有限元分析方法
有限元分析方法
有限元分析方法有限元分析(Finite Element Analysis, FEA)是一种数值分析方法,用于解决物理问题的近似解。
它基于将有限元区域(即解释对象)分解成许多简单的几何形状(有限元)并对其进行数值计算的原理。
本文将深入探讨有限元分析的原理、应用和优点。
有限元分析的原理基于弹性力学理论和数值计算方法。
它通过将解释对象分解为有限个简单的几何区域(有限元)和节点,通过节点之间的连接来建立模型。
这些节点周围的解释对象区域称为“单元”,并且通过使用单元的形状函数近似解释对象的形状。
每个单元都有一个与之相连的节点,通过对每个单元的受力进行计算,可以得到整个解释对象的受力分布。
然后,利用一系列运算和迭代,可以计算出解释对象的位移、应力和变形等相关参数。
有限元分析的应用范围广泛,从结构力学、热传导、电磁场分析到流体力学等各个领域。
在结构力学中,它被用于分析各种结构的静力学、动力学和疲劳等性能。
在热传导领域,它可以用于研究物体内部的温度分布和传热性能。
在电磁场分析中,它可用于计算复杂电磁场下的电场、磁场和电磁场耦合问题。
在流体力学中,有限元方法可以解决各种流体流动、热传递和质量转移问题。
有限元分析的优点之一是可以处理各种复杂边界条件和非线性材料特性。
它可以考虑到不同材料的非线性本质,例如弹塑性和接触等问题。
另外,有限元方法还可以适应任意形状和尺寸的几何模型,因此非常适用于复杂工程问题的建模与分析。
有限元分析的使用需要一定的专业知识和经验。
首先,需要将解释对象抽象成几何模型,并进行细分和离散化。
其次,需要选择适当的几何元素和材料模型,以及合适的边界条件和加载方式。
然后,需要定义求解器和数值方法,并使用计算机程序对模型进行计算。
最后,需要对结果进行后处理和验证,以确保其准确性和可靠性。
总的来说,有限元分析是一种强大的工程分析工具,在解决各种物理问题方面有广泛的应用。
它通过将复杂的问题简化为简单的有限元模型,通过数值计算的方法获得近似解。
有限元分析方法
有限元法的基本概念
• 物体离散化(核心思想)
将某个工程结构离散为由各种单元组成的计算 模型,离散后单元与单元之间利用单元的节点相 互连接起来,用有限元分析计算的结果只是近似 的,划分单元的数目越多而又合理,则所得结果
与实际情况越接近。 ANSYS中的单元举例
有限元法的基本概念
• 单元特性分析
1.选择位移模式 在有限元中,选择节点位移作为基本未知量时
中的关键一步。利用弹性力学中的几何方程和物 理方程建立力和位移的方程式,从而导出单元刚 度矩阵,这是有限元法的基本步骤之一。
有限元法的基本概念
• 单元特性分析
3.计算等效节点力 对于实际的连续体,力是从单元的公共边界传
递到另一单元中去;物体离散化后,假定力是通 过单元节点从一个单元传递到另一个单元,因而 这种作用在单元边界上的表面力、体积力或集中 力都需要等效的移到节点上去。
有限元法的软件简介
3. ANSYS
ANSYS软件是融结构、流体、电场、磁场、声场分析于一 体的大型通用有限元分析软件。由世界上最大的有限元分 析软件公司之一的美国ANSYS开发,它能与多数CAD软件 接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等, 是现代产品设计 中的高级CAE工具之一。ANSYS有限元软件包是一个多用 途的有限元法计算机设计程序,可以用来求解结构、流体 、电力、电磁场及碰撞等问题。因此它可应用于以下工业 领域: 航空航天、汽车工业、生物医学、桥梁、建筑、 电子产品、重型机械、微机电系统、运动器械等。
