物理 电磁感应现象的两类情况的专项 培优 易错 难题练习题附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理 电磁感应现象的两类情况的专项 培优 易错 难题练习题附答案解析
一、电磁感应现象的两类情况
1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒
ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的
过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L v
θ=2)sin sin t gvt v v CgR θθ=+ 【解析】
试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E
I R
=
,棒所受的安培力F BIL =
联立可得22B L v
F R
=,由平衡条件可得F mgsin θ=,解得2
mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=
此时电容器的带电量为
Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V
则电路中电流
Q C U CBL v i t t t ∆∆∆===∆∆∆,又v
a t
∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθ
θ
=
=++
所以金属棒做初速度为0的匀加速直线运动,ts末的速度
gvtsin
v at
v CgRsin
θ
θ
'==
+
.
考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化
【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.
2.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。
一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。
现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。
不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。
(1)求ab棒沿斜面向上运动的最大速度;
(2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q;
(3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。
【答案】(1) (2)q=40C (3)
【解析】
【分析】
(1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。
据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。
(2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。
(3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。
【详解】
(1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知
对物体,有;对ab棒,有
又、
联立解得: (2) 感应电荷量
据闭合电路的欧姆定律 据法拉第电磁感应定律
在ab 棒开始运动到匀速运动的这段时间内,回路中的磁通量变化
联立解得:
(3)对物体和ab 棒组成的系统,根据能量守恒定律有:
又
解得:电阻R 上产生的焦耳热
3.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数
0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整
个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取2
10/g m s =.
()1求0t =时棒所受到的安培力0F ;
()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系
式;
()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去
外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .
【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J
【解析】 【详解】
解:()1由图b 知:
0.2
0.1T /s 2
B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:
0.05V B E Ld t t
Φ===V V V V
感应电流为:0.25A E
I R
==
可得0t =时棒所受到的安培力:
000.025N F B IL ==,方向水平向右;
()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=
故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;
()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=
设3s 后到撤去外力F 时又运动了1s ,则有:
1
1BLs q q I t R R
Φ-===V V &
解得:16m s =
此时ab 棒的速度设为1v ,则有:22
1012v v as -=
解得:14m /s v =
此后到停止,由能量守恒定律得: 可得:2
1210.195J 2
Q mv mgs μ=
-=
4.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
(3)AB 边产生的焦耳热。
【答案】(1)22FR v B L =;(2)F I BL
=;(3)4FL Q =
【解析】
【分析】 【详解】
(1)线圈向右匀速进入匀强磁场,则有
F F BIL ==安
又电路中的电动势为
E BLv =
所以线圈中电流大小为
=
=E BLv I R R 联立解得
22
FR
v B L =
(2)根据有F F BIL ==安得线圈中的电流大小
F I BL
=
(3)AB 边产生的焦耳热
22(
)4AB F R L Q I R t BL v
==⨯⨯ 将22
FR
v B L =
代入得 4
FL Q =
5.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
第1磁场区的磁感应强度大小为B 1,线框的cd 边到第1磁区上场区上边界的距离为h 0。
线框从静止开始下落,在通过每个磁场区时均做匀速运动,且通过每个磁场区的速度均为通过其上一个磁场区速度的2倍。
重力加速度大小为g ,不计空气阻力。
求: (1)线框的质量m ;
(2)第n 和第n +1个磁场区磁感应强度的大小B n 与B n+1所满足的关系;
(3)从线框开始下落至cd 边到达第n 个磁场区上边界的过程中,cd 边下落的高度H 及线框产生的总热量Q 。
【答案】22112B l gh gR (2)+12n n B B =;2311
2(1)2n B l gh - 【解析】 【分析】 【详解】
(1)设线框刚进第一个磁场区的速度大小为v 1,由运动学公式得2
112v gh =,设线框所受安
培力大小为F 1,线框产生的电动势为E 1,电流为I ,由平衡条件得
1F mg =
由安培力的表达式得11F B Il =,111=E B lv ,1
E I R
=
联立解得 22
112B l m gh gR
=(2)设线框在第n 和第n +1个磁场区速度大小分别为v n 、v n +1,由平衡条件得
22n n
B l v mg R = 22+1+1
n n B l v mg R
=
且
12n n v v +=
联立解得
12n n B B +=
(3)设cd 边加速下落的总距离为h ,匀速下落的总距离为L ,由运动学公式得
22n
v h g
=
112n n v v -=
=2(1)L n l -
联立解得
2(1)122(1)n H h L h n l -=+=+-
由能量守恒定律得
2(1)Q mg n l =-
联立解得
2311
2(1)2n B l gh Q -=
6.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T .在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L =1m ,电阻可忽略不计.质量均为m =lkg ,电阻均为R =2.5Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4m /s 2向右做匀加速直线运动,5s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.
(1)求棒MN 的最大速度v m ;
(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除PQ 棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热.
