概率与概率分布习题
概率计算练习题随机变量的分布函数与概率密度函数
概率计算练习题随机变量的分布函数与概率密度函数随机变量是概率论中的重要概念,它是一种随机现象的数值表示。
概率计算是概率论的核心内容之一,通过计算随机变量的分布函数和概率密度函数,我们可以更好地理解和分析随机事件的发生概率。
本文将通过一系列练习题来帮助读者巩固对随机变量的分布函数和概率密度函数的理解。
练习题一:离散型随机变量设随机变量X的分布列为:X | 0 | 1 | 2 | 3 | 4----------------------------------P(X=x) | 0.2 | 0.3 | 0.1 | 0.2 | 0.21. 求随机变量X的分布函数F(x)。
解析:分布函数F(x)定义为P(X≤x),根据分布列可以求得如下分布函数:F(0) = P(X≤0) = 0.2F(1) = P(X≤1) = 0.2 + 0.3 = 0.5F(2) = P(X≤2) = 0.2 + 0.3 + 0.1 = 0.6F(3) = P(X≤3) = 0.2 + 0.3 + 0.1 + 0.2 = 0.8F(4) = P(X≤4) = 0.2 + 0.3 + 0.1 + 0.2 + 0.2 = 12. 求随机变量X的概率密度函数f(x)。
解析:概率密度函数f(x)只对连续型随机变量有意义,对于离散型随机变量,f(x)恒为0。
因此,对于该题中给定的随机变量X,概率密度函数f(x)不存在。
练习题二:连续型随机变量设随机变量Y的密度函数f(y)如下:f(y) = 0.5,0≤y≤2f(y) = 0,其他1. 求随机变量Y的分布函数F(y)。
解析:分布函数F(y)定义为P(Y≤y),根据密度函数可以求得如下分布函数:F(y) = ∫[0, y] f(t)dt根据密度函数的定义域可知,在区间[0, y]上f(t)=0.5,因此:F(y) = ∫[0, y] 0.5dt = 0.5y,0≤y≤2F(y) = ∫[0, y] 0dt = 0,其他2. 求随机变量Y在区间[1, 2]上的概率P(1 ≤ Y ≤ 2)。
第5章概率与概率分布
第5章 概率与概率分布一、思考题、频率与概率有什么关系 、独立性与互斥性有什么关系、根据自己的经验体会举几个服从泊松分布的随机变量的实例。
、根据自己的经验体会举几个服从正态分布的随机变量的实例。
二、练习题、写出下列随机试验的样本空间:(1)记录某班一次统计学测试的平均分数。
(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。
(3)生产产品,直到有10件正品为止,记录生产产品的总件数。
、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。
、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是31,A 发生且B 不发生的概率是91,求B 发现的概率。
、设A 与B 是两个随机事件,已知P(A)=P(B)=31,P(A |B)= 61,求P(A |B ) 、有甲、乙两批种子,发芽率分别是和。
在两批种子中各随机取一粒,试求: (1)两粒都发芽的概率。
(2)至少有一粒发芽的概率。
(3)恰有一粒发芽的概率。
、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少、某种品牌的电视机用到5000小时未坏的概率为43,用到10000小时未坏的概率为21。
现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。
从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。
已知这四个车间产品的次品率分别为,,和,从该厂任意抽取一件产品,发现为次品,且这件产品是由A ,B 车间生产的分布。
概率分布练习题均匀和正态分布
概率分布练习题均匀和正态分布概率分布练习题:均匀和正态分布一、均匀分布练习题题目1:某餐厅接待的顾客用餐时间服从一个均匀分布,其中午时段的用餐时间在12分钟至30分钟之间。
