第七章应力状态
材料力学第7章应力状态
y
2
2 xy
m m
ax in
m
ax
2
m
in
极值切应力等于极值正应力差的一半。
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0
2 xy x
y
tan
21
x 2 xy
y
tan
20
1
tan 21
§7.2 平面应力状态分析的解析法
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0
得
tan
21
x 2 xy
y
二、最大、最小切应力
m m
ax
in
x
2
x
y
2
sin 2
xy cos 2
§7.2 平面应力状态分析的解析法
7.2.2 主应力 主方向 一、主应力
正应力是求极值
d d
x
y
2
(2sin 2 ) xy(2cos2 ) 0
得极值条件为
x
2
y
sin
2
xy
cos
2
0
(1) 极值正应力所在的斜面,恰好是切应力等于零的
平面,即主平面。
(2) 极值正应力就是主应力。
§7.2 平面应力状态分析的解析法
材料力学第七章应力状态和强度理论
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
工程力学第七章应力状态
σy τ
τ x 0.2
σ y 0.4
τy σy
τ y 0.2
25
解: (1) 画应力圆 OB1 = x= - 1MPa , B1 D1 = x= - 0.2MPa,定出 D1点;
OB2 =y= - 0.4MPa 和 B2D2 = y = 0.2MPa , 定出 D2 点 .
35
250KN 解: 首先计算支反力, 并作出 梁的剪力图和弯矩图 A C 1.6m 2m QC左 = 200 kN
200KN
B
+ MC = 80 kN•m
50KN
+
36
6 4 120300 111270 8810 mm IZ 12 12 3 3
ya 135mm
S
* za
120 15 (150 7.5) 256000mm3
2
x y
o
C
σ x σ y
2
图 13-2
19
2
应力圆作法
(b)
在 - 坐标系内 , 选定比例尺 o 量取 OB1 = x , B1D1 = x , 得 D1点 x B1
D1
τy
σy
σx τx
τy
σx
图 13-3
τx
σy
20
量取 OB2=y , B2D2= y , 得D2 点 o y B2 D2 x B1
23
3
利用应力圆求单元体上任一 截面上的应力
从应力圆的半径 CD 1 按方位角 的转向转动 2 , 得到半径 CE , 圆周上 E 点的 ¸ 坐标 就依次为 ¸ 。
24
例题7-1
工程力学7第七章应力状态和应变状态分析
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布
• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y
y
y
y
y
n
y
x
a
x
e
d
x
x
x
bz
x
x
x
e
x
x
y
f
yy
x
x
b
c
y
y
y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
第七章应力状态及应变状态分析
第七章 应力状态及应变状态分析第一节 概 述在第一章中将应力定义为内力的集度或单位面积的内力值。
应力又分正应力σ和剪应力τ两种。
前面各章的知识表明,受力杆件中任一点的应力是随截面位置及点的位置的不同而不同,如7-1(a )中a 、b 两点分别在两个截面上,其应力是不同的。
同一截面上的各点,如图7-1(b )中b 、c 两点的应力一般情况下也是不同的。
同一点不同方向的应力也是不同的。
过一点各个方向上的应力情况称为该点的应力状态....,应力状态分析就是要研究杆件中某一点(特别是危险点)各个方向上的应力之间的关系,确定该点处的最大正应力和最大剪应力,为强度计算提供重要依据。
研究应力状态的方法是过杆件中的任一点取出一个微小的六面体——单元..体.。
如图7-1(a )中过a 点取出的单元体放大如图7-2所示。
单元体三个方向的边长很小且趋于零,则该单元体代表一点,即a 点,互相平行的平面上的正应力相等,剪应力也相等。
杆件在任意荷载作用下,从中所取出的单元体表面上一般既有正应为又有剪应力,如图7-2所示。
