成都树德中学数学有理数单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)
1.阅读下面的材料:
如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.
请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.
(1)请你在数轴上表示出A.B.C三点的位置:
(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;
(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,
试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.
【答案】(1)解:如图所示:
(2)5;﹣5或3
(3)﹣1+x
(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:
根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,
∴CA﹣AB=(5+3t)﹣(2+3t)=3,
∴CA﹣AB的值不会随着t的变化而变化
【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);
设D表示的数为a,
∵AD=4,
∴|﹣1﹣a|=4,
解得:a=﹣5或3,
∴点D表示的数为﹣5或3;
故答案为5,﹣5或3;
( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;
故答案为﹣1+x;
【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.
2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.
(1)直接写出A、B两点之间的距离;
(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.
(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.
【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16
(2)解:设点P表示的数为x.分两种情况:
①当点P在线段AB上时,
∵AP= PB,
∴x+12=(4﹣x),
解得x=﹣8;
②当点P在线段BA的延长线上时,
∵AP= PB,
∴﹣12﹣x=(4﹣x),
解得x=﹣20.
综上所述,点P表示的数为﹣8或﹣20
(3)解:分两种情况:
①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,
此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,
∵OP=4OQ,
∴12﹣5t=4(4﹣2t),
解得t=,符合题意;
②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,
此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,
∵OP=4OQ,
∴|12﹣5t|=4×3(t﹣2),
∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,
解得t=,符合题意;或t=,不符合题意舍去.
综上所述,当OP=4OQ时的运动时间t的值为或秒
【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据
AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.
3.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”
(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=________;
另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=________;
你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿
求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离. ________(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q 所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣=________;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ________;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M
()与N()之间和点C(-1.5)与D(-3.5)之间的距离.________
【答案】(1)解:8;2;有道理;点M与点N之间的距离为
点C与点D之间的距离为
(2)解:8;2;有道理;点M与点N之间的距离为点C与点的之间的距离为
【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之和。

原点同侧两点之间的距离即绝对值大的减去绝对值小的。

(2)根据数轴上两点之间距离的意义,小颖说的也有意义。

列出等式代数求值即可。

4.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:
(1)|﹣4+6|=________;|﹣2﹣4|=________;
(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;
(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;
(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;
(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.
【答案】(1)2;6
(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.
(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;
(4)1;9
(5)1;2n2+3n
【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;
(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣
1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;
(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1
当a=1时
原式=3+2+5+4+……+(2n+1)+2n
=2+3+4+5+……+2n+(2n+1)
=
= 2n2+3n
故:答案为1, 2n2+3n .
【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;
(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;
(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;
(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;
(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。

5.观察下列等式:
第1个等式:a1=,
第2个等式:a2=,
第3个等式:a3=,

请解答下列问题:
(1)按以上规律列出第5个等式:a5=________=________;
(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);
(3)求a1+a2+a3+…+a2019的值.
【答案】(1);
(2);
(3)解:a1+a2+a3+…+a2019=+…+

