中考数学尺规作图专题复习含答案

合集下载

2023年中考数学解答题专项复习:尺规作图(附答案解析)

2023年中考数学解答题专项复习:尺规作图(附答案解析)

2023年中考数学解答题专项复习:尺规作图1.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.
求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.
2.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.
(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.
3.(2021•襄阳)如图,BD为▱ABCD的对角线.
(1)作对角线BD的垂直平分线,分别交AD,BC,BD于点E,F,O(尺规作图,不写作法,保留作图痕迹);
(2)连接BE,DF,求证:四边形BEDF为菱形.
4.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、
C的距离相等.(尺规作图,保留作图痕迹,不写作法)
第1 页共13 页。

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。

初中中考复习之尺规作图(精编含答案)

初中中考复习之尺规作图(精编含答案)

中考复习之尺规作图一、选择题:1.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:甲:1、作OD 的中垂线,交⊙O 于B ,C 两点;2、连接AB ,AC ,△ABC 即为所求的三角形 乙:1、以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点; 2、连接AB ,BC ,CA .△ABC 即为所求的三角形。

对于甲、乙两人的作法,可判断【 】 A .甲、乙均正确B .甲、乙均错误C .甲正确、乙错误D .甲错误,乙正确2.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是【 】 A .SSS B .ASA C .AAS D .角平分线上的点到角两边距离相等3.如图,点C 在∠AOB 的OB 边上,用尺规作出了CN∥OA,作图痕迹中,弧FG 是【 】A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧4. 如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB,使OA=OB ;再分别以点A, B 为圆心,以大于12AB 长为半径作弧,两弧交于点C .若点C 的坐标为(m -1,2n),则m 与n 的关系为【 】 (A)m +2n=1 (B)m -2n=1 (C)2n -m=1 (D)n -2m=1 二、填空题:1.如图,在△ABC 中,∠C=900,∠CAB=500,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径,画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边与点D ,则∠ADC2.如图,已知正五边形ABCDE,仅用无刻度的直尺准确作出其一条对称轴。

(保留作图痕迹)三、解答题:1.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.2.比较两个角的大小,有以下两种方法(规则)①用量角器度量两个角的大小,用度数表示,则角度大的角大;②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.注:构造图形时,作示意图(草图)即可.3.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)4.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.5.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明SS>π∆圆.6.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.7.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)8.①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕点O顺时针旋转90°,画出旋转后的△OA’B’;②折纸:有一张矩形纸片ABCD(如图2),要将点D沿某条直线翻折180°,恰好落在BC边上的点D’处,请在图中作出该直线。

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()共32页,第1页4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形共32页,第2页7、如图,在ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:⊙O和点P求过点P的⊙O的切线小涵的主要作法如下:如图,(1)连结OP,作线段OP的中点A;(2)以A为圆心,OA长为半径作圆,交⊙O于点B,C;(3)作直线PB和PC.共32页,第3页所以PB和PC就是所求的切线.老师说:“小涵的做法正确的.”请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.EF11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若共32页,第4页AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.共32页,第5页16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.共32页,第6页(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.共32页,第7页22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);共32页,第8页(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB 的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;共32页,第9页(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.共32页,第10页33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).共32页,第11页37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)共32页,第12页41、如图,AE∥BF,AC平分∠BA E,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.共32页,第13页45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作②以的垂直平分线,交为圆心,于点,交于点;.为半径作圆,交的延长线于点⑵在⑴所作的图形中,解答下列问题.①点②若与的位置关系是_____________;(直接写出答案),,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC 绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)共32页,第14页理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)共32页,第15页参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2)B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、m244、(1)如图;(2)45、(1)作图见解析;(2)①点B在⊙O上;②5.47、见解析48、见解析49、见46、解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P 到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;。

中考数学复习之尺规作图(含答案)

中考数学复习之尺规作图(含答案)

中考数学复习之尺规作图(含答案)1.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A. ①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB. ①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC. ①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD. ①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ2.如图,在△ABC中,AB=AC,∠ABC=70°,以点B为圆心,任意长为半径画弧分别交BA,BC于点E,F,再分别以点E,F为圆心,以大于12EF的长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC的度数为()A. 65°B. 75°C. 80°D. 85°3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC= 5.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A. 2 2B. 2 3C. 5D. 64.在△ABC中,AB=AC,∠C=65°,AD⊥BC于点D,按以下步骤作图:①以点A为圆心,适当长为半径画弧,分别交AB,AD于点M,N;②以点B为圆心,AM长为半径画弧,交BC于点E;③以点E为圆心,MN长为半径画弧,交前弧于点F;④作射线BF,交AD于点H,则∠AHB的度数为________________.5.如图,OP平分∠MON,A是边OM上一点,以点A为圆心,大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于12BC的长为半径作弧,两弧交于点D,作直线AD分别交OP、ON于点E、F,若∠MON=60°,EF=1,则OA=___________________.6.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为___________________.7.如图,依据尺规作图的痕迹,计算∠α=___________________°.8.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AC的中点,连接BD,按以下步骤作图:①分别以点B,D为圆心,大于12BD的长为半径作弧,两弧相交于点P和点Q;②作直线PQ交AB于点E,交BC于点F,则BF=___________________.参考答案:1-3 DBC4. 115°5. 236. 237. 568.13 6。

(完整版)中考数学尺规作图专题复习(含答案)

(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

2024陕西中考数学二轮专题训练 题型四 尺规作图 (含答案)

2024陕西中考数学二轮专题训练 题型四 尺规作图 (含答案)

