2011年全国高考理科数学WORD版试题及答案-江西

合集下载

2011年高考江西省数学试卷-理科(含详细答案)

2011年高考江西省数学试卷-理科(含详细答案)

绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。

参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni ini ini i iy yx xy y x xr 12121)()())(( 其中nx x x x n +++= (21)ny y y y n+++= (21)锥体的体积公式 13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若ii z 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2 答案:C 解析: i i ii i ii z -=--=+=+=21222122(2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0) 答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f(5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini i iyyxxyy x xr 12121第一组变量正相关,第二组变量负相关。

2011年高考全国数学试卷(新课标)-理科(含详解答案)

2011年高考全国数学试卷(新课标)-理科(含详解答案)

2011年普通高等学校招生全国统一考试理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i解析:212i i+-=(2)(12),5i i i ++=共轭复数为C (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 解析:由图像知选B(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040解析:框图表示1n n a n a -=⋅,且11a =所求6a =720 选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A (5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。

故选D(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B (8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。

2011年江西省高考理科数学试卷及答案(word版)

2011年江西省高考理科数学试卷及答案(word版)

2011年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若12iz i+=,则复数z -=( )A. 2i --B. 2i -+C. 2i -D. 2i + 2.若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂=( )A.{}10x x -≤< B..{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤ 3.若()()121log 21f x x =+,则()f x 的定义域为()A. 1,02⎛⎫-⎪⎝⎭ B. 1,02⎛⎤- ⎥⎝⎦ C. 1,2⎛⎫-+∞ ⎪⎝⎭D. ()0,+∞ 4.若()224ln f x x x x =--则()f x >0的解集为()A .()0,+∞ B. ()()1,02,-⋃+∞ C. ()2,+∞ D. ()1,0- 5.已知数列 ∣n a ∣的前n 项和n s 满足:n s +m s =n m s +,且1a =1,那么10a =( ) A.1 B.9 C.10 D.556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数 ( ) A. 2r < 1r <0 B. 0<2r < 1r C. 2r <0<1r D. 2r =1r7、观察下列各式:55=3125, 56=15625, 57=78125,···,则52011 的末四位数字为( _ A 、3125 B 、5625 C 、0625 D 、81258、已知123,,ααα是三个相互平行的平面,平面12,αα之间的距离为1d ,平面23,a α之前的距离为2d ,直线l 与123,,ααα分别相交于123,,P P P .那么“123,,P P P ”是“12d d =”的( )A 、充分不需要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件9. 若曲线1C :0222=-+x y x 与曲线C 2:y(y+mx-m)=0有四个不同的交点,则实数m 的取值范围是 ( )A. )33,33(-B. )0,33(-∪)33,0( C.]33,33[-D.-(∞,)33-∪(,33+∞) 10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点。

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii +-的共轭复数是(A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40 (9)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 (A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增(12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。

2011江西高考数学试卷及答案

2011江西高考数学试卷及答案

高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
Hale Waihona Puke 高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!

2011年高考数学真题(全国卷)理科(详细解析)

2011年高考数学真题(全国卷)理科(详细解析)

