2011年全国高考理科数学WORD版试题及答案-江西
2011年高考江西省数学试卷-理科(含详细答案)
![2011年高考江西省数学试卷-理科(含详细答案)](https://img.taocdn.com/s3/m/ed03f94fc850ad02de8041ad.png)
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni ini ini i iy yx xy y x xr 12121)()())(( 其中nx x x x n +++= (21)ny y y y n+++= (21)锥体的体积公式 13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若ii z 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2 答案:C 解析: i i ii i ii z -=--=+=+=21222122(2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0) 答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f(5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini i iyyxxyy x xr 12121第一组变量正相关,第二组变量负相关。
2011年高考全国数学试卷(新课标)-理科(含详解答案)
![2011年高考全国数学试卷(新课标)-理科(含详解答案)](https://img.taocdn.com/s3/m/406f1eed551810a6f524866d.png)
2011年普通高等学校招生全国统一考试理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i解析:212i i+-=(2)(12),5i i i ++=共轭复数为C (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 解析:由图像知选B(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040解析:框图表示1n n a n a -=⋅,且11a =所求6a =720 选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A (5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
故选D(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B (8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。
2011年江西省高考理科数学试卷及答案(word版)
![2011年江西省高考理科数学试卷及答案(word版)](https://img.taocdn.com/s3/m/4c664aa0f524ccbff1218481.png)
2011年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若12iz i+=,则复数z -=( )A. 2i --B. 2i -+C. 2i -D. 2i + 2.若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂=( )A.{}10x x -≤< B..{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤ 3.若()()121log 21f x x =+,则()f x 的定义域为()A. 1,02⎛⎫-⎪⎝⎭ B. 1,02⎛⎤- ⎥⎝⎦ C. 1,2⎛⎫-+∞ ⎪⎝⎭D. ()0,+∞ 4.若()224ln f x x x x =--则()f x >0的解集为()A .()0,+∞ B. ()()1,02,-⋃+∞ C. ()2,+∞ D. ()1,0- 5.已知数列 ∣n a ∣的前n 项和n s 满足:n s +m s =n m s +,且1a =1,那么10a =( ) A.1 B.9 C.10 D.556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数 ( ) A. 2r < 1r <0 B. 0<2r < 1r C. 2r <0<1r D. 2r =1r7、观察下列各式:55=3125, 56=15625, 57=78125,···,则52011 的末四位数字为( _ A 、3125 B 、5625 C 、0625 D 、81258、已知123,,ααα是三个相互平行的平面,平面12,αα之间的距离为1d ,平面23,a α之前的距离为2d ,直线l 与123,,ααα分别相交于123,,P P P .那么“123,,P P P ”是“12d d =”的( )A 、充分不需要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件9. 若曲线1C :0222=-+x y x 与曲线C 2:y(y+mx-m)=0有四个不同的交点,则实数m 的取值范围是 ( )A. )33,33(-B. )0,33(-∪)33,0( C.]33,33[-D.-(∞,)33-∪(,33+∞) 10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点。
2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)
![2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)](https://img.taocdn.com/s3/m/4f6cfa04b52acfc789ebc9b5.png)
2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii +-的共轭复数是(A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40 (9)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 (A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增(12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011江西高考数学试卷及答案
![2011江西高考数学试卷及答案](https://img.taocdn.com/s3/m/e098ad36b90d6c85ec3ac694.png)
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
Hale Waihona Puke 高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
高考试卷在线() ,海量高考资源免费下载!
2011年高考数学真题(全国卷)理科(详细解析)
![2011年高考数学真题(全国卷)理科(详细解析)](https://img.taocdn.com/s3/m/33bf968c6529647d272852bf.png)
1. 复数1z i =+,z 为z 的共轭复数,则1z z z --=【精讲精析】选B .1,1(1)(1)(1)1z i z z z i i i i =---=+----=- 2. 函数2(0)y x x =≥的反函数为【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。
【精讲精析】选B .在函数2(0)y x x =≥中,0y ≥且反解x 得24yx =,所以2(0)y x x =≥的反函数为2(0)4xy x =≥.3. 下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a b >,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
4. 解:设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = 【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k S S a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】2k k S S +-= 21k k a a +++= 11(21)(11)a k d a k d ++-+++-=12(21)a k d ++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。
5. 设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年江西省高考数学试卷(理科)及答案
![2011年江西省高考数学试卷(理科)及答案](https://img.taocdn.com/s3/m/d6c55a4550e2524de4187e7e.png)