【解析】【解答】第1个等式:a1=,
第2个等式:a2=,
第3个等式:a3=,
∴第4个等式:a4=,
第5个等式:a5=,
故答案为: (2)第n个等式:
a n=
故答案为:;
【分析】(1)根据规律,得出第5个等式:a5=;(2)根据规
律,得出第5个等式:a n=;(3)将提出后,括号里进行加减,即可求出结果.
6.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.
利用数轴,根据数形结合思想,回答下列问题:
(1)已知|x|=3,则x的值是________.
(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;
(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________
(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;
(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.
(6)|x+1|﹣|x﹣3|的最大值为________.
【答案】(1)
(2)4;3
(3)|x﹣1|
;|x+3|
(4)8
(5)7;6
(6)4
【解析】【解答】解:(1)∵,则;
故答案为:;(2),,
故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;
数轴上表示x和-3两点之间的距离为:;
故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;
故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;
故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,
|x+1|-|x-3|的最大值为4;
故答案为:4.
【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.
7.先阅读下面的材料,再解答后面的各题:
现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).
Q W E R T Y U I O P A S D
12345678910111213
F G H J K L Z X C V B N M
14151617181920212223242526
将明文转成密文,如:,即R变为L;,即A 变为S.
将密文转换成明文,如:,即X变为P;13 3×(13-8)-1=14,即D变为F.
(1)按上述方法将明文NE T译为密文.
(2)若按上方法将明文译成的密文为DWN,请找出它的明文.
【答案】(1)解:
即NET密文为MQP.
(2)解:
即密文DWN的明文为FYC .
【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可.
8.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.
(1)若b=-4,则a的值为________.
(2)若OA=3OB,求a的值.
(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.
【答案】(1)10
(2)解:当A在原点O的右侧时(如图):
设OB=m,列方程得:m+3m=14,
解这个方程得,,
所以,OA= ,点A在原点O的右侧,a的值为 .
当A在原点的左侧时(如图),
a=-
综上,a的值为± .
(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=- .
当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.
当点A在原点的左侧,点B在点C的右侧时,图略,c= .
当点A在原点的左侧,点B在点C的左侧时,图略,c=8.
综上,点c的值为:±8,± .
【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的
值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四
种情况讨论计算即可.
9.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动
点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为
t秒.
(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点
P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.
①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.
②当点P是线段AQ的三等分点时,求t的值.
【答案】(1)9;
(2)解:①根据题意,得:(1+2)t=12,
解得:t=4,
∴P回到A需8s,当t=8时,点P与点A重合,此时点Q表示的数为1;
②P与Q重合前(即t<4):
当2AP=PQ时,有2t+4t+t=12,解得t=;
当AP=2PQ时,有2t+t+t=12,解得t=3;
P与Q重合后(即4<t<8):
当AP=2PQ时,有2(8﹣t)=2(t﹣4),解得t=6;
当2AP=PQ时,有4(8﹣t)=t﹣4,解得t=;
综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.
【解析】【解答】解:(1)由题意知,点B表示的数是﹣3+12=9,点P表示的数是﹣3+2t,
故答案为:9,﹣3+2t;
【分析】(1)根据两点间的距离求解可得;(2)①根据重合前两者的路程和等于AB的长度列方程求解可得;②分点P与点Q重合前和重合后,依据点P是线段AQ的三等分点线段间的数量关系,并据此列出方程求解可得.
10.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:
(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;
(3)利用数轴找出,当取最小值时,的范围是________.
【答案】(1)-4,-3,-2,-1,0,1,2
(2)-5或4
(3)
【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,
又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,
∴当数轴上表示x的点在表示-4的点的左侧时,,不符合题意,当数轴上表示x的点在表示2的点的右侧时,,不符合题意,
当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,
,符合题意,
∴,
∴使,整数是-4,-3,-2,-1,0,1,2.
故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,
∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,
∴x=-5符合题意,
当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,
∴x=4符合题意,
综上所述:当时,的值是:-5或4.
故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,
∴当数轴上表示x的点在表示-7的点的左侧时,,
当数轴上表示x的点在表示4的点的右侧时,,
当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,

∴当取最小值时,.
故答案是:.
【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.
11.大家知道,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|= .根据
以上信息,回答下列问题:
(1)数轴上表示2和5的两点之间的距离是________;数轴上表示-2和-5的两点之间的距离是________.
(2)点A、B在数轴上分别表示实数x和-1.
①用代数式表示A、B两点之间的距;
②如果 ,求x的值.
(3)直接写出代数式的最小值.
【答案】(1)3;3
(2)解:①|AB|=|x-(-1)|=|x+1|,②如果|AB|=2,则|x+1|=2,x+1=2或x+1=-2,解得x=1或x=-3.
(3)解:∵代数式|x+1|+|x-4|表示数轴上有理数x所对应的点到4和-1所对应的两点距离之和,∴当-1≤x≤4时,代数式|x+1|+|x-4|的最小值是:|4-(-1)|=5.
【解析】【解答】解:(1)数轴.上表示2和5的两点之间的距离是:|5-2|=3;数轴_上表示-2和-5的两点之间的距离是:|(-2)-(-5)|=|-2+5|= |3|=3.
【分析】(1)根据题意,可得数轴上表示2和5的两点之间的距离是:|5-2|=3 ;数轴上表示-2和-5的两点之间的距离是:|(-2)-(-5)|=3;(2)①根据点A、B在数轴上分别表示实数x和-1,可得表示A、B两点之间的距离是:|x-(-1)|=|x+1|;②如果|AB|=2,则|x+1|=2 ,据此求出x的值是多少即可.(3)根据题意,可得代数式|x+1|+|x-4|表示数轴上有理数x所对应的点到4和-1所对应的两点距离之和,所以当-1≤x≤4时,代数式|x+1|+|x-4|的最小值是表示4的点与表示-1的点之间的距离,即代数式|x+1|+|x-4|的最小值是5.
12.阅读理解:
若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点(点C在线段AB上).
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.
知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.
(1)数________所表示的点是(M,N)的好点;
(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?
【答案】(1)2
(2)解:设点P表示的数为y,分两种情况:
①P为【A,B】的好点.
由题意,得y﹣(﹣20)=2(40﹣y),
解得y=20,
t=(40﹣20)÷2=10(秒);
②P为【B,A】的好点.
由题意,得40﹣y=2[y﹣(﹣20)],
解得y=0,
t=(40﹣0)÷2=20(秒);
综上可知,当t为10秒或20秒时,P、A和B中恰有一个点为其余两点的好点
【解析】【解答】(1)设所求数为x,由题意得
x﹣(﹣2)=2(4﹣x),
解得x=2
【分析】(1)设所求数为x,根据好点的定义列出方程x-(-2)=2(4-x),解方程即可(2)根据好点的定义可知分两种情况:①P为【A,B】的好点;②P为【B,A】的好点.设点P表示的数为y,根据好点的定义列出方程,解得t值即可.。

相关文档
最新文档