紫外可见分子吸收光谱法
紫外-可见吸收光谱 - 紫外-可见吸收光谱

2.生色团(发色团) 含有n→π*或π→π*的基团。 例:C=C;C=O;C=S;—N=N— 等
3.助色团 含非键电子的杂原子饱和基团。 例:—OH,—OR,—NH—,—NR2—,—X 4.红移(长移)、蓝移(短移): 由于化合物结构变化(共轭、引入助色团)或采用不同溶
剂后: 吸收峰向长波方向移动,叫红移 吸收峰向短波方向移动,叫蓝移
第一节 紫外-可见吸收光谱
5.增色效应、减色效应 增色效应:使吸收强度增加的效应 减色效应:使吸收强度减弱的效应
6.吸收带 吸收光谱中吸收峰的位置称做吸收带 εmax>104 → 强带 εmax<102 → 弱带
第一节 紫外-可见吸收光谱
四、吸收带类型和影响因素
(一)吸收带类型 • 1.R带:由含杂原子的不饱和基团的n →π*跃迁产生(C
分子中价电子(外层电子)吸收紫外-可见光区的电磁 辐射发生电子能级跃迁
(吸收能量=两个跃迁能级之差)
第一节 紫外-可见吸收光谱
二、紫外-可见吸收光谱的电子跃迁类型
1.有机化合物紫外-可见吸收光谱的电子跃迁类型 从有机物化学键的性质来看,与紫外-可见吸收光谱有关的
电子主要有三种,即形成单键的σ 电子,形成双键π 电子以及 未参与成键的n电子。
水
243 nm 305 nm
迁移
长移 短移
第一节 紫外-可见吸收光谱
第一节 紫外-可见吸收光谱
4. 体系pH的影响
OH OH
O
H+
苯酚在不同pH时的紫外吸收光 谱
=O;C=N;-N=N- )
• λmax≈ 300nm, max<100
• 溶剂极性↑,λmax↓ → 蓝移(短移) 2.K带:由共轭双键的π→ π*跃迁产生
5.紫外-可见吸收光谱法

•双波长分光光度计
双波长分光光度计的优点:是可以在有 背景干忧或共存组分吸收干忧的情况下 对某组分进行定量测定。 岛津UV-2700双光束双波长的
5.4 分析条件的选择 (一)显色反应的选择及类型 选择显色反应时应考虑的因素:
灵敏度高、选择性高、生成物稳定、显色剂在测定波 长处无明显吸收,两种有色物最大吸收波长之差:“对比 度”,要求△ > 60nm。
吸光度A与显色剂用量CR 的关系会出现如图所示的几种 情况。选择曲线变化平坦处。
2.反应体系的酸度
在相同实验条件下,分别测定不同pH值条件 下显色溶液的吸光度。选择曲线中吸光度较大且 恒定的平坦区所对应的pH范围。
3.显色时间与温度
由实验确定。
4.溶剂
一般尽量采用水相测定。
(三) 波长的选择
一般根据待测组分的吸收光谱,选择最大 吸收波长作为测定波长。
收物质最大限度的吸光能力,也反映了光度法测定该物质可 能达到的最大灵敏度。 (5)εmax越大表明该物质的吸光能力越强,用光度法测定该 物质的灵敏度越高。 ε>105:超高灵敏; ε=(6~10)×104 :高灵敏;
ε<2×104 :不灵敏。
3. 吸光度A与透光度T的关系
透过光的强度It与入射光的强度Io之比称 为透光度或透光率,用T表示。 T = I t / I0
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,摩尔吸光系数εmax一般在104 L· mol-1· cm-1以上,属于
强吸收。不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁 。如:乙烯π→π*跃迁的λmax为162 nm,εmax为1×104 L·mol1· cm-1。
在波长200-750nm内,基于分子内电子跃迁的吸收 光谱来确定物质的组成、含量,推测物质结构的一种 分析方法,又称为紫外-可见分光光度法。它属于分子 吸收光谱法。
紫外可见吸收光谱法原理_概述解释说明

紫外可见吸收光谱法原理概述解释说明1. 引言1.1 概述紫外可见吸收光谱法是一种广泛应用于化学分析、生物医药和材料科学等领域的分析技术。
它通过检测样品吸收紫外或可见光的能力,可以确定样品中存在的化合物或物质的浓度。