有限元法的软件求解步骤
• ANSYS有限元软件模块及功能
• 2分存进分。.求析盘入析解前点结,分选模处击果退析项块理快。出求、AS阶捷解载PONreL段工模荷SUp12345678YrT完 具块数........oS结结结动热电流声IOc成区。据软eN构构构力分磁体场s建的在和件s静动非学析场动分o模S该载提r,力力线分分力析A以阶荷V供点分学性析析学E后段步的_击析分分分D,,选分B实析析析将用用项析用前户户,类菜处可可然型单理以以后如项模在定 开下中块求义始:的生解分有S成o阶析限lu的段类元ti模o获型求n型,得、解 9.压电分析
有限元分析方法
有限元分析方法有限元分析方法是一种在数字计算机上定量分析变形、弹性以及现代结构的受力情况的方法。
有限元分析方法的发展日趋完善,是加强建筑物结构抗震能力的有力工具。
一、有限元分析方法的概念有限元分析方法是一种基于有限元分析原理的数学方法,它是一种用于计算低维受力系统的通用数值方法,尤其是用于非线性力学系统的数值分析方法。
在有限元数值分析中,计算对象由许多有限个结构物构成,这些结构物称为有限元。
每个有限元都有一定的体积和形状,如线元、面元和体元。
有限元分析的基本思想就是将复杂的物理结构模型分解为若干较小的有限元模型,再将这些小的有限元模型组合成一个完整的物理模型,并对其进行连续性研究,从而精确地确定受力构件的变形、位移、应力、变形能量等物理参数。
二、有限元分析方法在工程中的应用有限元分析方法可以用于结构分析、计算机辅助设计和工程校核。
有限元分析方法可以用于预测结构的受力情况、拓扑设计和优化,这对于重要的结构失效的防护和抗震性能的提高有重要意义。
在计算机辅助设计领域,有限元分析方法可以用于几何形状优化,减轻材料重量并提高刚度,这是一种非常有效的技术。
在建筑工程中,有限元分析方法可以用于计算建筑物的受力情况,确定其最大荷载量,为建筑物的改造和重建提供参考。
三、有限元分析方法的发展趋势随着计算机技术的发展,有限元分析方法的发展也在不断推进。
近年来,以网格化数值计算为基础的有限元分析方法已经取得了巨大的进展,如实施大型网格化分析、更加准确和可靠的模型细分、更准确的网格分解技术、更有效的数值求解技术等。
这些技术将使有限元分析技术更容易、更有效地应用于计算机辅助设计、工程校核和抗震分析等领域。
总之,有限元分析方法是一种重要的力学分析方法,它在结构分析、计算机辅助设计以及建筑物抗震性能的研究中都起着重要作用。
随着计算机技术的发展,有限元分析方法的发展也在不断发展,为实现地震安全建筑的建设做出贡献。
有限元分析法
2个移动自由度 1个转动自由度
3个移动自由度 (平面杆单元2个) 3个移动自由度(平面梁2个) 3个转动自由度(平面梁1个) 3个移动自由度(平面2个) 3个转动自由度(平面1个)
梁结构
弹簧结构
网格划分方法
. . .. . ..
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
低阶单 元
更高阶单元
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
面单元
-平面应力 分析是用来分析诸如承受面内载荷的平 板、承受压力或远离中心载荷的薄圆盘等结构。
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
2 nodes
. .
A
. .
..
B
1 node
. .