当图7-2所示的单元体各面上的,0,0,0,0,0,0======zy zx yx yz xz xy ττττττ 即六个面上均没有剪应力作用时,这种面叫做特殊平面,并定义为主平面...。
该主(a)(b)图7-1各点的应力情况平面上作用的正应力称为主应力...,用,,,321σσσ表示(,321σσσ≥≥),如图7-3所示。
各面均为主平面的单元体,称为主单元体....。
三个主应力中若有两个等于零一个不等于零,该单元体称为单向应力状态......,如图7-4(a );三个主应力中有一个等于零,两个不等于零,该单元体称为二向应...力状态...,如图7-4(b );三个主应力均不等于零,该单元体称为三向应力状态......,如7-3。
单向应力状态和二向应力状态属平面应力状态,三向应力状态属空间应力状.....态.。
材料力学 第07章 应力状态分析与强度理论
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
w_第七章_应力状态分析01详解
载荷叠加 单独载荷作用下的变形相加等于多载 荷作用的变形
变形叠加 分段刚化的变形之和为整体结构变形
提高梁刚度的措施 载荷 截面 跨度
简单的超静定梁
解除多余约束 用未知力代替
变形条件
计算变形 求解未知力
第七章 应力状态分析
7-1 概述
应力的定义 p dF , dN , dQ
dA
y
y y
x x
x
B
D Dx ( x , x ) 2
C 20 A
Dx x
二向 应力圆
主应力A,B
点1面,2 对O应C ,R
Dy ( y , x )
x
2
y
x
2
y
cos 2
x
sin
2
转向一致, x y 2
x
2
y
2
2 x
转角加倍
D x Cx R cos(2 20 )
Cx Rcos 2 cos 20
max (35)2 502 61MPa
7-3 平面应力状态分析——图解解析法
x
2
y
x
2
y
cos 2
x
sin 2
x
2
y
sin 2
x
cos 2
消去 2
(
x
2
y
)2
2
(
x
2
y
)2
2 x
R2
圆心
C
(
x
y
,
0)
2
y
应力圆
y y
x
作法
x
x
半径:
R
(
x
工程力学c材料力学部分第七章 应力状态和强度理论
无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学第七章 应力状态
主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
7-第七章 应力状态分析 强度理论.
第七章应力状态分析强度理论7.1 应力状态概述一、工程实例1. 压缩破坏2. 弯曲拉伸破坏3. 弯曲剪切破坏4. 铸铁扭转破坏5. 低碳钢扭转破坏二、应力状态的概念1. 点的应力状态过一点所作各斜截面上的应力情况,即过一点所有方位面上的应力集合。
2. 一点应力状态的描述以该点为中心取无限小三对面互相垂直的六面体(单元体)为研究对象,单元体三对互相垂直的面上的应力可描述一点应力状态。
3. 求一点应力状态(1)单元体三对面的应力已知,单元体平衡(2)单元体任意部分平衡(3)截面法和平衡条件求得任意方位面上的应力,即点在任意方位的应力。
三、应力状态的分类1. 单元体:微小正六面体2. 主平面和主应力:主平面:无切应力的平面主应力:作用在主平面上的正应力。
3. 三种应力状态单项应力状态:三个主应力只有一个不等于零,如A 、E 点 二向应力状态:三个主应力中有两个不等于零,如B 、D 点 三向应力状态:三个主应力都不等于零四、应力状态分析的方法 1.解析法2. 图解法7.2应力状态分析的解析法一、解析法图示单元体,已知应力分量x σ、y σ、xyτ和yx τ。
xxx(一)任意截面上的正应力和切应力:利用截面法,考虑楔体bef 部分的平衡。
设ef 面的面积为dA , ∑=0F n 0sin )Asin (cos )sin A (cos )cos A (sin )cos A (A =-+-+αασααταασαατσαd d d d d y yx x xy∑=0F tsin )Asin (cos )sin A (sin )cos A (cos )cos A (A =++--ααταασαασαατταd d d d d yx y x xy根据切应力互等定理: y x xy ττ=三角函数关系:22cos 1cos 2αα+=,22cos 1sin 2αα-=,∂=cos sin 22sin αα解得:ατασσσσσα2sin 2cos 22x x xy yy--++=(7-1)ατασστα2cos 2sin 2x xy y+-= (7-2)(二)主应力即主平面位置将式(8-1)对取一次导数,并令其等于零可确定正应力的极值和所在平面的位置。