紫外可见吸收光谱法基于原子、离子或分子在特定波长范围内对电磁辐射的选择性吸收现象,利用这种吸收现象可以获得样品所具有的信息。
本文将对紫外可见吸收光谱法的原理进行详细介绍,并探讨其在化学分析、生物医药和材料科学中的应用。
1.2 文章结构本文共分为五个部分:引言、紫外可见吸收光谱法原理、紫外可见吸收光谱应用领域、实验方法与操作步骤以及结论和展望。
1.3 目的本文旨在向读者介绍紫外可见吸收光谱法的基本原理以及其在不同领域中的应用。
通过阐述紫外可见吸收光谱法的操作方法和实验步骤,希望能为初学者提供一份清晰的指南,使其能够准确、有效地应用该技术进行分析。
同时,我们将对紫外可见吸收光谱法的局限性进行讨论,并展望其未来在科学研究和实际应用中的发展方向。
2. 紫外可见吸收光谱法原理:2.1 光谱的基本概念:光谱是指将某物质在不同波长范围内对电磁辐射的吸收、发射或散射进行分析和测量的方法。
根据电磁辐射的能量不同,可将光谱分为紫外光谱、可见光谱和红外光谱等。
其中,紫外可见吸收光谱法利用物质对紫外及可见光区域(200-800 nm)的吸收特性进行定量和定性分析。
2.2 紫外可见吸收光谱的原理:紫外可见吸收光谱法是通过物质吸收特定波长范围内电磁辐射而产生的能级跃迁来进行分析。
当样品受到入射光线照射后,样品中的某些化学成分会吸收特定波长范围内的能量,并转为高能态。
这些化学成分在高能态时可能会跃迁至更高能级或离子化状态,从而使入射光线中特定波长的能量被吸收,形成明显的吸收峰。
根据琴斯定律(Lambert-Beer定律),光的吸收与样品中物质浓度成正比。
因此,通过测量入射光和透射光之间的吸收差异,可以推算出样品中特定化合物的浓度。
05第5章 紫外可见吸收光谱法

ε=200
苯 甲苯 间二甲苯 1,3,5-三甲苯 六甲苯
其中B带为芳香族的重要特 征吸收带,常用于识别:精 精 细结构是 π → π*与苯环振动 细结构 引起;
λmax(nm) 254 261 263 266 272
ε max 200 300 300 305 300
含带有孤对电子的取代基时,由于n → π*共轭, B带强度 增大简化,红移;对于烷基取代基影响不大。
ε
能级跃迁
电子能级间跃迁 同时,总伴随有 的同时 同时 振动和转动 振动 转动能级间 转动 的跃迁。即电子光 谱中总包含 包含有振动 包含 能级和转动能级间 跃迁产生的若干谱 线而呈现宽谱带 宽谱带。 宽谱带
分子的内能: 分子的内能:电子能量Ee 、振动能量Ev 、转 动能量Er 即: E=Ee+Ev+Er 三种能级都是量子化的, 三种能级都是量子化的,且各自具有相应的能 量。
σ*
K E,B R
∆E
π*
n
π
σ
2):n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ* 跃迁。
化合物 H2O CH3OH CH3CL CH3I CH3NH2 λmax(nm) 167 184 173 258 215 εmax 1480 150 200 365 600
讨论: 讨论:
0.005~0.050eV, (1) 转动能级间的能量差ΔΕr:0.005~0.050eV,跃迁 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 约为:0.05~ eV, (2) 振动能级的能量差ΔΕv约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 较大1 20eV。 (3) 电子能级的能量差ΔΕe较大1~20eV。电子跃迁产生 的吸收光谱在紫外-可见光区,紫外— 的吸收光谱在紫外-可见光区,紫外—可见光谱或分子的电 子光谱; 子光谱;
紫外-可见吸收光谱法全

8. B带
芳香族化合物ππ*跃迁产生的特征精细结 构吸收带。
特点: ➢ 230~270nm 呈 一 宽 峰 , 中 心 为 255nm 左 右 ,
且具有精细结构;(用于识别芳香族化合 物) ➢ε~200 L·mol-1·cm-1; ➢ 于极性溶剂中可能消失。