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第2节 有限元建模方法
Finite element model
Input data
材料力学中的有限元方法分析
材料力学中的有限元方法分析材料力学是研究物质初始状态至最终破坏状态之间的力学行为及其规律的科学。
有限元分析是一种数值计算方法,可以求解各种工程问题的数学模型。
有限元方法在材料力学研究中有着重要的应用,本文将从有限元方法的基本原理、材料力学中的有限元分析、有限元模拟在材料力学中的应用等方面进行分析。
一、有限元方法的基本原理有限元方法是一种通过建立复杂结构的有限元模型,将一个复杂的连续问题转化为离散问题来求解的方法。
其基本思想是将一个连续物体分割成很多小的单元,使用一些简单的解析方法求解每个小单元内的力学问题,然后将所有小单元的解组合在一起来求解整体力学问题。
有限元方法求解的过程分为以下基本步骤:1.建立有限元模型2.离散化3.施加约束4.建立刚度矩阵和荷载向量5.求解未知量二、材料力学中的有限元分析材料力学中的有限元分析是指通过有限元方法对材料力学问题进行分析、计算和评估的方法。
材料力学问题中的目标是通过施加荷载或外界力,来得到物体内部的应力和应变状态,以及其随时间和载荷变化的规律。
在建立材料力学有限元模型时,需要考虑以下因素:1.应力集中和应变集中的位置和程度2.物理边界和几何结构3.材料的力学性质和力学参数材料力学中的有限元分析包含以下几个方面:1.静态分析:研究物体在静态等效荷载下的应力状态,计算物体的静态变形。
2.动态分析:研究物体在动态载荷下的应力和应变状态,计算物体的动力响应。
3.疲劳分析:研究物体在周期性载荷下的损伤状态、损伤机理和寿命预估。
4.热力耦合分析:研究物体在温度场和应力场的共同作用下的应力和应变状态。
5.多物理场分析:研究物体在电、磁、声、液、气、红外、光、辐射等多个物理场的共同作用下的应力和应变状态。
三、有限元模拟在材料力学中的应用有限元模拟在材料力学中的应用范围非常广泛,包括了以下几个方面:1.材料的结构设计和分析2.材料的性质和参数的测试和评估3.材料的制造和加工工艺的模拟4.材料的破坏和损伤机理的研究5.材料的寿命评估和振动疲劳分析最终,有限元分析的结果可以在材料设计、材料优化和制造流程等方面提供准确的数据支持,帮助人们更好地理解材料的力学行为和性质,促进材料科学的发展。
有限元分析方法
有限元分析方法有限元分析是一种工程数值分析方法,它通过将复杂的结构分割成许多小的有限元素,然后利用数学方法对这些元素进行计算,最终得出整个结构的应力、变形等物理量。
有限元分析方法在工程设计、材料研究、结构优化等领域有着广泛的应用。
有限元分析方法的基本思想是将一个连续的结构分割成有限个小的单元,每个单元都是一个简单的几何形状,比如三角形、四边形等。
然后在每个单元内部建立一个数学模型,利用数学方法对这些单元进行计算,最终将它们组合起来得到整个结构的应力、变形等物理量。
有限元分析方法的核心是建立数学模型。
在建立数学模型的过程中,需要考虑结构的材料性质、边界条件、加载情况等因素。
通过合理地选择单元类型、网格划分、数学模型等参数,可以得到准确的分析结果。
有限元分析方法的优点之一是可以处理复杂的结构。
由于有限元分析方法将结构分割成小的单元,因此可以处理各种复杂的结构,比如曲面、异形、空腔等。
这使得有限元分析方法在工程设计中有着广泛的应用。
另外,有限元分析方法还可以进行结构优化。
通过改变单元类型、网格划分、边界条件等参数,可以对结构进行优化,使得结构在满足强度、刚度等要求的前提下,尽可能地减小材料消耗,降低成本。
当然,有限元分析方法也有一些局限性。
比如,在处理非线性、大变形、大变位等问题时,需要考虑材料的非线性特性、接触、接触、摩擦等效应,这会增加分析的复杂度。
另外,有限元分析方法的结果也受到网格划分、单元类型等参数的影响,需要谨慎选择这些参数。
