高中数学:圆锥曲线(抛物线、双曲线、椭圆)重难点
高中数学有关圆-椭圆-双曲线-抛物线的详细知识点
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
(完整版)高中数学圆锥曲线知识点总结
高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
椭圆、双曲线、抛物线
过F作FF1⊥AA1于F1,则F1为AA1的中点,
1 1 设 l 交 x 轴于 N,则|NF|=|A1F1|= |AA1|= |AF|, 2 2 3 即 p= , 2
∴抛物线方程为y2=3x,故选C.
答案 C
热点二
圆锥曲线的几何性质
2 例 2 (1)已知离心率为 e 的双曲线和离心率为 的椭圆 2 有相同的焦点 F1,F2,P 是两曲线的一个公共点,若 π ∠F1PF2= ,则 e 等于( ) 思维启迪 3 在 △F1F2P 中 利 用 余 5 5 弦定理列方程,然后利 A. B. 2 2 用定义和已知条件消元; 6 C. D.3 2
(1)求椭圆的离心率;
思维启迪
→ 6 → 和点B在椭 AB= BC 13b的方程; 圆上列关于a、
根据
解 ∵A(-a,0),设直线方程为y=2(x+a),B(x1,y1),
令x=0,则y=2a,∴C(0,2a),
→ → ∴AB=(x1+a,y1),BC=(-x1,2a-y1), 6 6 → 6→ ∵AB= BC,∴x1+a= (-x1),y1= (2a-y1), 13 13 13 13 12 整理得 x1=- a,y1= a, 19 19 2 2 13 2 12 2 a b 3 ∵点 B 在椭圆上,∴( ) +( ) ·2=1,∴ 2= , 19 19 b a 4 2 2 a -c 3 1 2 3 ∴ 2 = ,即 1-e = ,∴e= . 4 4 2 a
x y ∴椭圆的方程为 + =1. 4 3
2
2
待定系数法是求圆锥曲线方程的基本方法;解
决直线与圆锥曲线问题的通法是联立方程,利
思 用根与系数的关系,设而不求思想,弦长公式 维 升 等简化计算;涉及中点弦问题时,也可用 “ 点 华
高中数学圆锥曲线知识点总结
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D--半径是2422FE D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E)2=44F-E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高中数学圆锥曲线知识点梳理+例题解析
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高中数学第八章圆锥曲线知识点
高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学中的一个重要章节,涵盖了圆锥曲线的基本概念、性质以及相关应用等内容。
圆锥曲线是一类特殊的曲线,由一个固定点(称为焦点)和到该点距离与到一条固定直线(称为准线)距离的比值为常数定义。
本文将从椭圆、双曲线和抛物线这三种常见的圆锥曲线开始,介绍它们的定义、性质和公式,并探讨它们在几何和实际问题中的应用。
一、椭圆椭圆是圆锥曲线中最基本的一种情形。
它的定义是,对于一个固定点F(焦点)和一条固定直线l(准线),所有到F和l的距离之比等于一个常数e(离心率)的点的轨迹。
椭圆具有很多重要的性质,如焦点的性质、离心率的性质、对称性和切线的性质等,这些性质对于解题和应用非常重要。
二、双曲线双曲线是圆锥曲线中另一种重要的类型。
与椭圆相比,双曲线的定义稍微有些不同。
它的定义是,对于一个固定点F(焦点)和一条固定直线l(准线),所有到F和l的距离之差等于一个常数e (离心率)的点的轨迹。
双曲线的性质也非常丰富,包括焦点和准线的性质、离心率的性质、渐近线、对称性以及切线的性质等。
三、抛物线抛物线是圆锥曲线中最后一种常见的类型。
它的定义是,对于一个固定点F(焦点)和一条固定直线l(准线),所有到F和l的距离相等的点的轨迹。
抛物线也具有许多独特的性质,如焦点和准线的性质、对称性、切线的性质、曲率和渐近线等。
这三种圆锥曲线在几何中起到了重要的作用,但在实际问题中的应用更为广泛。
例如,在天文学中,行星运动的轨迹可以用椭圆来描述;在通信中,天线的波束方向可以通过双曲线来确定;在物理学中,抛物线的形状可以用来描述抛射体的运动轨迹等等。
总之,高中数学第八章圆锥曲线是一个非常重要的知识点,涉及到椭圆、双曲线和抛物线三种常见情形的定义、性质和应用。
掌握圆锥曲线的相关知识,不仅对于解决几何问题有很大的帮助,还。
高中圆锥曲线(椭圆、双曲线、抛物线)规律技巧总结
八、圆锥曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222b x a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
新教材北师大版高中数学选择性必修第一册第二章圆锥曲线 知识点考点重点难点解题规律归纳总结
第二章 圆锥曲线1 椭圆 ........................................................................................................................... - 1 -1.1 椭圆及其标准方程 ......................................................................................... - 1 - 1.2 椭圆的简单几何性质 ..................................................................................... - 6 - 2 双曲线 ..................................................................................................................... - 11 -2.1 双曲线及其标准方程 ................................................................................... - 11 - 2.2 双曲线的简单几何性质 ............................................................................... - 15 - 3 抛物线 ..................................................................................................................... - 19 -3.1 抛物线及其标准方程 ................................................................................... - 19 - 3.2 抛物线的简单几何性质 ............................................................................... - 23 - 4 直线与圆锥曲线的位置关系 .................................................................................. - 28 -4.1 直线与圆锥曲线的交点 ............................................................................... - 28 - 4.2 直线与圆锥曲线的综合问题 ....................................................................... - 28 -1 椭圆1.1 椭圆及其标准方程1.椭圆的定义平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合(或轨迹)叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.1.椭圆定义中,将“大于|F 1F 2|”改为“等于|F 1F 2|”或“小于|F 1F 2|”,其他条件不变,点的轨迹是什么?[提示] 当距离之和等于|F 1F 2|时,动点的轨迹就是线段F 1F 2;当距离之和小于|F 1F 2|时,动点的轨迹不存在.2.椭圆的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2+y 2b 2=1 (a >b >0) y 2a 2+x 2b 2=1 (a >b >0) 焦点 (-c ,0),(c ,0)(0,-c ),(0,c )a 、b 、c 的关系c 2=a 2-b 22.椭圆x 29+y 216=1的焦点是在x 轴上,还是在y 轴上?[提示] 椭圆x 29+y 216=1的焦点在y 轴上.疑难问题类型1 椭圆定义及应用【例1】 (1)椭圆x 225+y 29=1上一点A 到焦点F 的距离为2,B 为AF 的中点,O 为坐标原点,则|OB |的值为( )A .8B .4C .2D .32(2)已知B (-5,0)、C (5,0),且△ABC 的周长等于24,则顶点A 的轨迹方程为________.(3)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点,过F 1的直线AB 与椭圆交于A 、B 两点,则△ABF 2的周长为________.(1)B (2)x 249+y 224=1(y ≠0) (3)4a [(1)设F ′为椭圆的另一焦点,则|AF |+|AF ′|=2a =10,∴|AF ′|=8,∵O ,B 分别为FF ′,AF 的中点.∴|OB |=12|AF ′|=4.(2)由已知得,|AB |+|AC |=14,由椭圆的定义可知,顶点A 的轨迹是椭圆, 又2c =10,2a =14,即c =5,a =7, 所以b 2=a 2-c 2=24.当点A 在直线BC 上,即y =0时,A 、B 、C 三点不能构成三角形,所以点A 的轨迹方程是x 249+y 224=1(y ≠0).(3)∵|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,∴△ABF2的周长=|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=2a+2a=4a.]