1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。

【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。

4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。

思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。

【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。

5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。

2011年江西省高考数学试卷(理科)及答案

2011年江西省高考数学试卷(理科)及答案

2011年江西省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i2.(5分)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}3.(5分)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)4.(5分)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)5.(5分)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.556.(5分)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r17.(5分)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.81258.(5分)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(5分)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)10.(5分)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知==2,•=﹣2,则与的夹角为.12.(5分)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.13.(5分)如图是某算法的程序框图,则程序运行后输出的结果是.14.(5分)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.15.(5分)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为.三、解答题(共6小题,满分75分)16.(12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.18.(12分)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.19.(12分)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.20.(13分)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.21.(14分)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.2011年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•江西)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【分析】直接对复数的分母、分子同乘i,然后化简,求出复数z的共轭复数.【解答】解:==2﹣i所以=2+i故选D2.(5分)(2011•江西)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}【分析】根据已知条件我们分别计算出集合A,B,然后根据交集运算的定义易得到A∩B的值.【解答】解:∵A={x|﹣1≤2x+1≤3}={x|﹣1≤x≤1},={x|0<x≤2}故A∩B={x|0<x≤1},故选B3.(5分)(2011•江西)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)【分析】求函数的定义域即求让函数解析式有意义的自变量x的取值范围,由此可以构造一个关于x的不等式,解不等式即可求出函数的解析式.【解答】解:要使函数的解析式有意义自变量x须满足:即0<2x+1<1解得故选A4.(5分)(2011•江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)【分析】由题意,可先求出函数的定义域及函数的导数,再解出不等式f′(x)>0的解集与函数的定义域取交集,即可选出正确选项.【解答】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.5.(5分)(2011•江西)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.55【分析】根据题意,用赋值法,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,进而由数列的前n项和的性质,可得答案.【解答】解:根据题意,在s n+s m=s n+m中,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,根据数列的性质,有a10=s10﹣s9,即a10=1,故选A.6.(5分)(2011•江西)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r1【分析】求两组数据的相关系数的大小和正负,可以详细的解出这两组数据的相关系数,现分别求出两组数据的两个变量的平均数,利用相关系数的个数代入求出结果,进行比较.【解答】解:∵变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),=11.72∴这组数据的相关系数是r=,变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),∴这组数据的相关系数是﹣0.3755,∴第一组数据的相关系数大于零,第二组数据的相关系数小于零,故选C.7.(5分)(2011•江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.8125【分析】根据所给的以 5 为底的幂的形式,在写出后面的几项,观察出这些幂的形式是有一定的规律的每四个数字是一个周期,用2011除以4看出余数,得到结果.【解答】解:∵55=3125,56=15625,57=78125,58=390625,59=1953125,510=9765625,511=48828125…可以看出这些幂的最后4位是以4为周期变化的,∵2011÷4=502…3,∴52011的末四位数字与57的后四位数相同,是8125,故选D.8.(5分)(2011•江西)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由已知中α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3,结合面面平行的性质,我们分别判断“P1P2=P2P3”⇒“d1=d2”及“d1=d2”⇒“P1P2=P2P3”的真假,结合充要条件的定义,即可得到答案.【解答】解:由已知中α1,α2,α3是三个相互平行的平面,且平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,又由直线l与α1,α2,α3分别相交于P1,P2,P3.则“P1P2=P2P3”⇒“d1=d2”为真命题且“d1=d2”⇒“P1P2=P2P3”是真命题故“P1P2=P2P3”是“d1=d2”的充分必要条件故选C.9.(5分)(2011•江西)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)【分析】由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,曲线C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y﹣mx ﹣m=0要有2个交点,根据直线y﹣mx﹣m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.【解答】解:由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,化为标准方程得:(x﹣1)2+y2=1,所以圆心坐标为(1,0),半径r=1;C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,由直线y﹣mx﹣m=0可知:此直线过定点(﹣1,0),在平面直角坐标系中画出图象如图所示:直线y=0和圆交于点(0,0)和(2,0),因此直线y﹣mx﹣m=0与圆相交即可满足条件.当直线y﹣mx﹣m=0与圆相切时,圆心到直线的距离d==r=1,化简得:m2=,解得m=±,而m=0时,直线方程为y=0,即为x轴,不合题意,则直线y﹣mx﹣m=0与圆相交时,m∈(﹣,0)∪(0,).故选B.10.(5分)(2011•江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.【分析】根据已知中直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.我们分析滚动过程中,M,N的位置与大圆及大圆圆心的重合次数,及点M,N运动的规律,并逐一对四个答案进行分析,即可得到答案.【解答】解:如图,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧与小圆点M转过的圆弧相等.以切点A在如图上运动为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×1=θ,小圆圆弧的长为l2=2θ×=θ,即l1=l2,∴小圆的两段圆弧与圆弧长相等,故点M1与点M′重合,即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,M、N的轨迹为相互垂直的线段.观察各选项,只有选项A符合.故选A.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2011•江西)已知==2,•=﹣2,则与的夹角为.【分析】利用向量的运算律将向量的等式展开,利用向量的平方等于向量模的平方,求出两个向量的数量积;利用向量的数量积公式求出两个向量的夹角余弦,求出夹角.【解答】解:设两个向量的夹角为θ∵∴∵∴∴∴故答案为12.(5分)(2011•江西)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.【分析】根据题意,计算可得圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型求概率即可.【解答】解:圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型得小波周末不在家看书的概率为P=故答案为:13.(5分)(2011•江西)如图是某算法的程序框图,则程序运行后输出的结果是10.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:S n是否继续循环循环前01第一圈02是第二圈33是第三圈54是第四圈105否此时S值为10.故答案为:10.14.(5分)(2011•江西)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.【分析】设出切点坐标,利用切点与原点的连线与切线垂直,列出方程得到AB 的方程,将右焦点坐标及上顶点坐标代入AB的方程,求出参数c,b;利用椭圆中三参数的关系求出a.,求出椭圆方程.【解答】解:设切点坐标为(m,n)则即∵m2+n2=1∴m即AB的直线方程为2x+y﹣2=0∵线AB恰好经过椭圆的右焦点和上顶点∴2c﹣2=0;b﹣2=0解得c=1,b=2所以a2=5故椭圆方程为故答案为15.(5分)(2011•江西)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为(x﹣2)2+(y﹣1)2=5.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为5.【分析】(1)把曲线的极坐标方程ρ=2sinθ+4c osθ两边同时乘以ρ,再把x=ρcosθ,y=ρsinθ 代入化简.(2)先由条件得到0≤x≤2,1≤y≤3,再根据|x﹣2y+1|≤|x|+2|y|+1,求得|x﹣2y+1|的最大值.【解答】解:(1)∵曲线的极坐标方程为ρ=2sinθ+4cosθ,∴ρ2=2ρ sinθ+4ρ cosθ,∴x2+y2=2y+4x,∴(x﹣2)2+(y﹣1)2=5.故答案为:(x﹣2)2+(y﹣1)2=5.(2)|x﹣1|≤1,|y﹣2|≤1,即0≤x≤2,1≤y≤3,则|x﹣2y+1|=|x﹣1﹣2y+4﹣2|≤|x﹣1|+2|y﹣2|+2≤1+2×1+2=5,∴|x﹣2y+1|的最大值为5,故答案为:5.三、解答题(共6小题,满分75分)16.(12分)(2011•江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.【分析】(1)X的所有可能取值为0,1,2,3,4,由古典概型分别求出概率,列出分布列即可.(2)由(1)可知此员工月工资Y的所有可能取值有3500、2800、2100,Y取每个值时对应(1)中的X取某些值的概率,列出Y的分布列,求期望即可.【解答】解:(1)X的所有可能取值为0,1,2,3,4,P(X=0)==P(X=1)==P(X=2)==P(X=3)==P(X=4)==(2)此员工月工资Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)==P(Y=2800)=P(X=3)==P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=EY==228017.(12分)(2011•江西)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.【分析】(1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c【解答】解:(1)∵∴∴∴∴∴∴∴(2)由得即∴∵a2+b2=4(a+b)﹣8∴(a﹣2)2+(b﹣2)2=0∴a=2,b=2由余弦定理得∴18.(12分)(2011•江西)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.【分析】(1)设等比数列{a n}的公比为q,根据“b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,由等比中项,可解得公比,从而求得通项.(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0,易知方程有一零根,从而求得结果.【解答】解:(1)设等比数列{a n}的公比为q,又∵b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,且b1=2,b2=2+q,b3=3+q2,∴(2+q)2=2(3+q2)∴q=2±∴(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0∵a>0,∴△=4a2+4a>0∵数列{a n}唯一,∴方程必有一根为0,得a=.19.(12分)(2011•江西)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.【分析】(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0.(2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值.【解答】解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)≥0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴f′(x)≤f′()=+2a,由0≤+2a,解得a≥﹣.检验a=﹣时,f(x)的增区间为(,),故不成立.故a>﹣.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为20.(13分)(2011•江西)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.【分析】(1)根据P(x0,y0)(x0≠±a)是双曲线E:上一点,代入双曲线的方程,M,N分别是双曲线E的左右顶点,直线PM,PN 的斜率之积为,求出直线PM,PN的斜率,然后整体代换,消去x0,y0,再由c2=a2+b2,即可求得双曲线的离心率;(2)根据过双曲线E的右焦点且斜率为1的直线,写出直线的方程,联立直线与双曲线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,及A,B,C为双曲线上的点,注意整体代换,并代入,即可求得λ的值.【解答】解:(1)∵P(x0,y0)(x0≠±a)是双曲线E:上一点,∴,①由题意又有,②联立①、②可得a2=5b2,c2=a2+b2,则e=,(2)联立,得4x2﹣10cx+35b2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1•x2=,设=(x3,y3),,即又C为双曲线上一点,即x32﹣5y32=5b2,有(λx1+x2)2﹣5(λy1+y2)2=5b2,化简得:λ2(x12﹣5y12)+(x22﹣5y22)+2λ(x1x2﹣5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线上,所以x12﹣5y12=5b2,x22﹣5y22=5b2,而x1x2﹣5y1y2=x1x2﹣5(x1﹣c)(x2﹣c)=﹣4x1x2+5c(x1+x2)﹣5c2=﹣4+5c﹣5c2=﹣35b2=•6b2﹣35b2=10b2,得λ2+4λ=0,解得λ=0或﹣4.21.(14分)(2011•江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.【分析】(1)先取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点p3,A3,N作平面α3,先得到两个平行平面,再过点A1,A4,分别作平面α1,α4,与平面α3平行即可.(2)直接利用(1)中的四个平面以及四面体,建立出以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴的直角坐标系,求出各点对应坐标,求出平面A3P3N的法向量,利用α1,α2,α3,α4相邻平面之间的距离为1求出正四面体的棱长,进而代入体积公式求出体积即可.【解答】解:(1)如图所示,取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点A3,P3,N作平面α3,,A3P3∥MP2,所以平面α2∥α3,因为A2P2∥NP3再过点A1,A4,分别作平面α1,α4,与平面α3平行,那么四个平面α1,α2,α3,α4依次互相平行,由线段A1A4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2):当(1)中的四面体为正四面体,若所得的四个平行平面每相邻两平面之间的距离为1,则正四面体A1A2A3A4就是满足题意的正四面体.设正四面体的棱长为a,以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴建立如图所示的右手直角坐标系,则A1(0,0,a),A2(﹣,a,0),A3(,a,0),A4(0,﹣a,0).令P2,P3为.A1A4的三等分点,N为A2A4的中点,有P3(0,a,a),N(﹣,﹣a,0),所以=(﹣,a,﹣a),=(a,a,0),=(﹣,a,0)设平面A3P3N的法向量=(x,y,z),有即,所以=(1,﹣,﹣).因为α1,α2,α3,α4相邻平面之间的距离为1,所以点A4到平面A3P3N 的距离=1,解得a=,由此可得,边长为的正四面体A1A2A3A4满足条件.所以所求四面体的体积V=Sh=××a=a3=.。