2011年江西省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i2.(5分)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}3.(5分)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)4.(5分)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)5.(5分)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.556.(5分)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r17.(5分)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.81258.(5分)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(5分)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)10.(5分)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知==2,•=﹣2,则与的夹角为.12.(5分)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.13.(5分)如图是某算法的程序框图,则程序运行后输出的结果是.14.(5分)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.15.(5分)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为.三、解答题(共6小题,满分75分)16.(12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.18.(12分)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.19.(12分)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.20.(13分)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.21.(14分)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.2011年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•江西)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【分析】直接对复数的分母、分子同乘i,然后化简,求出复数z的共轭复数.【解答】解:==2﹣i所以=2+i故选D2.(5分)(2011•江西)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}【分析】根据已知条件我们分别计算出集合A,B,然后根据交集运算的定义易得到A∩B的值.【解答】解:∵A={x|﹣1≤2x+1≤3}={x|﹣1≤x≤1},={x|0<x≤2}故A∩B={x|0<x≤1},故选B3.(5分)(2011•江西)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)【分析】求函数的定义域即求让函数解析式有意义的自变量x的取值范围,由此可以构造一个关于x的不等式,解不等式即可求出函数的解析式.【解答】解:要使函数的解析式有意义自变量x须满足:即0<2x+1<1解得故选A4.(5分)(2011•江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)【分析】由题意,可先求出函数的定义域及函数的导数,再解出不等式f′(x)>0的解集与函数的定义域取交集,即可选出正确选项.【解答】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.5.(5分)(2011•江西)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.55【分析】根据题意,用赋值法,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,进而由数列的前n项和的性质,可得答案.【解答】解:根据题意,在s n+s m=s n+m中,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,根据数列的性质,有a10=s10﹣s9,即a10=1,故选A.6.(5分)(2011•江西)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r1【分析】求两组数据的相关系数的大小和正负,可以详细的解出这两组数据的相关系数,现分别求出两组数据的两个变量的平均数,利用相关系数的个数代入求出结果,进行比较.【解答】解:∵变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),=11.72∴这组数据的相关系数是r=,变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),∴这组数据的相关系数是﹣0.3755,∴第一组数据的相关系数大于零,第二组数据的相关系数小于零,故选C.7.(5分)(2011•江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.8125【分析】根据所给的以 5 为底的幂的形式,在写出后面的几项,观察出这些幂的形式是有一定的规律的每四个数字是一个周期,用2011除以4看出余数,得到结果.【解答】解:∵55=3125,56=15625,57=78125,58=390625,59=1953125,510=9765625,511=48828125…可以看出这些幂的最后4位是以4为周期变化的,∵2011÷4=502…3,∴52011的末四位数字与57的后四位数相同,是8125,故选D.8.(5分)(2011•江西)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由已知中α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3,结合面面平行的性质,我们分别判断“P1P2=P2P3”⇒“d1=d2”及“d1=d2”⇒“P1P2=P2P3”的真假,结合充要条件的定义,即可得到答案.【解答】解:由已知中α1,α2,α3是三个相互平行的平面,且平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,又由直线l与α1,α2,α3分别相交于P1,P2,P3.则“P1P2=P2P3”⇒“d1=d2”为真命题且“d1=d2”⇒“P1P2=P2P3”是真命题故“P1P2=P2P3”是“d1=d2”的充分必要条件故选C.9.(5分)(2011•江西)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)【分析】由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,曲线C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y﹣mx ﹣m=0要有2个交点,根据直线y﹣mx﹣m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.【解答】解:由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,化为标准方程得:(x﹣1)2+y2=1,所以圆心坐标为(1,0),半径r=1;C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,由直线y﹣mx﹣m=0可知:此直线过定点(﹣1,0),在平面直角坐标系中画出图象如图所示:直线y=0和圆交于点(0,0)和(2,0),因此直线y﹣mx﹣m=0与圆相交即可满足条件.当直线y﹣mx﹣m=0与圆相切时,圆心到直线的距离d==r=1,化简得:m2=,解得m=±,而m=0时,直线方程为y=0,即为x轴,不合题意,则直线y﹣mx﹣m=0与圆相交时,m∈(﹣,0)∪(0,).故选B.10.(5分)(2011•江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.【分析】根据已知中直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.我们分析滚动过程中,M,N的位置与大圆及大圆圆心的重合次数,及点M,N运动的规律,并逐一对四个答案进行分析,即可得到答案.【解答】解:如图,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧与小圆点M转过的圆弧相等.