由椭圆定义可知,椭圆上任一点到椭圆的两个焦点距离之和为定值,所以椭圆定义有以下应用:(1)实现两个焦半径之间的相互转化;,(2)将两个焦半径之和看成一个整体,求解定值问题.类型2求椭圆的标准方程[探究问题]1.同一椭圆在不同坐标系下的方程相同吗?[提示]不同.2.在椭圆标准方程的推导过程中,为什么令b2=a2-c2,b>0?[提示]令b2=a2-c2可以使方程变得简单整齐,在今后讨论椭圆的几何性质时,b还有明确的几何意义.3.椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)有何异同点?[提示]因为椭圆标准方程中的两个参数a,b确定了椭圆的形状、大小,所以椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)的形状、大小相同,但这两个椭圆的位置不同,焦点坐标也不同.【例2】写出适合下列条件的椭圆的标准方程:(1)焦点坐标为(-4,0),(4,0),并且过点(-5,3);(2)经过点P1(6,1),P2(-3,-2).[思路点拨](1)设出相应焦点位置的椭圆方程,利用关系式b2=a2-c2及点(-5,3)在椭圆上求待定系数;(2)由于焦点位置不明确,可将其设成Ax 2+By 2=1(A >0,B >0)的形式,再进一步确定A ,B .[解] (1)依题意知椭圆的焦点在x 轴上,可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由已知得c =4,所以a 2-b 2=16.①因为点(-5,3)在椭圆上,所以(-5)2a 2+(3)2b 2=1,即5a 2+3b 2=1.② 由①②得a 2=20,b 2=4.因此,所求椭圆的标准方程为x 220+y 24=1.(2)设椭圆的方程为Ax 2+By 2=1(A >0,B >0),由已知得 ⎩⎨⎧6A +B =13A +2B =1, 解得A =19,B =13.∴所求的椭圆的标准方程为x 29+y 23=1.1.求椭圆标准方程的方法(1)定义法:根据椭圆的定义,判断出轨迹是椭圆,然后写出其方程. (2)待定系数法:设出椭圆的标准方程,再依据条件确定a 2、b 2的值,其一般步骤是:①定位:确定椭圆的焦点在x 轴还是y 轴上,从而设出相应的标准方程的形式. ②定量:根据已知条件,建立关于a 、b 、c 的方程组,求出a 2、b 2,从而写出椭圆的标准方程.2.椭圆的标准方程在形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的正常数.类型3 椭圆标准方程的简单应用【例3】 (1)已知方程x 25-2m +y 2|m |-1=1表示焦点在y 轴上的椭圆,则实数m的取值范围为________.(2)已知椭圆方程为kx 2+3y 2-6k =0,焦距为4,则k 的值为________. (1)⎝ ⎛⎭⎪⎫2,52 (2)1或5 [(1)∵椭圆焦点在y 轴上,∴其标准方程应为y 2a 2+x 2b 2=1(a >b >0),∴|m |-1>5-2m >0,解得2<m <52,∴m 的取值范围为2<m <52.(2)将方程kx 2+3y 2-6k =0化为x 26+y 22k =1.∵焦距为4,∴2c =4,即c =2.当焦点在x 轴上时,6-2k =4,解得k =1; 当焦点在y 轴上时,2k -6=4,解得k =5. 综上,k =1或5.]1.判断焦点所在坐标轴的依据是看x 2项,y 2项的分母哪个大,焦点在分母大的对应的坐标轴上.2.对于方程x 2m +y 2n =1(m >0,n >0),当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.特别地,当n =m >0时,方程表示圆心在原点的圆.归纳总结1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.涉及椭圆的焦点三角形问题,可结合椭圆的定义列出|PF 1|+|PF 2|=2a 求解,回归定义是求解椭圆的焦点三角形问题的常用方法.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解,也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免分类讨论.1.2椭圆的简单几何性质椭圆的几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)对称性对称轴x轴和y轴,对称中心(0,0)范围-a≤x≤a且-b≤y≤b -b≤x≤b且-a≤y≤a顶点A1(-a,0)、A2(a,0),B1(0,-b)、B2(0,b)A1(0,-a)、A2(0,a),B1(-b,0)、B2(b,0)轴长短轴长=2b,长轴长=2a焦点F1(-c,0)、F2(c,0)F1(0,-c)、F2(0,c)焦距|F1F2|=2c离心率e=ca(0<e<1)(1)椭圆方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义是什么?(2)椭圆上的点到焦点的最大距离与最小距离分别是什么?[提示](1)在方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义如图所示.即a,b,c正好构成了一个以对称中心,一个焦点、一个短轴顶点构成的直角三角形.(2)最大距离:a+c;最小距离:a-c.疑难问题类型1 椭圆的几何性质 [探究问题]1.椭圆x 2a 2+y 2b 2=1(a >b >0)上,到中心O 和焦点F 1(-c ,0)的距离最近和最远的点分别在什么位置?[提示] 椭圆上,到中心O 的距离最近的点是短轴端点B 1和B 2;到中心O 的距离最远的点是长轴端点A 1和A 2.点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离,分别是椭圆上的点与焦点F 1的最远距离和最近距离.2.利用椭圆方程如何判断点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系? [提示] 点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1; 点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1.3.椭圆的离心率是如何刻画椭圆的扁平程度的? [提示] e 的大小决定了椭圆的扁圆程度. 因为a 2=b 2+c 2,所以ba =1-e 2,因此,当e 越趋近于1时,ba 越接近于0,椭圆越扁; 当e 越趋近于0时,ba越接近于1,椭圆越接近于圆.【例1】 (1)椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等(2)已知椭圆的标准方程为x 2100+y 264=1,O 为坐标原点,则椭圆上的点P 到椭圆中心|OP |的范围为( )A .[6,10]B .[6,8]C .[8,10]D .[16,20](3)(一题两空)椭圆4x 2+9y 2=36的长轴长为________,短轴长为________. (1)D (2)C (3)6 4 [(1)椭圆x 225+y 29=1中c 21=25-9=16,椭圆x 29-k +y 225-k=1中c 22=25-k -(9-k )=16,∴两椭圆焦距相等.(2)设P (x 0,y 0),则|OP |=x 20+y 20.由椭圆的范围,知|x 0|≤a =10,|y 0|≤b =8, 又∵P 在椭圆上,∴x 20100+y 2064=1, ∴y 20=64-1625x 20,∴|OP |=925x 20+64.∵0≤x 20≤100,∴64≤925x 20+64≤100,∴8≤|OP |≤10.(3)把已知方程化为椭圆的标准方程为:x 29+y 24=1,∴a =3,b =2,∴长轴长为2a =6,短轴长为2b =4.]用标准方程研究几何性质的步骤 (1)将椭圆方程化为标准形式.(2)确定焦点位置.(焦点位置不确定的要分类讨论) (3)求出a ,b ,c . (4)写出椭圆的几何性质.类型2 由椭圆的简单性质求方程【例2】 求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,a =2,离心率e =12;(2)一焦点坐标为(-3,0),一顶点坐标为(0,5); (3)过点(3,0),离心率e =63.[思路点拨](1)由a=2,e=ca=12,易得c,代入b2=a2-c2可求得b2,此时可写出焦点在y轴上的椭圆方程;(2)由已知可以确定焦点在x轴上及c,b的值,从而可写出椭圆的标准方程;(3)不能确定焦点所在的坐标轴,需分类讨论.[解](1)由a=2,e=12,可得a2=4,且c2=12,即c=1,所以b2=a2-c2=4-1=3.已知椭圆的焦点在y轴上,所以所求的标准方程为y24+x23=1.(2)由椭圆的一个焦点坐标为(-3,0),可知椭圆的焦点在x轴上,且c=3.又由一顶点坐标为(0,5),可得b=5,所以a2=b2+c2=25+9=34.因此所求的标准方程为x234+y225=1.(3)当椭圆的焦点在x轴上时,因为a=3,e=63,所以c=6,从而b2=a2-c2=3,所以椭圆的标准方程为x29+y23=1;当椭圆的焦点在y轴上时,因为b=3,e=63,所以a2-b2a=63,所以a2=27,所以椭圆的标准方程为y227+x29=1.综上,所求椭圆的标准方程为x29+y23=1或y227+x29=1.已知椭圆的简单性质求标准方程:(1)先看题目的条件能否确定焦点所在的坐标轴,当不能确定焦点所在的坐标轴时,需分焦点在x轴上或在y轴上进行讨论.(2)然后依据关系式e=ca,b2=a2-c2确定a,b的值,从而求出椭圆的标准方程.类型3求椭圆的离心率【例3】已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,求该椭圆的离心率.[思路点拨]根据已知条件得出a、c的关系即可.[解]不妨设椭圆的焦点在x轴上,因为AB⊥F1F2,且△ABF2为正三角形,所以在Rt△AF1F2中,∠AF2F1=30°,令|AF1|=x,则|AF2|=2x,所以|F1F2|=|AF2|2-|AF1|2=3x=2c,由椭圆的定义,可知|AF1|+|AF2|=2a=3x,∴e=2c2a=3x3x=33.求椭圆的离心率通常有两种方法:(1)若给定椭圆的方程,则根据焦点位置先求a2、b2,再求出a、c的值,利用公式e=ca直接求解;(2)若椭圆的方程未知,则根据条件建立a、b、c之间的关系式,化为关于a、c的齐次方程,再将方程两边同除以a的最高次幂,得到e的方程,解方程求得e.归纳总结1.已知椭圆的方程讨论椭圆的性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定位,再定量”,常用的方法是待定系数法.3.