2011年全国各地高考理科数学试题汇编汇总(江西.文)含详解

2011年全国各地高考理科数学试题汇编汇总(江西.文)含详解

2011年全国各地高考数学试题(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+== 13V Sh =其中S 为底面积,h 为高 第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞ D.1(,2)2-答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log21xxxx4.曲线xy e=在点A(0,1)处的切线斜率为( )A.1B.2C.eD.1e答案:A 解析:1,0,0'===exey x5.设{na}为等差数列,公差d = -2,nS为其前n项和.若1011S S=,则1a=( )A.18B.20C.22D.24答案:B 解析:20,10,1111111110=∴+==∴=adaaaSS6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( ) A.01 B.43 C.07 D.49答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====fffffxf x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为em,众数为om,平均值为x,则( )A.e om m x== B.e om m x=<C.e om m x<< D.o em m x<<答案:D 计算可以得知,中位数为 5.5,众数为5所以选D父亲身高x(cm) 174 176 176 176 178儿子身高y(cm) 175 175 176 177 177A.y = x-1B.y = x+1C.y = 88+12x D.y = 176C 线性回归方程bxay+=,()()()∑∑==---=niiniiixxyyxxb121,x bya-=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。

2011年高考全国数学试卷(新课标)-理科(含详解答案)

2011年高考全国数学试卷(新课标)-理科(含详解答案)

2011年普通高等学校招生全国统一考试理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i解析:212i i+-=(2)(12),5i i i ++=共轭复数为C (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 解析:由图像知选B(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040解析:框图表示1n n a n a -=⋅,且11a =所求6a =720 选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A (5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。

故选D(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B (8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。

2011年全国高考理科数学试题含答案(新课标卷)

2011年全国高考理科数学试题含答案(新课标卷)