2024陕西中考数学二轮专题训练题型四尺规作图【题型解读】尺规作图近7年每年解答题考查1道,分值均为5分,题目不会明确说明作图方式,需要将题目信息转化一次,得出要作的基本图形.已考基本作图:①过一点作已知直线的垂线;②作一个角等于已知角;③作线段的垂直平分线;④作角平分线.考查形式包含:①找一点到两直线距离相等;②过一点作直线平分三角形的面积;③过一点作直线分直角三角形为两个相似三角形;④在正方形中作已知三角形的相似三角形;⑤作等腰三角形的外接圆;⑥作一个角等于已知角.1.如图,已知矩形ABCD,连接AC,请用尺规作图法,在AC上求作一点P,使得△DPA∽△AB C.(保留作图痕迹,不写作法)2.如图,在Rt△ABC中,∠BAC=90°,请用尺规作图法,在BC边上求作一点P,使得AP的长最小.(保留作图痕迹,不写作法)3.如图,已知四边形ABCD是矩形,请用尺规作图法,分别在AD、BC边上求作点E、F,使得四边形BEDF为菱形.(保留作图痕迹,不写作法)4.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D.请用尺规在AD上找一点P,使得点P到AB的距离等于PD.(保留作图痕迹,不写作法)5.如图,在△ABC中,BD是△ABC的中线,请用尺规作图法,在BC边上求作一点P,=S△BC D.(保留作图痕迹,不写作法)使得S△ABP6.如图,已知∠AOB=30°,点M在边OA上.请用尺规作图法,在OB边上求作一点P,使得∠MPO=60°.(保留作图痕迹,不写作法)7.如图,在菱形ABCD中,∠ABC=60°,请用尺规作图法,在对角线BD上求作一点P,使得PD=2BP.(保留作图痕迹,不写作法)8.如图,在平行四边形ABCD中,∠A=60°,BE平分∠ABC交AD于点E.请用尺规作图法,求作⊙E,使得⊙E与AB、BC均相切.(保留作图痕迹,不写作法)9.如图,AB是半圆的直径,在半圆上求作一点C,使得∠CBA=2∠CA B.(保留作图痕迹,不写作法)10.如图,△ABC是一块等边三角形的铁皮,AD是△ABC的中线,工人师傅想在AD上找一点P,然后沿AP、BP、CP裁剪,得到三块面积相等的小三角形铁皮.请用尺规作图法,帮助工人师傅确定点P的位置.(保留作图痕迹,不写作法)11.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,AD是中线,请用尺规作图法,在AC边上求作一点P,使得BP平分∠APD.(保留作图痕迹,不写作法)12.如图,在正方形ABCD中,点E是BC的中点,请用尺规作图法,在CD边上求作一点F,使得△ABE的面积等于△ECF面积的4倍.(保留作图痕迹,不写作法)13.如图,已知点A是⊙O上任意一点,请用尺规作图法,作⊙O的内接矩形ABCD,且该矩形的面积最大.(保留作图痕迹,不写作法)14.如图,在6×6的正方形网格中,已知△ABC和△CDE的顶点A、B、C、D、E均在格点上.要求仅用一把无刻度的直尺,按下列要求作图.(1)在图①中,以BD为斜边作一个等腰直角△BDF;(2)在图②中,作出点C关于DE的对称点C′.第14题图参考答案1.解:如解图①②,点P即为所求.第1题解图2.解:如解图①②,点P即为所求.第2题解图3.解:如解图①②,点E、F即为所求.第3题解图4.解:如解图①②,点P即为所求.第4题解图5.解:如解图①②,点P即为所求.第5题解图6.解:如解图①②,点P即为所求.第6题解图7.解:如解图①②,点P即为所求.第7题解图8.解:如解图①②,⊙E即为所求.第8题解图9.解:如解图①②,点C即为所求.第9题解图10.解:如解图①②,点P即为所求.第10题解图11.解:如解图①②,点P即为所求.第11题解图12.解:如解图①②,点F即为所求.第12题解图13.解:如解图①②,矩形ABCD即为所求.第13题解图14.解:(1)如解图①,△BDF即为所求;图①(2)如解图②,点C′即为所求.图②第14题解图。

中考数学尺规作图专题复习(含答案)

中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学复习《尺规作图》练习题真题含答案

中考数学复习《尺规作图》练习题真题含答案

第七单元图形的变化第29课时尺规作图1. (2017随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()第1题图A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2. (2017衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A. ①B. ②C. ③D. ④3. (2017河北)如图,依据尺规作图的痕迹,计算∠α=________°.第3题图 第4题图 第5题图4. (2017邵阳)如图所示,已知∠AOB =40°,现按照以下步骤作图:①在OA ,OB 上分别截取线段OD ,OE ,使OD =OE ;②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC .则∠AOC 的大小为________.5. (2017成都)如图,在▱ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN的长为半径作弧,两弧相交于点P ; ③作射线AP ,交边CD 于点Q ,若DQ =2QC ,BC =3,则▱ABCD 的周长为__________.6. (8分)(2017泰州)如图,△ABC 中,∠ACB >∠ABC.(1)用直尺和圆规在∠ACB 的内部作射线CM ,使∠ACM =∠ABC ;(不要求写作法,保留作图痕迹)(2)若(1)中的射线CM 交AB 于点D ,AB =9,AC =6,求AD 的长.第6题图7. (8分)(2017广东)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.第7题图8. (9分)(2017南京)“直角”在初中几何学习中无处不在.如图①,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).小丽的方法如图②,在OA、OB上分别取点C、D,以C为圆心,CD长为半径画弧,交OB的反向延长线于点E.若OE=OD.则∠AOB=90°.第8题图①第8题图②答案1.D【解析】设弧①与弧②的交点为点G,由解图可知,当△EOG≌△EOF 时,∠AOC=∠AOB,要使△EOG≌△EOF,则EG=EF,∴以点E为圆心,EF长为半径画弧可使得EG=EF,∴第二步的作图痕迹的作法是以点E为圆心,EF 长为半径画弧.2. C 【解析】③根据其作法确定的点只有一个,而必须是两点才能确定一条直线,因此③是错误的.3. 56 【解析】如解图,由作图痕迹可知,AG 是∠CAD 的平分线,EF 是AC 的垂直平分线,点I 为AG 与EF 的交点,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠CAD =∠ACB =68°,∵AG 是∠CAD 的平分线,∴∠CAG =12∠CAD =34°,∵EF 是AC 的垂直平分线,∴∠AHE =90°,∴∠α=∠AIH =90°-∠CAG =56°.4. 20° 【解析】根据作图步骤可知,射线OC 为∠AOB 的平分线,则∠AOC =12∠AOB =20°. 5. 15 【解析】由题意可知,AQ 平分∠DAB ,即∠DAQ =∠BAQ ,∵四边形ABCD 是平行四边形,∴AD =BC ,DC =AB ,DC ∥AB ,∴∠DQA =∠BAQ =∠DAQ ,∴DQ =AD ,∵BC =3,∴DQ =AD =BC =3,∵DQ =2QC ,∴QC =1.5,∴CD =DQ +QC =4.5,∴平行四边形ABCD 的周长为2(AD +CD )=2×(3+4.5)=15.6. 解:(1)如解图所示,CM 即为所求;(2)在△ACD 和△ABC 中,⎩⎨⎧∠ACM =∠ABC ∠A =∠A, ∴△ACD ∽△ABC , ∴AD AC =AC AB ,∵AB =9,AC =6,∴AD =4.7. 解:(1)如解图,DE 是边AB 的垂直平分线;(2)如解图,连接AE ,∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠BAE =∠B =50°,∵∠AEC 是△ABE 的外角,∴∠AEC =∠BAE +∠B =100°.8. 解:方法一:如解图①,在OA、OB上分别截取OC=4,OD=3,若CD=5,则∠AOB=90°.方法二:如解图②,在OA、OB上分别取点C、D,以CD为直径画圆.若点O在圆上,则∠AOB=90°.。

中考数学复习《尺规作图》测试题(含答案)

中考数学复习《尺规作图》测试题(含答案)