以切点A在如图上运动为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×1=θ,小圆圆弧的长为l2=2θ×=θ,即l1=l2,∴小圆的两段圆弧与圆弧长相等,故点M1与点M′重合,即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,M、N的轨迹为相互垂直的线段.观察各选项,只有选项A符合.故选A.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2011•江西)已知==2,•=﹣2,则与的夹角为.【分析】利用向量的运算律将向量的等式展开,利用向量的平方等于向量模的平方,求出两个向量的数量积;利用向量的数量积公式求出两个向量的夹角余弦,求出夹角.【解答】解:设两个向量的夹角为θ∵∴∵∴∴∴故答案为12.(5分)(2011•江西)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.【分析】根据题意,计算可得圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型求概率即可.【解答】解:圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型得小波周末不在家看书的概率为P=故答案为:13.(5分)(2011•江西)如图是某算法的程序框图,则程序运行后输出的结果是10.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:S n是否继续循环循环前01第一圈02是第二圈33是第三圈54是第四圈105否此时S值为10.故答案为:10.14.(5分)(2011•江西)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.【分析】设出切点坐标,利用切点与原点的连线与切线垂直,列出方程得到AB 的方程,将右焦点坐标及上顶点坐标代入AB的方程,求出参数c,b;利用椭圆中三参数的关系求出a.,求出椭圆方程.【解答】解:设切点坐标为(m,n)则即∵m2+n2=1∴m即AB的直线方程为2x+y﹣2=0∵线AB恰好经过椭圆的右焦点和上顶点∴2c﹣2=0;b﹣2=0解得c=1,b=2所以a2=5故椭圆方程为故答案为15.(5分)(2011•江西)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为(x﹣2)2+(y﹣1)2=5.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为5.【分析】(1)把曲线的极坐标方程ρ=2sinθ+4c osθ两边同时乘以ρ,再把x=ρcosθ,y=ρsinθ 代入化简.(2)先由条件得到0≤x≤2,1≤y≤3,再根据|x﹣2y+1|≤|x|+2|y|+1,求得|x﹣2y+1|的最大值.【解答】解:(1)∵曲线的极坐标方程为ρ=2sinθ+4cosθ,∴ρ2=2ρ sinθ+4ρ cosθ,∴x2+y2=2y+4x,∴(x﹣2)2+(y﹣1)2=5.故答案为:(x﹣2)2+(y﹣1)2=5.(2)|x﹣1|≤1,|y﹣2|≤1,即0≤x≤2,1≤y≤3,则|x﹣2y+1|=|x﹣1﹣2y+4﹣2|≤|x﹣1|+2|y﹣2|+2≤1+2×1+2=5,∴|x﹣2y+1|的最大值为5,故答案为:5.三、解答题(共6小题,满分75分)16.(12分)(2011•江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.【分析】(1)X的所有可能取值为0,1,2,3,4,由古典概型分别求出概率,列出分布列即可.(2)由(1)可知此员工月工资Y的所有可能取值有3500、2800、2100,Y取每个值时对应(1)中的X取某些值的概率,列出Y的分布列,求期望即可.【解答】解:(1)X的所有可能取值为0,1,2,3,4,P(X=0)==P(X=1)==P(X=2)==P(X=3)==P(X=4)==(2)此员工月工资Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)==P(Y=2800)=P(X=3)==P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=EY==228017.(12分)(2011•江西)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.【分析】(1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c【解答】解:(1)∵∴∴∴∴∴∴∴(2)由得即∴∵a2+b2=4(a+b)﹣8∴(a﹣2)2+(b﹣2)2=0∴a=2,b=2由余弦定理得∴18.(12分)(2011•江西)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.【分析】(1)设等比数列{a n}的公比为q,根据“b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,由等比中项,可解得公比,从而求得通项.(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0,易知方程有一零根,从而求得结果.【解答】解:(1)设等比数列{a n}的公比为q,又∵b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,且b1=2,b2=2+q,b3=3+q2,∴(2+q)2=2(3+q2)∴q=2±∴(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0∵a>0,∴△=4a2+4a>0∵数列{a n}唯一,∴方程必有一根为0,得a=.19.(12分)(2011•江西)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.【分析】(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0.(2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值.【解答】解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)≥0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴f′(x)≤f′()=+2a,由0≤+2a,解得a≥﹣.检验a=﹣时,f(x)的增区间为(,),故不成立.故a>﹣.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为20.(13分)(2011•江西)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.【分析】(1)根据P(x0,y0)(x0≠±a)是双曲线E:上一点,代入双曲线的方程,M,N分别是双曲线E的左右顶点,直线PM,PN 的斜率之积为,求出直线PM,PN的斜率,然后整体代换,消去x0,y0,再由c2=a2+b2,即可求得双曲线的离心率;(2)根据过双曲线E的右焦点且斜率为1的直线,写出直线的方程,联立直线与双曲线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,及A,B,C为双曲线上的点,注意整体代换,并代入,即可求得λ的值.【解答】解:(1)∵P(x0,y0)(x0≠±a)是双曲线E:上一点,∴,①由题意又有,②联立①、②可得a2=5b2,c2=a2+b2,则e=,(2)联立,得4x2﹣10cx+35b2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1•x2=,设=(x3,y3),,即又C为双曲线上一点,即x32﹣5y32=5b2,有(λx1+x2)2﹣5(λy1+y2)2=5b2,化简得:λ2(x12﹣5y12)+(x22﹣5y22)+2λ(x1x2﹣5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线上,所以x12﹣5y12=5b2,x22﹣5y22=5b2,而x1x2﹣5y1y2=x1x2﹣5(x1﹣c)(x2﹣c)=﹣4x1x2+5c(x1+x2)﹣5c2=﹣4+5c﹣5c2=﹣35b2=•6b2﹣35b2=10b2,得λ2+4λ=0,解得λ=0或﹣4.21.(14分)(2011•江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.【分析】(1)先取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点p3,A3,N作平面α3,先得到两个平行平面,再过点A1,A4,分别作平面α1,α4,与平面α3平行即可.(2)直接利用(1)中的四个平面以及四面体,建立出以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴的直角坐标系,求出各点对应坐标,求出平面A3P3N的法向量,利用α1,α2,α3,α4相邻平面之间的距离为1求出正四面体的棱长,进而代入体积公式求出体积即可.