2011 年普通高等学校招生全国统一考试理科数学第 I 卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数2i 的共轭复数是( )1 2i(A )3 i (B )3i(C )i( D )i55(2)下列函数中,既是偶函数又在(0,+)单调递增的函数是()(A ) y x 3(B) yx1(C )yx 21(D) y2 x(3)执行右面的程序框图,如果输入的 N 是 6,那么输出的 p 是()(A )120(B )720(C )1440(D )5040(4)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()(A )1 ()1 ( C )2 (D )33B 342(5)已知角 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y 2x 上,则 cos 2 =()(A )4(B )3(C )3(D )45 555(6)在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为()(7)设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直, L 与 C 交于 A ,B 两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为()(A ) 2(B ) 3 (C )2(D )3a 2 x 15(8) x的展开式中各项系数的和为 2,则该展开式中常数项为( )x x(A )-40(B )-20(C )20(D )40(9)由曲线 yx ,直线yx 2 及 y 轴所围成的图形的面积为()(A )10(B )4(C )16(D )633(10)已知 a 与 b 均为单位向量,其夹角为,有下列四个命题()P 1 : a b 10,2P 2 : a b 12,33P 3 : a b 10, P 4 : a b 1,33其中的真命题是()(A ) P 1,P 4(B ) P 1, P 3(C ) P 2, P 3(D ) P 2 , P 4( 11)设函数 f ( x)sin( x) cos( x)(0,) 的最小正周期为,且 f ( x) f ( x),则2()(A )f ( x)在0,单调递减( B )f (x)在4 ,3单调递减24(C )f ( x)在0,单调递增( D )f ( x)在, 3单调递增244(12)函数y1 的图像与函数 y 2sin x( 2x 4) 的图像所有交点的横坐标之和等于()1-x(A )2(B) 4(C) 6(D)8第Ⅱ卷本卷包括必考题和选考题两部分。

2011年江西高考数学理科试卷(带详解)

2011年江西高考数学理科试卷(带详解)