9. E带 也是芳香族化合物ππ*跃迁产生的特征吸 收带。可分为E1和E2带。 特点: E1带约为180nm(ε> 104 L·mol-1·cm-1 ); E2带约为200nm(ε~ 7000L·mol-1·cm-1 )。
测定同一化合物在不同极性溶剂中n* 跃迁吸收带,就能计算其在极性溶剂中氢键 的强度。
例:在水中,丙酮的n*吸收带为264.5 nm,
能量452.99 kJ·mol-1;在己烷中,该吸收带为
279 nm,能量为429.40 kJ·mol-1。
丙酮在水中形成的氢键强度为452.99 - 429.40 =
9.1.2 无机化合物的紫外-可见吸收光谱 9.1.2.1 电荷转移跃迁(强吸收) 1. 金属配合物或水合离子
(FeSCN)2+、Cl-(H2O)n 2. 谱峰位置与给受电子能力有关。
Mn+-Lb- hν M(n-1)+-L(b-1)-
电子受体 电子给体
9.1.2.2 配位场跃迁 d-d跃迁和f-f跃迁 特点:ε小,一般位于可见区。
4. 溶剂的选择 ➢ 尽量选用非极性溶剂或低极性溶剂; ➢ 溶剂能很好地溶解被测物,且形成的溶
液具有良好的化学和光化学稳定性; ➢ 溶剂在样品的吸收光谱区无明显吸收。
9.1.4.3 pH的影响
9.2 紫外-可见分光光度计 9.2.1 仪器的基本构造
光源 单色器 吸收池 检测器 信号指示系统
仪器分析 第三章 紫外可见吸收光谱法

第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。
◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。
◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。
2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。
◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。
◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。
◆准确:近紫外-可见分光光度法(200-780 nm)。
3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。
4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。
2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。
◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。
◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。
2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。
◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。
◆电子能级能量差:1~20 eV。
电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。
7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。
◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。
紫外可见吸收光谱法

-C-C- 如:乙烷: max=135nm C-H 如: 甲烷: max= 125nm
2) n * 跃迁
分子中未共用n电子跃迁到* 轨道
化合物种类:凡含有n电子的杂原子的饱和化合物
特点:跃迁所需要的能量较高
位置:远紫外光区和近紫外光区
150-250nm
ε=100 ~ 1000 L·cm-1 ·mol-1