(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)
【答案】(1)25m /s m v = (2)Q =5 J (3)5m x = 【解析】 【分析】 【详解】
(1)棒MN 做匀加速运动,由牛顿第二定律得:F -BIL =ma 棒MN 做切割磁感线运动,产生的感应电动势为:E =BLv 棒MN 做匀加速直线运动,5s 时的速度为:v =at 1=2m/s 在两棒组成的回路中,由闭合电路欧姆定律得:2E I R
=
联立上述式子,有:222B L at
F ma R
=+
代入数据解得:F =0.5N
5s 时拉力F 的功率为:P =Fv 代入数据解得:P =1W
棒MN 最终做匀速运动,设棒最大速度为v m ,棒受力平衡,则有:
0m m
P
BI L v -= 2m
m BLv I R
=
代入数据解得
:m v =
(2)解除棒PQ 后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,则有:2m mv mv '=
设从PQ 棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:2211
222
m Q mv mv '=-⨯ 代入数据解得:Q =5J ;
(3)棒以MN 为研究对象,设某时刻棒中电流为i ,在极短时间△t 内,由动量定理得:-BiL △t =m △v
对式子两边求和有:()()m BiL t m v ∑-∆=∑∆ 而△q =i △t
对式子两边求和,有:()q i t ∑∆=∑∆ 联立各式解得:BLq =mv m , 又对于电路有:2E q It t R
==
由法拉第电磁感应定律得:BLx
E t
= 又2BLx
q R
=
代入数据解得:x =
7.如图1所示,一个圆形线圈的匝数1000n =匝,线圈面积20.02S m =,线圈的电阻
1r =Ω,线圈外接一个阻值4R =Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图2所示.求
()1在04s ~内穿过线圈的磁通量变化量; ()2前4s 内产生的感应电动势; () 36s 内通过电阻R 的电荷量q .
【答案】(1)4×10﹣2Wb (2)1V (3)0.8C 【解析】
试题分析:(1)依据图象,结合磁通量定义式BS Φ=,即可求解;(2)根据法拉第电磁感应定律,结合磁感应强度的变化率求出前4s 内感应电动势的大小.(3)根据感应电动势,结合闭合电路欧姆定律、电流的定义式求出通过R 的电荷量.
(1)根据磁通量定义式BS Φ=,那么在0~4s 内穿过线圈的磁通量变化量为:
()()3210.40.20.02410B B S Wb Wb -∆Φ=-=-⨯=⨯
(2)由图象可知前4 s 内磁感应强度B 的变化率为:0.40.2
/0.05?/4
B T s T s t ∆-==∆ 4 s 内的平均感应电动势为:10000.020.05?1B
E nS
V V t
∆==⨯⨯=∆ (3)电路中的平均感应电流为:E I R =
总,又q It =,且E n t
∆Φ=∆ 所以()0.020.40.210000.841
q n C C R 总⨯-∆Φ
==⨯=+ 【点睛】本题考查了法拉第电磁感应定律的应用,由法拉第电磁感应定律求出感应电动势,由欧姆定律求出感应电流,最后由电流定义式的变形公式求出感应电荷量.
8.如图所示,竖直固定的足够长的光滑金属导轨MN 、PQ ,间距L =0.2m ,其电阻不计.完全相同的两根金属棒ab 、cd 垂直导轨放置,每棒两端都与导轨始终良好接触.已知两棒质量均为m =0.01kg ,电阻均为R =0.2Ω,棒cd 放置在水平绝缘平台上,整个装置处在垂直于导轨平面向里的匀强磁场中,磁感应强度B =1.0T.棒ab 在竖直向上的恒力F 作用下由静止开始向上运动,当ab 棒运动位移x =0.1m 时达到最大速度,此时cd 棒对绝缘平台的压力恰好为零,重力加速度g 取10m/s 2.求: (1)恒力F 的大小;
(2)ab 棒由静止到最大速度通过ab 棒的电荷量q ; (3)ab 棒由静止到达到最大速度过程中回路产生的焦耳热Q .
【答案】(1)0.2N(2)0.05C(3)5×10-3J 【解析】 【详解】
(1)当棒ab 达到最大速度时,对ab 和cd 的整体:
20.2N F mg ==
(2) ab 棒由静止到最大速度通过ab 棒的电荷量
q It =
22BLx E t
I R R
== 解得
10.20.1
C 0.05C 220.2
BLx q R ⨯⨯=
==⨯ (3)棒ab 达到最大速度v m 时,对棒cd 有 BIL=mg
由闭合电路欧姆定律知
2E
I R
=
棒ab 切割磁感线产生的感应电动势
E=BLv m
代入数据解得
v m =1m/s
ab 棒由静止到最大速度过程中,由能量守恒定律得
()
21
2
m F mg x mv Q -+= 代入数据解得
Q =5×10-3J
9.如图所示,“<”型光滑长轨道固定在水平面内,电阻不计.轨道中间存在垂直水平面向下的匀强磁场,磁感应强度B .一根质量m 、单位长度电阻R 0的金属杆,与轨道成45°位置放置在轨道上,从静止起在水平拉力作用下从轨道的左端O 点出发,向右做加速度大小
为a 的匀加速直线运动,经过位移L .求: (1)金属杆前进L 过程中的平均感应电动势.