2011年普通高等学校招生全国统一考试(江西卷)理科数学参考公式:样本数据()11,x y ,()22,x y ,…,(),n n x y 的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,其中12n x x x x n ++⋅⋅⋅+=,12ny y y y n++⋅⋅⋅+=.锥体的体积公式13V Sh =,其中S 为底面积,h 为高. 第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.若1+2iiz =,则复数z = ( )A.2i --B. 2i -+C. 2i -D.2i + 【测量目标】复数代数形式的四则运算. 【考查方式】给出复数,求其共轭复数. 【难易程度】容易 【参考答案】D【试题解析】221+2i i+2i i 22i i i 1z -====--,2i z =+. 2.若集合2{|1213},{|0}x A x x B x x-=-+=剟?,则A B = ( )A.{|10}x x -<…B.{|01}x x <…C.{|02}x x 剟D.{|01}x x 剟【测量目标】集合的基本运算. 【考查方式】给出两集合,求其交集. 【难易程度】容易 【参考答案】B【试题解析】{}{}11,02,A x xB x x =-=< 剟?{}01A B x x ∴=< ….3.若()f x =,则)(x f 的定义域为( )A.1,02⎛⎫- ⎪⎝⎭B.1,02⎛⎤- ⎥⎝⎦C.1,2⎛⎫-+∞ ⎪⎝⎭D.(0,)+∞ 【测量目标】函数的定义域.【考查方式】给出函数解析式,求其定义域. 【难易程度】容易 【参考答案】A【试题解析】()12log 210,0211,x x +>∴<+< 1,02x ⎛⎫∴∈- ⎪⎝⎭.4.若2()24ln f x x x x =--,则()0f x '>的解集为( )A. (0,∞+)B. (-1,0) (2,∞+)C. (2,∞+)D. (-1,0) 【测量目标】利用导数解决不等式问题.【考查方式】给出函数,求出函数导数的不等式的解集. 【难易程度】容易 【参考答案】C【试题解析】()242220,0,x x f x x x x--'=-->>(步骤1) ()()0,210,2x x x x >∴-+>∴> .(步骤2)5.已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a( )A.1B.9C.10D.55 【测量目标】数列的前n 项和,由递推关系求数列的通项公式. 【考查方式】给出递推关系,求出数列的项. 【难易程度】容易 【参考答案】A【试题解析】221122,1S a a S a =+=∴= (步骤1)31233,1S S S a =+=∴= (步骤2)41344,1S S S a =+=∴= , 101a ∴=.(步骤3)6.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( )A.012<<r rB. 120r r <<C.120r r <<D.12r r = 【测量目标】变量的相关系数的判断. 【考查方式】由数据得出相关系数之间的关系. 【难易程度】容易 【参考答案】C【试题解析】()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121,第一组变量正相关,第二组变量负相关.7.观察下列各式: 56753125,515625,578125,,===⋅⋅⋅则20115的末四位数字为 ( )A.3125B. 5625C. 0625D.8125 【测量目标】合情推理.【考查方式】给出前几项指数幂的末尾数,找规律. 【难易程度】中等 【参考答案】D【试题解析】()()()5,4625,53125xf x f f === ,(步骤1)()()()615625,778125,8390625f f f ===,(步骤2) ()2011420081,20118125f -=-∴=⋅⋅⋅.(步骤3)8.已知123,,a a a 是三个相互平行的平面,平面12,a a 之间的距离为1d ,平面23,a a 之间的距离为2d .直线l 与123,,a a a 分别交于321,,P P P .那么”“3221P P P P =是”“21d d =的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】充分必要条件、平面与平面间的距离.【考查方式】给出两个条件,判断它们之间的关系. 【难易程度】中等 【参考答案】C【试题解析】平面123,,a a a 平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P =,(步骤1) 如果3221P P P P =,同样是根据两个三角形全等可知21d d =.(步骤2)第8题图9.若曲线02221=-+x y x C :与曲线0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( )A.)33,33(-B.((0,33-C.]33,33[-D.(,)()33-∞-+∞ 【测量目标】直线与圆的位置关系.【考查方式】给出直线与圆的交点个数,判断直线与圆的位置关系,求出直线方程中实数m 的取值范围. 【难易程度】较难 【参考答案】B【试题解析】曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,(步骤1)曲线()0=--m mx y y 表示0y =,或0y mx m --=,(步骤2)过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,(步骤3) 由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭.(步骤4)第9题图10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小 圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点,M N 在大圆内所 绘出的图形大致是( )第10题图A B C D 【测量目标】圆与圆的位置关系.【考查方式】给出大圆与小圆的位置关系,求小圆上的点,M N 的运动轨迹. 【难易程度】中等 【参考答案】A【试题解析】根据小圆 与大圆半径1:2的关系,找上下左右四个点,根据这四个点的位置,小圆转半圈,刚好是大圆的四分之一,因此M 点的轨迹是个大圆,而N 点的轨迹是四条线,刚好是M 产生的大圆的半径.第10题图 第II 卷二.填空题:本大题共4小题,每小题5分,共20分.11.已知2==a b ,()()22+-=- a b a b ,则a 与b 的夹角为 . 【测量目标】平面向量的数量积运算.【考查方式】给出向量的模及等式,利用平面向量的数量积运算求值. 【难易程度】容易 【参考答案】60或π3【试题解析】根据已知条件(2)()2+-=- a b a b ,(步骤1)2422cos 242θ+-=+⨯⨯-⨯=- a a b b 1cos ,602θθ⇒== (步骤2)12.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若 此点到圆心的距离大于21,则周末去看电影;若此点到圆心的距离小于41,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 . 【测量目标】几何概型.【考查方式】将所求概率转化为几何概型,利用面积求解概率. 【难易程度】容易 【参考答案】1613 【试题解析】方法一:不在家看书的概率=2211π×ππ1342π16⎛⎫⎛⎫+-⨯ ⎪ ⎪+⎝⎭⎝⎭==看电影打篮球所有情况. 方法二:不在家看书的概率=1-在家看书的概率=1-2211ππ1324π16⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=.13.下图是某算法程序框图,则程序运行后输出的结果是__________.第13题图【测量目标】循环结构程序框图.【考查方式】执行程序框图中的语句,求值. 【难易程度】容易 【参考答案】10【试题解析】0,1s n ==;代入到解析式当中,()01102s n =+-+==,;0123s =++=,3n =;() 3135s =+-+=, 4n =;51410s =++=,(步骤1) 此时9s >,输出.(步骤2)14.若椭圆12222=+by a x 的焦点在x 轴上,过点)21,1(作圆122=+y x 的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 . 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】结合直线方程及与椭圆的位置关系,利用椭圆的性质求椭圆方程. 【难易程度】较难【参考答案】14522=+y x 【试题解析】设过点(1,21)的直线方程为:当斜率存在时,21)1(+-=x k y , 根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=43-,直线与圆方程的联立可以得到切点的坐标(54,53),(步骤1)当斜率不存在时,直线方程为:x =1,根据两点A :(1,0),B :(54,53)可以得到直线:220x y +-=,则与y 轴的交点即为上顶点坐标(2,0)2=⇒b ,与x 轴的交点即为焦点1=⇒c ,根据公式5,5222=⇒=+=a c b a ,即椭圆方程为:14522=+y x .(步骤2) 三.选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.15(1).(坐标系与参数方程选做题)若曲线的极坐标方程为θθρcos 4sin 2+=,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为 . 【测量目标】坐标系与参数方程.【考查方式】将坐标方程与参数方程联立即可. 【难易程度】容易【参考答案】02422=--+y x y x 【试题解析】222cos ,sin ,,x y x y ρθρθρ==⎧⎨=+⎩ (步骤1) 根据已知θθρcos 4sin 2+==24,y xρρ+ (步骤2)化简可得:22224,y x x y ρ=+=+(步骤3) 所以解析式为:02422=--+y x y x .(步骤4)15(2).(不等式选讲)对于实数x y ,,若11x -…,21y -…,则12+-y x 的最大值为 .【测量目标】解对值不等式.【考查方式】利用绝对值不等式直接求解. 【难易程度】容易 【参考答案】5【试题解析】11x - (02x)⇒剟, 又21y - …13y⇒剟,综上:[](21)5,1x y -+∈-,因为取绝对值最大,即为5.四.本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设次人对A 和B 两种饮料没有鉴别能力. (1)求X 的分布列; (2)求此员工月工资的期望.【测量目标】离散型随机变量的分布列及期望. 【考查方式】利用古典概型计算概率,进而求解概率. 【难易程度】中等【试题解析】(1)选对A 饮料的杯数分别为0X =,1X =,2X =,3X =,4X =,其概率分布分别为:()044448C C 10C 70P X ===,()134448C C 161C 70P X ===,()224448C C 362C 70P X ===,()314448C C 163C 70P X ===,044448C C 1(4)C 70P X ===.(步骤1)(2)()1163616135002800210022807070707070E ξ⎛⎫=⨯+⨯+++⨯= ⎪⎝⎭.(步骤2) 17.(本小题满分12分)在△ABC 中,角C B A ,,的对边分别是c b a ,,,已知2sin 1cos sin CC C -=+. (1)求C sin 的值;(2)若8)(422-+=+b a b a ,求边c 的值.【测量目标】同角三角函数的基本关系,余弦定理,二倍角公式. 【考查方式】对等式进行化简,直接求出角度,利用余弦定理求出边长. 【难易程度】中等【试题解析】(1)已知2sin 1cos sin C C C -=+ 2sin 2sin 2cos 2sin 2cos 2cos 2sin22222CC C C C C C -+=-+∴(步骤1) 整理即有:012sin 22cos 22sin 02sin 2sin 22cos 2sin22=⎪⎭⎫⎝⎛+-⇒=+-C C C C C C C又C 为ABC △中的角,02sin≠∴C412sin 2cos 2cos 2sin 2412cos 2sin 212cos 2sin 222=++-⇒=⎪⎭⎫ ⎝⎛-⇒=-∴C C C C C CC C 43sin 432cos 2sin2=⇒=∴C C C (步骤2) (2)()8422-+=+b a b a()()2,2022044442222==⇒=-+-⇒=++--+∴b a b a b a b a (步骤3)又47sin 1cos 2=-=C C ,17cos 222-=-+=∴C ab b a c .(步骤4) 19.(本小题满分12分)设.22131)(23ax x x x f ++-= (1)若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围;(2)当20<<a 时,)(x f 在[]4,1上的最小值为316-,求)(x f 在该区间上的最大值.【测量目标】利用导数求函数的单调区间,利用导数求函数最值. 【考查方式】利用导数求解函数的单调区间和最值. 【难易程度】较难【试题解析】(1)已知()ax x x x f 2213123++-=,()22f x x x a '∴=-++,函数()x f 在⎪⎭⎫ ⎝⎛+∞,32上存在单调递增区间,即导函数在⎪⎭⎫⎝⎛+∞,32上存在函数值大于零的部分,2()2f x x x a '=-++ 的对称轴为12x =2()2f x x x a '∴=-++在1,2⎛⎫+∞ ⎪⎝⎭递减, 22()()20,39f x f a ''∴<=+>19a ∴>-.(步骤1)(2)已知0<a<2, ()x f 在[]4,1上取到最小值316-,而()22f x x x a '=-++的图象开口向下,且对称轴21=x ,(步骤2) ()111220,f a a '∴=-++=>()416422120,f a a '=-++=-<则必有一点[],4,10∈x 使得()00,f x '=此时函数()x f 在[]0,1x 上单调递增,在(]0,4x 单调递减,()0261221311>+=++-=a a f , ()11404641688(1)323f a a f ∴=-⨯+⨯+=-+<()131683404=⇒-=+-=∴a a f (步骤3)此时,由()20000202f x x x x '=-++=⇒=或1-(舍去), 所以函数()()3102max ==f x f .(步骤4) 20.(本小题满分13分)))(,(000a x y x P ±≠是双曲线E :)0,0(12222>>=-b a by a x 上一点,N M ,分别是双曲线E 的左、右顶点,直线PN PM ,的斜率之积为51. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于B A ,两点,O 为坐标原点,C 为双曲线上的一点,满足OC OA OB λ=+,求λ的值.【测量目标】双曲线的简单几何性质,直线与双曲线的位置关系.【考查方式】利用斜率关系求解双曲线方程,将直线方程与双曲线方程联立求解即可. 【难易程度】较难【试题解析】(1)已知双曲线E :()0,012222>>=-b a by a x ,()00,y x P 在双曲线上,M ,N分别为双曲线E 的左右顶点,所以()0,a M -,()0,a N ,直线PM ,PN 斜率之积为2220000022220001515PM PNy y y x y K K x a x a x a a a===⇒-=+-- .(步骤1) 而1220220=-b y a x ,比较得5305651222222==⇒=+=⇒=a c e a b a c a b .(步骤2) (2)设过右焦点且斜率为1的直线L :c x y -=,交双曲线E 于A ,B 两点,则不妨设()()2211,,,y x B y x A ,又()2121,y y x x ++=+=λλλ,点C 在双曲线E 上:()()()()222222121212122221221510255a y x y y x x y x a y y x x =-+-+-⇒=+-+λλλλλ①又联立直线L 和双曲线E 方程消去y 得:05104222=++-a c cx x (步骤3)由韦达定理得:452221a c x x +=,()222222121212545c c a c c x x c x x y y +-+=++-=代入①式得:22222271022a a a a a λλλλ+-+=⇒=,或 4.λ=-(步骤4) 21.(本小题满分14分)(1)如图,对于任一给定的四面体4321A A A A ,找出依次排列的四个相互平行的平面 4321,,,αααα,使得i i A α∈(i =1,2,3,4),且其中每相邻两个平面间的距离都相等; (2)给定依次排列的四个相互平行的平面4321,,,αααα,其中每相邻两个平面间的距离为1,若一个正四面体4321A A A A 的四个顶点满足:i i A α∈(i =1,2,3,4),求该正四面体4321A A A A 的体积.第21题图 【测量目标】三棱锥的体积,面面平行的判定. 【考查方式】由直线三等分点的性质求解. 【难易程度】较难【试题解析】(1)将直线41A A 三等分,其中另两个分点依次为32,A A '',连接3322,A A A A '',作平行于3322,A A A A ''的平面,分别过3322,A A A A '',即为32,αα.同理,过点41,A A 作平面41,αα即可得出结论. (步骤1)(2)现设正方体的棱长为a ,若则有,11==MN M A ,211aM A =,(步骤2) a E A D A E D 2521121111=+=,由于,1111111E D M A E A D A ⨯=⨯得,5=a ,(步骤3) 那么,正四面体的棱长为102==a d ,其体积为355313==a V (即一个棱长为a 的正方体割去四个直角三棱锥后的体积). (步骤4)第21题(2)图。