Mn+-Lb- M(n+1)+-L(b+1)- (hν) [Fe3+-SCN-]2+ [Fe2+-SCN]2+ (这就是配合物λmax=490nm为血红色原因)
金属配合物的电荷转移吸收光谱,有三种类型:
1. 电子从配体到金属离子: 相当于金属的还原; 2. 电子从金属离子到配体; 产生这种跃迁的必要条件是金属离子容易被氧化
白炽光源: 热辐射光源:可见光区,340-2 500nm,影响因素:灯电压
如 钨丝灯和卤钨灯; 气体放电光源: 气体放电发光光源:紫外光
否相同。 在进行紫外光谱法分析时,必须正确选择溶剂。
三、紫外-可见分光光度计
光源 λ1、 λ2、 λ3、 …、 λn
分光系统
λmax
调制放大 记录系统→显示A
检测系统 光→电
I0→样品池→ It
紫外-可见分光光度计主要组成部件
光源
分光系统
样品池
检测系统
记录系统
1、光源
1.光源:提供入射光的元件。
3.电子从金属到金属
配合物中含有两种不同氧化态的金属时,电子可在其间转移,
这类配合物有很深的颜色,如普鲁士蓝 (磷、砷)钼蓝 H8 [SiMo2O5(Mo2O7)5 ]
(整理)紫外吸收光谱法

(整理)紫外吸收光谱法第8章紫外吸收光谱法紫外-可见分⼦吸收光谱法(ultraviolet-visible molecular absorption spectrometry,UV-VIS ),⼜称紫外-可见分光光度法(ultraviolet-visible spectrophotometry )。
它是研究分⼦吸收190~750nm 波长范围内的吸收光谱。
紫外-可见吸收光谱主要产⽣与分⼦价电⼦在电⼦能级间的跃迁,是研究物质电⼦光谱的分析⽅法。
通过测定分⼦对紫外-可见光的吸收,可以⽤于鉴定和定量测定⼤量的⽆机化合物和有机化合物。
在化学和临床实验室所采⽤的定量分析技术中,紫外-可见分⼦吸收光谱法是应⽤最⼴泛的⽅法之⼀。
§9-1 光吸收定律⼀、朗伯-⽐尔定律分⼦吸收光谱法是基于测定在光程长度为b (cm )的透明池中,溶液的透射⽐T 或吸光度A 进⾏定量分析。
通常被分析物质的浓度c 与吸光度A 呈线性关系,可⽤下式表⽰:0lg tI A abc I == (9-1)式中各参数的定义如表9-1所⽰。
该式是朗伯-⽐尔定律的数学表达式,它指出:当⼀束单⾊光穿过透明介质时,光强度的降低同⼊射光的强度、吸收介质的厚度以及光路中吸光微粒的数⽬呈正⽐。
由于被分析物质的溶液是放在透明的吸收池中测量,在空⽓/吸收池壁以及吸收池壁/溶液的界⾯间会发⽣反射,因⽽导致⼊射光和透射光的损失。
如当黄光垂直通过空⽓/玻璃或玻璃/空⽓界⾯时,约有8.5%的光因反射⽽被损失。
此外,光束的衰减也来源于⼤分⼦的散射和吸收池的吸收。
故通常不能按表9-1所⽰的定义直接测定透射⽐和吸光度。
为了补偿这些影响,在实际测量中,采⽤在另⼀等同的吸收池中放⼊溶剂与被分析溶液的透射强度进⾏⽐较。
⼆、吸光度的加和性当溶液中含有多种对光产⽣吸收的物质,且各组分间不存在相互作⽤时,则该溶液对波长λ光的总吸收光度A 等于溶液中每⼀成分的吸光度之和,即吸光度具有加和性。
紫外-可见吸收光谱法

助色团: (Auxochromous group) 有一些含有n电子的基团(如—OH、— OR、—NH2、—NHR、—X等),它们本身 没有生色功能(不能吸收λ>200nm的光) ,但当它们与生色团相连时,就会发生 —π*共轭作用,增强生色团的生色能 力(吸收波长向长波方向移动,且吸收强 度增加),这样的基团称为助色团。
(四) *跃迁
所需能量较小,吸收波长处于远紫外区 的近紫外端或近紫外区,最大吸收波长 λ在200nm左右,摩尔吸光系数εmax一般 在104L· -1· -1以上,属于强吸收。 mol cm 不饱和烃、共轭烯烃和芳香烃类均可发 生该类跃迁。
相关术语
生色团:(Chromogenesis group) 最有用的紫外—可见光谱是由π→π*和 n→π*跃迁产生的。这两种跃迁均要求有 机物分子中含有不饱和基团。这类含有π 键的不饱和基团称为生色团。简单的生 色团由双键或叁键体系组成,如乙烯基、 羰基、亚硝基、偶氮基—N=N—、乙炔 基、腈基等。