椭圆的范围给出了椭圆上的点的横坐标、纵坐标的取值范围,常用来求解与椭圆有关的最值与范围问题.4.椭圆的对称性是椭圆的重要几何性质,在解题时,恰当使用对称性能简化求解过程.2双曲线2.1双曲线及其标准方程1.双曲线的定义平面内到两个定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合(或轨迹)叫作双曲线.这两个定点叫作双曲线的焦点,两个焦点间的距离叫作双曲线的焦距.1.双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?[提示]当距离之差等于|F1F2|时,动点的轨迹就是两条射线,端点分别是F1、F2,当距离之差大于|F1F2|时,动点的轨迹不存在.2.双曲线定义中,将“差的绝对值”改为“差”,其他条件不变,点的轨迹是什么?[提示]动点的轨迹是双曲线的一支.2.双曲线的标准方程焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2ca、b、c的关系c2=a2+b23.确定双曲线的标准方程需要知道哪些量?[提示]a,b的值及焦点所在的位置.疑难问题类型1双曲线的定义及应用双曲线中,焦点三角形的面积问题【例1】 已知双曲线x 29-y 216=1的左,右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.[解] 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=163.利用双曲线定义求点的轨迹方程【例2】 已知定点A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,求另一焦点F 的轨迹方程.[思路点拨] 考查点F 的几何性质,利用双曲线的定义求解. [解] 设F (x ,y )为轨迹上的任意一点, 因为A ,B 两点在以C ,F 为焦点的椭圆上,所以|F A |+|CA |=2a ,|FB |+|CB |=2a (其中a 表示椭圆的长半轴长). 所以|F A |+|CA |=|FB |+|CB |.所以|F A |-|FB |=|CB |-|CA |=122+92-122+(-5)2=2,即|F A |-|FB |=2. 由双曲线的定义知,F 点在以A ,B 为焦点,2为实轴长的双曲线的下半支上.所以点F 的轨迹方程是y 2-x248=1(y ≤-1).1.利用双曲线的定义解决与焦点有关的问题,一是要注意||PF 1|-|PF 2||=2a 的变形使用,特别是与|PF 1|2+|PF 2|2,|PF 1|·|PF 2|间的关系.2.利用双曲线的定义求曲线的轨迹方程, 其基本步骤为 ①寻求动点M 与定点F 1,F 2 之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程.类型2 求双曲线的标准方程【例3】 (1)已知双曲线过点(3,-42)和⎝ ⎛⎭⎪⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程. [思路点拨] 用待定系数法求解.[解] (1)设所求双曲线方程为Ax 2-By 2=1()AB >0, 则⎩⎪⎨⎪⎧9A -32B =1,8116A -25B =1, 解得⎩⎪⎨⎪⎧A =-19,B =-116,∴双曲线的标准方程为y 216-x 29=1.(2)法一:设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 由题意易求得c =25.又双曲线过点(32,2), ∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2, ∴a 2=12,b 2=8.故所求双曲线方程为x 212-y 28=1.法二:设双曲线方程为x 216-k -y 24+k =1(-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.待定系数法求双曲线方程的步骤类型3曲线类型的判定【例4】已知曲线C:x2t2+y2t2-1=1(t≠0,t≠±1).(1)求t为何值时,曲线C分别为椭圆、双曲线;(2)求证:不论t为何值,曲线C有相同的焦点.[思路点拨]方程Ax2+By2=1表示的轨迹是由参数A,B的值及符号确定,因此要确定轨迹,需对A,B进行讨论.[解](1)当|t|>1时,t2>0,t2-1>0,且t2≠t2-1,曲线C为椭圆;当|t|<1时,t2>0,t2-1<0,曲线C为双曲线.(2)证明:当|t|>1时,曲线C是椭圆,且t2>t2-1,因此c2=a2-b2=t2-(t2-1)=1,∴焦点为F1(-1,0),F2(1,0).当|t|<1时,双曲线C的方程为x2t2-y21-t2=1,∵c2=a2+b2=t2+1-t2=1,∴焦点为F1(-1,0),F2(1,0).综上所述,无论t为何值,曲线C有相同的焦点.方程Ax2+By2=1(A,B≠0)表示双曲线的充要条件为AB<0,若A<0,B>0,则方程表示焦点在y轴上的双曲线;若B<0,A>0,则方程表示焦点在x轴上的双曲线.即双曲线的焦点位置是由x2,y2的系数的正负决定的.归纳总结1.对双曲线定义的理解(1)定义中距离的差要加绝对值,否则只为双曲线的一支.设F1,F2表示双曲线的左,右焦点,若|MF1|-|MF2|=2a,则点M在右支上;若|MF2|-|MF1|=2a,则点M在左支上.(2)双曲线定义的应用:①若||MF1|-|MF2||=2a(0<2a<|F1F2|),则动点M的轨迹为双曲线.②若动点M在双曲线上,则||MF1|-|MF2||=2a.2.求双曲线标准方程的步骤(1)定位:在标准方程的前提下,确定焦点位于哪条坐标轴上,以确定方程的形式.(2)定量:确定a2,b2的数值.提醒:若焦点的位置不明确,应注意分类讨论,也可以设双曲线方程为mx2+ny2=1的形式,其中mn<0.2.2双曲线的简单几何性质双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≥a或x≤-a,y∈R y≥a或y≤-a,x∈R 顶点(-a,0),(a,0)(0,-a),(0,a)对称性对称轴:x轴、y轴;对称中心:坐标原点轴长实轴长=2a,虚轴长=2b渐近线xa±yb=0或y=±ba xxb±ya=0或y=±ab x离心率e=ca(e>1)(1)渐近线相同的双曲线是同一条双曲线吗?(2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示](1)渐近线相同的双曲线有无数条,但它们实轴与虚轴的长的比值相同.(2)e2=c2a2=1+b2a2,ba是渐近线的斜率或其倒数.疑难问题类型1双曲线的简单性质【例1】求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.[思路点拨]先将双曲线的形式化为标准方程,再研究其性质.[解]双曲线的方程化为标准形式是x29-y24=1,∴a2=9,b2=4,∴a=3,b=2,c=13.又曲线的焦点在x轴上,∴顶点坐标为(-3,0),(3,0),焦点坐标为(-13,0),(13,0),实轴长2a=6,虚轴长2b=4,离心率e=ca=133,渐近线方程为y=±23x.1.由双曲线方程探究其简单几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这是依据方程求参数a,b,c值的关键.2.写顶点坐标、焦点坐标、渐近线方程时,需先由方程确定焦点所在的坐标轴,否则易出错,需注意双曲线方程与渐近线方程的对应关系.类型2利用双曲线的性质求双曲线方程【例2】求适合下列条件的双曲线的标准方程.(1)实轴长为16,离心率为5 4;(2)双曲线C的右焦点为(2,0),右顶点为(3,0).[思路点拨]由双曲线的几何性质,列出关于a,b,c的方程,求出a,b,c 的值.[解](1)设双曲线的标准方程为x2a2-y2b2=1或y2a2-x2b2=1(a>0,b>0).由题意知2a=16,ca=54,c2=a2+b2,解得c=10,a=8,b=6,所以双曲线的标准方程为x264-y236=1或y264-x236=1.(2)设双曲线方程为x2a2-y2b2=1(a>0,b>0).由已知得a=3,c=2,∴b2=c2-a2=1.∴双曲线的标准方程为x23-y2=1.1.求双曲线方程,关键是求a,b的值,在解题过程中应熟悉a,b,c,e等元素的几何意义及它们之间的联系,并注意方程思想的应用.2.若已知双曲线的渐近线方程ax±by=0,可设双曲线方程为a2x2-b2y2=λ.类型3双曲线的离心率【例3】已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,求双曲线C的离心率.[思路点拨]确定四边形中为60°的内角,通过解三角形得a,b,c的关系,进而求出离心率.[解]设双曲线方程为x2a2-y2b2=1(a>0,b>0),如图所示,由于在双曲线中c>b,故在Rt△OF1B2中,只能是∠OF1B2=30°,所以bc=tan 30°,c=3b,所以a=2b,离心率e=ca=32=62.求双曲线离心率的两种方法(1)直接法:若已知a,c可直接利用e=ca求解.(2)方程法:若无法求出a,b,c的具体值,但根据条件可确定a,b,c之间的关系,可通过b2=c2-a2,将关系式转化为关于a,c的齐次方程,借助于e=ca,转化为关于e的n次方程求解.归纳总结1.由已知双曲线的方程求双曲线的几何性质时,注意首先应将方程化为标准形式,并要特别注意焦点所在的位置,防止将焦点坐标和渐近线方程写错.2.注意双曲线性质间的联系,尤其是双曲线的渐近线斜率与离心率之间的联系,并注意数形结合,从直观入手.3.椭圆、双曲线的标准方程都可写成Ax2+By2=1的形式,当A>0,B>0且A≠B 时表示椭圆,当AB<0时表示双曲线.3 抛物线3.1 抛物线及其标准方程1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的集合(或轨迹)叫作抛物线,定点F 叫作抛物线的焦点,定直线l 叫作抛物线的准线.1.抛物线的定义中,若点F 在直线l 上,那么动点的轨迹是什么? [提示] 点的轨迹是过点F 且垂直于直线l 的直线. 2.抛物线的标准方程 图形标准 方程 y 2=2px (p >0) y 2=-2px(p >0) x 2=2py (p >0) x 2=-2py (p >0) 焦点 坐标 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2 准线 方程x =-p 2x =p 2y =-p 2y =p 22.抛物线的标准方程y 2=2px (p >0)中p 的几何意义是什么? [提示] 焦点到准线的距离.3.