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是(A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,PP (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。

2011年全国高考理科综合、理科数学试题及答案

2011年全国高考理科综合、理科数学试题及答案

2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212i i+-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i (2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2 (B)y=|x|+1 (C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为(A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ=(A )45- (B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为(A (C ) (B ) 2 (D )3(8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40(9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为 (A )310 (B )4 (C )163 (D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p(11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减 (C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x =-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。

2011年全国高考理科数学试题及答案(含解析)-全国2

2011年全国高考理科数学试题及答案(含解析)-全国2

绝密★启用前 2011年6月7日15:00~17:002011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回............。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷选择题在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()B P A P B A P ∙=∙ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 一.选择题:本大题共12小题,每小题5分,共60分。

(注意:在试题卷上作答无效.........) (1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1=(A )-2i (B )-i (C )i (D )2i (2)函数y =2x (x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x(x ≥0)(C )y =24x (x ∈R ) (D )y =24x (x ≥0) (3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k = (A ) 8 (B ) 7 (C ) 6 (D ) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (6)已知直二面角βα--l , 点,α∈A ,l AC ⊥ C 为垂足,,β∈B l BD ⊥,D 为垂足,若2=AB ,1==BD AC ,则D 到平面ABC 的距离等于( )(A )23(B )33 (C ) 63 (D ) 1(7)某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B ) 10种 (C ) 18种 (D )20种 (8)曲线12+=-xey 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为(A )31 (B )21 (C )32(D )1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=,则=-)25(f(A ) 21-(B )41- (C )41 (D )21(10)已知抛物线C: x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=∠AFB COS ( ) (A)54 (B) 53 (C) 53- (D) 54- (11) 已知平面α截一球面得圆M,过圆心M 且与α成 二面角的平面β截该球面得N 。