当入射光波长一定时,待测溶液的吸光度 A与其浓度和比例系数,与溶液性质、温度和入射波长有关。 当浓度以 g/L 表示时,称 k 为吸光系数,以 a 表示,即
A abc
当浓度以mol/L表示时,称 k 为摩尔吸光系数,以 表示, 即
A bc
比 a 更常用。 越大,表示方法的灵敏度越高。 与波长有关,因 此, 常以表示。
摩尔吸光系数ε 的讨论 • 吸收物质在一定波长和溶剂条件下的特征常数; • 不随浓度c和光程长度b的改变而改变。在温 度和波长等条件一定时,ε仅与吸收物质本身 的性质有关; 可作为定性鉴定的参数; 同一吸收物质在不同波长下的ε值是不同的。 在最大吸收波长λmax处的摩尔吸光系数,常以 εmax表示。εmax表明了该吸收物质最大限度的 吸光能力,也反映了光度法测定该物质可能达 到的最大灵敏度。
第三章 紫外可见吸收光谱法

3.金属离子影响下配体的 p → p* 跃迁 显色剂大多含有生色团和助色团,与金属离子 配位时,其共轭结构发生变化导致吸收光谱发生红 移或蓝移。 例:茜素磺酸钠 弱酸性-黄色- λmax=420nm 弱碱性-紫红色- λmax=560nm
pH为4~5时与Al3+配位后,为红色,λmax=475nm,相对于 酸性茜素磺酸钠吸收峰红移,相对于碱性茜素磺酸钠吸收峰 蓝移。
480-490
490-500 500-560 560-580 580-610 610-650 650-780
绿蓝
蓝绿 绿 黄绿 黄
橙
红 红紫 紫 蓝
橙
红
绿蓝
蓝绿
3.特点:
(1) 灵敏度较高,可达10-4~10-7g/mL; (2) 准确度较高,一般为1% ~5%; (3) 仪器价格较低,操作简便、快速; (4)应用范围广。既能进行定量分析,又可进行 定性分析和结构分析;既可用于无机物化合 物分析,也可用于有机物化合物分析;还可 用于络合物组成、酸碱解离常数的测定等。
标准谱图库:46000种化合物紫外光谱的标准谱图 有一定局限性,需与红外、核磁、质谱等法相结合 进行准确鉴定。
(二)结构分析
紫外—可见吸收光谱中有机物发色体系信息分析的一般规律: (1)若在220~280nm内无吸收峰,可推断化合物不含苯环、共轭 双键、醛基、酮基、溴和碘(饱和脂肪族溴化物在200-210nm有 吸收)。
必须在配体的配位场作用下才可能产生;
一般的规律:轨道分裂能随场强增加而增加,吸 收峰波长则发生紫移。 例如:水合铜离子(Ⅱ)是浅蓝色的λmax=794nm ,而 它的氨络合物却是深蓝色的λmax=663nm 。
摩尔吸收系数ε很小,对定量分析意义不大。但可 用于络合物的结构及无机络合物的键合理论研究。
紫外-可见吸收光谱.

3.有机化合物的吸收光谱与分子结构
(2)不饱和烃及共轭烯烃
在不饱和烃类分子中,除含有键外,还含有 键,它们可以产生*和*两种跃迁。 *跃迁的能量小于 *跃迁。例如,在 乙烯分子中, *跃迁最大吸收波长为180nm。
第一节 紫外-可见吸收光谱 一、分子吸收光谱的产生
过程:
运动的分子外层电子---吸收外来辐射--产生电子能级跃迁----分子吸收光谱。
M h I0 M * It
一、分子吸收光谱的产生
在分子中,除了电子 相对于原子核的运动 外,还有核间相对位 移引起的振动和转动。 这三种运动能量都是 量子化的,并对应有 一定能级。左图为分 子的能级示意图。
丙酮
例:KMnO4紫红色,吸收的是绿光,λmax=525nm。它 对其它颜色的光吸收极小。吸收曲线形状是物质特有 的。当KMnO4的量不同,只使曲线沿纵座标上下移动, 但曲线形状不变。
图 KMnO----4的吸收光谱图 浓度:5、10、20、40μg/ml,1cm厚比色杯
四、分子跃迁类型及吸收光谱
max 较大 (104以上),可用于定量分析。
2.几个概念
生色团(Chromogenesis group)
有机化合物分子中含有非键或键的电子体系,
能吸收外来辐射时并引起n-* 和-*跃迁,可产生 此类跃迁或吸收的结构单元,称为生色团。