现假设该时间段内顾客用餐时间的概率密度函数为f(x),请计算以下几种情况的概率:1)顾客用餐时间不超过20分钟的概率。
2)顾客用餐时间超过25分钟的概率。
3)顾客用餐时间在15分钟至25分钟之间的概率。
解答:1)顾客用餐时间不超过20分钟的概率。
设顾客用餐时间为X,X的取值范围为12至30分钟。
由于均匀分布的概率密度函数为恒定值,即f(x) = 1 / (b - a),其中a 为最小值,b为最大值。
所以,计算概率为积分求解,即P(X ≤ 20) = ∫[12, 20] f(x) dx。
计算得,P(X ≤ 20) = (20 - 12) / (30 - 12) = 8 / 18 ≈ 0.444。
2)顾客用餐时间超过25分钟的概率。
计算概率为P(X > 25) = ∫[25, 30] f(x) dx。
计算得,P(X > 25) = (30 - 25) / (30 - 12) = 5 / 18 ≈ 0.278。
3)顾客用餐时间在15分钟至25分钟之间的概率。
计算概率为P(15 ≤ X ≤ 25) = ∫[15, 25] f(x) dx。
计算得,P(15 ≤ X ≤ 25) = (25 - 15) / (30 - 12) = 10 / 18 ≈ 0.556。
题目2:某电商平台上某商品的价格服从一个均匀分布,价格区间为200元至500元。
现假设该商品价格的概率密度函数为f(x),求以下几种情况的概率:1)该商品的价格大于300元的概率。
2)该商品的价格在250元至400元间的概率。
解答:1)该商品的价格大于300元的概率。
设商品价格为X,X的取值范围为200至500元。
由于均匀分布的概率密度函数为恒定值,即f(x) = 1 / (b - a),其中a 为最小值,b为最大值。
第4章概率分布习题答案
65.5
66.0
66.5
59.0
59.5
61.5
63.5
64.0
66.0
66.5
67.0
61.0
61.5
63.5
65.5
66.0
68.0
68.0
69.0
61.5
62.0
64.0
66.0
66.5
68.5
69.0
69.5
62.0
62.5
64.5
66.5
67.0
69.0
69.5
70.0
(4)样本均值的正态概率图如下:
详细答案:
(1) , 。
(2)共有64个样本。
(3).5
56.5
58.5
59.0
61.0
61.5
62.0
54.5
55.0
57.0
59.0
59.5
61.5
62.0
62.5
56.5
57.0
59.0
61.0
61.5
63.5
64.0
64.5
58.5
59.0
61.0
63.0
从正态概率图可以看出,样本均值近似服从正态分布。
(5) , 。样本均值的平均数等于总体平均数,样本均值的标准差等于总体标准差的 。
第4章 概率分布
教材习题答案
4.1消费者协会经过调查发现,某品牌空调器有重要缺陷的产品数出现的概率分布如下:
X
0
1
2
3
4
5
6
7
8
9
10
P
0.041
0.130
0.209
概率分布练习题
�
正态分布练习题
(1)某大学参加政治考试的共1000人,平均成绩为 80分,标准差是5分,求90-95,80-85,2)某 区18岁女子的平均身高161.5厘米,标准差5.5厘 米,求身高在173厘米以上者占百分之几? (3)某工厂招工,1000人参加考试,拟录用300人, 已知考试平均成绩70分,标准差8分,求确定最低 录取线应为多少分? 70-80,65-70各分数段的人数. (
练习题
Байду номын сангаас
rf
概率分布练习题
(1)某班外语考试是10道四选一题,答对一题给1分, 全没答对给0分.假设某学生对考试内容不懂,全 凭猜测答题,问他得各种成绩的概率是多少?得分 以上的概率是多少? 8 (2)根据生命表,年龄为60岁的人,可望活到下年 的概率是0.95,设某单位年龄为60岁的人共有10 人,问(1)其中有9人活到下年的概率是多少? (2)至少有9人活到下年的概率是多少? (3)在100箱出口商品中,有10箱为乡镇企业的产 品,问第三次才抽到箱中是乡镇企业产品的概率是 多少?