总的来说,有限元分析方法是一种强大的工程数值分析方法,它在工程设计、材料研究、结构优化等领域有着广泛的应用。
通过合理地建立数学模型、选择合适的参数,可以得到准确的分析结果,为工程设计和科学研究提供有力的支持。
有限元分析(FEA)方法
单元形函数( 单元形函数(续)
遵循: 遵循 • DOF值可以精确或不太精确地等于在节点处的真实解,但单 DOF值可以精确或不太精确地等于在节点处的真实解 值可以精确或不太精确地等于在节点处的真实解, 元内的平均值与实际情况吻合得很好。 元内的平均值与实际情况吻合得很好。 • 这些平均意义上的典型解是从单元DOFs推导出来的(如,结 这些平均意义上的典型解是从单元DOFs推导出来的 DOFs推导出来的( 构应力,热梯度)。 构应力,热梯度)。 • 如果单元形函数不能精确描述单元内部的DOFs,就不能很好 如果单元形函数不能精确描述单元内部的DOFs DOFs, 地得到导出数据, 地得到导出数据,因为这些导出数据是通过单元形函数推导 出来的。 出来的。
La-17
Definition
外载荷与结点的平衡方程
q ( li −1 + li ) 2 EA( u i − ui −1 ) li −1
为第i个结点上承受的外载荷 为第 个结点上承受的外载荷
−
EA( u i +1− ui ) li
=
q ( li −1 + li ) 2
2001年10月1日
ANSYS培训教程 – 版本 5.5 – XJTU MSSV(001128)
历史典故 ANSYS是随计算机硬件而发展壮大的 ANSYS最早是在 是随计算机硬件而发展壮大的。 最早是在1970 早期 ANSYS是随计算机硬件而发展壮大的。ANSYS最早是在1970 年发布的,运行在价格为$ 000,000的CDC、 Univac和 年发布的,运行在价格为$1,000,000的CDC、由Univac和IBM 生产的计算机上,它们的处理能力远远落后于今天的PC PC机 生产的计算机上,它们的处理能力远远落后于今天的PC机。一 台奔腾PC机在几分钟内可求解5000 5000的矩阵系统 PC机在几分钟内可求解5000× 的矩阵系统, 台奔腾PC机在几分钟内可求解5000×5000的矩阵系统,而过去 则需要几天时间。 则需要几天时间。
有限元法概述
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。
ABAQUS有限元分析方法
ABAQUS有限元分析方法有限元分析是一种将连续问题离散化成有限数量的元素,通过求解这些离散化的元素的行为,来推断整个问题的行为的数值分析方法。
ABAQUS就是一种基于有限元方法的求解器,它使用了计算机模拟技术,可以求解各种工程问题,如结构力学、热力学、流体力学等。
建模是有限元分析的第一步,ABAQUS提供了多种建模技术和工具来帮助用户创建复杂的几何模型。
用户可以使用ABAQUS提供的几何建模工具来创建三维模型,也可以导入其他计算机辅助设计(CAD)软件生成的模型。
在建模过程中,用户还可以定义材料属性、加载条件和约束等。
一旦建立了几何模型,用户就可以定义有限元网格。
有限元网格是将模型离散化为有限数量的单元的过程。
ABAQUS提供了多种类型的单元,如线性和非线性、静力学和动力学等。
用户可以根据具体的问题选择适当的单元类型。
通常,使用更精细的网格可以提高解的精度,但也会增加计算时间和内存需求。
在模型离散化后,用户需要定义材料特性和加载条件。
ABAQUS支持多种材料模型,如线性弹性、非线性材料、塑性材料等。
用户可以根据材料的真实性质选择适当的材料模型,并提供相关参数。
加载条件是指施加到模型上的外部载荷或约束。
用户可以定义各种加载条件,如受力、温度、位移约束等。
建立好模型后,用户需要选择适当的求解方法。
ABAQUS提供了多种求解方法,如直接方法、迭代方法、稳定方法等。
用户可以根据问题的特点选择适合的求解方法,并提供求解的控制参数。
完成求解后,用户可以对结果进行后处理。
ABAQUS提供了丰富的后处理工具,可以可视化模型的应力、应变、位移等结果。