【解答】解:(1)如图所示,取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点A3,P3,N作平面α3,,A3P3∥MP2,所以平面α2∥α3,因为A2P2∥NP3再过点A1,A4,分别作平面α1,α4,与平面α3平行,那么四个平面α1,α2,α3,α4依次互相平行,由线段A1A4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2):当(1)中的四面体为正四面体,若所得的四个平行平面每相邻两平面之间的距离为1,则正四面体A1A2A3A4就是满足题意的正四面体.设正四面体的棱长为a,以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴建立如图所示的右手直角坐标系,则A1(0,0,a),A2(﹣,a,0),A3(,a,0),A4(0,﹣a,0).令P2,P3为.A1A4的三等分点,N为A2A4的中点,有P3(0,a,a),N(﹣,﹣a,0),所以=(﹣,a,﹣a),=(a,a,0),=(﹣,a,0)设平面A3P3N的法向量=(x,y,z),有即,所以=(1,﹣,﹣).因为α1,α2,α3,α4相邻平面之间的距离为1,所以点A4到平面A3P3N 的距离=1,解得a=,由此可得,边长为的正四面体A1A2A3A4满足条件.所以所求四面体的体积V=Sh=××a=a3=.。
2011年全国各地高考理科数学试题汇编汇总(江西.文)含详解
![2011年全国各地高考理科数学试题汇编汇总(江西.文)含详解](https://img.taocdn.com/s3/m/2518102cb52acfc788ebc909.png)
2011年全国各地高考数学试题(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+== 13V Sh =其中S 为底面积,h 为高 第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞ D.1(,2)2-答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log21xxxx4.曲线xy e=在点A(0,1)处的切线斜率为( )A.1B.2C.eD.1e答案:A 解析:1,0,0'===exey x5.设{na}为等差数列,公差d = -2,nS为其前n项和.若1011S S=,则1a=( )A.18B.20C.22D.24答案:B 解析:20,10,1111111110=∴+==∴=adaaaSS6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( ) A.01 B.43 C.07 D.49答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====fffffxf x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为em,众数为om,平均值为x,则( )A.e om m x== B.e om m x=<C.e om m x<< D.o em m x<<答案:D 计算可以得知,中位数为 5.5,众数为5所以选D父亲身高x(cm) 174 176 176 176 178儿子身高y(cm) 175 175 176 177 177A.y = x-1B.y = x+1C.y = 88+12x D.y = 176C 线性回归方程bxay+=,()()()∑∑==---=niiniiixxyyxxb121,x bya-=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
2011年高考全国数学试卷(新课标)-理科(含详解答案)
![2011年高考全国数学试卷(新课标)-理科(含详解答案)](https://img.taocdn.com/s3/m/a58965dfa58da0116c1749a9.png)
2011年普通高等学校招生全国统一考试理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i解析:212i i+-=(2)(12),5i i i ++=共轭复数为C (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 解析:由图像知选B(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040解析:框图表示1n n a n a -=⋅,且11a =所求6a =720 选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A (5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
故选D(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B (8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。
2011年全国高考理科数学试题含答案(新课标卷)
![2011年全国高考理科数学试题含答案(新课标卷)](https://img.taocdn.com/s3/m/a6d0c652bf1e650e52ea551810a6f524ccbfcbb4.png)
2011 年普通高等学校招生全国统一考试理科数学第 I 卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数2i 的共轭复数是( )1 2i(A )3 i (B )3i(C )i( D )i55(2)下列函数中,既是偶函数又在(0,+)单调递增的函数是()(A ) y x 3(B) yx1(C )yx 21(D) y2 x(3)执行右面的程序框图,如果输入的 N 是 6,那么输出的 p 是()(A )120(B )720(C )1440(D )5040(4)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()(A )1 ()1 ( C )2 (D )33B 342(5)已知角 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y 2x 上,则 cos 2 =()(A )4(B )3(C )3(D )45 555(6)在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为()(7)设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直, L 与 C 交于 A ,B 两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为()(A ) 2(B ) 3 (C )2(D )3a 2 x 15(8) x的展开式中各项系数的和为 2,则该展开式中常数项为( )x x(A )-40(B )-20(C )20(D )40(9)由曲线 yx ,直线yx 2 及 y 轴所围成的图形的面积为()(A )10(B )4(C )16(D )633(10)已知 a 与 b 均为单位向量,其夹角为,有下列四个命题()P 1 : a b 10,2P 2 : a b 12,33P 3 : a b 10, P 4 : a b 1,33其中的真命题是()(A ) P 1,P 4(B ) P 1, P 3(C ) P 2, P 3(D ) P 2 , P 4( 11)设函数 f ( x)sin( x) cos( x)(0,) 的最小正周期为,且 f ( x) f ( x),则2()(A )f ( x)在0,单调递减( B )f (x)在4 ,3单调递减24(C )f ( x)在0,单调递增( D )f ( x)在, 3单调递增244(12)函数y1 的图像与函数 y 2sin x( 2x 4) 的图像所有交点的横坐标之和等于()1-x(A )2(B) 4(C) 6(D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年江西高考数学理科试卷(带详解)
![2011年江西高考数学理科试卷(带详解)](https://img.taocdn.com/s3/m/f371bf5be45c3b3567ec8b2a.png)