高中概率分布练习题及讲解
高中概率分布练习题及讲解一、基础概念题1. 某班级有40名学生,其中男生20名,女生20名。
随机抽取一名学生,求抽到男生的概率。
2. 一个袋子里有5个红球和3个蓝球,每次抽取一个球后放回。
求连续抽取三次,至少出现一次红球的概率。
3. 一个骰子掷出数字1的概率是多少?二、条件概率题1. 已知一个事件A发生的概率为0.3,另一个事件B在A发生的条件下发生的概率为0.5。
求事件A和B同时发生的概率。
2. 一个班级有50名学生,其中20名是男生,30名是女生。
如果从班级中随机抽取一名学生,发现他是男生,那么他是班级中成绩最好的学生的概率是多少?(假设班级中成绩最好的学生是男生的概率为0.4)三、独立事件题1. 一个袋子里有10个球,其中2个是白球,8个是黑球。
如果从袋子中随机抽取一个球,观察颜色后放回,再抽取一次。
求两次都抽到白球的概率。
2. 一个家庭有两个孩子,假设生男生女的概率各为1/2。
求这个家庭有两个男孩的概率。
四、二项分布题1. 一个硬币连续投掷10次,求至少出现5次正面的概率。
2. 一个学生在10次考试中,每次考试通过的概率为0.7。
求这个学生至少通过8次考试的概率。
五、正态分布题1. 一个班级的学生数学成绩服从均值为80分,标准差为10分的正态分布。
求数学成绩在70到90分之间的学生所占的比例。
2. 一个工厂生产的零件长度服从均值为50厘米,标准差为1厘米的正态分布。
求长度在49到51厘米之间的零件所占的比例。
六、泊松分布题1. 一个电话服务中心平均每小时接到4个电话。
求在任意一个小时内接到6个或更多电话的概率。
2. 一个网站平均每分钟有2个访问者。
求在任意一分钟内有5个或更多访问者的概率。
七、综合题1. 一个班级有50名学生,其中30名是男生,20名是女生。
如果随机抽取5名学生,求至少有3名男生的概率。
2. 一个工厂每天生产100个零件,其中每个零件都是合格品的概率为0.95。
求工厂一天中生产的零件中有超过5个不合格品的概率。
统计学统计学概率与概率分布练习题
第5章概率与概率分布练习题5.1写出下列随机事件的基本空间:(1)抛三枚硬币。
(2)把两个不同颜色的球分别放入两个格子。
(3)把两个相同颜色的球分别放入两个格子。
(4)灯泡的寿命(单位:h)。
(5)某产品的不合格率(%)。
5.2假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球,请写出这个随机试验的基本空间。
5.3试定义下列事件的互补事件:(1)A={先后投掷两枚硬币,都为反面}。
(2)A={连续射击两次,都没有命中目标}。
(3)A={抽查三个产品,至少有一个次品}。
5.4向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、,而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。
试求炸毁这两个军火库的概率有多大。
5.5已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品,而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少5.6有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中了一个色盲者,求这个人恰好是男性的概率。
5.7消费者协会经过调查发现,某品牌空调器有重要缺陷的产品数出现的概率分布如下:根据这些数值,分别计算:(1)有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。
(2)只有不到2个空调器出现重要缺陷的可能性。
(3)有超过5个空调器出现重要缺陷的可能性。
5.8设X是参数为n 4和p 0.5的二项随机变量。
求以下概率:(1)P(X 2)。
( 2)P(X 2)。
5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。
求:(1)晚班期间恰好发生两次事故的概率。
(2)下午班期间发生少于两次事故的概率。
(3)连续三班无故障的概率。
5.10假定X服从N 12,n 7,M 5的超几何分布。
求:(1)P(X 3)。
(2)P(X 2)。
高中数学概率与统计概率分布练习题及答案
高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。
求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。
b) 中奖号码是偶数的概率为15/30,即1/2。
c) 中奖号码是质数的概率为8/30,即4/15。
问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。
求销售量的概率分布表。
解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。
求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。
b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。
问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。
若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。
解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。
以上是高中数学概率与统计概率分布的练习题及答案。
概率与概率分布
第5章 概率与概率分布一、思考题5.1、频率与概率有什么关系?5.2、独立性与互斥性有什么关系?5.3、根据自己的经验体会举几个服从泊松分布的随机变量的实例。
5.4、根据自己的经验体会举几个服从正态分布的随机变量的实例。
二、练习题5.1、写出下列随机试验的样本空间:(1)记录某班一次统计学测试的平均分数。