用户可以进一步分析和评估模型的响应。
在使用ABAQUS进行有限元分析时,一些常见的技巧和注意事项包括:-使用合适的网格:细化网格可以提高解的精度,但需要更多的计算资源。
-使用合适的材料模型:根据材料的真实性质选择适当的材料模型,并提供正确的参数。
-检查模型:在求解之前,检查模型的几何和网格是否正确,以及加载条件是否合理。
常用的有限元分析方法
常用的有限元分析方法1、结构静力分析结构静力分析用来分析由于稳态外部载荷引起的系统或部件的位移、应力、应变和力。
静力分析很适合于求解惯性及阻力的时间相关作用对结构响应的影响并不显著的问题。
这种分析类型有很广泛的应用,如确定结构的应力集中程度,或预测结构中由温度引起的应力等。
静力分析包括线性静力分析和非线性静力分析。
如图1、图2所示。
非线性静力分析允许有大变形、蠕变、应力刚化、接触单元、超弹性单元等。
结构非线性可以分为:几何非线性,材料非线性和状态非线性三种类型。
几何非线性指物体在外部载荷作用下所产生的变形与其本身的几何尺寸相比不能忽略时,由物体的变形引起的非线性响应。
材料非线性指物体材料变形时,材料所表现的非线性应力应变关系。
常见的材料非线性有弹塑性、超弹性、粘弹塑性等。
许多因素可以影响材料的非线性应力-应变关系,如加载历史、环境温度、加载的时间总量等。
状态非线性是指结构表现出来的一种与状态相关的非线性行为,如二个变形体之间的接触。
随着接触状态的变化,其刚度矩阵发生显著的变化。
图1 图2汽车车架的线性结构静力分析应用云图发动机连杆小头连接部分的结构静力分析云图2、结构动力分析结构动力分析一般包括结构模态分析、谐响应分析和瞬态动力学分析。
结构模态分析用于确定结构或部件的振动特性(固有频率和振型)。
它也是其它瞬态动力学分析的起点,如谐响应分析、谱分析等。
结构模态分析中常用的模态提取方法有:子空间(Subspace)法、分块的兰索斯(BlockLanczos)法、PowerDynamics法、豪斯霍尔德(ReducedHouseholder)法、Damped法以及Unsysmmetric法等。
谐响应分析用于分析持速的周期载荷在结构系统中产生的持速的周期响应(谐响应),以及确定线性结构承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种分析方法,这种分析只计算结构的稳态受迫振动,不考虑发生在激励开始时的瞬态振动,谐响应分析是一种线性分析,但也可以分析有预应力的结构。
有限元分析 (FEA) 方法(PPT 13)
有限元模型
.
A-4
自由度(DOFs)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
结构 DOFs
方向
结构 热 电
流体 磁
自由度
位移 温度 电位 压力 磁位
September 30, 1998
.
A-5
节点和单元
载荷
节点: 空间中的坐标位置,具有一定自由度和 存在相互物理作用。
September 30, 1998
.
A-12
单元形函数(续)
遵循原则:
• 当选择了某种单元类型时,也就十分确定地选择并接受该种单元 类型所假定的单元形函数。
• 在选定单元类型并随之确定了形函数的情况下,必须确保分析时 有足够数量的单元和节点来精确描述所要求解的问题。
September 30, 1998
September 30, 1998
.
A-7
节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
A
B
.. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
September 30, 1998
.
1 node
...
A
B
...
具有公共节点的单元 之间存在信息传递
September 30, 1998
.
A-10
单元形函数(续)
DOF值二次分布
.
.
1
节点
单元
二次曲线的线性近 (不理想结果)
真实的二次曲线
.
.