2011年普通高等学校招生全国统一考试(江西卷)理科数学参考公式:样本数据()11,x y ,()22,x y ,…,(),n n x y 的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,其中12n x x x x n ++⋅⋅⋅+=,12ny y y y n++⋅⋅⋅+=.锥体的体积公式13V Sh =,其中S 为底面积,h 为高. 第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.若1+2iiz =,则复数z = ( )A.2i --B. 2i -+C. 2i -D.2i + 【测量目标】复数代数形式的四则运算. 【考查方式】给出复数,求其共轭复数. 【难易程度】容易 【参考答案】D【试题解析】221+2i i+2i i 22i i i 1z -====--,2i z =+. 2.若集合2{|1213},{|0}x A x x B x x-=-+=剟?,则A B = ( )A.{|10}x x -<…B.{|01}x x <…C.{|02}x x 剟D.{|01}x x 剟【测量目标】集合的基本运算. 【考查方式】给出两集合,求其交集. 【难易程度】容易 【参考答案】B【试题解析】{}{}11,02,A x xB x x =-=< 剟?{}01A B x x ∴=< ….3.若()f x =,则)(x f 的定义域为( )A.1,02⎛⎫- ⎪⎝⎭B.1,02⎛⎤- ⎥⎝⎦C.1,2⎛⎫-+∞ ⎪⎝⎭D.(0,)+∞ 【测量目标】函数的定义域.【考查方式】给出函数解析式,求其定义域. 【难易程度】容易 【参考答案】A【试题解析】()12log 210,0211,x x +>∴<+< 1,02x ⎛⎫∴∈- ⎪⎝⎭.4.若2()24ln f x x x x =--,则()0f x '>的解集为( )A. (0,∞+)B. (-1,0) (2,∞+)C. (2,∞+)D. (-1,0) 【测量目标】利用导数解决不等式问题.【考查方式】给出函数,求出函数导数的不等式的解集. 【难易程度】容易 【参考答案】C【试题解析】()242220,0,x x f x x x x--'=-->>(步骤1) ()()0,210,2x x x x >∴-+>∴> .(步骤2)5.已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a( )A.1B.9C.10D.55 【测量目标】数列的前n 项和,由递推关系求数列的通项公式. 【考查方式】给出递推关系,求出数列的项. 【难易程度】容易 【参考答案】A【试题解析】221122,1S a a S a =+=∴= (步骤1)31233,1S S S a =+=∴= (步骤2)41344,1S S S a =+=∴= , 101a ∴=.(步骤3)6.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( )A.012<<r rB. 120r r <<C.120r r <<D.12r r = 【测量目标】变量的相关系数的判断. 【考查方式】由数据得出相关系数之间的关系. 【难易程度】容易 【参考答案】C【试题解析】()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121,第一组变量正相关,第二组变量负相关.7.观察下列各式: 56753125,515625,578125,,===⋅⋅⋅则20115的末四位数字为 ( )A.3125B. 5625C. 0625D.8125 【测量目标】合情推理.【考查方式】给出前几项指数幂的末尾数,找规律. 【难易程度】中等 【参考答案】D【试题解析】()()()5,4625,53125xf x f f === ,(步骤1)()()()615625,778125,8390625f f f ===,(步骤2) ()2011420081,20118125f -=-∴=⋅⋅⋅.(步骤3)8.已知123,,a a a 是三个相互平行的平面,平面12,a a 之间的距离为1d ,平面23,a a 之间的距离为2d .直线l 与123,,a a a 分别交于321,,P P P .那么”“3221P P P P =是”“21d d =的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】充分必要条件、平面与平面间的距离.【考查方式】给出两个条件,判断它们之间的关系. 【难易程度】中等 【参考答案】C【试题解析】平面123,,a a a 平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P =,(步骤1) 如果3221P P P P =,同样是根据两个三角形全等可知21d d =.(步骤2)第8题图9.若曲线02221=-+x y x C :与曲线0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( )A.)33,33(-B.((0,33-C.]33,33[-D.(,)()33-∞-+∞ 【测量目标】直线与圆的位置关系.【考查方式】给出直线与圆的交点个数,判断直线与圆的位置关系,求出直线方程中实数m 的取值范围. 【难易程度】较难 【参考答案】B【试题解析】曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,(步骤1)曲线()0=--m mx y y 表示0y =,或0y mx m --=,(步骤2)过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,(步骤3) 由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭.(步骤4)第9题图10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小 圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点,M N 在大圆内所 绘出的图形大致是( )第10题图A B C D 【测量目标】圆与圆的位置关系.【考查方式】给出大圆与小圆的位置关系,求小圆上的点,M N 的运动轨迹. 【难易程度】中等 【参考答案】A【试题解析】根据小圆 与大圆半径1:2的关系,找上下左右四个点,根据这四个点的位置,小圆转半圈,刚好是大圆的四分之一,因此M 点的轨迹是个大圆,而N 点的轨迹是四条线,刚好是M 产生的大圆的半径.第10题图 第II 卷二.填空题:本大题共4小题,每小题5分,共20分.11.已知2==a b ,()()22+-=- a b a b ,则a 与b 的夹角为 . 【测量目标】平面向量的数量积运算.【考查方式】给出向量的模及等式,利用平面向量的数量积运算求值. 【难易程度】容易 【参考答案】60或π3【试题解析】根据已知条件(2)()2+-=- a b a b ,(步骤1)2422cos 242θ+-=+⨯⨯-⨯=- a a b b 1cos ,602θθ⇒== (步骤2)12.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若 此点到圆心的距离大于21,则周末去看电影;若此点到圆心的距离小于41,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 . 【测量目标】几何概型.【考查方式】将所求概率转化为几何概型,利用面积求解概率. 【难易程度】容易 【参考答案】1613 【试题解析】方法一:不在家看书的概率=2211π×ππ1342π16⎛⎫⎛⎫+-⨯ ⎪ ⎪+⎝⎭⎝⎭==看电影打篮球所有情况. 方法二:不在家看书的概率=1-在家看书的概率=1-2211ππ1324π16⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=.13.下图是某算法程序框图,则程序运行后输出的结果是__________.第13题图【测量目标】循环结构程序框图.【考查方式】执行程序框图中的语句,求值. 【难易程度】容易 【参考答案】10【试题解析】0,1s n ==;代入到解析式当中,()01102s n =+-+==,;0123s =++=,3n =;() 3135s =+-+=, 4n =;51410s =++=,(步骤1) 此时9s >,输出.(步骤2)14.若椭圆12222=+by a x 的焦点在x 轴上,过点)21,1(作圆122=+y x 的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 . 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】结合直线方程及与椭圆的位置关系,利用椭圆的性质求椭圆方程. 【难易程度】较难【参考答案】14522=+y x 【试题解析】设过点(1,21)的直线方程为:当斜率存在时,21)1(+-=x k y , 根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=43-,直线与圆方程的联立可以得到切点的坐标(54,53),(步骤1)当斜率不存在时,直线方程为:x =1,根据两点A :(1,0),B :(54,53)可以得到直线:220x y +-=,则与y 轴的交点即为上顶点坐标(2,0)2=⇒b ,与x 轴的交点即为焦点1=⇒c ,根据公式5,5222=⇒=+=a c b a ,即椭圆方程为:14522=+y x .(步骤2) 三.选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.15(1).(坐标系与参数方程选做题)若曲线的极坐标方程为θθρcos 4sin 2+=,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为 . 【测量目标】坐标系与参数方程.【考查方式】将坐标方程与参数方程联立即可. 