是一些具有不饱和健和含有孤对电子的基团。
如-C=C-、-C ≡ C-、—CH=O、—N=N—、-N=O 、—C≡N、—NO2等
紫外-可见吸收光谱法精选全文完整版

溶剂极性增大
吸收峰呈规律性蓝移
3、溶剂效应
O
异丙叉丙酮(CH3-C-CH=C
CH3
CH3 )的溶剂效应
吸收带
p → p*
正己烷
230nm
CH3Cl
238nm
CH3OH
237nm
H2 O
243nm
波长
红移
n→ p*
329nm
315nm
309nm
电子跃迁类型主要有四种:σ→σ*、n→σ*、π→π*和
n→π*,各种跃迁所需的能量大小不同,次序为:
σ→σ*> n→σ*≥ π→π* > n →π*,
因此,形成的吸收光谱谱带的位置也不相同。
σ→σ*跃迁:
需要能量最大, λ<200nm ,真空紫外区,εmax > 104
饱和烃(远紫外区);
C-H共价键,如CH4( λmax 125nm)
(I) 顺式二苯乙烯 (II)反式二苯乙烯
2、跨环效应的影响
助色基团虽不共轭,但由于空间排列使电子
云相互影响,使 n→π*吸收峰长移。
O
CH3-C - CH3
O
C
S
lmax156,279 nm
lmax238nm
3、溶剂效应影响
溶剂的极性增大时,n p* 跃迁吸收带蓝移
p p* 跃迁吸收带红移
少,分析速度快。
2 灵敏度高。如在紫外区直接检测抗坏血酸时,其最低检出浓度可
达到10-6g/mL。
3 选择性好。通过适当的选择测量条件,一般可在多种组分共存的
体系中,对某一物质进行测定。
4 精密度和准确度较高。在仪器设备和其他测量条件较好的情况下,
紫外-可见吸收光谱法(UV-Vis)

max 一般 10
增大
A 1103 7 1 Cmin 1 10 mol L b 1104 1 1107 100 1108 g mL1 1000
3 ~104;灵敏
的 >104;个别的可达 105 106
若λ1= λ2
dA b dC
ε 1 = ε2= ε 在一定的浓度范围内 A= εbC
若λ1≠ λ2
2.303 f1 f 2b 2 ( λ1 λ 2 ) 210 ( λ1 λ 2 )bc d2A 0 λ 1bc λ 2bc 2 2 dC ( f110 f 210 )
1) 液气固介质均适用 2)入射光是单色光,平行光 3)稀溶液
朗伯-比尔定律
A = Kbc
(二)朗伯-比尔定律推导
Ix dIx S I0 db b It
-dIx ∝ Ix adn dn = csdb
-dIx∝ IxaCsdb -dIx/Ix=k Cdb
b dI x I0 I x k 0 cdb It
0
0
C
A = 0.434
(四)吸光系数
1. a ( L · g –1 · cm-1) 2.ε ( L · mol–1 · cm-1)
max
A KCb
A aCb A Cb
C: g / L C: mol/ L
吸光物质结构的特征参数;
吸光物质定量分析的灵敏度参数
3. 检出限与摩尔吸光系数 若可测量的吸光度为0.001
It ln kcb I0 It kcb lg Kcb I 0 2.303
A lg T Kbc
吸光度 与透射率
紫外-可见分子吸收光谱法

NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、光吸收定律
1、朗伯-比尔定律
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
2、吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分之
间不存在相互作用时,则该溶液对波长λ光的总吸光度A总
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、常用术语 (1) 生色团
➢ 生色团是指分子中能吸收紫外或可见光的 基团,它实际上是一些具有不饱和键和含有 孤对电子的基团。
例如:
➢ 如化合物分子含有数个生色团,但它们之 间无共轭作用,那么吸收光谱将包含这些个 别生色团原有的吸收带。
➢ 如两个生色团彼此相邻形成共轭体系,那 么原来各自生色团的吸收带就会消失,同时 会出现新的吸收带。
Ax1yx1bxcy1byc Ax2yx2bxcy2byc
(3) 双波长分光光度法
双组分混合物中某一组分的测定,可选择两个 适当的波长,在这两个波长处干扰组分具有相等的 吸光度,因而可达到消除干扰的效果。
A1Aa1 Ab1
A2Aa2 Ab2
A A 1 A 2 ( A a 1 A a 2 ) ( A b 1 A b 2 )
溶剂极性对异丙叉丙酮的π→π*和n→π*跃迁谱带的影响
跃迁类型 max(正己烷)
π→π* 230
max(氯仿)
238
max(甲醇)
237
max(水)
243
n→π* 329
315
309
305
d. 溶剂的选择
① 尽量选用非极性溶剂或低极性溶剂; ② 能很好的溶解被测物,且形成的溶液具有
良好的化学和光化学稳定性; ③ 溶剂在试样的吸收光谱区无明显吸收。
NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(3) pH的影响
如果化合物在不同的pH下存在的型体不 同,则其吸收峰的位置会随pH的改变而改变。
苯胺:
苯酚:
四、紫外-可见吸收光谱法的应用
定性分析 结构分析 定量分析 物理化学常数的测定
分子量 络合比,稳定常数 酸碱解离常数
1、定性分析
➢ 无机元素:
应用较少
原子发射光谱
X射线荧光光谱
ICP-MS 经典的化学分析方法
(2) π→ π*跃迁:
➢ 吸收峰处于近紫外光区,在200nm左右,摩
ε 尔吸收系数 max > 104 L ·mol-1 ·cm-1 ,为强吸收带。
例如:含有π电子的基团:
(3) n → π*跃迁:
➢ 近紫外-可见光区,ε<100 L ·mol-1 ·cm-1
例如:含有杂原子的不饱和基团:
(4) 电荷转移跃迁:
2、结构分析
➢ 可以确定一些化合物的构型和构象 ① 顺反异构体的判别 ② 互变异构体的判别 ③ 构象的判别
3、定量分析 (1) 单组分定量方法
A
A
m ax
吸收曲线
工作曲线
(2) 多组分定量方法
a. x、y吸收光谱不重叠 b. x、y吸收光谱单向重叠
Ax2yx2bxcy2byc
c. x、y吸收光谱双向重叠
分子中价电子的能级跃迁; 分子的内部结构; 外部环境。
(1) 共轭效应
➢ 共轭效应使共轭体系形成大π键,结果使各能 级间的能量差减小,从而跃迁所需能量减小,使 吸收波长产生红移。
共轭不饱和键越多
红移越明显
吸收强度增强
(2) 溶剂效应
a. 溶剂极性对光谱精细结构的影响
溶剂极性增加
H 对称四嗪 N CN
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
➢ n → σ* 跃迁的摩尔吸光系数ε较小
➢ 某些分子同时具有电子给予体和电子接受体, 它们在外来辐射照射下会强烈吸收紫外光或可 见光,使电子从给予体轨道向接受体轨道跃迁, 这种跃迁称为电荷转移跃迁,其相应的吸收光 谱称为电荷转移吸收光谱。
➢ 电荷转移跃迁实质上是一个内氧化还原过程。
例如:某些取代芳烃可产生这种分子内电荷转移 跃迁的吸收带。
➢ 电荷转移吸收带的特点:
谱带较宽;吸收强度大, ε > 104 L ·mol-1 ·cm-1
2、无机化合物的紫外-可见吸收光谱
(1) 电荷转移Biblioteka 迁:许多无机络合物也有电荷转移跃迁 Mn+—Lb- h M(n-1) +—L(b-1) -
M-中心离子:电子接受体 L-配体:电子给予体
➢ 不少过渡金属离子与含生色团的试剂反应 所生成的络合物以及吸收许多水合无机离子, 均可产生电荷转移跃迁。
使吸光度和浓度间的线性关系偏离了比尔定律。
引起偏离比尔定律的原因
(2)化学偏离
分析物与溶剂发生缔合、解离、溶剂化反应,产生的 生成物与分析物具有不同的吸收光谱,出现化学偏离。
这些反应的进行,会使吸光物质的浓度与溶液的示值 浓度不成比例变化,因而测量结果将偏离比尔定律。