(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。
(3)生产产品,直到有10件正品为止,记录生产产品的总件数。
5.2、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。
5.3、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是31,A 发生且B 不发生的概率是91,求B 发现的概率。
5.4、设A 与B 是两个随机事件,已知P(A)=P(B)=31,P(A |B)= 61,求P(A |B ) 5.5、有甲、乙两批种子,发芽率分别是0.8和0.7。
在两批种子中各随机取一粒,试求:(1)两粒都发芽的概率。
(2)至少有一粒发芽的概率。
(3)恰有一粒发芽的概率。
5.6、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少?5.7、某种品牌的电视机用到5000小时未坏的概率为43,用到10000小时未坏的概率为21。
现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少?5.8、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。
从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少?5.9、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。
考试练习题常用概率分布
第四章选择题:1.二项分布的概率分布图在条件下为对称图形。
A.n > 50 B.π=0.5 C.nπ=1 D.π=1 E.nπ> 52.满足时,二项分布B(n,π)近似正态分布。
A.nπ和n(1-π)均大于等于5 B.nπ或n(1-π)大于等于5C.nπ足够大D.n > 50 E.π足够大3. 的均数等于方差。
A.正态分布B.二项分布C.对称分布D.Poisson分布E.以上均不对4.标准正态典线下,中间95%的面积所对应的横轴范围是。
A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58D.-2.58到+2.58 E.-1.64到+1.645.服从二项分布的随机变量的总体均数为。
A.n(1-π)B.(n-1)πC.nπ(1-π)D.nπ6.服从二项分布的随机变量的总体标准差为。
7.设X1,X2分别服从以λ1,λ2为均数的Poisson分布,且X1与X2独立,则X1+X2服从以为方差的Poisson分布。
8.满足时,Poisson分布Ⅱ(λ)近似正态分布。
A.λ无限大B.λ>20 C.λ=1 D.λ=0 E.λ=0.59.满足时,二项分布B(n,π)近似Poisson分布。
A.n很大且π接近0 B.n→∞C.nπ或n(1-π)大于等于5D.n很大且π接近0.5 E.π接近0.510.关于泊松分布,错误的是。
A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布B.泊松分布均数λ唯一确定C.泊松分布的均数越大,越接近正态分布D.泊松分布的均数与标准差相等E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。
则X1+X2服从均数为λ1+λ2的泊松分布。
11.以下分布中,均数等于方差的分布是。
A.正态分布B.标准正态分布C.二项分布D.Poisson分布E.t分布12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ22),X与Y 独立,则X-Y服从。
考试练习题常用概率分布教学提纲
考试练习题常用概率分布第四章选择题:1.二项分布的概率分布图在 条件下为对称图形。
A .n > 50B .π=0.5C .n π=1D .π=1E .n π> 52.满足 时,二项分布B (n,π)近似正态分布。
A .n π和n (1-π)均大于等于5B .n π或n (1-π)大于等于5C .n π足够大D .n > 50E .π足够大3. 的均数等于方差。
A .正态分布B .二项分布C .对称分布D .Poisson 分布E .以上均不对4.标准正态典线下,中间95%的面积所对应的横轴范围是 。
A .-∞到+1.96B .-1.96到+1.96C .-∞到+2.58D .-2.58到+2.58E .-1.64到+1.645.服从二项分布的随机变量的总体均数为 。
A .n (1-π)B .(n -1)πC .n π(1-π)D .n π 6.服从二项分布的随机变量的总体标准差为 。
A . B .(1-π)(1-π)( -)π1 C . D . π(1-π)(π 7.设X 1,X 2分别服从以λ1,λ2为均数的Poisson 分布,且X 1与X 2独立,则X 1+X 2服从以为方差的Poisson 分布。
A . B.λ2λ12+2λ2λ1+ C . D . 2λ2λ1+() 2λ2λ1+() E .λ2λ12+2 8.满足 时,Poisson 分布Ⅱ(λ)近似正态分布。
A.λ无限大 B.λ>20 C.λ=1 D.λ=0 E.λ=0.59.满足时,二项分布B(n,π)近似Poisson分布。
A.n很大且π接近0 B.n→∞ C.nπ或n(1-π)大于等于5D.n很大且π接近0.5 E.π接近0.510.关于泊松分布,错误的是。
A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布B.泊松分布均数λ唯一确定C.泊松分布的均数越大,越接近正态分布D.泊松分布的均数与标准差相等E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。
练习题答案05
第五章 概率、概率分布与临床决策练 习 题一、最佳选择题1.若事件A 和事件B 互不相容,则一定有( )。