已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向? [提示] 一次项变量为x (或y ),则焦点在x 轴(或y 轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定.疑难问题类型1 抛物线的定义【例1】 已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A .34B .1C .54D .74[思路点拨] 如图,过A 、B 分别作准线l 的垂线AD ,BC ,垂足分别为D ,C ,M 是线段AB 的中点,MN 垂直准线l 于N ,由于MN 是梯形ABCD 的中位线,所以|MN |=|AD |+|BC |2.C [由抛物线的定义知|AD |+|BC |=|AF |+|BF |=3,所以|MN |=32,又由于准线l 的方程为x =-14,所以线段AB 中点到y 轴的距离为32-14=54,故选C .]1.解答本题的关键是利用抛物线的定义把到焦点的距离转化为到准线的距离.2.与抛物线有关的问题中,涉及到焦点的距离或到准线的距离时,一般是利用定义对两个距离进行相互转化.类型2 求抛物线的标准方程求抛物线的焦点坐标或准线方程【例2】 求下列抛物线的焦点坐标和准线方程. (1)y 2=40x ;(2)4x 2=y ;(3)6y 2+11x =0.[解] (1)焦点坐标为(10,0),准线方程为x =-10. (2)由4x 2=y 得x 2=14y . ∵2p =14,∴p =18.∴焦点坐标为(0,116),准线方程为y =-116.(3)由6y 2+11x =0,得y 2=-116x , 故焦点坐标为(-1124,0),准线方程为x =1124.求抛物线的标准方程【例3】 求满足下列条件的抛物线的标准方程.(1)过点(-3,2); (2)已知抛物线焦点在y 轴上,焦点到准线的距离为3.[思路点拨] 确定p 的值和抛物线的开口方向,写出标准方程.[解] (1)设所求的抛物线方程为y 2=-2p 1x (p 1>0)或x 2=2p 2y (p 2>0),∵过点(-3,2),∴4=-2p 1×(-3)或9=2p 2×2.∴p 1=23或p 2=94.故所求的抛物线方程为y 2=-43x 或x 2=92y .(2)由题意知,抛物线标准方程为x 2=2py (p >0)或x 2=-2py (p >0)且p =3, ∴抛物线标准方程为x 2=6y 或x 2=-6y .1.根据抛物线方程求准线方程或焦点坐标时,应先把抛物线的方程化为标准方程,这样才能准确写出抛物线的准线方程.2.求抛物线方程的主要方法是待定系数法,若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,若抛物线的焦点位置不确定,则要分情况讨论,另外,焦点在x 轴上的抛物线方程可统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0).类型3 抛物线的实际应用【例4】 一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[思路点拨] 解答本题首先建系,转化成抛物线的问题,再利用抛物线的方程解决问题.[解] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则点B 的坐标为⎝ ⎛⎭⎪⎫a 2,-a 4,如图所示.设隧道所在抛物线方程为x 2=my ,则⎝ ⎛⎭⎪⎫a 22=m ·⎝ ⎛⎭⎪⎫-a 4,∴m =-a .即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得0.82=-ay ,即y =-0.82a . 欲使卡车通过隧道,应有y -⎝ ⎛⎭⎪⎫-a 4>3,即a 4-0.82a >3. ∵a >0,∴a >12.21.∴a 应取13.1.解答本题的关键是把实际问题转化为数学问题,利用数学模型,通过数学语言(文字、符号、图形、字母等)表达、分析、解决问题.2.在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系.这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.归纳总结1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫m 4,0,准线方程为x =-m 4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫0,m 4,准线方程为y =-m 4. 2.设M (x 0,y 0)是抛物线y 2=2px (p >0)上一点,焦点为F ,则根据抛物线的定义,抛物线的焦半径|MF |=x 0+p 2.3.对于抛物线上的点,利用定义可以把其到焦点的距离与到准线的距离相互转化.4.对于抛物线的四种形式的标准方程,应准确把握、熟练应用,能利用图形分析性质,学习时应能根据一种类型归纳出另外三种的相关性质,注意数形结合思想的应用.3.2 抛物线的简单几何性质1.抛物线的几何性质 标准方程 y 2=2px (p >0) y 2=-2px (p >0)x 2=2py (p >0) x 2=-2py (p >0) 图形性质 范围x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 对称轴 x 轴 y 轴顶点(0,0) 离心率e =1 2.过焦点的弦若直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,则(1)抛物线的焦半径|AF |=x 1+p 2,|BF |=x 2+p 2;(2)过焦点的弦|AB |=x 1+x 2+p ;(3)当直线AB 垂直于抛物线的对称轴时,弦AB 叫作抛物线的通径,它的长为2p ,通径是过焦点最短的弦.直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?[提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点.疑难问题类型1抛物线几何性质的应用【例1】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上.求这个正三角形的边长.[思路点拨]正三角形及抛物线都是轴对称图形,如果能证明x轴是它们的公共对称轴,则容易求出等边三角形的边长.[解]设正三角形OAB的顶点A,B在抛物线上,且坐标分别为(x1,y1),(x2,y2),则y21=2px1,y22=2px2.由|OA|=|OB|,得x21+y21=x22+y22,即(x1+x2)(x1-x2)=2px2-2px1.∴(x1-x2)(x1+x2+2p)=0.∵x1>0,x2>0,2p>0,∴x1-x2=0,即x1=x2.由此可知|y1|=|y2|,即点A、B关于x轴对称,∴AB⊥x轴,且∠AOx=30°,∴y1x1=tan 30°=33.∵x1=y212p,∴y1=23p,|AB|=2y1=43p.∴这个正三角形的边长为43p.抛物线各元素间的关系,抛物线的焦点在其对称轴上,顶点就是抛物线与对称轴的交点,准线与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,顶点到焦点的距离与顶点到准线的距离均为p 2.类型2与中点弦、焦点弦有关的问题【例2】 (1)过点Q (4,1)作抛物线y 2=8x 的弦AB ,恰被点Q 所平分,则AB 所在直线的方程为________.(2)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A ,B 两点,且|AB |=9.则该抛物线的方程为________.[思路点拨] (1)法一:设A (x 1,y 1),B (x 2,y 2),用点差法求k AB ;法二:设直线AB 的方程,建立方程求解.(2)设出直线方程,直线方程与抛物线方程联立,根据焦点弦长公式求解.(1)4x -y -15=0 (2)y 2=8x [(1)法一:设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∴(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∴y 1-y 2=4(x 1-x 2),即4=y 1-y 2x 1-x 2, ∴k =4.∴所求弦AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0.法二:设弦AB 所在直线的方程为y =k (x -4)+1.联立⎩⎨⎧ y 2=8x ,y =k (x -4)+1,消去x ,得ky 2-8y -32k +8=0, 设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∴k =4.∴所求弦AB 所在直线的方程为4x -y -15=0.(2)设直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 联立⎩⎪⎨⎪⎧ y 2=2px ,y =22⎝ ⎛⎭⎪⎫x -p 2,化简得4x 2-5px +p 2=0,∴x 1+x 2=5p 4,∵|AB |=9=x 1+x 2+p ,∴5p 4+p =9,∴p =4,∴抛物线的方程为y 2=8x .]直线与抛物线相交的弦长问题直线和抛物线相交于A(x1,y1),B(x2,y2)两点,直线的斜率为k.(1)一般的弦长公式:|AB|=1+k2|x1-x2|.(2)焦点弦长公式:当直线经过抛物线y2=2px(p>0)的焦点时,弦长|AB|=x1+x2+p.(3)“中点弦”问题解题策略两种方法类型3抛物线中的最值问题【例3】已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时点P的坐标.[思路点拨]利用抛物线的定义可将|PF|转化为P到准线的距离来考虑.[解]由定义知,抛物线上点P到焦点F的距离等于点P到准线l的距离d,则|P A|+|PF|=|P A|+d.将x=3代入抛物线方程y2=2x,得y=±6.∵6>2,∴点A在抛物线内部.由图可知,当P A⊥l时,|P A|+d最小,最小值为7 2,即|P A|+|PF|的最小值为7 2,此时点P纵坐标为2,代入y2=2x,得x=2.∴此时点P坐标为(2,2).1.本题若设P(x,y),利用两点间的距离公式建模求解,难以得到答案,而由抛物线的定义将|PF|转化为点P到准线的距离,则当P,A,Q三点共线时,|P A|+|PF|取得最小值,从而使问题迎刃而解.2.解决这类题,就是用抛物线的定义与平面几何的知识把折线段变为直线段,即知最小值.归纳总结1.抛物线只有一个焦点,一个顶点,一条对称轴,一条准线,无对称中心.2.抛物线上一点与焦点F的连线的线段叫做焦半径,设抛物线y2=2px(p>0)上任一点A(x0,y0),则|AF|=x0+p 2.3.抛物线的顶点也在抛物线上,作为抛物线上的一个特殊点,它到焦点的距离也等于到准线的距离,解题时注意应用.4.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.。