中考数学复习《尺规作图》测试题(含答案)一、选择题(每题5分,共10分)1.[2015·嘉兴]数学活动课上,四位同学围绕作图问题:“如图25-1,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(A)【解析】根据分析可知,选项B,C,D都能够得到PQ⊥l于点Q;选项A 不能够得到PQ⊥l于点Q.图25-1 图25-22.[2015·深圳]如图25-2,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是(D)【解析】由PB+PC=BC和P A+PC=BC易得P A=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.二、填空题(每题5分,共5分)3.[2014·绍兴]用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是__sin35°=ba或b≥a__.【解析】如答图所示:第3题答图若这样的三角形只能作一个,则a,b间满足的关系式是:①当AC⊥AB时,即sin35°=ba;②当b≥a时.三、解答题(共40分)4.(10分)[2015·自贡]如图25-3,将线段AB放在边长为1的小正方形网格中,点A,点B均落在格点上,请用无刻度直尺在线段AB上画出点P,使AP=2173,并保留作图痕迹.(备注:本题只是找点不是证明,只需连结一对角线就行)图25-3 第4题答图解:由勾股定理得,AB=42+12=17,所以AP=2173时,AP∶BP=2∶1.点P如答图所示.5.(15分)[2015·宜昌]如图25-4,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.解:(1)证明:∵AD∥BC,∴∠AEB=∠EBC.由BE是∠ABC的角平分线,得∠EBC=∠ABE,∴∠AEB=∠ABE,∴AB=AE;(2)由∠A=100°,∠ABE=∠AEB,得∠ABE=∠AEB=40°.由(1)得∠EBC=∠AEB=40°.6.(15分)[2015·东莞]如图25-5,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.图25-4图25-5 第6题答图解:(1)如答图,直线MN 即为所求;(2)∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ABD 中,∵tan ∠BAD =BD AD =34, ∴BD =34×4=3,∴DC =BC -BD =5-3=2.7.(15分)[2015·珠海]如图25-6,在平行四边形ABCD 中,AB <BC .(1)利用尺规作图,在BC 边上确定点E ,使点E 到边AB ,AD 的距离相等(不写作法,保留作图痕迹);(2)若BC =8,CD =5,求CE .图25-6 第7题答图解:(1)如答图所示,E 点即为所求;(2)∵四边形ABCD 是平行四边形,∴AB =CD =5,AD ∥BC ,∴∠DAE =∠AEB ,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC-BE=3.8.(15分)[2015·武威]如图25-7,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B=60°,AB=3,求⊙P的面积.图25-7 第8题答图解:(1)如答图所示,则⊙P为所求作的圆;(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,,∵tan∠ABP=APAB∴AP=3,∴S⊙P=3π.9.(15分)[2015·山西]如图25-8,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求劣弧DE的长.图25-8 第9题答图解:(1)如答图,⊙C即为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°-∠A=90°-30°=60°,∴∠BCD=90°-∠ACD=30°,在Rt△BCD中,∵cos∠BCD=CDBC,∴CD=3cos30°=332,∴劣弧DE的长为60·π·332180=32π.。

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)精选全文完整版

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)精选全文完整版

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。

如图①②连接MN,过MN的直线即为线段的垂直平分线。

如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。

如图①。

②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。

如图②。

③连接OP,OP即为角的平分线。

(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。

5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。

专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。

2024年中考数学总复习:尺规作图(附答案解析)

2024年中考数学总复习:尺规作图(附答案解析)
上,其中Q1Q2=Q2Q3=Q3Q4,若将纸上所画的直线视为数轴,并将线上的点用数轴上
的实数来表示,则以下选项中,可能是此四点在纸上数轴表示的实数是( )
A.1,2,4,8B.3,4,6,9C.1,5,8,9D.1,7,9,10
22.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是( )
8.如图,由作图痕迹做出如下判断,其中正确的是( )
A.FH=HGB.FH>HGC.FH<HGD.FH≤HG
9.如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图的痕迹推断,以下结论错误的是( )
A.AD=CDB.∠ABP=∠CBPC.∠BPC=115°D.∠PBC=∠ACD
17.如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是( )
A.AF=BFB.∠AFD+∠FBC=90°
C.DF⊥ABD.∠BAF=∠CAF
18.如图,在△ABC中,∠A=30°,∠C=90°.下列尺规作图痕迹中,不能将△ABC的面积平分的是( )
A. B.
C. D.
19.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是( )
2024年中考数学总复习:尺规作图
一.选择题(共25小题)
1.如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的一半长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB=( )
A.80°B.25°C.105°D.95°

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。

以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。

2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。

3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。

4.等长的线段的画法:直接用圆规量取即可。

5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。

需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。

在作图时,如果有多个要求,应逐个满足并取公共部分。

例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。

以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。

作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。

例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。

作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。

例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。

作法如下:作出AB的垂直平分线,与BC交于点P。

2024成都中考数学第一轮专题复习之第七章 第一节 尺规作图 知识精练(含答案)

2024成都中考数学第一轮专题复习之第七章 第一节 尺规作图 知识精练(含答案)