第七章_应力状态和强度理论
第 1 页/共 4 页第七章 应力状态和强度理论7-3 横截面上 AF =σ α截面上 αστασσσαα2sin 22cos 22=+=,强度条件 ][432sin 2][)2cos 1(2σατσασαα≤=≤+=A F A F ,等价于 ][2sin 342)2cos 1(2max σαασ≤⎭⎬⎫⎩⎨⎧⋅+=A F A F e ,由0=ασd d e,并比较︒=0α或︒60的e σ,得使e σ最小的角度︒=60α 7-7 内力 m kN M ⋅-=2.7,kN F s 10-=应力 MPa I Myz 55.10==σ,MPa bI S F z z s 88.0*-==τ 主应力 MPa 62.1022221=+⎪⎭⎫⎝⎛+=τσσσ,MPa 073.022223-=+⎪⎭⎫⎝⎛-=τσσσ主平面方位 ︒=⇒=-=74.4167.022tan 00αστα7-8(d) MPa MPa x y x 50200-=-==τσσ,, ︒=45α截面上:MPaMPax yx yy102cos 2sin 2402sin 2cos 22=+-==--=αταστατασσσαα主应力:MPa x y y4122221=+⎪⎪⎭⎫ ⎝⎛+=τσσσ, MPa x y y6122223-=+⎪⎪⎭⎫ ⎝⎛-=τσσσ主平面方位:︒=⇒=--=34.39522tan 00ασταyx7-15(a) MPa z 50=σ——为主应力,另两个主应力由下列应力决定 MPa MPa MPa x y x 403070-===τσσ,,MPa MPa x y x yx x y x yx 3.5227.94222222=+⎪⎪⎭⎫ ⎝⎛--+=''=+⎪⎪⎭⎫ ⎝⎛-++='τσσσσστσσσσσ主应力 MPa MPa MPa z 3.5507.94321=''===='=σσσσσσ,, 最大切应力 MPa 7.44231max =-=σστ7-16(a) MPa MPa MPa 105070321=,=,=σσσ A 点:MPa MPa A A 2030==τσ,在2σ与3σ决定的应力圆上使切使劲达极值7-18 立方体边长 a =20mm不计摩擦,各面上的应力为主应力顶面 MPa aF3523-=-=σ,侧面021<=σσ 主应变021==εε,又)]([13211σσνσε+-=EMPa 151321-=-==⇒σννσσ7-21 k 处截面上的内力: e M laM =,l M F e s =应力: bhFb I S F s z z s 230*===,τσ︒=45α方向即为主应力方向第 3 页/共 4 页τστσ-==31,主应变 )(131451νσσεε-==︒E由上可得 ︒+=45)1(32ενElbhM e7-22 钢球各点应力状态相同 MPa 14321-===σσσ体应变 )(21321σσσνθ++-=E体积改变 3101054.6m V V -⨯==∆θ7-23 MPa MPa MPa z y x 403070-===σσσ,,MPaMPax y x y x x y x y x 28.54)(21)(2172.944)(21)(212222=+--+=''=+-++='τσσσσστσσσσσ主应力 MPa MPa MPa 28.55072.94321==σσσ,=, []3213232221/99.12)()()(61m m kN Ev d ⋅=-+-+-+=σσσσσσν7-24 平面应力状态 MPa MPa x y x 15015===τσσ,,主应力 MPa MPa x x x27.9027.242232221-===+⎪⎭⎫ ⎝⎛+=σστσσσ,, 按第一强度理论:][11t r σσσ<= 按第二强度理论:][59.26)(3212t r MPa σσσνσσ<=+-= 满意强度条件。
第七章 应力状态、应变分析和强度理论
§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
材料力学第07章应力状态与应变状态分析
以上由单元体公式
应力圆(原变换)
下面寻求: 由应力圆
单元体公式(逆变换)
只有这样,应力圆才能与公式等价
换句话,单元体与应力圆是否有一一对应关系?
为什么说有这种对应关系?