【难易程度】容易【参考答案】02422=--+y x y x 【试题解析】222cos ,sin ,,x y x y ρθρθρ==⎧⎨=+⎩ (步骤1) 根据已知θθρcos 4sin 2+==24,y xρρ+ (步骤2)化简可得:22224,y x x y ρ=+=+(步骤3) 所以解析式为:02422=--+y x y x .(步骤4)15(2).(不等式选讲)对于实数x y ,,若11x -…,21y -…,则12+-y x 的最大值为 .【测量目标】解对值不等式.【考查方式】利用绝对值不等式直接求解. 【难易程度】容易 【参考答案】5【试题解析】11x - (02x)⇒剟, 又21y - …13y⇒剟,综上:[](21)5,1x y -+∈-,因为取绝对值最大,即为5.四.本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设次人对A 和B 两种饮料没有鉴别能力. (1)求X 的分布列; (2)求此员工月工资的期望.【测量目标】离散型随机变量的分布列及期望. 【考查方式】利用古典概型计算概率,进而求解概率. 【难易程度】中等【试题解析】(1)选对A 饮料的杯数分别为0X =,1X =,2X =,3X =,4X =,其概率分布分别为:()044448C C 10C 70P X ===,()134448C C 161C 70P X ===,()224448C C 362C 70P X ===,()314448C C 163C 70P X ===,044448C C 1(4)C 70P X ===.(步骤1)(2)()1163616135002800210022807070707070E ξ⎛⎫=⨯+⨯+++⨯= ⎪⎝⎭.(步骤2) 17.(本小题满分12分)在△ABC 中,角C B A ,,的对边分别是c b a ,,,已知2sin 1cos sin CC C -=+. (1)求C sin 的值;(2)若8)(422-+=+b a b a ,求边c 的值.【测量目标】同角三角函数的基本关系,余弦定理,二倍角公式. 【考查方式】对等式进行化简,直接求出角度,利用余弦定理求出边长. 【难易程度】中等【试题解析】(1)已知2sin 1cos sin C C C -=+ 2sin 2sin 2cos 2sin 2cos 2cos 2sin22222CC C C C C C -+=-+∴(步骤1) 整理即有:012sin 22cos 22sin 02sin 2sin 22cos 2sin22=⎪⎭⎫⎝⎛+-⇒=+-C C C C C C C又C 为ABC △中的角,02sin≠∴C412sin 2cos 2cos 2sin 2412cos 2sin 212cos 2sin 222=++-⇒=⎪⎭⎫ ⎝⎛-⇒=-∴C C C C C CC C 43sin 432cos 2sin2=⇒=∴C C C (步骤2) (2)()8422-+=+b a b a()()2,2022044442222==⇒=-+-⇒=++--+∴b a b a b a b a (步骤3)又47sin 1cos 2=-=C C ,17cos 222-=-+=∴C ab b a c .(步骤4) 19.(本小题满分12分)设.22131)(23ax x x x f ++-= (1)若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围;(2)当20<<a 时,)(x f 在[]4,1上的最小值为316-,求)(x f 在该区间上的最大值.【测量目标】利用导数求函数的单调区间,利用导数求函数最值. 【考查方式】利用导数求解函数的单调区间和最值. 【难易程度】较难【试题解析】(1)已知()ax x x x f 2213123++-=,()22f x x x a '∴=-++,函数()x f 在⎪⎭⎫ ⎝⎛+∞,32上存在单调递增区间,即导函数在⎪⎭⎫⎝⎛+∞,32上存在函数值大于零的部分,2()2f x x x a '=-++ 的对称轴为12x =2()2f x x x a '∴=-++在1,2⎛⎫+∞ ⎪⎝⎭递减, 22()()20,39f x f a ''∴<=+>19a ∴>-.(步骤1)(2)已知0<a<2, ()x f 在[]4,1上取到最小值316-,而()22f x x x a '=-++的图象开口向下,且对称轴21=x ,(步骤2) ()111220,f a a '∴=-++=>()416422120,f a a '=-++=-<则必有一点[],4,10∈x 使得()00,f x '=此时函数()x f 在[]0,1x 上单调递增,在(]0,4x 单调递减,()0261221311>+=++-=a a f , ()11404641688(1)323f a a f ∴=-⨯+⨯+=-+<()131683404=⇒-=+-=∴a a f (步骤3)此时,由()20000202f x x x x '=-++=⇒=或1-(舍去), 所以函数()()3102max ==f x f .(步骤4) 20.(本小题满分13分)))(,(000a x y x P ±≠是双曲线E :)0,0(12222>>=-b a by a x 上一点,N M ,分别是双曲线E 的左、右顶点,直线PN PM ,的斜率之积为51. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于B A ,两点,O 为坐标原点,C 为双曲线上的一点,满足OC OA OB λ=+,求λ的值.【测量目标】双曲线的简单几何性质,直线与双曲线的位置关系.【考查方式】利用斜率关系求解双曲线方程,将直线方程与双曲线方程联立求解即可. 【难易程度】较难【试题解析】(1)已知双曲线E :()0,012222>>=-b a by a x ,()00,y x P 在双曲线上,M ,N分别为双曲线E 的左右顶点,所以()0,a M -,()0,a N ,直线PM ,PN 斜率之积为2220000022220001515PM PNy y y x y K K x a x a x a a a===⇒-=+-- .(步骤1) 而1220220=-b y a x ,比较得5305651222222==⇒=+=⇒=a c e a b a c a b .(步骤2) (2)设过右焦点且斜率为1的直线L :c x y -=,交双曲线E 于A ,B 两点,则不妨设()()2211,,,y x B y x A ,又()2121,y y x x ++=+=λλλ,点C 在双曲线E 上:()()()()222222121212122221221510255a y x y y x x y x a y y x x =-+-+-⇒=+-+λλλλλ①又联立直线L 和双曲线E 方程消去y 得:05104222=++-a c cx x (步骤3)由韦达定理得:452221a c x x +=,()222222121212545c c a c c x x c x x y y +-+=++-=代入①式得:22222271022a a a a a λλλλ+-+=⇒=,或 4.λ=-(步骤4) 21.(本小题满分14分)(1)如图,对于任一给定的四面体4321A A A A ,找出依次排列的四个相互平行的平面 4321,,,αααα,使得i i A α∈(i =1,2,3,4),且其中每相邻两个平面间的距离都相等; (2)给定依次排列的四个相互平行的平面4321,,,αααα,其中每相邻两个平面间的距离为1,若一个正四面体4321A A A A 的四个顶点满足:i i A α∈(i =1,2,3,4),求该正四面体4321A A A A 的体积.第21题图 【测量目标】三棱锥的体积,面面平行的判定. 【考查方式】由直线三等分点的性质求解. 【难易程度】较难【试题解析】(1)将直线41A A 三等分,其中另两个分点依次为32,A A '',连接3322,A A A A '',作平行于3322,A A A A ''的平面,分别过3322,A A A A '',即为32,αα.同理,过点41,A A 作平面41,αα即可得出结论. (步骤1)(2)现设正方体的棱长为a ,若则有,11==MN M A ,211aM A =,(步骤2) a E A D A E D 2521121111=+=,由于,1111111E D M A E A D A ⨯=⨯得,5=a ,(步骤3) 那么,正四面体的棱长为102==a d ,其体积为355313==a V (即一个棱长为a 的正方体割去四个直角三棱锥后的体积). (步骤4)第21题(2)图。
2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)
![2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)](https://img.taocdn.com/s3/m/3cfc1a356bd97f192379e921.png)
2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是(A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,PP (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年全国高考理科综合、理科数学试题及答案