2024成都中考数学第一轮专题复习之第七章第一节尺规作图知识精练基础题1.(2023随州)如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是()A.AE =CFB.DE =BFC.OE =OFD.DE =DC第1题图2.(2023甘肃省卷)如图,BD 是等边△ABC 的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则∠DEC =()第2题图A.20°B.25°C.30°D.35°3.(2023通辽)下面是“作已知直角三角形的外接圆”的尺规作图过程:已知:如图①,在Rt △ABC 中,∠C =90°.求作:Rt △ABC 的外接圆.作法:如图②.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O .⊙O 即为所求作的圆.图①图②第3题图下列不.属于..该尺规作图依据的是()A.两点确定一条直线B.直角三角形斜边上的中线等于斜边的一半C.与线段两个端点距离相等的点在这条线段的垂直平分线上D.线段垂直平分线上的点与这条线段两个端点的距离相等4.[新考法—数学文化](2023兰州)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康,则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA =OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a ∥b .按以上作图顺序,若∠MNO =35°,则∠AOC =()A.35°B.30°C.25°D.20°第4题图5.(2023贵州)如图,在四边形ABCD 中,AD ∥BC ,BC =5,CD =3.按下列步骤作图:①以点D 为圆心,适当长度为半径画弧,分别交DA ,DC 于E ,F 两点;②分别以点E ,F 为圆心,以大于12EF 长为半径画弧,两弧交于点P ;③连接DP 并延长交BC 于点G .则BG 的长是()第5题图A.2B.3C.4D.56.(2023营口)如图,在△ABC中,以A为圆心,AC长为半径作弧,交BC于C,D两点,分别以点C和点D为圆心,大于12CD长为半径作弧,两弧交于点P,作直线AP,交CD于点E.若AC=5,CD=6,则AE=________.第6题图7.(2023广东省卷)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法,过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.第7题图8.如图,已知△ABC,∠ABC=120°,AB=BC,D是AC的中点,连接B D.(1)请在CD的上方找一点E,使得∠CDE=∠BCD,且满足DE=BC;(要求:尺规作图,不写做法,保留作图痕迹)(2)在(1)的条件下,连接CE,若AB=6,求四边形BCED的周长.第8题图拔高题9.(2023孝感)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()第9题图A.10B.11C.23D.410.[新考法—无刻度直尺作图](2023江西)如图是4×4的正方形网格,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹).(1)在图①中作锐角△ABC,使点C在格点上;(2)在图②中的线段AB上作点Q,使PQ最短.图①图②第10题图参考答案与解析1.D 【解析】根据作图可知,EF 垂直平分BD ,∴BO =DO .∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠EDO =∠FBO .∵∠BOF =∠DOE ,∴△BOF ≌△DOE (ASA),∴BF =DE ,OE =OF ,故B ,C 正确;无法证明DE =CD ,故D 错误.2.C 【解析】∵△ABC 是等边三角形,BD 是AC 边上的高,由“三线合一”得∠DBC =30°,又∵BD =DE ,∴∠DEC =∠DBC =30°.3.D 【解析】如解图,作直线PQ (两点确定一条直线),连接PA ,PB ,QA ,QB ,OC ,由作图步骤得,PA =PB ,QA =QB ,∴PQ ⊥AB 且AO =BO (与线段两个端点距离相等的点在这条线段的垂直平分线上).∵∠ACB =90°,∴OC =12AB (直角三角形斜边上的中线等于斜边的一半),∴OA =OB =OC ,∴A ,B ,C 三点在以O 为圆心,AB 为直径的圆上,∴⊙O 为△ABC 的外接圆.第3题解图4.A 【解析】由作图,得a ∥b ,∴∠CON =∠MNO =35°.∵OA =OB ,C 是AB 的中点,∴OC 平分∠AON ,∴∠AOC =∠CON =35°.5.A 【解析】由题可得,DG 是∠ADC 的平分线,∴∠ADG =∠CDG .∵AD ∥BC ,∴∠ADG =∠CGD ,∴∠CDG =∠CGD ,∴CG =CD =3,∴BG =CB -CG =5-3=2.6.4【解析】由作图可知,AD =AC ,AE 是CD 的垂直平分线,∵CD =6,∴CE =DE =3.∵CA =5,∴AE =AC 2-CE 2=52-32=4.7.解:(1)如解图,DE 即为所求;第7题解图(2)在Rt △ADE 中,∵∠DAB =30°,∴AE =AD ·cos ∠DAB =4×32=23,∴BE =AB -AE =6-23,即BE 的长为6-23.8.解:(1)作图如解图①;(作法不唯一)第8题解图①(2)如解图②,∵AB =BC ,∴△ABC 是等腰三角形.∵D 是AC 的中点,∴BD ⊥AC ,BD 平分∠ABC ,∴∠DBC =12∠ABC =60°.在Rt △BDC 中,BC =AB =6,∴BD =BC ·cos 60°=3.∵∠CDE =∠BCD ,∴DE ∥BC .又∵DE =BC ,∴四边形BCED 是平行四边形,∴EC =DB =3,DE =BC =6,∴▱BCED 的周长为2(BD +BC )=18.第8题解图②9.A 【解析】如图,设BP 交CD 与点J ,过点J 作JK ⊥BD 于点K .∵四边形ABCD 是矩形,∴AB =CD =3,∠BCD =90°.∵CN ⊥BM ,∴∠CMB =∠CDN =90°,∴∠CBM +∠BCM =90°,∠BCM +∠DCN =90°,∴∠CBM =∠DCN ,∴△BMC ∽△CDN ,∴BM CD =BC CN ,∴BM ·CN =CD ·CB =3×4=12.∵∠BCD =90°,CD =3,BC =4,∴BD =CD 2+BC 2=32+42=5.由作图可知BP平分∠CBD,∵JK⊥BD,JC⊥BC,∴JK=JC.∵S△BCD=S△BDJ+S△BCJ ,∴12×3×4=12×5×JK+12×4×JC,∴JC=KJ=43,∴BJ=CB2+JC2=42+(43)2=4103.∵cos∠CBJ=BMCB=BCBJ,∴BM4=44103,∴BM=6105.∵CN·BM=12,∴CN=10.第9题解图10.解:(1)如解图①,△ABC即为所求作(答案不唯一,作出其中一个即可).(2)如解图②,点Q即为所求作.【作法提示】从直线外一点到这条直线上各点所连的线段中,垂线段最短.图①图②第10题解图。

中考数学总复习《尺规作图》专项测试卷带答案

中考数学总复习《尺规作图》专项测试卷带答案

中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。

2024年中考数学复习重难点题型训练—尺规作图(含答案解析)

2024年中考数学复习重难点题型训练—尺规作图(含答案解析)