个性化教案椭圆+双曲线+抛物线+圆锥曲线常用方法=圆锥曲线全方位学习
个性化教案授课时间: 备课时间:年级:课题:直线和圆锥曲线常考题型学生姓名: 教师姓名:教学目标1、了解解圆锥曲线问题常用几中方法2、学会解圆锥曲线问题常用几中方法教学过程椭圆一、考点梳理1、定义椭圆第一定义:平面内与两个定点12F F,的距离的和等于常数(大于12F F)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫椭圆焦距.椭圆第二定义:平面内到一个定点的距离和它到一条定直线l的距离之比是常数(01)e e<<的点的轨迹叫做椭圆.定点是椭圆的焦点,定直线l叫做椭圆的准线,常数e叫椭圆的离心率.2、基本性质椭圆的标准方程与几何性质:标准方程焦点在x轴上焦点在y轴上22221x ya b+=(0)a b>>22221x yb a+=(0)a b>>变式训练:已知F1、F2是椭圆)0(12222>>=+b a b y a x 的两个焦点,P 为椭圆上一点,且 9021=∠PF F若21PF F ∆的面积为9,则b=_______考点三、离心率例4、椭圆22221(0)x y a b a b+=>>的半焦距为c ,若直线2y x =与椭圆一个交点P 的横坐标恰好为c ,则椭圆的离心率为( )A222-. B.2212- C.21- D.31-例5、已知椭圆19822=++y k x 的离心率21=e ,求k 的值.变式训练: 1、椭圆上一点到两焦点的距离分别为,焦距为,若成等差数列,则椭圆的离心率为__________. 2、已知椭圆,F 1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围_________。
3、已知椭圆,以,,为系数的关于的方程无实根,求其离心率的取值范围_________。
ﻫ 考点四、椭圆的标准方程例5、椭圆a x2+by 2=1与直线x+y =1相交于P 、Q 两点,若|PQ |=22,且PQ 的中点C 与椭圆中心连线的斜率为22,求椭圆方程。
高三数学圆锥曲线知识点
高三数学圆锥曲线知识点在高中数学中,圆锥曲线是一个重要的概念。
它由圆、椭圆、双曲线和抛物线四种曲线构成。
掌握圆锥曲线的知识对于解决各种数学问题和应用是至关重要的。
本文将介绍高三数学圆锥曲线的知识点。
一、圆锥曲线的定义和性质圆锥曲线是一个平面上到一个定点和一个定直线的距离之比保持不变的点的轨迹。
圆锥曲线分为四种类型:圆、椭圆、双曲线和抛物线。
1. 圆:圆是所有到一个点的距离相等的点的轨迹。
圆的特点是中心坐标为(h, k),半径为r。
2. 椭圆:椭圆是所有到两个定点之和的距离之比为定值的点的轨迹。
椭圆的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,长轴的长度为2a,短轴的长度为2b。
3. 双曲线:双曲线是所有到两个定点之差的距离之差为定值的点的轨迹。
双曲线的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,离心率小于1。
4. 抛物线:抛物线是所有到一个定直线的距离与到一个定点的距离相等的点的轨迹。
抛物线的特点是焦点为F,准线为L,焦距为p,焦点到准线的距离为x,焦点到点P的距离为y。
二、圆锥曲线的方程1. 圆的方程:$(x-h)^2 + (y-k)^2 = r^2$,其中(h, k)为圆心的坐标,r为半径。
2. 椭圆的方程:$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$,其中(h, k)为椭圆中心的坐标,a和b分别为椭圆长半轴和短半轴的长度。
3. 双曲线的方程:$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =1$,其中(h, k)为双曲线中心的坐标,a和b分别为双曲线长半轴和短半轴的长度。
4. 抛物线的方程:$y^2 = 4ax$,其中焦点为原点,准线为x轴,焦距为p。
三、圆锥曲线的性质和应用1. 圆的性质:圆的切线与半径垂直,圆的弦与半径垂直于弦的中点。
2. 椭圆的性质:椭圆的离心率介于0和1之间,焦点和对称轴平行。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结教学提纲
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-b y a x 共焦点的双曲线系方程是12222=--+kb y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a -<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
高考数学复习:圆锥曲线
高考数学复习:圆锥曲线考点一:椭圆、双曲线、抛物线知识点1椭圆1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a >|F 1F 2|时,M 点的轨迹为椭圆;②当2a =|F 1F 2|时,M 点的轨迹为线段F 1F 2;③当2a <|F 1F 2|时,M 点的轨迹不存在.2、椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b2=1(a >b >0)图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:坐标轴;对称中心:原点顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)离心率e =ca,且e ∈(0,1)a ,b ,c 的关系c 2=a 2-b 23、椭圆中的几个常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共同焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).知识点2双曲线1、双曲线的定义(1)平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离之差的绝对值为非零常数2a (2a <2c )的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a <|F 1F 2|时,M 点的轨迹是双曲线;②当2a =|F 1F 2|时,M 点的轨迹是两条射线;③当2a >|F 1F 2|时,M 点不存在.2、双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性对称轴:坐标轴,对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞)实、虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)3、双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则,其中θ为∠F 1PF 2.(6)等轴双曲线①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.②性质:a =b ;e =2;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.(7)共轭双曲线①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.知识点3抛物线1、抛物线的定义:满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等;(3)定点不在定直线上.2、抛物线的标准方程与几何性质焦半径(其中P (x 0,y 0))|PF |=x 0+p 2|PF |=-x 0+p 2|PF |=y 0+p 2|PF |=-y 0+p23、抛物线中的几何常用结论(1)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦.①以弦AB 为直径的圆与准线相切.②以AF 或BF 为直径的圆与y 轴相切.③通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.(2)过x 2=2py 的准线上任意一点D 作抛物线的两条切线,切点分别为A ,B ,则直线AB 【题型1圆锥曲线的定义及应用】容易忽视圆锥曲线定义的限制条件,在椭圆的定义中,对常数加了一个条件,即常数大于12F F 。
高三理科数学复习教案:圆锥曲线与方程总复习教案
高三理科数学复习教案:圆锥曲线与方程总复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习适应和能力。
因此小编在此为您编辑了此文:高三理科数学复习教案:圆锥曲线与方程总复习教案期望能为您的提供到关心。
本文题目:高三理科数学复习教案:圆锥曲线与方程总复习教案高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;2.把握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,明白它的简单几何性质;4.了解圆锥曲线的简单应用;5.明白得数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系. 本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.本章难点:1.对圆锥曲线的定义及性质的明白得和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系. 圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式显现,小题要紧考查圆锥曲线的标准方程及几何性质等基础知识、差不多技能和差不多方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.知识网络9.1 椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】由椭圆的定义知,2a=453+253=25,故a=5,由勾股定理得,(453)2-(253)2=4c2,因此c2=53,b2=a2-c2=103,故所求方程为x25+3y210=1或3x210+y25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,然而当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m0,n0且m(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C 2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).