2011年江西高考数学答案(理科)

2011年江西高考数学答案(理科)

性格探索报告综合你在四个维度上的倾向,总体来说,你的类型是:挑战者型——不间断地尝试新的挑战你的特点:你是敏锐的发现者,善于看出眼前的需要,并迅速做出反应来满足这种需要,天生爱揽事并寻求满意的解决办法。

你精力充沛,积极解决问题,很少被规则或标准程式框住。

能够想出容易的办法去解决难办的事情,以此使自己的工作变得轻松愉快。

o你是天生的乐天派,积极活跃,随遇而安,乐于享受当下。

对任何新鲜的事物、活动、食物、服饰、人等都感兴趣,并不断地寻求新的挑战。

o你好奇心很强,思路开扩,容易接受事物,倾向于通过逻辑分析和推理做出决定,不会感情用事。

如果形势需要,你会表现出坚韧的意志力。

o你偏爱灵活地处理实际情况,而不是根据计划办事。

你长于行动,而非言语,喜欢处理各种事情,喜欢探求新方法。

o你具有创造性和适应性,有发明的才智和谋略,能够有效地缓解紧张气氛,并使矛盾双方重归于好。

o你性格外向,友好而迷人,很受欢迎,并且能在大多数社交情况中很放松自如。

∙岗位特质:o能自然地与很多人接触和相互影响;每天能遇到不同的和有趣的事o能运用你敏锐的观察力及接收、记忆信息的能力o能发挥你“救火”的能力,利用直接的经验,寻找解决问题的最佳方案o工作充满挑战,允许你用冒险的方式处理紧急情况o在没有太多的规则约束的环境中与其他现实、有趣的人一起工作,完成自己的任务后可以享受自由的时间o工作可以接触真实的人和事务,进行有形产品的制造或服务,而不是理论和思想领域的o能以自己习惯和认定为必要的方式安排自己的工作,而不是依照别人的标准∙不足和改进:o无法看到当下不存在的机会和选择,缺乏前瞻性和预见性o你很难独自工作,尤其是长时间独自工作;不善于事先做计划和准备,不愿制定长远目标,难以达到最高境界,因此,建议你注意对自己及自己的工作进行安排和规划,有步骤有阶段地实现目标,同时发展持之以恒的品质。

o你的注意力完全集中在有趣的活动上,喜欢不断地接受新的挑战,不愿意在目前沉闷的工作中消磨时间,难以估计自己行为带来的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:1.答案:C 解析: i i i i i i i z -=--=+=+=212221222.答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A3.答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x4.答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f 5.答案:A 解析:11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S6.答案:C 解析: ()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121第一组变量正相关,第二组变量负相关。

7.答案:D 解析:()()()()()()()8125***2011,12008420113906258,781257,156256,31255,6254,5=∴-=-======f f f f f f x f x 8.答案:C解析:平面321,,ααα平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P =如果3221P P P P =,同样是根据两个三角形全等可知21d d =9.答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是⎪⎪⎭⎫ ⎝⎛⋃⎪⎪⎭⎫ ⎝⎛-33,00,33 10.答案:A 解析:根据小圆 与大圆半径1:2的关系,找上下左右四个点,根据这四个点的位置,小圆转半圈,刚好是大圆的四分之一,因此M 点的轨迹是个大圆,而N 点的轨迹是四条线,刚好是M 产生的大圆的半径。

第II 卷二.填空题:本大题共4小题,每小题5分,共20分.11.答案:。

60(3π) 解析:根据已知条件2)()2(-=-∙+→→→→b a b a ,去括号得:242cos 224222-=⨯-⨯⨯+=-∙+→→→→θb b a a , 。

60,21cos ==⇒θ(PS :这道题其实2010年湖南文科卷的第6题翻版过来的,在我们寒假班的时候也讲过一道类似的,在文科讲义72页的第2题。

此题纯属送分题!)12.答案:1613 解析:方法一:不在家看书的概率=161321-4122=⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯=+ππππ所有情况打篮球看电影 方法二:不在家看书的概率=1—在家看书的概率=1—161341-2122=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛⨯πππ (PS: 通过生活实例与数学联系起来,是高考青睐的方向,但在我们春季班讲义二第一页的第五题已经做过类似题型,那么作为理科生,并且是上过新东方春季班课程的理科生,是不是应该作对,不解释。

)13.下图是某算法程序框图,则程序运行后输出的结果是__________.10. 解析:s=0,n=1;带入到解析式当中,s=0+(-1)+1=0,n=2;s=0+1+2=3, n=3; S=3+(-1)+3=5, n=4;S=5+1+4=10,此时s>9,输出。

(PS:此题实质是2010江苏理科卷第7题得翻版,同时在我们寒假题海班,理科讲义的第200页的第6题也讲过相似的。

所以童鞋们再次遇到,应该也是灰常熟悉的。

并且框图本来就是你们的拿手菜,所以最对也不觉奇怪。

)14.答案:14522=+y x 解析:设过点(1,21)的直线方程为:当斜率存在时,21)1(+-=x k y , 根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=43-,直线与圆方程的联立可以得到切点的坐标(54,53),当斜率不存在时,直线方程为:x=1,根据两点A :(1,0),B :(54,53)可以得到直线:2x+y-2=0,则与y 轴的交点即为上顶点坐标(2,0)2=⇒b ,与x 轴的交点即为焦点1=⇒c ,根据公式5,5222=⇒=+=a c b a ,即椭圆方程为:14522=+y x (PS:此题可能算是填空题,比较纠结的一道,因为要理清思路,计算有些繁琐。

但是,是不是就做不出来呢,不是的,在我们寒假题海班的时候讲过一道与此相似的题型,也就在理科教材第147页第23题。

所以最纠结的一道高考题也不过如此,你们还怕什么?)三.选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.15(1).答案:02422=--+y x y x 。