2024年中考数学复习重难点题型训练—尺规作图(含答案解析)类型一角平分线1.(2022·辽宁营口)如图,在△ABC 中,AB =AC ,∠A =36°,由图中的尺规作图得到的射线与AC 交于点D ,则以下推断错误的是()A .BD BC=B .AD BD =C .108ADB ∠=︒D .12CD AD =【答案】D 【分析】根据作图过程可得BD 平分∠ABC ,然后根据等腰三角形的性质即可解决问题.【详解】解:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,根据作图过程可知:BD 平分∠ABC ,∴∠ABD =∠DBC =12∠ABC =36°,∴∠BDC =180°-36°-72°=72°,∠ADB =∠DBC +∠ACB =36°+72°=108°,故选项C 成立;∵∠BDC =∠ACB =72°,∴BD =BC ,故选项A 成立;∵∠ABD =∠A =36°,∴AD =BD ,故选项B 成立;没有条件能证明CD =12AD ,故选项D 不成立;故选:D .【点睛】本题考查了作图-基本作图,等腰三角形的判定和性质,解决本题的关键是掌握基本作图方法.2.(2021·湖北中考真题)如图,在Rt ABC 中,90ACB ∠=︒,按以下步骤作图:①以B 为圆心,任意长为半径作弧,分别交BA 、BC 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线BP ,交边AC 于D 点.若10AB =,6BC =,则线段CD 的长为()A .3B .103C .83D .165【答案】A【分析】由尺规作图痕迹可知,BD 是∠ABC 的角平分线,过D 点作DH ⊥AB 于H 点,设DC=DH=x 则AD=AC-DC=8-x ,BC=BH =6,AH=AB-BH =4,在Rt △ADH 中,由勾股定理得到222(8)4x x -=+,由此即可求出x 的值.【详解】解:由尺规作图痕迹可知,BD 是∠ABC 的角平分线,过D 点作DH ⊥AB 于H 点,∵∠C=∠DHB=90°,∴DC=DH ,AC 8===,设DC=DH=x ,则AD=AC-DC=8-x ,BC=BH =6,AH=AB-BH =4,在Rt △ADH 中,由勾股定理:222AD AH DH =+,代入数据:222(8)4x x -=+,解得3x =,故3CD =,故选:A .【点睛】本题考查了角平分线的尺规作图,在角的内部角平分线上的点到角两边的距离相等,勾股定理等相关知识点,熟练掌握角平分线的尺规作图是解决本题的关键.3.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是()A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∴OAB OCB ≅ ,∴AOB COB ∠=∠,∴OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∴OBC OAD ≅ ,∴OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∴AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∴AEC BED ≅△△,∴AE BE =,∵,EAO EBO OA OB ∠=∠=,∴AOE BOE ∠=∠,∴OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∴CD OB ∥,COD CDO =∠∠,∴DOB CDO ∠=∠,∴COD DOB ∠=∠,∴OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∴AOB CBO ≅ ,∴,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.4.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)【答案】见解析【分析】作ACD ∠的角平分线即可.【详解】解:如图,射线CP 即为所求作.【点睛】本题考查了角平分线、三角形外角的性质、平行线的判定,解题的关键是掌握平行线的判定定理.5.(2021·内蒙古)如图,在Rt ABC 中,90ACB ∠=︒,根据尺规作图的痕迹,判断以下结论错误的是()A .BDE BAC∠=∠B .BAD B =∠∠C .DE DC=D .AE AC=【答案】B【分析】先通过作图过程可得AD 平分∠BAC ,DE ⊥AB ,然后证明△ACD ≌△AED 说明C 、D 正确,再根据直角三角形的性质说明选项A 正确,最后发现只有AE =EB 时才符合题意.【详解】解:由题意可得:AD 平分∠BAC ,DE ⊥AB ,在△ACD 和△AED 中∠AED =∠C ,∠EAD =∠CAD ,AD =AD∴△ACD ≌△AED (AAS )∴DE =DC ,AE =AC ,即C 、D 正确;在Rt △BED 中,∠BDE =90°-∠B在Rt △BED 中,∠BAC =90°-∠B∴∠BDE =∠BAC ,即选项A 正确;选项B ,只有AE =EB 时,才符合题意.故选B .【点睛】本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.6..(2022·湖南永州)如图,BD 是平行四边形ABCD 的对角线,BF 平分DBC ∠,交CD 于点F.(1)请用尺规作ADB∠的角平分线DE,交AB于点E(要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);(2)根据图形猜想四边形DEBF为平行四边形,请将下面的证明过程补充完整.证明:∵四边形ABCD是平行四边形,∴AD BC∥∵ADB∠=∠______(两直线平行,内错角相等)又∵DE平分ADB∠,BF平分DBC∠,∴12EDB ADB∠=∠,12DBF DBC∠=∠∴EDB DBF∠=∠∴DE∥______(______)(填推理的依据)又∵四边形ABCD是平行四边形∴BE DF∥∴四边形DEBF为平行四边形(______)(填推理的依据).【答案】(1)详见解析(2)∠DBC;BF;内错角相等,两直线平行;两组对边分别相等的四边形是平行四边形【分析】(1)根据作角平分线的步骤作DE平分ADB∠即可;(2)结合图形和已有步骤合理填写即可;(1)解:如图,根据角平分线的作图步骤,得到DE,即为所求;(2)证明:∵四边形ABCD 是平行四边形,∴AD BC∥∵ADB =∠DBC ∠.(两直线平行,内错角相等).又∵DE 平分ADB ∠,BF 平分DBC ∠,∴12EDB ADB ∠=∠,12DBF DBC ∠=∠∴EDB DBF ∠=∠.∴DE ∥BF (内错角相等,两直线平行)(填推理的依据)又∵四边形ABCD 是平行四边形.∴BE DF ∥,∴四边形DEBF 为平行四边形(两组对边分别平行的四边形是平行四边形)(填推理的依据).【点睛】本题主要考查平行四边形的性质、角平分线的性质,掌握相关性质并灵活应用是解题的关键.7.(2022·山东青岛)已知:Rt ABC ,90B ∠=︒.求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.【答案】见解析【分析】分别以点B 、C 为圆心,大于BC 长的一半为半径画弧,交于两点,连接这两点,然后再以点B 为圆心,适当长为半径画弧,交AB 、BC 于点M 、N ,以点M 、N 为圆心,大于MN 长一半为半径画弧,交于一点Q ,连接BQ ,进而问题可求解.【详解】解:如图,点P 即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.8.(2022·黑龙江绥化)已知:ABC .(1)尺规作图:用直尺和圆规作出ABC 内切圆的圆心O ;(只保留作图痕迹,不写作法和证明)(2)如果ABC 的周长为14cm ,内切圆的半径为1.3cm ,求ABC 的面积.【答案】(1)作图见详解(2)9.1【分析】(1)根据角平分线的性质可知角平分线的交点为三角形内切圆的圆心,故只要作出两个角的角平分线即可;(2)利用割补法,连接OA,OB,OC,作OD⊥AB,OE⊥BC,OF⊥AC,这样将△ABC 分成三个小三角形,这三个小三角形分别以△ABC的三边为底,高为内切圆的半径,利用提取公因式可将周长代入,进而求出三角形的面积.(1)解:如下图所示,O为所求作点,(2)解:如图所示,连接OA,OB,OC,作OD⊥AB,OE⊥BC,OF⊥AC,∵内切圆的半径为1.3cm,∴OD=OF=OE=1.3,∵三角形ABC的周长为14,∴AB+BC+AC=14,则111222 ABC AOB COB AOCS S S S AB OD BC OE AC OF =++=⋅⋅+⋅⋅+⋅⋅△△△△111.3() 1.3149.122AB BC AC =⨯⨯++=⨯⨯=故三角形ABC 的面积为9.1.【点睛】本题考查三角形的内切圆,角平分线的性质,割补法求几何图形的面积,能够将角平分线的性质与三角形的内切圆相结合是解决本题的关键.9.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB∠求作:AOB ∠的平分线做法:(1)以O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ,(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠的内部相交于点C(3)画射线OC ,射线OC 即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS ②SAS ③AAS ④ASA(2)请你证明OC 为AOB ∠的平分线.【答案】(1)①;(2)证明见解析【解析】【分析】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由“SSS”可以证得△EOC ≌△DOC ;(2)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为AOB ∠的平分线.【详解】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,所以由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为AOB ∠的平分线;故答案为:①;(2)如图,连接MC 、NC .根据作图的过程知,在△MOC 与△NOC 中,OM ON OC OC CM CN ⎧⎪⎨⎪⎩===,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为AOB ∠的平分线.【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL .10.如图,在△ABC 中,已知∠ABC =90°.(1)请在BC 上找一点P ,作⊙P 与AC ,AB 都相切,与AC 的切点为Q ;(尺规作图,保留作图痕迹)(2)连接BQ ,若AB =3,(1)中所作圆的半径为32,求sin ∠CBQ.【分析】(1)要求作⊙P 与AB 、AC 相切,根据切线的性质,即点P 到AB 、AC 的距离相等,且点P 在边BC 上,想到角平分线上的点到角两边的距离相等,即作∠BAC 的平分线交BC 于P 点,以点P 为圆心,PB 为半径作圆即可;(2)由切线长定理得AB =AQ ,又PB =PQ ,则判定AP 为BQ 的垂直平分线,利用等角的余角相等得到∠CBQ =∠BAP ,然后在Rt △ABP 中利用正弦函数求出sin ∠BAP ,从而可得到sin ∠CBQ 的值.解:(1)如图所示,⊙P即为所求:(2)∵AB 、AQ 为⊙P 的切线,∴AB =AQ ,∵PB =PQ ,∴AP 为BQ 的垂直平分线,∴∠BAP +∠ABQ =90°,∵∠CBQ +∠ABQ =90°,∴∠CBQ =∠BAP ,在Rt △ABP 中,AP =AB 2+PB 2=32+(32)2=352,∴sin ∠BAP =BP AP =32352=55,∴sin ∠CBQ =5511.如图,AB 为⊙O 的直径,点C 在⊙O 上.(1)尺规作图:作∠BAC 的平分线,与⊙O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.【分析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.【解答】解:(1)如图所示;(2)OE∥AC,OE=AC.理由如下:∵AD平分∠BAC,∴∠BAD=∠BAC,∵∠BAD=∠BOD,∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,∴OE∥AC,OE=AC.12.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC 边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】:要满足条件:在BC边上求作一点P,使得点P到AC的距离等于BP的长,则DP为∠BDC的角平分线.【答案】解:如图所示,点P即为所求.中.13.如图,在Rt ABC()1利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;()2利用尺规作图,作出()1中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【答案】()1作图见解析;(2)作图见解析.∠平分线上,再【分析】()1由点P到AB的距离(PD的长)等于PC的长知点P在BAC根据角平分线的尺规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P 为圆心,以大于点P 到AB 的距离为半径画弧,与AB 交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB 的一侧交于一点,过这点以及点P 作直线与AB 交于点D ,PD 即为所求).【详解】()1如图,点P 即为所求;()2如图,线段PD 即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.14.(1)如图,已知线段AB 和点O ,利用直尺和圆规作ABC ,使点O 是ABC 的内心(不写作法,保留作图痕迹);(2)在所画的ABC 中,若90,6,8C AC BC ∠=︒==,则ABC 的内切圆半径是______.【答案】(1)作法:如图所示,见解析;(2)2.【分析】(1)内心是角平分线的交点,根据AO 和BO 分别是∠CAB 和∠CBA 的平分线,作图即可;(2)连接OC ,设内切圆的半径为r ,利用三角形的面积公式,即可求出答案.【详解】解:(1)作法:如图所示:①作射线AO 、BO ;②以点A 为圆心,任意长为半径画弧分别交线段AB ,射线AO 于点D ,E ;③以点E 为圆心,DE 长为半径画弧,交上一步所画的弧于点F ,同理作出点M ;④作射线AF ,BM 相交于点C ,ABC 即所求.(2)如图,连接OC ,∵90,6,8C AC BC ∠=︒==,由勾股定理,得:226810AB =+=,∴168242ABC S =⨯⨯= ;∵ABC AOB AOC BOC S S S S ∆∆∆=++ ,∴11124222AB r AC r BC r ∙+∙+∙=,∴1(1068)242r ⨯++∙=,∴2r =,∴ABC 的内切圆半径是2;故答案为:2;【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径.15.已知:ABC ..求作:O ,使它经过点B 和点C ,并且圆心O 在A ∠的平分线上,【答案】见详解.【分析】要作圆,即需要先确定其圆心,先作∠A 的角平分线,再作线段BC 的垂直平分线相交于点O ,即O 点为圆心.