A. P (A +B )=P (A )+P (B )B. P (A +B )=P (AB )C. P (AB )= P (A ) P (B )D. P (A │B )= P (A )E. P (B │A )= P (B )2.若人群中某疾病发生的阳性数X 服从二项分布,则从该人群随机抽取n 个人,阳性数X 不小于k 人的概率为( )。
A. P (k )+ P (k +1)+…+ P (n )B. P (k +1)+ P (k +2)+…+ P (n )C. P (0)+ P (1)+…+ P (k )D. P (0)+ P (1)+…+ P (k -1)E. P (1)+ P (2)+…+ P (k -1)3.Poisson 分布的标准差σ和平均数λ的关系是( )。
A.λ=σ B. λ<σ C. λ=σ2 D. λ= E. λ>σ4.当n 很大,二项分布在下列条件下可用Poisson 分布近似( )。
A. λπ≈nB. λ≈n X /C. λππ≈-)1(nD. λππ≈-)1(E. λππ≈-n /)1(5.对于任何两个随机变量X1和X2,一定有( )。
A. E (X 1+X 2)=E (X 1)+E (X 2)B. V (X 1+X 2)=V (X 1)+ V (X 2)C. E (X 1+X 2)=E (X 1)·E (X 2)D. V (X 1+X 2)=V (X 1)·V (X 2)E. E (X 1+X 2)=E (X 1X 2)二、问答题1.简述概率的统计定义。
2.举例说明医学观察结果中的离散型随机变量和连续型随机变量。
3.举例说明医学现象中的先验概率和后验概率。
4.简述二项分布的应用条件。
5.简述Poisson 分布的性质特征。
6.简述概率和概率分布在临床决策中的运用。
概率论与数理统计 第三章 二维随机变量及其概率分布 例题
1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。
2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。
3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。
4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。
5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。
6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。
以Y表示中途下车的人数。
(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。
7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。
(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。
为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。
12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。
13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。
概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。
15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。
为(X,Y)的密度函数,Z=X+2Y,求的密度函数。
概率与概率分布习题
思考题1.有一种体育彩票的中奖规则时所选号码和顺序与摇奖结果一致。
每个位置上的中奖号码时0~9这十个数字中随机摇出的。
某期体育彩票摇奖现场的电视节目主持人说:“今年体育彩票开奖以来,在这个位置上,2这个数字出现了27次,是出现概率最大的数字“。
请问,该主持人的说法是否正确?2.怎样理解频率和概率的关系?频率的极限是概率吗?3.概率的三种定一个有什么应用场合和局限性?4.全概率公式和逆概率公式分别用于什么场合?5.离散型随机变量和连续型随机变量的概率分布的描述有些什么不同?6.两个随机事件的独立性意味着什么?协方差和相关系数由何关系?7.二项分布和超级和分布的适用场合有什么不同?它们的均值和方差有什么区别?8.正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?9.对于同一险种,为什么投保人越多,保险公司的相对风险越小?练习题1.某技术小组有12人,他们的性别和职称如下表所示。
现要产生一名幸运者。
试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师;(4)女性或工程师。
3.某种零件加工必须以此经过三道工序,从以往大量的生产纪录得知,第一、第二、第三道工序的次品率分别是0.2,0.1,0.1,并且每道工序是否产生次品与其他工序无关。
试求这种零件的次品率。
4.已知参加某项考试的全部人员合格的占80%,在合格人员中成绩优秀的只占15%。
试求任一参加考试人员成绩优秀的概率。
5.设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9?6.已知某地区男子寿命超过55岁的概率为84%,超过70岁的概率为63%。
试求任一位刚过55岁生日的男子将会活到70岁以上的概率为多少。
7.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。
则第二次取出的是次品的概率为多少?8.某公司从甲乙丙三个企业采购了同一种产品,采购数量分别占总采购量的25%、30%和45%。
第六章 概率与概率分布练习题
第六章 概率与概率分布一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设(机会均等 )。
2.分布函数)(x F 和)(x P 或ϕ)(x 的关系,就像向上累计频数和频率的关系一样。
所不同的是,)(x F 累计的是(概率 )。