DE R sin[180o ( 2 20 )] R sin( 2 20 )
( R cos 20 ) sin 2 ( R cos 20 )cos 2
2
cos2
xy
sin 2
同理:
x
y
2
sin 2
xy
cos2
n
Ox
图2
二、极值应力
令:d
d
0
x
y
sin202 xycos200
由此得两个驻点:
01、(
01
2
)和两个极值:
tg20
2 xy x
y
y
mm
ax in
x
y ±(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力 !
y
O
x
七、主单元体、主平面、主应力:
y
y
主单元体(Principal bidy):
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
A
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
材料力学 第七章 应力状态与强度理论
取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2
cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2
x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2
第七章 应力 应变状态分析
§7-6 平面应变状态应变分析
(本章平面应力状态是重点) 点的应力状态:过某点各微截面的应力情况 应变状态:某点在不同方位的应变情况 平面应变状态:所有应变均发生在同一平面内 平面应力与平面应变状态对比:
方向应变(正应变和剪应变)
方向应力(正应力和剪应力) 为零,应力不为零
一、平面应力状态(一对平行侧面上无应力,其余面上的应力平行于这 对平面) 二、研究:任一斜截面的应力(与无应力平面垂直的平面)可画平面图 (单位厚度应力) 三、符号规定:
方位角
,(从
轴)逆时针正 正应力
:拉为正
剪应力 :使顺时针转正 四、方法:微体(微块)(单位厚度)的平衡
微三角块平衡 五、结果
六、已知 ,求 ,
到E。 三、最大应变与主应变
1.应变极值及方位
2.主应变:
方位的正应变,由应变圆,它总是存在。
表示。 3.适用范围: 应变圆:纯几何角度推导,小变形,与材料性质无关。 应力圆:线性、非线性(因为推导没用到材料常数和胡克定律)。 4.P221例7-6,代公式,自学(
不好测)
求 , 的公式中,包含 三个量,如反过来要求 ,可先测三个方向 ,联立方程求解。
略去高阶微量 代入广义胡克定律
3.体积与形状改变比能 应变比能能够分解为体积改变比能与形状改变比能之和 体积改变比能等于与之体积应变相等的三向等应力单元体(其应力 为 的应变比能,故
代入(1) 形状改变比能 二、非主应力微体 1.复杂应力状态下应变比能
2.纯剪应力状态引起的体积应变为零 非主应力微体的剪应力可看作三个纯剪应力状态的叠加 3.体积与形状应变比能 由2,可知
圆柱体内第三主应力mpa1535010300假定圆柱体膨胀塞满凹座0002102000002mpa153mpa43mpa1531778复合材料的应力应变关系选讲复合材料种类繁多长纤维短纤维颗粒增强金属基树脂本书仅介绍长纤维树脂基复合材料正交各向异性有三个互相垂直的对称面横观各向同性一正轴物理方程轴1纤维纵向轴2纤维横向构成直角坐标系轴123称为材料主轴1
材料力学课件第七章 应力状态分析1-2
G2 "
3.应力圆的应用
①应力圆上一点坐标代表单元体某个面上的应力;
②应力圆上半径转过2a,单元体上坐标轴转过a,且转向相同;
③圆心为平均正应力,为不变量。 ④ 半径对应极值切应力。
y yx
xy x
n
a
a x a xy
yx y
(a,a)E
B1 B O "
D' (y, yx)
G1'
D(x, xy) 2a
x
2
y
2
2 xy
②取x面,定出D( x ,xy )点;取y面,定出D'( y ,yx )点;
③连DD'交轴于C点,以C为圆心,DD1为直径作圆;
y y yx
xy x
n
a
a x x a xy
yx y
(a,a)E
B1 B O "
G1'
D(x, xy) 2a
2a0 A A1
C
'
D' (y, yx)
1. ①主平面:单元体上切应力为零的面;
②主应力:主平面上的正应力,用1、2、3 表示, 有1≥2≥3。
y
z
yx
yz
xy
zy
x x
z zx xz z
x' 1
旋转
z' 3
2 y'
2.应力状态按主应力分类:
①只有一个主应力不为零称单向应力状态;
②只有一个主应力为零称两向应力状态(平面应力状态); ③三个主应力均不为零称三向应力状态(空间应力状态);
③主应力大小:
max min
x
y
2
x
第七章:应力状态、强度理论
s
2 2
s
2 3
2 s1s 2
s 3s 2
s1s 3 )
1 t 2 0 (t )2 2 0 0 t (t ))
2E
s1
1 t 2
E
G
E
21
)
§7–6 强度理论及其相当应力
强度理论:是关于“材料发生强度破坏或失效”的假设
材料的破坏形式: ⑴ 脆性断裂 如铸铁在拉伸和扭转时的突然断裂 ⑵ 塑性屈服 如低碳钢在拉伸和扭转时明显的塑性变形
sx
t 绕研究对象顺时针转为正;
y
txy
逆时针为正。
Ox
图1
s
sx
y
sy
ttxy
Ox 图2
设:斜截面面积为dA,由分离体平衡得:
Fn 0
n s dA (t xydAcos )sin (s xdAcos ) cos t (t yxdAsin ) cos (s ydAsin )sin 0
容器表面用电阻应变片测得环向应变 t =350×10-6,若已知容器平均 直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25
试求:1.导出容器横截面和纵截面上的正应力表达式; 2.计算容器所受的内压力。
s1 sm
p p
p
x
l
图a
D
y
xp
AO
B
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
第七章 应力状态和强度理论
§7–1 概述 §7–2 平面应力状态的应力分析.主应力 §7–3 空间应力状态的概念
§7–4 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
中南大学土木工程学院
1
二、一点应力状态的描述
单元体:围绕构件内一点所截取的微小正六面体。 (1)各边长为无穷小直六面体;dx,dy,dz→0 (2)各面应力均匀分布; (3)平行两面对应应力数值相等。 (4)单元体各个面上的应力已知或可求;
dx
dy dz
一 点 应 力 状 态
z
材料力学
y
sy
材料力学
中南大学土木工程学院
13
式(7-5)可求出相差900的两个角a 1,对应两个互相
垂直的截面上,作用着大小相等,同时指向或背离交线的 切应力所在截面。
t max sx -s y 2 t xy t min 2
2
(7-6)
式(7-3)和式(7-5)有: tan 2a 0 tan 2a1 -1
Me
K 450
Me
45
0
1 s 3 -s 1 E 1 - 1 t - t -t E E
s
s a OD1 OC CD1 OC CD cos(2a 0 2a ) OC CA cos 2a0 cos 2a - CAsin 2a0 sin 2a
sx s y
2
s x -s y
2
cos 2a - t xy sin 2a
t a CD sin(2a 0 2a ) CA sin 2a 0 cos 2a CA cos 2a 0 sin 2a
根据切应力互等定理tyx= txy,及三角函数关系
dA
1 cos 2a 1 - cos 2a 2 cos a , sin a 2 2 sin 2a 2sin a cos a
2
sx
dAcosa
a
sa
n
x
a
txy
ta
tyx
t
dAsina sy 整理后得到 s x s y s x -s y sa cos 2a - t xy sin 2a (7-1) 2 2 sx -s y (7-2) ta sin 2a t xy cos 2a 2
t zx
G
(1)线应变只与正应力有关,与切应力无关;切应变只与 切应力有关,与正应力无关。 (2)一个方向的线应变不仅与该方向的正应力有关,而且 与两个垂直方向的正应力有关。因此,考察一个方向 的线应变时,需要考虑三个互相垂直方向的正应力。
材料力学 中南大学土木工程学院
24
已知轴扭转时的d,E,v,45o,求 Me。 解:1、应力状态分析画单元体 2、 求 t
1 x s x - s y s z E 1 y s y - s z s x E 1 z s z - s x s y E
y
sy
O
t yz
G
sz
tyx tyz txy tzy tzx txz
sx
x
z
xy
t xy
G
yz
zx
材料力学
中南大学土木工程学院
4、面内最大切应力值及其作用面方位 应力圆上的最高点的切应力最大,即为面内 最大切应力,其作用面与主平面的夹角为450。
C1(sm ,tmax) A O E B1 C
2a0 A1
t
t max sx -s y 2 t xy t min 2
sy smin tyx t t sm B max E A xy s x F a0
2
(7-4)
四、面内最大切应力及位置
式(7-2)对a 求导,得
面内是指截面法线 是位于xy平面内的。