【详解】解:根据题意可知,先作∠A 的角平分线,再作线段BC 的垂直平分线相交于O ,即以O 点为圆心,OB 为半径,作圆O ,如下图所示:【点睛】此题主要考查了学生对确定圆心的作法,要求学生熟练掌握应用.16.如图,在Rt ABC 中,90C ∠=︒.尺规作图:作Rt ABC 的外接圆O ;作ACB ∠的角平分线交O 于点D ,连接AD .(不写作法,保留作图痕迹)【答案】见解析;【分析】根据外接圆,角平分线的作法作图即可;【详解】作图如下:【点睛】本题考查了三角形的外接圆,角平分线,以及利用圆周角与圆心角的关系是解题的关键.17.如图,点O 在ABC ∠的边BC 上,以OB 为半径作O ,ABC ∠的平分线BM 交O 于点D ,过点D 作DE BA ⊥于点E .尺规作图(不写作法,保留作图痕迹),补全图形;【答案】见解析;【分析】根据已知圆心和半径作圆、作已知角的平分线、过直线外一点作已知直线的垂线的尺规作图的步骤作图即可;【详解】解:(1)如下图,补全图形:【点睛】本题考查尺规作图、圆的切线的判定是解题的关键.18.如图,在ABC 中,D 是BC 边上一点,且BD BA =.(1)尺规作图(保留作图痕迹,不写作法)①作ABC ∠的角平分线交AD 于点E ;②作线段DC 的垂直平分线交DC 于点F .(2)连接EF ,直接写出线段EF 和AC 的数量关系及位置关系.【答案】(1)①作图见解析,②作图见解析;(2)1//,.2EF AC EF AC =【解析】【分析】(1)①根据角平分线的作图方法直接作图即可;②根据垂直平分线的作图方法直接作图即可;(2)根据等腰三角形的性质与垂直平分线的定义证明EF 是DAC △的中位线,根据中位线的性质可得答案.【详解】解:(1)如图,①BE 即为所求作的ABC ∠的角平分线,②过F 的垂线是所求作的线段DC 的垂直平分线.(2)如图,连接EF ,,BA BD BE = 平分,ABC ∠,AE DE ∴=由作图可知:,DF CF =EF ∴是DAC △的中位线,1//,,2EF AC EF AC ∴=【点睛】本题考查的是角平分线与垂直平分线的尺规作图,同时考查了三角形的中位线的性质,掌握以上知识是解题的关键.类型二垂直平分线19.(2022·山东威海)过直线l 外一点P 作直线l 的垂线PQ .下列尺规作图错误的是()A .B .C .D .【答案】C 【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,AP=BP ,AQ=BQ ,∴点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线上,∴直线PQ 垂直平分线线段AB ,即直线l 垂直平分线线段PQ ,本选项不符合题意;B 、如图,连接AP 、AQ 、BP 、BQ ,AP=AQ ,BP =BQ ,∴点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ ,本选项不符合题意;C 、C 项无法判定直线PQ 垂直直线l ,本选项符合题意;D 、如图,连接AP 、AQ 、BP 、BQ ,AP=AQ ,BP =BQ ,∴点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ ,本选项不符合题意;故选:C .【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.20.(2021·吉林中考真题)在ABC 中,90BAC ∠=︒,AB AC ≠.用无刻度的直尺和圆规在BC 边上找一点D ,使ACD △为等腰三角形.下列作法不正确的是()A .B .C .D .【答案】A【分析】利用直角三角形的性质、中垂线的性质、角平分线的尺规作图逐一判断即可得.【详解】解:A .此作图是作∠BAC 平分线,在ABC 中,90BAC ∠=︒,AB AC ≠,无法得出ACD △为等腰三角形,此作图不正确,符合题意;B .此作图可直接得出CA =CD ,即ACD △为等腰三角形,此作图正确,不符合题意;C .此作图是作AC 边的中垂线,可直接得出AD =CD ,此作图正确,不符合题意;D .此作图是作BC 边的中垂线,可知AD 是BC 上的中线,ACD △为等腰三角形,此作图正确,不符合题意;故选:A .【点睛】本题主要考查作图−基本作图,解题的关键是掌握直角三角形的性质、中垂线的性质、角平分线的尺规作图.21.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段2AB =,分别以点A 、B 为圆心,以AB 长为半径画弧,两弧相交于点C 、D ;②连接AC 、BC ,作直线CD ,且CD 与AB 相交于点H .则下列说法不正确的是()A .ABC 是等边三角形B .AB CD ⊥C .AH BH =D .45ACD ∠=︒【答案】D 【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB =BC =AC ,∴△ABC 是等边三角形,故A 选项正确∵等边三角形三线合一,由作图知,CD 是线段AB 的垂直平分线,∴AB CD ⊥,故B 选项正确,∴AH BH =,30ACD ∠=︒,故C 选项正确,D 选项错误.故选:D .【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.22.(2022·贵州毕节)在ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是()A .AB AE=B .AD CD =C .AE CE =D .ADE CDE∠=∠【答案】A 【分析】根据作图可知AM =CM ,AN =CN ,所以MN 是AC 的垂直平分线,根据垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等,且平分此点到线段两端构成的夹角,分别对各选项进行判断.【详解】由题意得,MN 垂直平分线段AC ,∴AD CD =,AE CE =,ADE CDE∠=∠所以B 、C 、D 正确,因为点B 的位置不确定,所以不能确定AB =AE ,故选A【点睛】本题考查了线段垂直平分线,熟练掌握线段垂直平分线的作图方法和性质是解题的关键.23.(2021·山东中考真题)如图,已知ABC .(1)以点A 为圆心,以适当长为半径画弧,交AC 于点M ,交AB 于点N .(2)分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在BAC ∠的内部相交于点P .(3)作射线AP 交BC 于点D .(4)分别以A ,D 为圆心,以大于12AD 的长为半径画弧,两弧相交于G ,H 两点.(5)作直线GH ,交AC ,AB 分别于点E ,F .依据以上作图,若2AF =,3CE =,32BD =,则CD 的长是()A .510B .1C .94D .4【答案】C【分析】连接,FD ED ,则BDF BCA ∽,根据相似三角形对应边成比例即可得出结果【详解】如图,连接,FD EDGH 垂直平分AD2FD FA ∴==,DE AE=AD 平分BAC∠FAD EAD∴∠=∠FD FA= FAD FDA∴∠=∠FDA EAD∴∠=∠//AE FD∴同理可知//AE FD∴四边形AEDF 是平行四边形又 FD FA=∴平行四边形AEDF 是菱形2AE AF ==//FD ACBDF BCA∴∠=∠又B B∠∠= BDF BCA∴ ∽BD DF BC AC ∴=3CE = ,32BD =3223232CD ∴=++解得:94CD =故选C【点睛】本题考查了由已知作图分析角平分线的性质,垂直平分线的性质,相似三角形,菱形的性质与判定,熟知上述各类图形的判定或性质是解题的基础,寻找未知量与已知量之间的等量关系是关键.24.(2021·湖南)如图,在ABC 中,AC BC >,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧交于D ,E ,经过D ,E 作直线分别交,AB AC 于点M ,N ,连接BN ,下列结论正确的是()A .AN NC=B .AN BN =C .12MN BC =D .BN 平分ABC∠【答案】B【分析】根据线段垂直平分线的尺规作图、以及性质即可得.【详解】解:由题意得:DE 是线段AB 的垂直平分线,则AN BN =,故选:B .【点睛】本题考查了线段垂直平分线的尺规作图、以及性质,熟练掌握线段垂直平分线的尺规作图是解题关键.25.(2022·吉林长春)如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是()A .AF BF=B .12AE AC =C .90DBF DFB ∠+∠=︒D .BAF EBC∠=∠【答案】B【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,,90ABF BAF DBF DFB ∴∠=∠∠+∠=︒,BAF EBC ∴∠=∠,综上,正确的是A 、C 、D 选项,故选:B .【点睛】本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键.26.(2021·湖南)如图,在ABC 中,AB AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 和点N ,作直线MN 分别交BC 、AB 于点D 和点E ,若50B ∠=︒,则CAD ∠的度数是()A .30°B .40︒C .50︒D .60︒【答案】A【分析】由尺规作图痕迹可知,MN 是线段AB 的垂直平分线,进而得到DB =DA ,∠B =∠BAD ,再由AB =AC 得到∠B =∠C =50°,进而得到∠BAC =80°,∠CAD =∠BAC -∠BAD =30°即可求解.【详解】解:由题意可知:MN 是线段AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD=50°,又AB =AC ,∴∠B =∠C =50°,∴∠BAC =80°,∴∠CAD =∠BAC -∠BAD =30°,故选:A .【点睛】本题考查等腰三角形的两底角相等,线段垂直平分线的尺规作图等,属于基础题,熟练掌握线段垂直平分线的性质是解决本题的关键.27.(2022·四川广元·中考真题)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为()A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==,进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∴1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∠C =90°,∴10AB ==,∴AD=4,AF=2,4cos5ACAAB∠==,∴5cos2AFAEA==∠;故选A.【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.28.(2022·江苏常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.29.(2021·吉林中考真题)如图,已知线段2cmAB=,其垂直平分线CD的作法如下:①分别以点A和点B为圆心,cmb长为半径画弧,两弧相交于C,D两点;②作直线CD.上述作法中b满足的条作为b___1.(填“>”,“<”或“=”)【答案】>【分析】作图方法为:以A,B为圆心,大于12AB长度画弧交于C,D两点,由此得出答案.【详解】解:∵2cmAB=,∴半径b长度12AB >,即1cmb>.故答案为:>.【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.30.(2022·内蒙古通辽)如图,依据尺规作图的痕迹,求α∠的度数_________°.【答案】60【分析】先根据矩形的性质得出//AB CD,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠EFB、∠BEF的度数,进而可得出结论.【详解】解:如图,∵四边形ABCD 为矩形,∴//AB CD ,∴60ABD CDB ∠=∠=︒,由尺规作图可知,BE 平分∠ABD ,∴11603022EBF ABD ∠=∠=⨯︒=︒,由尺规作图可知EF 垂直平分BD ,∴∠EFB =90°,∴9060BEF EBF ∠=︒-∠=︒,∴∠α=∠BEF =60°.故答案为:60°.【点睛】本题主要考查了尺规作图-基本作图、角平分线以及垂直平分线的知识,解题关键是熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).31.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴= 8AC =,15BC =,81523,ACD C AC CD AD AC CD BD AC BC \=++=++=+=+=V 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.32..如图,在ABCD 中,BD 是它的一条对角线,(1)求证:ABD CDB △≌△;(2)尺规作图:作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F (不写作法,保留作图痕迹);(3)连接BE ,若25DBE ∠=︒,求AEB ∠的度数.【答案】(1)见解析(2)见解析(3)50°【分析】(1)由平行四边形的性质得出,AB CD AD BC ==,可利用“SSS”证明三角形全等;(2)根据垂直平分线的作法即可解答;(3)根据垂直平分线的性质可得BE DE =,由等腰三角形的性质可得DBE BDE ∠=∠,再根据三角形外角的性质求解即可.(1)四边形ABCD 是平行四边形,,AB CD AD BC ∴==,BD BD = ,∴()ABD CDB SSS △≌△(2)如图,EF 即为所求;(3)BD 的垂直平分线为EF ,BE DE ∴=,DBE BDE ∴∠=∠,25DBE ∠=︒ ,25∴∠=∠=︒,DBE BDEAEB BDE DBE∴∠=∠+∠=︒.50【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,垂直平分线的作法和性质,等腰三角形的性质及三角形外角的性质,熟练掌握知识点是解题的关键.33..如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【分析】(1)分别以A,B为圆心,大于AB为半径画弧,两弧交于点M,N,作直线MN即可.(2)设AD=BD=x,在Rt△ACD中,利用勾股定理构建方程即可解决问题.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考尺规作图专题复习(含答案)
尺规作图定义:
用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:
【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为
圆心,大于1
2
AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所
求的垂线
2.线段垂直平分线的画法
【分析】:作法如下:分别以点A,B为圆心,大于1
2
AB的长为半径画圆弧,分别交直
线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.
3.角平分线的画法
【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以
A,B为圆心,大于1
2
AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所
求的角平分线.
4.等长的线段的画法
直接用圆规量取即可。