![2011年全国高考理科综合、理科数学试题及答案](https://img.taocdn.com/s3/m/d88f78601ed9ad51f01df2c5.png)
2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212i i+-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i (2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2 (B)y=|x|+1 (C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为(A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ=(A )45- (B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为(A (C ) (B ) 2 (D )3(8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40(9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为 (A )310 (B )4 (C )163 (D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p(11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减 (C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x =-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
2011年全国高考理科数学试题及答案(含解析)-全国2
![2011年全国高考理科数学试题及答案(含解析)-全国2](https://img.taocdn.com/s3/m/04815a125acfa1c7ab00cc39.png)
绝密★启用前 2011年6月7日15:00~17:002011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回............。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷选择题在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()B P A P B A P ∙=∙ 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 一.选择题:本大题共12小题,每小题5分,共60分。
(注意:在试题卷上作答无效.........) (1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1=(A )-2i (B )-i (C )i (D )2i (2)函数y =2x (x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x(x ≥0)(C )y =24x (x ∈R ) (D )y =24x (x ≥0) (3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k = (A ) 8 (B ) 7 (C ) 6 (D ) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (6)已知直二面角βα--l , 点,α∈A ,l AC ⊥ C 为垂足,,β∈B l BD ⊥,D 为垂足,若2=AB ,1==BD AC ,则D 到平面ABC 的距离等于( )(A )23(B )33 (C ) 63 (D ) 1(7)某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B ) 10种 (C ) 18种 (D )20种 (8)曲线12+=-xey 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为(A )31 (B )21 (C )32(D )1 (9) 设)(x f 是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=,则=-)25(f(A ) 21-(B )41- (C )41 (D )21(10)已知抛物线C: x y 42=的焦点为F ,直线42-=x y 与C 交于A 、B 两点,则=∠AFB COS ( ) (A)54 (B) 53 (C) 53- (D) 54- (11) 已知平面α截一球面得圆M,过圆心M 且与α成 二面角的平面β截该球面得N 。
2011年江西高考数学答案(理科)
![2011年江西高考数学答案(理科)](https://img.taocdn.com/s3/m/e4a189395727a5e9856a61f1.png)
性格探索报告综合你在四个维度上的倾向,总体来说,你的类型是:挑战者型——不间断地尝试新的挑战你的特点:你是敏锐的发现者,善于看出眼前的需要,并迅速做出反应来满足这种需要,天生爱揽事并寻求满意的解决办法。
你精力充沛,积极解决问题,很少被规则或标准程式框住。
能够想出容易的办法去解决难办的事情,以此使自己的工作变得轻松愉快。
o你是天生的乐天派,积极活跃,随遇而安,乐于享受当下。
对任何新鲜的事物、活动、食物、服饰、人等都感兴趣,并不断地寻求新的挑战。
o你好奇心很强,思路开扩,容易接受事物,倾向于通过逻辑分析和推理做出决定,不会感情用事。
如果形势需要,你会表现出坚韧的意志力。
o你偏爱灵活地处理实际情况,而不是根据计划办事。
你长于行动,而非言语,喜欢处理各种事情,喜欢探求新方法。
o你具有创造性和适应性,有发明的才智和谋略,能够有效地缓解紧张气氛,并使矛盾双方重归于好。
o你性格外向,友好而迷人,很受欢迎,并且能在大多数社交情况中很放松自如。
∙岗位特质:o能自然地与很多人接触和相互影响;每天能遇到不同的和有趣的事o能运用你敏锐的观察力及接收、记忆信息的能力o能发挥你“救火”的能力,利用直接的经验,寻找解决问题的最佳方案o工作充满挑战,允许你用冒险的方式处理紧急情况o在没有太多的规则约束的环境中与其他现实、有趣的人一起工作,完成自己的任务后可以享受自由的时间o工作可以接触真实的人和事务,进行有形产品的制造或服务,而不是理论和思想领域的o能以自己习惯和认定为必要的方式安排自己的工作,而不是依照别人的标准∙不足和改进:o无法看到当下不存在的机会和选择,缺乏前瞻性和预见性o你很难独自工作,尤其是长时间独自工作;不善于事先做计划和准备,不愿制定长远目标,难以达到最高境界,因此,建议你注意对自己及自己的工作进行安排和规划,有步骤有阶段地实现目标,同时发展持之以恒的品质。
o你的注意力完全集中在有趣的活动上,喜欢不断地接受新的挑战,不愿意在目前沉闷的工作中消磨时间,难以估计自己行为带来的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:1.答案:C 解析: i i i i i i i z -=--=+=+=212221222.答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A3.答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x4.答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f 5.答案:A 解析:11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S6.答案:C 解析: ()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121第一组变量正相关,第二组变量负相关。
7.答案:D 解析:()()()()()()()8125***2011,12008420113906258,781257,156256,31255,6254,5=∴-=-======f f f f f f x f x 8.答案:C解析:平面321,,ααα平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P =如果3221P P P P =,同样是根据两个三角形全等可知21d d =9.答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是⎪⎪⎭⎫ ⎝⎛⋃⎪⎪⎭⎫ ⎝⎛-33,00,33 10.答案:A 解析:根据小圆 与大圆半径1:2的关系,找上下左右四个点,根据这四个点的位置,小圆转半圈,刚好是大圆的四分之一,因此M 点的轨迹是个大圆,而N 点的轨迹是四条线,刚好是M 产生的大圆的半径。
第II 卷二.填空题:本大题共4小题,每小题5分,共20分.11.答案:。
60(3π) 解析:根据已知条件2)()2(-=-∙+→→→→b a b a ,去括号得:242cos 224222-=⨯-⨯⨯+=-∙+→→→→θb b a a , 。
60,21cos ==⇒θ(PS :这道题其实2010年湖南文科卷的第6题翻版过来的,在我们寒假班的时候也讲过一道类似的,在文科讲义72页的第2题。