3.如果A 和B (互斥 ),总合有P(A/B)=P 〔B/A 〕=0。
4.(大数定律 )和( 中心极限定理 )为抽样推断提供了主要理论依据。
6.抽样设计的主要标准有(最小抽样误差原则 )和(最少经济费用原则 )。
7.在抽样中,遵守(随机原则 )是计算抽样误差的先决条件。
9.若事件A 和事件B 不能同时发生,则称A 和B 是(互斥 )事件。
10.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是(1/4 );在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是( 1/52 )。
二、单项选择1.随机试验所有可能出现的结果,称为( D )。
A 基本事件; B 样本;C 全部事件;D 样本空间。
2.在次数分布中,频率是指( )A.各组的频率相互之比B.各组的分布次数相互之比C.各组分布次数与频率之比D.各组分布次数与总次数之比 3.若不断重复某次调查,每次向随机抽取的100人提出同一个问题,则每次都能得到一个回答“是”的人数百分数,这若干百分数的分布称为:( D )。
A .总体平均数的次数分布B .样本平均的抽样分布C .总体成数的次数分布D .样本成数的抽样分布 4.以等可能性为基础的概率是(A )。
A 古典概率;B 经验概率;C 试验概率;D 主观概率。
5.古典概率的特点应为( A )。
A 基本事件是有限个,并且是等可能的;B 基本事件是无限个,并且是等可能的;C 基本事件是有限个,但可以是具有不同的可能性;D 基本事件是无限的,但可以是具有不同的可能性。
6.任一随机事件出现的概率为( D )。
A 在–1与1之间;B 小于0;C 不小于1;D 在0与1之间。
第三章概率与概率分布习题及答案
第三章概率、概率分布与抽样分布计算题:1.某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为,,,并且每道工序是否产生次品与其它工序无关。
试求这种零件的次品率。
2. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。
某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。
求该选手两发都脱靶的概率。
3. 某企业决策人考虑是否采用一种新的生产管理流程。
据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。
该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。
问该企业决策者会倾向于如何决策4. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。
保险费每人50元。
若一年中死亡,则保险公司赔付保险金额50000元。
试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):(1)至少获利50万元的概率;(2)亏本的概率;(3)支付保险金额的均值和标准差。
5. 某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。
若规定寿命低于150小时为不合格品。
试求该企业生产的电池的:(1)合格率是多少(2)电池寿命在200左右多大的范围内的概率不小于。
6. 某商场某销售区域有6种商品。
假如每1小时内每种商品需要12分钟时间的咨询服务,而且每种商品是否需要咨询服务是相互独立的。
求:(1)在同一时刻需用咨询的商品种数的最可能值是多少(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少7. 美国汽车联合会(AAA)是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、金融、保险以及与汽车相关的各项服务。
1999年5月,AAA通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News,1999年5月11日)。
高中概率分布函数经典习题及答案
高中概率分布函数经典习题及答案一、二项分布1.某电视综艺节目每期设三道竞猜题,每题有两个选项,已知某观众对其中一题的正确率为60%,现在有一位观众对三道题均参与竞猜,求他正确全部竞猜的概率。
解:设他每道题的正确率为p,则每道题的错误率为1-p,他全部竞猜正确的概率为P(X=3)=[C(3,3)]*0.6^3*0.4^0=21.6% 所以,他全部竞猜正确的概率为21.6%。
2.在某加工厂中,总体不合格率为p,从全体产品中任意抽10件产品,以不合格件数X为随机变量,试求不合格件数X的概率分布、期望值及方差。
解:因为是抽10件产品,所以是一个10次伯努利试验,每一次试验中,产品合格的概率为1-p,不合格概率为p,所以该实验的概率分布可以用二项分布表示。
则不合格件数X的概率分布为P(X=k)=C(10,k)*p^k*(1-p)^(10-k),其中k取值为0,1,2, (10)其期望值为E(X)=np=10p,方差为D(X)=np(1-p)=10p(1-p)。
二、泊松分布1.某货场在单位时间内平均有6辆货车到达,求:(1)在一个时间段内恰有3辆货车到达的概率。
(2)在一个时间段内不超过4辆货车到达的概率。
解:(1)设单位时间内X辆货车到达的概率服从泊松分布,则X~Poisson(6),则恰有3辆货车到达的概率为P(X=3)=e^(-6)*6^3/3!=0.0504。
(2)P(X<=4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)=e^(-6)*[6^0/0!+6^1/1!+6^2/2!+6^3/3!+6^4/4!]=0.8153。
三、指数分布1.规定20个装配工人在生产线上流水作业,平均每人处理一个产品需要10分钟,且加工时间服从指数分布,求:(1)生产线上平均每分钟加工的产品数量。
(2)任意一个人处理时间小于2分钟的概率。
(3)有3个人处理时间小于2分钟的概率。