通过观看可明白点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.明显半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,则可知B(-2,0),C(0,6)不是抛物线上的点.而D(2,-22),F(3,-23)正好符合.又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时显现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.题型二椭圆的几何性质的运用【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF2=60.(1)求椭圆离心率的范畴;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【解析】(1)设椭圆的方程为x2a2+y2b2=1(a0),|PF1|=m,|PF2|=n,在△F1PF2中,由余弦定理可知4c2=m2+n2-2mncos 60,因为m+n=2a,因此m2+n2=(m+n)2-2mn=4a2-2mn,因此4c2=4a2-3mn,即3mn=4a2-4c2.又mn(m+n2)2=a2(当且仅当m=n时取等号),因此4a2-4c23a2,因此c2a214,即e12,因此e的取值范畴是[12,1).(2)由(1)知mn=43b2,因此=12mnsin 60=33b2,即△F1PF2的面积只与椭圆的短轴长有关.【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范畴时,要专门注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|(|PF1|+|PF2|2)2,|PF1|a-c.【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x +4)2+y2=14和圆(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,则|PQ|+|PR|(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.因此|PQ|+|PR|的最小值为9.题型三有关椭圆的综合问题【例3】(2021全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=43a.l的方程为y=x+c,其中c=a2-b2.设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.因为直线AB斜率为1,因此|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],即43a=4ab2a2+b2,故a2=2b2,因此E的离心率e=ca=a2-b2a=22.(2 )设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y 0=x0+c=c3.由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.从而a=32,b=3,故E的方程为x218+y29=1.【变式训练3】已知椭圆x2a2+y2b2=1(a0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2 |=e,则e的值是()A.32B.33C.22D.63【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m0,n0,mn)求解.2.充分利用定义解题,一方面,会依照定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行运算推理.3.焦点三角形包含着专门多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范畴.9.2 双曲线典例精析题型一双曲线的定义与标准方程【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:( x-4)2+y2= 2内切,求动圆圆心E的轨迹方程.【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,因此|AE|-|BE|=22,又A(-4,0),B(4,0),因此|AB|=8,22|AB|.依照双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.因为a=2,c=4,因此b2=c2-a2=14,故点E的轨迹方程是x22-y214=1(x2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要专门注意轨迹是否为双曲线的两支.【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9【解析】选D.题型二双曲线几何性质的运用【例2】双曲线C:x2a2-y2b2=1(a0,b0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范畴.【解析】设P(x,y),则由=0,得APPQ,则P在以AQ为直径的圆上,即(x-3a2)2+y2=(a2)2,①又P在双曲线上,得x2a2-y2b2=1,②由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,即[(a2+b2)x-(2a3-ab2)](x-a)=0,当x=a时,P与A重合,不符合题意,舍去;当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2a,化简得a22b2,即3a22c2,ca62,因此离心率的取值范畴是(1,62).【点拨】依照双曲线上的点的范畴或者焦半径的最小值建立不等式,是求离心率的取值范畴的常用方法.【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a0,b0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()A.k2-e21B.k2-e21C.e2-k21D.e2-k21【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba题型三有关双曲线的综合问题【例3】(2021广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A 2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h1)的两条直线l1和l2与轨迹E都只有一个交点,且l1l2,求h的值.【解析】(1)由题意知|x1|2,A1(-2,0),A2(2,0),则有直线A1P的方程为y=y1x1+2(x+2),①直线A2Q的方程为y=-y1x1-2(x-2).②方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2 yx,③则x0,|x|2.而点P(x1,y1)在双曲线x22-y2=1上,因此x212-y21=1.将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x0且x2.方法二:设点M(x,y)是A1P与A2Q的交点,①②得y2=-y21x21-2(x 2-2).③又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.代入③式整理得x22+y2=1.因为点P,Q是双曲线上的不同两点,因此它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2 y-2=0.解方程组得x=2,y=0.因此直线l与双曲线只有唯独交点A2.故轨迹E只是点(0,1).同理轨迹E也只是点(0,-1).综上分析,轨迹E的方程为x22+y2=1,x0且x2.(2)设过点H(0,h)的直线为y=kx+h(h1),联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.令=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,解得k1=h2-12,k2=-h2-12.由于l1l2,则k1k2=-h2-12=-1,故h=3.过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1l2,因此A1HA2H,由h2(-h2)=-1,得h=2.现在,l1,l2的方程分别为y=x+2与y=-x+2,它们与轨迹E分别仅有一个交点(-23,223)与(23,223).因此,符合条件的h的值为3或2.【变式训练3】双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F 2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB 是以A为直角顶点的等腰直角三角形,则e2等于()A.1+22B.3+22C.4-22D.5-22【解析】本题考查双曲线定义的应用及差不多量的求解.据题意设|AF1|=x,则|AB|=x,|BF1|=2x.由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.总结提高1.要与椭圆类比来明白得、把握双曲线的定义、标准方程和几何性质,但应专门注意不同点,如a,b,c的关系、渐近线等.2.要深刻明白得双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a| F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当||PF1|-|PF2||=2a|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一样先画出渐近线,要把握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=bax,可将双曲线方程设为x2a2-y2b2=(0),再利用其他条件确定的值,求法的实质是待定系数法.9.3 抛物线典例精析题型一抛物线定义的运用【例1】依照下列条件,求抛物线的标准方程.