dt a 由 |a a1 0 可确定面内切应力取极值的截面。 da
sx -s y tan 2a1 2t xy
(7-5)
dt a (s x - s y )cos 2a - 2t xy sin 2a da
sadA-sx(dAcosa)cosa txy (dAcosa)sina tyx (dAsina)cosa -sy(dAsina)sina 0
这里要特别指出,式中tyx要按其大小计算,不考虑负号。
sa s x cos2 a s y sin2 a - (t xy t yx )sina cosa
第七章 应力状态和强度理论
§7.1
一、应力状态的概念
一点的应力状态是指某点处各截面上的应力情况。
概
述
前面各章研究的正应力和切应力都是横截面上的应力,
通过应力状态分析,可以了解各点任意斜截面上的应力情 况。研究应力状态的目的是找出某点处的最大正应力和最 大切应力数值及所在截面的方位,以便进行失效分析并研 究构件破坏的原因。
2
t
smax
sx sy
s min OE OC - CE
sx -s y 2 - t xy 2 2 AA1 主平面方位 tan 2a 0 CA1 2t xy s x -s y
19
O
E B1
C
2a0
A1
F s
sx sy
2
smin
sm
B
sx sy
2
smax
O
sz
tyx tyz txy tzy tzx txz
sy sx txy tyx txy sx
sx
x
正视图
tyx sy
中南大学土木工程学院
2
三、主平面
主应力
1、主平面——切应力等于零的平面。 一点处一般有三个主平面,互相垂直。 2、主应力——主平面上的正应力。 一点处一般有三个主应力,按代数值大小排 列分别记为 s1 , s2 , s3,且
y sy
s1 s 2 s 3
tyx txy sx
z'
s2 s3 s1
y'
tyz tzy sz
z
材料力学
tzx
txz
x 旋转 x'
3
中南大学土木工程学院
四、一点应力状态的分类
1、单向应力状态——只有一个主应力不为零。
单元体
s
简化表示
s
2、二向(平面)应力状态——有两个主应力不为零。
s2 s1 t t s2 s1
a 为参数
s x -s y 2 t xy 2
2
sa , ta 为变量
2
sx s y 2 s t a a 2
2
材料力学
中南大学土木工程学院
15
二、应力圆的作法
t
sx -s y 2 R t xy 2
s x -s y
2
sin 2a t xy cos 2a
中南大学土木工程学院
18
材料力学
3、主应力值及主平面方位
sy smin tyx txy BE sx A F a0
平均应力值 s m OC 主应力值
A
sx sy
s max
2
2 OF OC CF
sx -s y 2 t xy 2
21
§7.4
应力与应变的关系
一、广义胡克定律
各向同性材料,应力不超过材料的比例极限。 胡克定律成立
x
sx
E
s E
y
y - x -
sx
E
sx
x
sx
--泊松比
材料力学
中南大学土木工程学院
22
三向应力状态的广义胡克定律——叠加法
s2
s1 1 E
s1
s3 s2 1 - 1 - E E 叠加 1 1 1 1
tyx
D
y
B sa
ta A t xy
a sx
n
2a
A(sx,txy)
x
O B(sy,tyx)
C
s
点面对应
材料力学
转向对应
二倍角对应
17
中南大学土木工程学院
2、单元体斜截面上的应力
tyx
D
sy
t
D(sa ,ta) 2a 2a0 C D1
A(sx,txy)
B sa
ta A t xy
a sx
n x O B(sy,tyx)
材料力学 中南大学土木工程学院
txy
ta
tyx
8
3、任意斜截面上的应力 平衡对象——用a 斜截面截取的局部单元。 参加平衡的量——应力乘以其作用的面积。 平衡方程——
dA
Fn 0
Ft 0
sx
a
sa
n
x
a
图示单元各截面面积如图所示。
dAcosa
txy
dAsina sy
ta
tyx
t
Fn 0
sa
sx 局部平衡
sx
ta
任意斜截面是指法线 位于xy面内的斜截面
材料力学 中南大学土木工程学院
7
sx
txy ta sy
sa a
n
x
简化表示
sx txy
a
sa a ta
x
tyx
sy
tyx
a面——斜截面
自x轴正向逆时针转到a 面外法线时a 角定义为正。 2、应力的正负号规定 正应力以拉应力为正,压应力为负。 切应力以绕单元体或其局部顺时针方向转 动为正;反之为负。 应力的正负号规定是为画出应力的指向及画 应力圆用,不表示应力的指向与图示相反。
材料力学
中南大学土木工程学院
9
Ft 0
tadA-sx(dAcosa)sina-txy (dAcosa)cosa tyx (dAsina)sina sy(dAsina)cosa 0