2
有限元分析法概述
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
有限元分析FEA
有限元分析FEA有限元分析(Finite Element Analysis,FEA)是一种数值分析方法,广泛应用于工程领域,用于估算结构在特定工况下的力学性能。
FEA 将复杂的实际结构抽象为有限数量的简单几何形状,然后通过对这些几何形状进行分割,建立一个离散的节点网格,进而利用数学方法对节点网格上的几何、力学和材料性能进行模拟和计算,通过求解节点间的方程组,得到结构的应力、应变、位移等结果。
1.建立几何模型:通过计算机辅助设计软件建立结构的几何模型。
模型可以是二维或三维的,包括各种几何形状,如线段、矩形、圆形等,并包含结构的尺寸和几何特征。
2.网格划分:将几何模型划分为离散的节点网格,并在节点上分配适当的节点元素。
节点元素可以是线元素、平面元素或体元素,将结构的连续性转化为离散点之间的连接关系。
3.建立力学模型:根据所要研究的问题和加载条件,确定边界条件、加载情况和材料性能等。
边界条件包括约束和加载,在节点和元素上分配适当的约束和加载。
4.建立单元刚度矩阵:根据单元的几何形状和材料特性,建立单元的刚度矩阵。
刚度矩阵包含单元的弹性刚度、几何刚度和材料刚度。
5.组装刚度矩阵:将所有单元的刚度矩阵根据节点的连接关系进行组装,得到总体的刚度矩阵。
组装的过程包括将单元刚度矩阵映射到全局坐标系、考虑边界条件和加载等。
6.求解方程组:建立节点的位移和约束条件之间的关系,得到结构的位移、应力和应变等结果。
可以通过直接解方程组或迭代求解的方法得到最终结果。
7.后处理:根据具体问题的要求,对结果进行分析和解释。
可以绘制位移云图、应力云图、应变云图等,进行结构的评估和优化。
FEA有以下几个主要特点和优势:1.可适用于各种工程领域:FEA可以用于解决结构和材料的强度、稳定性、疲劳、振动、热传导、电磁等多种问题,广泛应用于航空航天、汽车、能源、建筑和机械制造等领域。
2.具有高精度:通过适当的剖分和合理的力学模型,能够在相对较短的时间内提供较准确的结果,并对结构进行合理和有效的评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k1 k1k2 k2
0
0
0 k2 k2 k3 k3
0
0 0 k3 k3 k4 k4
0 u1 0 0 u2 0 0k4uu4300 k4 u5 P
写成一般形式,可得:
[R ][K ]U [][F]
即: [反作]用 [总 力 体 矩 ]刚 位 [阵 度 移 ] [负 矩 矩荷 阵 阵 ]
引入边界条件,根据本题要求,节点1
有限元分析方法
第一章 概述
一、有限单元法的基本概念
一变横截面杆,一 端固定,另一端承受负 荷 P,试求杆沿长度方 向任一截面变形大小。 其中杆上边宽度为 w1 下边宽度为 w 2 ,厚度
为 t ,长度为 L,弹性
模量为 E。
① 采用材料力学的研究方法进行精确求解
解:设杆任一横截面面积为 A( y) ,平均应力
来,重新对上述五个方程进行变换,得:
节点1: k1u1k1u2R1
节点2: k 1 u 1 (k 1 k 2 )u 2 k 2 u 3 0
节点3: k 2 u 2 (k 2 k 3 )u 3 k 3 u 4 0 节点4: k 3 u 3 (k 3 k 4 )u 4 k 4 u 5 0
节点5: k4u4k5u5P
的位移为0,即 u1 0 ,则有如下矩阵形 式:ቤተ መጻሕፍቲ ባይዱ
1 0
0
0 0 u1 0
k1 k1 k2 k2
0
0 u2 0
0
0
k2 0
k2 k3 k3
k3 k3 k4
0k4uu43
0 0
0 0
0 k4 k4 u5 P
求解上述矩阵方程,可得每个节点位移,进 而求得每个节点反作用力,每一个单元的平均应 力和应变。即:
可得杆沿长度方向任一位置的变形:
u (y ) E (w P 2 t w L 1 )[lw 1 n w ( 2L w 1y ) ln w 1 ]
令 P=4450N,w 1=50mm,w 2 =25mm, t=3mm, L=250mm,
E=72GPa,L1=L2=L3=L4=L/4=62.5mm
则:A (y)(w 1w 2L w 1y)t 15 0 .3 0 y
A1=150 mm2
A2=150-0.3×62.5=131.25 mm2
A3=150-0.3×62.5×2=112.5 mm2 A4=150-0.3×62.5×3=93.75 mm2
A5=150-0.3×62.5×4=75 mm2
将 y 1 0 y 2 6 .5 2 y 3 1y 2 4 1 5 .5 8 y 5 7 250
i
ui1 ui l
i Ei
下面代入参数验证以上两种方法求解的结果是否一样 ?