此题纯属送分题!)12.答案:1613 解析:方法一:不在家看书的概率=161321-4122=⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯=+ππππ所有情况打篮球看电影 方法二:不在家看书的概率=1—在家看书的概率=1—161341-2122=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛⨯πππ (PS: 通过生活实例与数学联系起来,是高考青睐的方向,但在我们春季班讲义二第一页的第五题已经做过类似题型,那么作为理科生,并且是上过新东方春季班课程的理科生,是不是应该作对,不解释。
)13.下图是某算法程序框图,则程序运行后输出的结果是__________.10. 解析:s=0,n=1;带入到解析式当中,s=0+(-1)+1=0,n=2;s=0+1+2=3, n=3; S=3+(-1)+3=5, n=4;S=5+1+4=10,此时s>9,输出。
(PS:此题实质是2010江苏理科卷第7题得翻版,同时在我们寒假题海班,理科讲义的第200页的第6题也讲过相似的。
所以童鞋们再次遇到,应该也是灰常熟悉的。
并且框图本来就是你们的拿手菜,所以最对也不觉奇怪。
)14.答案:14522=+y x 解析:设过点(1,21)的直线方程为:当斜率存在时,21)1(+-=x k y , 根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=43-,直线与圆方程的联立可以得到切点的坐标(54,53),当斜率不存在时,直线方程为:x=1,根据两点A :(1,0),B :(54,53)可以得到直线:2x+y-2=0,则与y 轴的交点即为上顶点坐标(2,0)2=⇒b ,与x 轴的交点即为焦点1=⇒c ,根据公式5,5222=⇒=+=a c b a ,即椭圆方程为:14522=+y x (PS:此题可能算是填空题,比较纠结的一道,因为要理清思路,计算有些繁琐。
但是,是不是就做不出来呢,不是的,在我们寒假题海班的时候讲过一道与此相似的题型,也就在理科教材第147页第23题。
所以最纠结的一道高考题也不过如此,你们还怕什么?)三.选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.15(1).答案:02422=--+y x y x 。
解析:做坐标系与参数方程的题,大家只需记住两点:1、θρθρsin ,cos ∙=∙=y x ,2、222y x +=ρ即可。
根据已知θθρcos 4sin 2+==,4y 2,42222y x x xy+=+=+∙ρρρ化简可得:所以解析式为:2422=--+y x y x15 (2).此题,看似很难,但其实不难,首先解出x 的范围,20≤≤x ,再解出y 的范围,31≤≤y ,最后综合解出x-2y+1的范围[]1,5-,那么绝对值最大,就去5(PS: 此题作为最后一题,有失最后一题的分量,大家从解题步骤就可看出。
所以高考注重的还是基础+基础!)四.本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解答:(1)选对A 饮料的杯数分别为0=X ,1=X ,2=X ,3=X ,4=X ,其概率分布分别为: ()7010484404==C C C P ,()70161483414==C C C P ,()70362482424==C C C P ,()70163481434==C C C P ,()7014484404==C C C P 。
(2)()2280210070170167036280070163500701=⨯⎪⎭⎫⎝⎛+++⨯+⨯=E ζ。
17.解:(1)已知2sin1cos sin CC C -=+ 2sin 2sin 2cos 2sin 2cos 2cos 2sin22222CC C C C C C -+=-+∴ 整理即有:012sin 22cos 22sin 02sin 2sin 22cos 2sin22=⎪⎭⎫⎝⎛+-⇒=+-C C C C C C C 又C 为ABC ∆中的角,02sin≠∴C412sin 2cos 2cos 2sin 2412cos 2sin 212cos 2sin 222=++-⇒=⎪⎭⎫ ⎝⎛-⇒=-∴C C C C C CC C 43sin 432cos 2sin2=⇒=∴C C C (2)()8422-+=+b a b a()()2,2022044442222==⇒=-+-⇒=++--+∴b a b a b a b a又47sin 1cos 2=-=C C ,17cos 222-=-+=∴C ab b a c 18..解:(1)当a=1时,332213,2,21a b a b a b +=+==+=,又{}{}n n b a , 为等比数列,不妨设{}n a 公比为1q ,由等比数列性质知:()322312232)2(a a b b b +=+⇒=,同时又有()()()()22322322,121212112112113112±=⇒+=+⇒+=+⇒==q q q q a q a q a a q a a 所以:()1,221≥±=-n a n n(2){}n a 要唯一,∴当公比01≠q 时,由332213,2,21a b a b a b +=+==+=且⇒=3122b b b ()()()01343121212121=-+-⇒++=+a aq aq aq a aq ,0>a ,0134121=-+-∴a aq aq 最少有一个根(有两个根时,保证仅有一个正根)()()()014013442≥+⇒≥--∴a a a a a ,此时满足条件的a 有无数多个,不符合。
∴当公比01=q 时,等比数列{}n a 首项为a ,其余各项均为常数0,唯一,此时由()()()01343121212121=-+-⇒++=+a aq aq aq a aq ,可推得31,013==-a a 符合综上:31=a 。
19.解:(1)已知()ax x x x f 2213123++-=,()a x x x f 22'++-=∴,函数()x f 在⎪⎭⎫ ⎝⎛+∞,32上存在单调递增区间,即导函数在⎪⎭⎫ ⎝⎛+∞,32上存在函数值大于零的部分,91023232322'->⇒>++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛∴a a f(2)已知0<a<2, ()x f 在[]4,1上取到最小值316-,()a x x x f 22'++-=的图像开口向下,且对轴21=x ,(),022111'>=++-=∴a a f (),012224164'<-=++-=a a f 则必有一点[],4,10∈x 使得(),00'=x f 此时函数()x f 在[]0,1x 上单调递增,在[]4,0x 单调递减,()0261221311>+=++-=a a f ,()083408162164314<+-=+⨯+⨯-=∴a a f()131683404=⇒-=+-=∴a a f此时,由()()舍去或1-20200200'=⇒=++-=x x x x f ,所以函数()()3102max ==f x f 20.解:(1)已知双曲线E :()0,012222>>=-b a by a x ,()00,y x P 在双曲线上,M ,N 分别为双曲线E 的左右顶点,所以()0,a M -,()0,a N ,直线PM ,PN 斜率之积为1551220220220200000=-⇒=-=-∙+=∙ay a x a x y a x y a x y K K PNPM 而1220220=-b y a x ,比较得5305651222222==⇒=+=⇒=a c e a b a c a b (2)设过右焦点且斜率为1的直线L :c x y -=,交双曲线E 于A ,B 两点,则不妨设()()2211,,,y x B y x A ,又()2121,y y x x OB OA OC ++=+=λλλ,点C 在双曲线E 上:()()()()222222121212122221221510255a y x y y x x y x a y y x x =-+-+-⇒=+-+λλλλλ*(1)又 联立直线L 和双曲线E 方程消去y 得:05104222=++-a c cx x由韦达定理得:452221a c x x +=,()222222121212545c c a c c x x c x x y y +-+=++-=代入(1)式得:4-027127222222==⇒=+-+λλλλλ,或a a a a a21.(本小题满分14分)(1)如图,对于任一给定的四面体4321A A A A ,找出依 次排列的四个相互平行的平面 4321,,,αααα,使 得i i A α∈(i=1,2,3,4),且其中每相邻两个平面间 的距离都相等;(2)给定依次排列的四个相互平行的平面4321,,,αααα,其中每相邻两个平面间的距离为1,若一个正四面体4321A A A A 的四个顶点满足:i i A α∈(i=1,2,3,4),求该正四面体4321A A A A 的体积.解:(1)将直线41A A 三等分,其中另两个分点依次为32,A A '',连接3322,A A A A '',作平行于3322,A A A A ''的平面,分别过3322,A A A A '',即为32,αα。