

二、常用色谱技术1. 高效液相色谱(HPLC)高效液相色谱是使用高压将溶解样品推动通过固定相柱进行分离的色谱技术。

HPLC分离效果较好,分离速度快,适用于复杂样品的分离和定量,被广泛应用于药物分析、环境监测、食品检验等领域。

2. 薄层色谱(TLC)薄层色谱是将样品溶液直接涂布在柱状或板状涂层上,通过溶剂的上下移动来分离和检测样品的方法。

TLC技术具有简便、快速、经济的特点,常用于药物质量控制和药效评价。

3. 气相色谱质谱联用(GC-MS)气相色谱质谱联用是将气相色谱和质谱相结合的一种分析技术。

GC-MS技术可以将化合物在气相柱中进行初步分离,然后通过质谱的检测和鉴定,提高对化合物的准确性和灵敏度。

该技术在药物研发和毒物分析中被广泛应用。

三、色谱分析在药物研发中的应用案例1. 药物杂质分析药物中的杂质对药物的质量和疗效具有重要影响。

色谱分析在药物杂质分析中具有高效、准确的特点,能够对药物中的杂质进行快速和准确的定性定量。

色谱分析的原理

色谱分析的原理

色谱分析的原理
色谱分析是一种广泛应用于化学、生物、环境等领域的分析方法,它通过分离混合物中的各种成分,从而实现对样品的定性和定量分析。

色谱分析的原理主要包括样品的分离、检测和定量三个方面,下面将对色谱分析的原理进行详细介绍。

首先,色谱分析的分离原理是基于不同物质在固定相和流动相作用下的迁移速度不同而实现的。

在色谱柱中,固定相起到分离作用,而流动相则将样品带动通过柱子。

当样品通过柱子时,不同成分会因为与固定相的相互作用力不同而在流动相的作用下以不同速度迁移,从而实现了成分的分离。

在色谱分析中,常用的分离方法包括气相色谱(GC)和液相色谱(LC),它们分别适用于气体和液体样品的分离。

其次,色谱分析的检测原理是通过检测样品在分离后的特定位置的信号来实现的。

常用的检测方法包括紫外-可见吸收光谱检测、荧光检测、电化学检测等。

这些检测方法可以根据样品的特性选择合适的检测方式,从而实现对样品成分的定性和定量分析。

最后,色谱分析的定量原理是基于样品中成分的峰面积与浓度
之间的关系来实现的。

在色谱图上,每个成分都会呈现出一个峰,峰的面积与成分的浓度成正比。

通过标定曲线,可以将峰面积与成分的浓度建立起定量关系,从而实现对样品中成分的定量分析。

综上所述,色谱分析的原理主要包括样品的分离、检测和定量三个方面。

通过对这些原理的深入理解,可以更好地应用色谱分析技术进行样品分析,为化学、生物、环境等领域的研究和应用提供有力支持。

气相色谱的定性和定量分析

气相色谱的定性和定量分析

实验七 气相色谱的定性和定量分析一、实验原理对一个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。

衡量一对色谱峰分离的程度可用分离度R 表示:()211221Y Y t t R R R -⨯-=,,式中,T R,2,Y 2和T R,1,Y 1分别是两个组分的保留时间和峰底宽,当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。

在实际应用中,R=1.0一般可以满足需要。

用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。

在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。

当手头上有待测组分的纯样时,作与已知物的对照进行定性分桥极为简单。

实验时,可采用单柱比较法、峰高加入法或双柱比较法。

单柱比较法是在相同的色谱条件下.分别对已知纯样及待测试样进行色谱分析.得到两张色谱图,然后比较其保留参数。

当两者的数值相同时,即可认为待测试样中有纯样组分存在。

双柱比较法是在两个极性完全不同的色谱住上,在各自确定的操作条件下,测定纯样和待测组分在其上的保留参数,如果都相同,则可准确地判断试样中有与此纯样相同的物质存在。

由于有些不同的化合物会在某一固定相上表现出相同的热力学性质,故双柱法定性比单柱法更为可靠。

在一定的色谱条件下,组分i 的质景m :或其在流动相中的浓度,与检测器的响应信号峰面积Ai 或峰高h ,成正比:2-10 或 2-11式中,f i A 和f i h 称为绝对校正因子。