令 P=4450N,w 1=50mm,w 2 =25mm, t=3mm, L=250mm,
E=72GPa,L1=L2=L3=L4=L/4=62.5mm
则:A (y)(w 1w 2L w 1y)t 15 0 .3 0 y
节点1: R 1k1(u2u1)0
节点2: k 1 (u 2 u 1 ) k 2 (u 3 u 2 ) 0
节点3: k 2 (u 3 u 2 ) k 3 (u 4 u 3 ) 0
节点4: k 3 (u 4 u 3 ) k 4 (u 5 u 4 ) 0
节点5: k4(u5u4)P0
将反作用力R1和外力P从内力中分离出
为 ,应变为 。
根据静力平衡条件: PA(y)0
根据虎克定律:E
任一横截面产生的应变: du dy
而任一横截面面积为:
A(y)(w 1w 2L w 1y)t
将上述方程变换后得:
du P dy EA(y)
沿杆的长度方向进行积分,得到精确解:
0 ud u0yEP (A y)d y0yE(w t1w P 2L w 1y)dy
总体刚度矩阵:
162 162
0
0
0
16216214.40 14.40
0
0
[K]106 0 14.40 14.4011.88 11.88 0
A1=150 mm2
A2=150-0.3×62.5=131.25 mm2
A3=150-0.3×62.5×2=112.5 mm2 A4=150-0.3×62.5×3=93.75 mm2
A5=150-0.3×62.5×4=75 mm2
每个单元的等效刚度系数
keq(Ai12lAi)E
k1=(150+131.25)×72×1000000/(2×62.5)=162×106 N/M k2=(131.25+112.5)×72×1000000/(2×62.5)=140.4×106 N/M k3=(112.5+93.75)×72×1000000/(2×62.5)=118.8×106 N/M k4=(93.75+75)×72×1000000/(2×62.5)=97.2×106 N/M
将上述方程组写成矩阵形式,有:
k1 k1
0
0
0
k1 k1 k2 k2
0
0
0 k2 k2 k3 k3
0
0 0 k3 k3 k4 k4
0 u1 R1
0 u2
0
0k4uu43
0 0
k4 u5 P
将反作用力和外力分离出来,重组上述矩阵可得:
R1 k1
0
k1
0 0
0
0
0 0
分别带入变形公式可得精确解为:
u1
0
u
2
27
.5100
u u
3 4
10
6
59 96
.2680 .8290
m
u 5
142 .8000
② 采用数值方法近似求解
将变横截面杆沿 长度方向分成独立的 4 小段等截面直杆, 每一小段称为一个单 元,小段之间通过节 点连接起来,这样变 横截面杆就用 5个节 点和4 个单元组成的 模型来表示。
因此,本题的变横截面杆可以看作由四个线 性弹簧串联起来的模型来表示,每一个单元都可 以视为一个线性弹簧,其弹性行为符合以下方程:
f keq (ui1 ui )
Aavg E l
(ui1 ui )
( Ai1
Ai )E 2l
(ui1
ui )
下面考虑每一个节点的受力,根据静力平衡
条件,每一个节点上的受力总和为0,即:
假设:任一横截面为A,长为 l 的杆,承受外力F
的作用,则 杆的平均应力为: F
A
杆的平均应变为: l
l
根据虎克定律有: E
经过简化得: F AE l
l
上述方程与线性弹簧方程 Fkx极为相
似,说明:一个中心点集中受力且横截面相等的 杆可以等效为一个弹簧,其等价刚度为:
k eq
AE l