5.等角的画法
【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.
备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;
2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;
3.当作图要满足多个要求时,应逐个满足,取公共部分.
例题讲解
例题1.已知线段a,求作△ABC,使AB=BC=AC=a.
解:
作法如下:
①作线段BC=a;(先作射线BD,BD截取BC=a).
②分别以B、C为圆心,以a半径画弧,两弧交于点A;
③连接AB、AC.
则△ABC 要求作三角形.
例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.
解:
作法如下:
①作∠MAN=∠α;
②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.
△ABC 即为所求作三角形.
例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )
【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

故选D.
2.如图,用直尺和圆规作一个角等于已知角,其依据是SSS .
例4.如图,在△ABC 中,分别以点A 和点B 为圆心,大于1
2AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连结AD .若△ADC 的周长为16,AB =12,则△ABC 的周长为__28__.
【解析】由题意知
16161228
ADC ABC C AC DC AD AC CD DB AC CB C AC CB AB ∆∆=++=++=+=⇒=++=+=
例5.如图,一块三角形模具的阴影部分已破损.
(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 形状和大小完全相同的模具A ′B ′C ′?请简要说明理由.
(2)作出模具△A ′B ′C ′的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).
(第5题)
(第5题解)
【解】 (1)量出∠B 和∠C 的度数及BC 边的长度即可作出与△ABC 形状和大小完全相同的三角形.
理由是两角及其夹边对应相等的两个三角形全等. (2)如解图,△A ′B ′C ′就是所求作的三角形.
链接中考
1.【2018常州中考27】(本小题满分10分)
(1)如图1,已知EK 垂直平分BC ,垂足为D ,AB 与EK 相交于点F ,连接CF. 求证:CFD AFE ∠=∠
(2)如图2,在GMN R ∆t 中,090=∠M ,P 为MN 的中点.
①用直尺和圆规在GN 边上求作点Q ,使得PQN GQM ∠=∠(保留作图痕迹,不要求写作法);
②在①的条件下,如果060=∠G ,那么Q 是GN 的中点吗?为什么?
图1 图2
【解析】第二问:①作点P 关于GN 的对称点P ′,连接P ′M 交GN 于Q ,连接PQ ,点Q 即为所求.
2.【2018年江苏省南京市】如图,在△ABC 中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若BC=10cm ,则DE= 5 cm .
【分析】直接利用线段垂直平分线的性质得出DE 是△ABC 的中位线,进而得出答案. 【解答】解:∵用直尺和圆规作AB 、AC 的垂直平分线, ∴D 为AB 的中点,E 为AC 的中点, ∴DE 是△ABC 的中位线,