例如:未加缓冲剂的重铬酸钾溶液
• 三波长光度法分析的应用
例: Sc-氨基酸偶氮膦 La-氨基酸偶氮膦 测La。
(4) 导数吸收光谱分析 (Derivative Spectroscopy)
• 导数吸收光谱理论
在双波长光度计上,如使用的两波长1和2很接近 ,进行同时扫描,并保持两波长差Δ不变,便可获得 一阶导数光谱。
ΔA=A1-A2
m a x向长波方向移动称为红移 m a x向短波方向移动称为蓝移
(4) 增色效应和减色效应
最大吸收带的εmax增加,称为增色效应 最大吸收带的εmax减小,称为减色效应
(5) 强带和弱带
(6) R带
➢ 含杂原子的生色团的n →π* 跃迁所产生的吸收 带。
例如:
特点:
① 强度弱,一般 ε < 100 L ·mol-1 ·cm-1 ;
(2) 助色团
➢ 助色团是指本身不产生吸收峰,但与生色团 相连时,能使生色团的吸收峰向长波方向移动, 并使其吸收强度增强的基团。
例如:
—NH2 、—OH 、—OR 、—SH 、—SR 、—Cl 、—Br等
(3) 红移和蓝移
➢ 在有机化合物中,常常因取代基的变更或溶 剂的改变,使其吸收带的最大吸收波长max发生 移动。
C 2 O 7 2 r H 2 O 2 H4 C 2 H r O 2 C4 2 rO
引起偏离比尔定律的原因 (3)仪器偏离
是由单色光不纯引起的偏离
二、紫外-可见分光光度计
1、仪器的基本构造
由光源、单色器、吸收池、检测器、信号处理和 读出装置五部分构成
2、仪器类型
主要有:单光束分光光度计、双光束分光光度计、 双波长分光光度计和多通道分光光度计
若 Ab1 Ab2 , 则 AAa1 Aa2
基本条件:
(1)干扰组分在这两个波长应具有相同的 吸光度
(2)待测组分在这两个波长的吸收差值应 足够大, ΔA足够大
• 例1:2,4,6-三氯苯酚存在下苯酚的测定 1=270 nm 2=286 or 325 nm
1 2
' 2
• 例2:间苯二甲酸存在下对苯二甲酸的测定
(1)单光束分光光度计
光源
单色器
参比池 试样池
检测器
(2)双光束分光光度计
光源
单色器 斩光器
参比池 试样池
检测器
(3)双波长分光光度计
光源
单色器1 单色器2
1
2
斩光器
试样池
检测器
A A 1 2 ( A a 1 A b 1 ) ( A a 2 A b 2 )
Ab1 Ab2
导数对光n谱阶即导吸数光而度言随波长变化dd 率n An 对 波 长的曲线。
导数光谱
• 导数吸收光谱分析的优点:
(1)导数光谱较原吸收光谱谱带变窄,故其减少了 与干扰谱带交叠的可能性,减小干扰。
➢ 但在络合物中,由于配体的影响,过渡元素的 d轨道,及镧系和锕系元素的f轨道分别分裂成几 组能量不等的d轨道及f轨道。如果轨道是未充满 的,当它们的吸收光能后,可产生d-d跃迁和f-f跃 迁。由于这两类跃迁必须在配体的配位场的作用 下才有可能产生,因此又称配位场跃迁。
ε 摩尔吸光系数小, max < 100 L ·mol-1 ·cm-1 ,光谱一般位于可见光区
A A a 1 A a 2 (a 1a 2)bc 只与待测物有关
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、紫外-可见吸收光谱
吸收光谱又称吸收曲线,是以入射光的波长λ
为横坐标,以吸光度A为纵坐标所绘制的A-λ曲线。
最大吸收峰
1、有机化合物的紫外-可见吸收光谱
(8) B带
➢ 由芳香族化合物的π →π*跃迁而产生的精 细结构吸收带。
例如: 苯的B带: 摩尔吸光系数:200 L ·mol-1 ·cm-1 吸收峰的位置:230~270nm之间
(9) E带
➢ 芳香族化合物的π →π*跃迁所产生的吸收带, 也是芳香族的特征吸收峰。
苯的紫外吸收光谱
4、影响紫外-可见吸收光谱的因素
• 基本概念
3
2
1
• 净A2和分析成份浓度的关系
netA 2A 2(M NN2)
∵⊿R3P∽ ⊿MNP
∴
MN NP
A 3 3P
又∵⊿P13∽⊿N33 ∴
NP n 3P m n