(1)抛物线过点P(2,-4);(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.【解析】(1)设方程为y2=mx或x2=ny.将点P坐标代入得y2=8x或x2=-y.(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p0),由定义得5=|AF|=|m+p2|,又(-3)2=2pm,因此p=1或9,所求方程为y2=2x或y2=18x.【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0) (a0)满足|P A|=d,试求d的最小值.【解析】设P(x0,y0) (x00),则y20=2x0,因此d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.因为a0,x00,因此当0当a1时,现在有x0=a-1,dmin=2a-1.题型二直线与抛物线位置讨论【例2】(2021湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差差不多上1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B 的任一直线,都有0?若存在,求出m的取值范畴;若不存在,请说明理由.【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:(x-1)2+y2-x=1(x0).化简得y2=4x(x0).(2)设过点M(m,0)(m0)的直线l与曲线C的交点为A(x1,y1),B(x2,y 2).设l的方程为x=ty+m,由得y2-4ty-4m=0,=16(t2+m)0,因此①又=(x1-1,y1),=(x2-1,y2).(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y20.②又x=y24,因此不等式②等价于y214y224+y1y2-(y214+y224)+10(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+10.③由①式,不等式③等价于m2-6m+14t2.④对任意实数t,4t2的最小值为0,因此不等式④关于一切t成立等价于m 2-6m+10,即3-22由此可知,存在正数m,关于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0,且m的取值范畴是(3-22,3+22).【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y 2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2= .【解析】y2-4my+8m=0,因此1y1+1y2=y1+y2y1y2=12.题型三有关抛物线的综合问题【例3】已知抛物线C:y =2x2,直线y=kx+2交C于A,B两点,M 是线段AB的中点,过M作x轴的垂线交C于点N.(1)求证:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),把y=kx+2代入y=2x2,得2x2-kx-2=0,由韦达定理得x1+x2=k2,x1x2=-1,因此xN=xM=x1+x22=k4,因此点N的坐标为(k4,k28).设抛物线在点N处的切线l的方程为y-k28=m(x-k4),将y=2x2代入上式,得2x2-mx+mk4 -k28=0,因为直线l与抛物线C相切,因此=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,因此m=k,即l∥AB.(2)假设存在实数k,使=0,则NANB,又因为M是AB的中点,因此|MN|= |AB|.由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k 24+2.因为MNx轴,因此|MN|=|yM-yN|=k24+2-k28=k2+168.又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+k2(k2)2-4(-1)=12k2+1k2+16.因此k2+168=14k2+1k2+16,解得k=2.即存在k=2,使=0.【点拨】直线与抛物线的位置关系,一样要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直截了当使用公式|AB|=x1+x2+p,若只是焦点,则必须使用一样弦长公式.【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.【解析】455.总结提高1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.2.把握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.3.抛物线的标准方程有四种形式,要把握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采纳待定系数法.4.抛物线的几何性质,只要与椭圆、双曲线加以对比,专门容易把握.但由于抛物线的离心率为1,因此抛物线的焦点有专门多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B 两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2p sin2(为AB的倾斜角),y1y2=-p2,x1x2=p24等.9.4 直线与圆锥曲线的位置关系典例精析题型一直线与圆锥曲线交点问题【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a 的值.【解析】联立方程组(1)当a=0时,方程组恰有一组解为(2)当a0时,消去x得a+1ay2-y-1=0,①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,方程组恰有一组解②若a+1a0,即a-1,令=0,即1+4(a+1)a=0,解得a= -45,这时直线与曲线相切,只有一个公共点.综上所述,a=0或a=-1或a=-45.【点拨】本题设计了一个思维陷阱,即审题中误认为a0,解答过程中的失误确实是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,现在与已知直线y=x-1 恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特点是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范畴为()A.{1,-1,52,-52}B.(-,-52][52,+)C.(-,-1][1,+)D.(-,-1)[52,+)【解析】由(1-k2)x2-2kx-5=0,k=52,结合直线过定点(0,-1),且渐近线斜率为1,可知答案为A.题型二直线与圆锥曲线的相交弦问题【例2】(2021辽宁)设椭圆C:x2a2+y2b2=1(a0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,=2 .(1)求椭圆C的离心率;(2)假如|AB|=154,求椭圆C的方程.【解析】设A(x1,y1),B(x2,y2),由题意知y10,y20.(1)直线l的方程为y=3(x-c),其中c=a2-b2.联立得(3a2+b2)y2+23b2cy-3b4=0.解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.因为=2 ,因此-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.解得离心率e=ca=23.(2)因为|AB|=1+13|y2-y1|,因此2343ab23a2+b2=154.由ca=23得b=53a,因此54a=154,即a=3,b=5.因此椭圆的方程为x29+y25=1.【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.【变式训练2】椭圆ax2+ by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y 2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y 1-y2)(y1+y2)=02ax0+2by0y1-y2x1-x2=0ax0-by0=0.故ab=y0x0=32.题型三对称问题【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范畴.【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k0.设直线AB的方程为y=-1kx+b,联立消去x,得14ky2+y-b=0,由题意有=12+414k0,即bk+10.(*)且y1+y2=-4k.又y1+y22=-1kx1+x22+b.因此x1+x22=k(2k+b).故AB的中点为E(k(2k+b),-2k).因为l过E,因此-2k=k2(2k+b)+3,即b=-2k-3k2-2k.代入(*)式,得-2k-3k3-2+1k3+2k+3k30k(k+1)(k2-k+3)-1【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;(2)关于圆锥曲线上存在两点关于某一直线对称,求有关参数的范畴问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范畴.【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()A.3B.4C.32D.42【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,因此xA+xB=-1,故AB中点为(-12,-12+b).它又在x+y=0上,因此b=1,因此|AB|=32,故选C.总结提高1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.2.直线与圆锥曲线的位置关系的研究能够转化为相应方程组的解的讨论,即联立方程组通过消去y(也能够消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a0两种情形,对双曲线和抛物线而言,一个公共点的情形除a0,=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(现在直线与双曲线、抛物线属相交情形).