1
52
DE BC cm =
=. 故答案为:5.
3.【2018南通中考16】下面是“作一个30︒角”的尺规作图过程.
请回答:该尺规作图的依据是 . 【答案】同弧所对圆周角是圆心角的一半 4.【2018无锡中考26】(本题满分10分)
如图,平面直角坐标系中,已知点B 的坐标为(6,4)
(1)请用直尺(不带刻度)和圆规作一条直线AC ,它与x 轴和y 轴的正半轴分别交于点A 和点C ,且使∠ABC=90°,△ABC 与△AOC 的面积相等。

(作图不必写作法,但要保留作图痕迹。


(2)问:(1)中这样的直线AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC ,并写出与之对应的函数表达式。

x
y
O
B
【解答】(1)过B 作BA ⊥x 轴,过B 作BC ⊥y 轴 (2)不唯一,∵ABC AOC ∆≅∆,设(),0A a ∴OA BA = ()
2
264a a =-+13
3
a =
∴13,03A ⎛⎫
⎪⎝⎭
设()0,C c ∴CO CB =, ()
2
246c c =-+ 132
c =
∴130,
2C ⎛⎫
⎪⎝⎭
21323:+-=x y l AC 或43
2
+-=x y
5.【2018江西中考】 如图,在四边形中,∥,=2
,为的中点,请仅用无刻..
度的直尺....
分别按下列 要求画图(保留作图痕迹)
(1)在图1中,画出△ABD 的BD 边上的中线;
(2)在图1中,若BA=BD, 画出△ABD 的AD 边上的高 .
【解析】 (1)如图AF 是△ABD 的BD 边上的中线;
(2)如图AH 是△ABD 的AD 边上的高.
6.【2018山东滨州中考11】如图,∠AOB=60°,点P是∠AOB内的定点且3
OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()
A.36
B.
33
C.6 D.3
【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=30°,

13
2
OH OC
==,
3
3
2
CH OH
==,
∴CD=2CH=3.
故选:D.
7.【2018成都中考14】)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆
心,以大于
1
2
AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .
【答案】30
【解答】连接AE ,如图, 由作法得MN 垂直平分AC , ∴EA=EC=3,
在Rt △ADE 中,22325AD =-=, 在Rt △ADC 中,()
2
25
530AC =+=.
故答案为30.
8.【2018天津中考18】如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点,,A B C 均在格点上.
(1)ACB ∠的大小为__________(度);
(2)在如图所示的网格中,P 是BC 边上任意一点.A 为中心,取旋转角等于BAC ∠,把点P 逆时针旋转,点P 的对应点为'P .当'CP 最短时,请用无刻度...的直尺,画出点'P ,并简要说明点'P 的位置是如何找到的(不要求证明)__________. 【答案】 (1). 90︒; (2). 见解析 【解析】分析:(1)利用勾股定理即可解决问题;
(2)如图,取格点,D E ,连接DE 交AB 于点T ;取格点,M N ,连接MN 交BC 延长线于点G ;取格点F ,连接FG 交TC 延长线于点'P ,则点'P 即为所求. 详解:(1)∵每个小正方形的边长为1,
()(
)()
2
2
2
222
32,42,52
324252AC BC AB AC BC AB ∴===+=∴+=
∴ΔABC 是直角三角形,且∠C=90° 故答案为90; (2)如图,即为所求.。

相关文档
最新文档