解:(1)因为20个装配工人同时流水作业,所以生产线每分钟平均加工的产品数量为20/10=2件。
统计基础试题——概率与概率分布
第六章概率与概率分布一、填空题1.随机变量按其取值情况可以分为和两类。
2.任一离散型随机变量的分布都必须满足以下两个条件:条件一是,条件是。
3.某种考试有10道判断题,若有一个对题目毫无所知的人,对10道题任意猜测,猜对的题目数为X,则X服从分布,其猜对6题的概率是,及格(猜对6题以上)的概率是。
4.正态分布的概率密度函数曲线的图形是一个曲线,它是关于直线对称的。
5.大数定律也称。
其中最著名的是大数定律和大数定律。
6.中心极限定理是指在一定条件下,大量相互独立的随机变量的分布是以为极限的一系列定理的总称。
最常用的中心极限定理有中心极限定理和中心极限定理。
二、单项选择题1.必然事件的概率为1,不可能事件的概率为0,反之,如果已知P(A)=1,P(B)=0,则()A.A为必然事件,B为不可能事件B.A为必然事件,B不必为不可能事件C.A不必为必然事件,B为不可能事件D.都不一定2.设X~N(μ,σ2),Y=aX+b,则Y服从()。
A.N(aμ+b,σ2)B.N(aμ,aσ2)C.N(aμ+b,a2σ2)D.N(aμ,bσ2)3.一张考卷上有5道选择题,每道题有4个备选答案,其中有一个答案是正确的,若有一个对题目毫无所知的学生,对5道题任意猜测,则其至少猜对4道题的概率为()。
A.1/64 B.1/62 C.1/66 D.1/684.已知一批计算机元件的正品率为80%,现随机抽取n个样本单位,其中χ为正品数,则χ的分布服从()。
A.正态分布B.二项分布C.泊松分布D.超几何分布5.某工厂生产的零件出厂时每200个装一盒,这种零件分为合格和不合格两类,合格率为约为99%。
设每盒中的不合格数为X,则X通常服从()。
A.正态分布B.二项分布C.泊松分布D.超几何分布6.甲、乙两人在同样条件下各生产100天,在一天中出现废品的概率分布分别如下:如果以废品数的多少作为衡量技术高低的标准,试评定两人技术的高低()。
概率与统计中的分布函数练习题及解析
概率与统计中的分布函数练习题及解析Introduction:概率与统计是数学中非常重要的分支,它研究了事件发生的可能性以及数据的收集、分析和解释方法。
在概率与统计中,分布函数是一个关键概念,它描述了随机变量取值的概率分布。
在本文中,我们将介绍一些与分布函数相关的练习题,并给出解析。
Exercise 1:假设随机变量X服从正态分布N(1,4),计算P(X > 3)。
Solution 1:正态分布的分布函数可以用标准正态分布的累积分布函数来表示。
由于X服从N(1,4),我们可以将其标准化为Z=(X-μ)/σ,其中μ为均值,σ为标准差。
对于本题,μ=1,σ=2。
现在我们需要计算P(X > 3),即计算Z > (3-1)/2=1 的概率。
根据标准正态分布表,我们可以得到P(Z > 1)≈0.1587。
因此,P(X > 3)≈0.1587。
Exercise 2:某商店销售的某种商品的重量服从均值为10千克,标准差为0.5千克的正态分布。
如果从该商店购买一件此商品,求它重量大于10.5千克的概率。
Solution 2:根据题意,我们可以将问题转化为计算随机变量X大于10.5千克的概率,其中X服从N(10, 0.5^2)。
再次利用标准化方法,我们得到Z=(X-μ)/σ=(X-10)/0.5。
现在需要计算P(Z > (10.5-10)/0.5)=P(Z > 1)。
根据标准正态分布表,P(Z > 1)≈0.1587。
因此,购买的商品重量大于10.5千克的概率约为0.1587。
Exercise 3:随机变量X服从指数分布Exp(2),计算P(X > 3)。
Solution 3:指数分布的分布函数为F(x)=1-exp(-λx),其中λ=1/均值。
由于X服从Exp(2),均值为1/2。
现在我们需要计算P(X > 3),即计算1-F(3)。
代入公式,我们得到1-(1-exp(-1.5))≈0.2231。
常用概率分布(习题与答案)
第五章 常用概率分布习题(附答案)一、选择题1. 估计正常成年女性红细胞计数的95%医学参考值范围时,应用( A. )。
A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +<2. 估计正常成年男性尿汞含量的95%医学参考值范围时,应用(E )。
A.)96.1,96.1(s x s x +- B.)96.1,96.1(x x s x s x +- C.)645.1(lg lg x x s x +> D.)645.1(s x +< E.)645.1(lg lg x x s x +< 3.若某人群某疾病发生的阳性数X 服从二项分布,则从该人群随机抽出n 个人, 阳性数X 不少于k 人的概率为( A )。
A. )()1()(n P k P k P ++++B. )()2()1(n P k P k P +++++C. )()1()0(k P P P +++D. )1()1()0(-+++k P P PE. )()2()1(k P P P +++4.Piosson 分布的标准差σ和均数λ的关系是( C )。
A. σλ>B. σλ<C. λ=2σD. λ=σE. λ与σ无固定关系5.用计数器测得某放射性物质5分钟内发出的脉冲数为330个,据此可估计该放射性物质平均每分钟脉冲计数的95%可信区间为( E )。
A. 33096.1330± B. 33058.2330± C. 3396.133± D. 3358.233± E. 5/)33096.1330(±6.Piosson 分布的方差和均数分别记为2σ和λ,当满足条件( E )时,Piosson 分布近似正态分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题
1.有一种体育彩票的中奖规则时所选号码和顺序与摇奖结果一致。
每个位置上的中奖号码时0~9这十个数字中随机摇出的。
某期体育彩票摇奖现场的电视节目主持人说:“今年体育彩票开奖以来,在这个位置上,2这个数字出现了27次,是出现概率最大的数字“。
请问,该主持人的说法是否正确?