式(2-10)和式(2-11)是色谱定量的依据。

不难看出,响应信号A 、h 及校正因了的淮确测量直接影响定定分析的准确度。

由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。

测量峰面积的方法分为于上测量和自动测量。

气相色谱定量方法

气相色谱定量方法
近; c. 内标物的色谱峰应位于待测组分色谱峰
附近或几个待测组分色谱峰之间。
E. 内标法优缺点
• 优点:定量准确,对试样含有不出峰的 组分情况下,也不影响测定。
• 缺点:每次测定都必须准确称取样品和 内标物质量,不适于快速分析。
(2)内标曲线法
用内标法待测组分含量计算式
ωi =
ms f ' iAi f ' sAs 100
• 前面已知:mi = fi Ai 即:fi = mi / Ai
2. 定量校正因子(二)
• fi 称绝对校正因子,定量分析中常用的是相 对校正因子f 'i,定义为组分的绝对校正因子 与标准物质的绝对校正因子之比:
f fi / fs mi / Ai Asmi 1 ms / As Aims Si
A = 1.065 h ×y1/2(相对计算可略去前面系数) (2)峰高乘平均峰宽法
不对称峰不能作前述近似,可于峰高0.15及 0.85处测得峰宽,取其平均值进行计算:
A = h× (y0.15+y0.85)/2
1. 峰面积 A 的测量方法(二)
(3)峰高乘保留时间法 • 难以量度半峰宽的狭窄峰或半峰宽以上重叠的峰
可用下式计算: • A = 1.065h× b× tR (相对计算可略去1.065和
常数b) (4)剪纸称重法 • 对于不对称或分离不完全的峰,可将峰剪下,以
质量代其面积,使用较少。
1. 峰面积 A 的测量方法(三)
(5)自动积分法 • 将记录仪与自动积分仪连接,可直接准确、快
速地测出峰的面积。 (6)以峰高代替峰面积定量法 • 当各种实验条件严格保持不变时,一定进样范
f fi / fs mi / Ai Asmi 1 ms / As Aims Si

化学中的色谱分析方法

化学中的色谱分析方法

化学中的色谱分析方法色谱分析是一种在化学领域中广泛应用的分析技术,通过分离混合物中的成分并对其进行定量或定性分析。

色谱分析方法主要包括气相色谱(Gas Chromatography, GC)、液相色谱(Liquid Chromatography, LC)和超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)等。

本文将重点介绍这几种色谱分析方法的原理、应用及特点。

一、气相色谱(Gas Chromatography, GC)气相色谱是一种在气相流动条件下进行分离的色谱技术。

其原理是利用气相载气将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。

气相色谱广泛应用于食品、环境、药物、石油化工等领域。

气相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。

在实际应用中,气相色谱常用于分析挥发性有机物、气体成分、药物、食品添加剂等。

二、液相色谱(Liquid Chromatography, LC)液相色谱是一种在液相流动条件下进行分离的色谱技术。

其原理是利用固定相和流动相之间的相互作用将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。

液相色谱广泛应用于生物、药物、环境、食品等领域。

液相色谱的主要特点包括适用性广、分离效果好、灵敏度高、分辨率高等。

在实际应用中,液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。

三、超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)超高效液相色谱是一种高效、快速的液相色谱技术。

其原理是利用超高压力将样品混合物快速分离成单独的组分,然后通过检测器进行检测和定量分析。

超高效液相色谱广泛应用于生物、药物、环境、食品等领域。

超高效液相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。

在实际应用中,超高效液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。

高效液相色谱定性定量分析方法==

高效液相色谱定性定量分析方法==
N
吸光度( Absorbance UV/Vis)检测 • 目前实验室中最流行的选择 ▫ 多数公司约75%的检测器是吸光度检测器(其中50%是多 波长,25%是PDA) • 测量通过溶液后的紫外或可见光光强度的损失 • 吸光度与样品浓度呈线性关系 • 在被测物的最大吸收波长处检测时灵敏度最大
吸光度检测器( UV/Vis)- 优点 • 这种检测器简单、可靠 • 多数人熟悉并喜欢这种技术 • 可以作梯度实验并且是非破坏性的 • 大多数有机化合物有一定程度的吸光度 • 一般来说灵敏度还可以
固定滞后体积,改善了梯度性能 梯度百分比 梯度曲线 好的梯度 滞后曲线 保留时间
普通的低压梯度系统 梯度百分比 不好的梯度 滞后曲线
保留时间
液相色谱的色谱柱
色谱柱的连接
Stop_depth长度不合适造成柱前死体积
色谱柱的连接
锥箍锥度不合适造成渗漏
可能提高柱效的方法
除去柱上端固定相变色部分 (约3mm左右),再补充新的
泵的保养: • • • • • 使用流动相尽量要清洁; 进液处的砂芯过滤头要经常清洗; 流动相交换时要防止沉淀; 避免泵内堵塞或有气泡; 每次分析结束后,要反复冲洗进样口,防止样品的交叉污 染;
柱的保养: • • • • • • • • • 柱子在任何情况下不能碰撞、弯曲或强烈震动; 当柱子和色谱仪联结时,阀件或管路一定要清洗干净; 要注意流动相的脱气; 避免使用高粘度的溶剂作为流动相; 进样样品要提纯; 严格控制进样量; 每天分析工作结束后,要清洗进样阀中残留的样品; 每天分析测定结束后,都要用适当的溶剂来清洗柱; 若分析柱长期不使用,应用适当有机溶剂保存并封闭;
• 试剂:
分析纯
• 不管采用何种途径,配制流动相应用新鲜水,水质要 求越高放置时间越短。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