解析:做坐标系与参数方程的题,大家只需记住两点:1、θρθρsin ,cos ∙=∙=y x ,2、222y x +=ρ即可。

根据已知θθρcos 4sin 2+==,4y 2,42222y x x xy+=+=+∙ρρρ化简可得:所以解析式为:2422=--+y x y x15 (2).此题,看似很难,但其实不难,首先解出x 的范围,20≤≤x ,再解出y 的范围,31≤≤y ,最后综合解出x-2y+1的范围[]1,5-,那么绝对值最大,就去5(PS: 此题作为最后一题,有失最后一题的分量,大家从解题步骤就可看出。

所以高考注重的还是基础+基础!)四.本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解答:(1)选对A 饮料的杯数分别为0=X ,1=X ,2=X ,3=X ,4=X ,其概率分布分别为: ()7010484404==C C C P ,()70161483414==C C C P ,()70362482424==C C C P ,()70163481434==C C C P ,()7014484404==C C C P 。

(2)()2280210070170167036280070163500701=⨯⎪⎭⎫⎝⎛+++⨯+⨯=E ζ。

17.解:(1)已知2sin1cos sin CC C -=+ 2sin 2sin 2cos 2sin 2cos 2cos 2sin22222CC C C C C C -+=-+∴ 整理即有:012sin 22cos 22sin 02sin 2sin 22cos 2sin22=⎪⎭⎫⎝⎛+-⇒=+-C C C C C C C 又C 为ABC ∆中的角,02sin≠∴C412sin 2cos 2cos 2sin 2412cos 2sin 212cos 2sin 222=++-⇒=⎪⎭⎫ ⎝⎛-⇒=-∴C C C C C CC C 43sin 432cos 2sin2=⇒=∴C C C (2)()8422-+=+b a b a()()2,2022044442222==⇒=-+-⇒=++--+∴b a b a b a b a又47sin 1cos 2=-=C C ,17cos 222-=-+=∴C ab b a c 18..解:(1)当a=1时,332213,2,21a b a b a b +=+==+=,又{}{}n n b a , 为等比数列,不妨设{}n a 公比为1q ,由等比数列性质知:()322312232)2(a a b b b +=+⇒=,同时又有()()()()22322322,121212112112113112±=⇒+=+⇒+=+⇒==q q q q a q a q a a q a a 所以:()1,221≥±=-n a n n(2){}n a 要唯一,∴当公比01≠q 时,由332213,2,21a b a b a b +=+==+=且⇒=3122b b b ()()()01343121212121=-+-⇒++=+a aq aq aq a aq ,0>a ,0134121=-+-∴a aq aq 最少有一个根(有两个根时,保证仅有一个正根)()()()014013442≥+⇒≥--∴a a a a a ,此时满足条件的a 有无数多个,不符合。

∴当公比01=q 时,等比数列{}n a 首项为a ,其余各项均为常数0,唯一,此时由()()()01343121212121=-+-⇒++=+a aq aq aq a aq ,可推得31,013==-a a 符合综上:31=a 。

19.解:(1)已知()ax x x x f 2213123++-=,()a x x x f 22'++-=∴,函数()x f 在⎪⎭⎫ ⎝⎛+∞,32上存在单调递增区间,即导函数在⎪⎭⎫ ⎝⎛+∞,32上存在函数值大于零的部分,91023232322'->⇒>++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛∴a a f(2)已知0<a<2, ()x f 在[]4,1上取到最小值316-,()a x x x f 22'++-=的图像开口向下,且对轴21=x ,(),022111'>=++-=∴a a f (),012224164'<-=++-=a a f 则必有一点[],4,10∈x 使得(),00'=x f 此时函数()x f 在[]0,1x 上单调递增,在[]4,0x 单调递减,()0261221311>+=++-=a a f ,()083408162164314<+-=+⨯+⨯-=∴a a f()131683404=⇒-=+-=∴a a f此时,由()()舍去或1-20200200'=⇒=++-=x x x x f ,所以函数()()3102max ==f x f 20.解:(1)已知双曲线E :()0,012222>>=-b a by a x ,()00,y x P 在双曲线上,M ,N 分别为双曲线E 的左右顶点,所以()0,a M -,()0,a N ,直线PM ,PN 斜率之积为1551220220220200000=-⇒=-=-∙+=∙ay a x a x y a x y a x y K K PNPM 而1220220=-b y a x ,比较得5305651222222==⇒=+=⇒=a c e a b a c a b (2)设过右焦点且斜率为1的直线L :c x y -=,交双曲线E 于A ,B 两点,则不妨设()()2211,,,y x B y x A ,又()2121,y y x x OB OA OC ++=+=λλλ,点C 在双曲线E 上:()()()()222222121212122221221510255a y x y y x x y x a y y x x =-+-+-⇒=+-+λλλλλ*(1)又 联立直线L 和双曲线E 方程消去y 得:05104222=++-a c cx x由韦达定理得:452221a c x x +=,()222222121212545c c a c c x x c x x y y +-+=++-=代入(1)式得:4-027127222222==⇒=+-+λλλλλ,或a a a a a21.(本小题满分14分)(1)如图,对于任一给定的四面体4321A A A A ,找出依 次排列的四个相互平行的平面 4321,,,αααα,使 得i i A α∈(i=1,2,3,4),且其中每相邻两个平面间 的距离都相等;(2)给定依次排列的四个相互平行的平面4321,,,αααα,其中每相邻两个平面间的距离为1,若一个正四面体4321A A A A 的四个顶点满足:i i A α∈(i=1,2,3,4),求该正四面体4321A A A A 的体积.解:(1)将直线41A A 三等分,其中另两个分点依次为32,A A '',连接3322,A A A A '',作平行于3322,A A A A ''的平面,分别过3322,A A A A '',即为32,αα。

相关文档
最新文档