2.怎样理解频率和概率的关系?频率的极限是概率吗?
3.概率的三种定一个有什么应用场合和局限性?
4.全概率公式和逆概率公式分别用于什么场合?
5.离散型随机变量和连续型随机变量的概率分布的描述有些什么不同?
6.两个随机事件的独立性意味着什么?协方差和相关系数由何关系?
7.二项分布和超级和分布的适用场合有什么不同?它们的均值和方差有什么区别?
8.正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?
9.对于同一险种,为什么投保人越多,保险公司的相对风险越小?
练习题
1.某技术小组有12人,他们的性别和职称如下表所示。
现要产生一名幸运者。
试求这位幸运者分别是以下几种可能的概率:(1)女性;(2)工程师;(3)女工程师;(4)女性或工程师。
3.某种零件加工必须以此经过三道工序,从以往大量的生产纪录得知,第一、第二、第三道工序的次品率分别是0.2,0.1,0.1,并且每道工序是否产生次品与其他工序无关。
试求这种零件的次品率。
4.已知参加某项考试的全部人员合格的占80%,在合格人员中成绩优秀的只占15%。
试求任一参加考试人员成绩优秀的概率。
5.设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9?
6.已知某地区男子寿命超过55岁的概率为84%,超过70岁的概率为63%。
试求任一位刚过55岁生日的男子将会活到70岁以上的概率为多少。
7.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。
则第二次取出的是次品的概率为多少?
8.某公司从甲乙丙三个企业采购了同一种产品,采购数量分别占总采购量的25%、30%和45%。
这三个企业产品的次品率分别为4%、5%、3%。
如果从这些产品中随机抽出以一件,试问:(1)抽出次品的概率是多少;(2)若发现抽出的产品是次品,则该产品来自丙厂的概率是多少?
9.一袋中装有m枚正品硬币,n枚次品硬币(次品硬币的两面均印有国徽)从袋中任取一枚,已知将它投掷r次,每次都得到国徽,问这枚硬币是正品的概率是多少?
10.设M件产品中有件次品,从中任取两件,已知所取两件中有一件不是次品,则另
一件是次品的概率是多少?
11.一盒中有编号为1,2,3,4,5的五个球,从中随机地取3个,用X表示取出的3个球中的最大号码., 试写出X的分布律.
12.某商场某销售区域有6种商品。
假如每一小时内每种商品需要12分钟的咨询服务,而且每种商品是否需要咨询服务是相互独立的。
试求:(1)在同一时刻需要咨询的上品种数的均值是多少?(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少?
13.某程控交换机在一分钟内接到用户的呼叫次数X是服从λ=4的泊松分布,求
(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率;(3)每分钟最多有
1次呼叫的概率
14.一社区里15%的家庭没有孩子, 20%的家庭有1个孩子, 35%的家庭有2个孩子, 30%的家庭有3个孩子;假定每个家庭中任意一个孩子是男孩或女孩的机会相等且独立,如果从该社区随机选一个家庭,(1)求该家庭女孩数为1的概率.(2)已知该家庭只有一个女孩,求该家庭有2个孩子的概率.
15.某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。
若规定寿命低于150小视为不合格品,试求:(1)该企业生产的电池的合格率是多少?(2)该企业生产的电池的寿命在200左右的多大范围内的概率不小于0.9. 16.假设打一次电话所用时间(单位:分)X服从参数为λ=0.2的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟到20分钟的概率。
17.一学校有5000名在校生,期末时每人以60%的概率去自习教室上自习,问自习教室至少设多少个座位,才能以97%的概率保证上自习的同学都有座位?
18.一批元件的寿命(以小时计)服从参数为0.004的指数分布,现有元件30只,一只在用,其余29只备用,当使用的一只损坏时,立即换上备用件,利用中心极限定理求30只元件至少能使用一年(8760小时)的近似概率。