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.3.弦中点问题的处理既能够用判别式法,也能够用点差法;使用点差法时,要专门注意验证相交的情形.9.5 圆锥曲线综合问题典例精析题型一求轨迹方程【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l 2,记l1和l2交于点M.(1)求证:l1(2)求点M的轨迹方程.【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x 2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y=x.因此过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2= x2.因为k1k2 =x1x2=-1,因此l1l2.(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).同理直线l2的方程为y-x222=x2(x-x2).联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),整理得(x1-x2)(x-x1+x22)=0,注意到x1x2,因此x=x1+x22.现在y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.由(1)知x1+x2=2k,因此x=x1+x22=kR.因此点M的轨迹方程是y=-12.【点拨】直截了当法是求轨迹方程最重要的方法之一,本题用的确实是直截了当法.要注意求轨迹方程和求轨迹是两个不同概念,求轨迹除了第一要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种差不多曲线方程和它的形状的对应关系了如指掌.【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29-y216=1B.x216-y29=1C.x29-y216=1(x3)D.x216-y29=1(x4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,因此|CA|-|CB|=8-2=6,依照双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x3),故选C.题型二圆锥曲线的有关最值【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线B D所在直线的斜率为1.当ABC=60时,求菱形ABCD面积的最大值.【解析】因为四边形ABCD为菱形,因此ACBD.因此可设直线AC的方程为y=-x+n.由得4x2-6nx+3n2-4=0.因为A,C在椭圆上,因此=-12n2+640,解得-433设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3 n2-44,y1=-x1+n,y2=-x2+n. 因此y1+y2=n2.因为四边形ABCD为菱形,且ABC=60,因此|AB|=|BC|=|CA|.因此菱形ABCD的面积S=32|AC|2.又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,因此S=34(-3n2+16) (-433因此当n=0时,菱形ABCD的面积取得最大值43.【点拨】建立目标函数,借助代数方法求最值,要专门注意自变量的取值范畴.在考试中专门多考生没有利用判别式求出n的取值范畴,尽管也能得出答案,然而得分缺失许多.【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BPPQ,则点Q横坐标的取值范畴是.【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.因此xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.因为|xP-1+1xP-1|2,因此xQ1或xQ-3.题型三求参数的取值范畴及最值的综合题【例3】(2021浙江)已知m1,直线l:x-my-m22=0,椭圆C:x2m2+y 2=1,F1,F2分别为椭圆C的左、右焦点.(1)当直线l过右焦点F2时,求直线l的方程;(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范畴.【解析】(1)因为直线l:x-my-m22=0通过F2(m2-1,0),因此m2-1=m22,解得m2=2,又因为m1,因此m=2.故直线l的方程为x-2y-1=0.(2)A(x1,y1),B(x2,y2),由消去x得2y2+my+m24-1=0,则由=m2-8(m24-1)=-m2+80知m28,且有y1+y2=-m2,y1y2=m28-12.由于F1(-c,0),F2(c,0),故O为F1F2的中点,由=2 ,=2 ,得G(x13,y13),H(x23,y23),|GH|2=(x1-x2)29+(y1-y2)29.设M是GH的中点,则M(x1+x26,y1+y26),由题意可知,2|MO||GH|,即4[(x1+x26)2+(y1+y26)2](x1-x2)29+(y1-y2) 29,即x1x2+y1y20.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).因此m28-120,即m24.又因为m1且0,因此1因此m的取值范畴是(1,2).【点拨】本题要紧考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的差不多思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△A BC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范畴为.【解析】设B(m,m2-1a),则C(m,-m2-1a)(m1),又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,因此a=3m+1m-1=3(1+2m-1)3,即a的取值范畴为(3,+).总结提高事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
高中数学新课圆锥曲线方程教案
高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。
2. 学习圆锥曲线的标准方程及其求法。
3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。
二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。
2. 难点:圆锥曲线标准方程的推导与应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。
2. 利用图形演示,让学生直观理解圆锥曲线的特点。
3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。
4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。
五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。
2. 教学素材:圆锥曲线的实例问题。
3. 学生用书:《高中数学》圆锥曲线相关章节。
教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。
请随时查阅。
六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。
2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。
3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。
4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。
5. 巩固练习:布置相关练习题,让学生巩固所学知识。
七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。
2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。
3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。
八、课后作业1. 完成学生用书上的课后练习题。
2. 选取一个实际问题,运用圆锥曲线方程进行解答。
九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。
圆锥曲线讲义 圆锥曲线知识总结 抛物线,椭圆,双曲线对比图表
3.几何性质: 1)范围 2)对称性 3)顶点 4)渐近线 5)离心率 6)通径
x∈(-∞,-a]∪[a,+∞) ,y∈R 关于 x 轴,y 轴,原点对称 (a,0),(-a,0),实轴长为 2a,虚轴长为 2b y=(b/a)x,双曲线与渐近线无限接近,但永远不会相交 双曲线的焦距与实轴长的比 e=c/a 叫做双曲线的离心率,e>1 过焦点并垂直于坐标轴的弦称为通径。双曲线的通径长为(2b^2)/a
2.标准方程:
x a
2 2
)
(
y2 b2
)
1
,a>b>0
焦点是 F1 (-c,0), F2 (c,0),且 c2 a2 b2 。
3.几何性质:
1)范围
x∈[-a,a] ,y∈[-b,b]
2)对称性
关于 x 轴,y 轴,原点对称
3)顶点
(a,0),(-a,0),(0,b),(0,-b),长轴长为 2a,短轴长为 2b
1.定义:平面内与两个顶点 F1 ,F2 ,的距离的差的绝对值等于常数(小于| F1 F2 |且不等于零)
的点的轨迹叫做双曲线。这两个定点叫双曲线的焦点,两焦点的距离叫做双曲线的焦距。
2.标准方程:
x a
2 2
)
(
y b
2 2
)
1
,a>0,b>0
焦点是 F1 (-c,0), F2 (c,0),且 c2 a2 b2 。
2.标准方程: y2 2 px ,(p>0)
F( p ,0) 焦点是 2
3.几何性质: 1)范围 2)对称性 3)顶点 4)离心率 5)通径
x∈[0,+∞) ,y∈R 关于 x 轴对称。抛物线的对称轴叫做抛物线的轴。 (0,0) 抛物线上的点到焦点的距离与到准线的距离的比 e=c/a 叫做抛物线的离心率,e=1 过焦点并垂直于轴的弦称为通径。抛物线的通径长为 2p