色谱法定量分析方法及原理
定量分析就是要确定样品中某一组分的准确含量。

色谱定量分析与绝大部分的仪器定量分析一样,是一种相对定量方法,而不是绝对定量方法。

它是根据仪器检测器的响应值与被测组分的量,在某些条件限定下成正比的关系来进行定量分析的。

也就是说,在色谱分析中,在某些条件限定下,色谱峰的峰高或峰面积(检测器的响应值)与所测组分的数量(或浓度)成正比。

一、原理
色谱法定量分析的根据是组分i 通过检测器时产生的信号大小,即组分i 的峰面积A i (或组分i 的峰高h i )与进入检测器的组分i 的质量m i 成正比A i ∝m i 或h i ∝m i ,由此得到:
A i =S i m i ;h i =S i(h)m i 或者m i =A i /S i =A i f i ;m i =h i /S i(h)=h i f i(h)
式中 A i ------组分i 的峰面积,mm 2;
m i ------组分i 进入检测器的量,g 或mol 数;
h i ------组分i 的峰高,mm ;
S i ------组分i 的绝对响应值;
f i ------组分i 的绝对校正因子;
S i(h)------组分i 的峰高绝对响应值;
f i(h)-----组分i 的峰高绝对校正因子。

二、色谱定量分析的方法
1、归一化法定量分析。

归一化法定量是色谱分析法中常用而且简单准确的方法。

归一化法只适用于样品中所有组分都能从色谱柱流出并被检测器检出,且都在线性范围内,同时又能测定或查出所有组分相对校正因子的样品。

各组分含量的计算公式为:
100%i i i i i
f A X f A =⨯∑ 式中,X i ,f i ,A i 分别为试样中被测组分的百分含量、相对质量校对因子和色谱
峰面积,这个式子也称为面积校正归一化法。

归一化法定量的特点是比较简单、方便,其结果与进样量无关,仪器的操作条件稍有变动对结果影响不大。

当所有组分的校正因子都相同时,上式可简化为:
100%i i i
A X A =⨯∑ 此式又称为面积归一化法,在FID 上,各种烃类的f i 都很相近,在计算时
采用此式给定量分析带来了极大的方便。

2、内标法。

内标法即是将一种纯物质作为标准物加入到待测样品中,进行色谱定量的一种方法。

内标法是色谱分析法中常用而且准确的定量方法,进样量的准确性和操作条件的波动对测定结果的影响较小,此法不要求出全峰,但待测的组分必须出色谱峰。

应用内标法定量必须向样品中加入一定量的内标物质纯品,此内标物质应该是样品中不存在的,且与待测组分性质相近的纯物质,加入的内标物质量应与待测物质的质量分数相近,内标物的色谱峰应位于待测组分峰的附近,或位于几个待测组分峰的中间,并与待测组分峰完全分离。

具体方法是:准确称取一定质量的内标物质,加入到准确称取的一定质量的样品中去,混合均匀,在一定的色谱操作条件下,将混合物注入色谱仪,分离出峰后,分别测量组分i 和内标物S 的峰面积或峰高,组分含量的计算为:
100%s i i i E E
m f A X mf A =⨯ 式中,m s ,m 分别为加入内标物的量和试样的质量;
i 代表被测峰;E 代表内标峰。

内标法定量的特点是准确,没有归一化法的那些限制,只要所需分析组分在选定色谱条件下有信号,而且峰面积可测量并在线性范围内即可。

对内标物的要求是既能和被测样品互溶,又能和被测的各组分在色谱图上分开,内标物的浓度应与被测组分浓度相近。

3、外标法。

外标法又称标准工作曲线法或已知样校正法。

此法是先配制一系列不同浓度的标样进行色谱分析,作出峰面积对浓度的工作曲线,在严格相同的色谱条件下,注射相同量或已知量的试样进行色谱分析,求出峰面积后根据工作曲线求出被测组分的含量。

若工作曲线通过原点,可配制与所测组分浓度相近的一个标样进行色谱分析。

在相同进样量的条件下,被测组分含量可直接用下式
计算:
E Ai
i i A X E =
此方法的特点是操作简单,计算方便,但要求分析组分与其他组分完全分离、色谱分析条件也必须严格一致;而且标准物的色谱纯度要求高(或用准确知道浓度的标准物,配置浓度时进行折算)。

当配制标样的化合物与所测组分不同时,则峰面积必须进行校正:
E E E fiAi i f A X X =
式中,X i ,f i ,A i 分别为被测组分含量、相对校正因子及峰面积;
X E ,f E ,A E 分别为外标物的浓度、相对校正因子及峰面积。

色谱用于组分的定量分析时,由于具有高灵敏度、高分离效能和宽量程的特点,因此不仅可以分析从常量到痕量直至超痕量的组分,而且相对于光谱、质谱、核磁等现代分析仪器而言,其结果更为准确。

相关文档
最新文档