(2)已知金属杆前进L 过程中水平拉力做功W .若改变水平拉力的大小,以4a 大小的加速度重复上述前进L 的过程,水平拉力做功多少?
(3)若改用水平恒力F 由静止起从轨道的左端O 点拉动金属杆,到金属杆速度达到最大值v m 时产生热量.(F 与v m 为已知量)
(4)试分析(3)问中,当金属杆速度达到最大后,是维持最大速度匀速直线运动还是做减速运动?
【答案】(1)22a
BL L
W +2maL (3)2202
122-m m F R mv B v (4)当金属杆速度达到最大后,将做减速运动 【解析】 【详解】
(1)由位移﹣速度公式得
2aL =v 2﹣0
所以前进L 时的速度为
v 2aL
前进L 过程需时
t =
2=v
aL
a a
由法拉第电磁感应定律有:
t
E ∆Φ=∆ =21
2222B L L
B S a BL t L aL ⨯⨯⨯∆==∆(2)以加速度a 前进L 过程,合外力做功
W +W 安=maL
所以
W 安=maL ﹣W
以加速度4a 前进L 时速度为
8'=v aL =2v
合外力做功
W F ′+W 安′=4maL
由22A B L v
F BIL R
==可知,位移相同时:
F A ′=2F A
则前进L 过程
W 安′=2W 安
所以
W F ′=4maL ﹣2W 安=2W +2maL
(3)设金属杆在水平恒力作用下前进d 时F A =F ,达到最大速度,由几何关系可知,接入电路的杆的有效长度为2d ,则
220(2)2⨯===⨯m
A B d v F BIl F R d
所以
d=022m
FR B v 由动能定理有
212
-=
m Fd Q mv 所以:
Q =Fd ﹣222
02
1122=2
-m m m F R mv mv B v (4)根据安培力表达式,假设维持匀速,速度不变而位移增大,安培力增大,则加速度一定会为负值,与匀速运动的假设矛盾,所以做减速运动。
10.如图所示,间距L =1m 的足够长的两不行金属导轨PQ 、MN 之间连接一个阻值为R =0.75Ω的定值电阻,一质量m =0.2kg 、长度L =1m 、阻值r =0.25Ω的金属棒ab 水平放置在导轨上,它与导轨间的动摩擦因数μ=0. 5。
导轨不面的倾角37θ=︒,导轨所 在的空间存在着垂直于导轨不面向上的磁感应强度大小B = 0.4T 的匀强磁场。
现让金属棒b 由静止开始下滑,直到金属棒b 恰好开始做匀速运动,此过程中通过定值电阻的电量为q =1.6 C 。
已知运动过程中金属棒ab 始终与导轨接触良好,导轨电阻不计,sin370.6︒=,
cos370.8︒=,重力加速度g =10m/s 2,求:
(1)金属棒ab 下滑的最大速度;
(2)金属棒ab 由静止释放后到恰好开始做匀速运动所用的时间;
(3)金属棒ab 由静止释放后到恰好开始做匀速运动过程中,整个回路产生的焦耳热。
【答案】(1) 2.5/m v m s = (2) 2.85t s = (3) 0.975Q J = 【解析】 【详解】
(1)设金属棒ab 下滑的最大速度为m v ,由法拉第电磁感应定律和闭合电路的欧姆定律得
()m BLv I R r =+
由平衡条件得
sin cos mg mg BIL θμθ=+
联立解得 2.5m/s m v =;
(2)金属棒ab 由静止开始下滑到恰好匀速运动的过程,由动量定理得
()sin cos 0m mg mg BIL t mv θμθ--=-
又
q It =
联立解得 2.85t s =;
(3)由法拉第电磁感应定律和闭合电路的欧姆定律得
BLx
q R r
=
+ 由能量守恒定律得
2
1sin cos 2
m mgx mg x mv Q θμθ=++g
联立解得0.975J Q =。
11.如图所示(俯视图),两根光滑且足够长的平行金属导轨固定在同一水平面上,两导轨间距 L =1m 。
导轨单位长度的电阻 r =1Ω/m ,左端处于 x 轴原点,并连接有固定电阻 R 1=1Ω(与电阻 R 1 相连的导线电阻可不计)。
导轨上放置一根质量 m =1kg 、电阻 R 2=1Ω的金属杆ab ,整个装置处于磁感应强度B = B 0+kx (B 0=1T ,k =1T/m )的磁场中,磁场方向竖直向下。
用一外力F 沿水平方向拉金属杆ab ,使其从原点处开始以速度v =1m/s 沿 x 轴正方向做匀速运动,则:
(1)当 t =1s 时,电阻R 1上的发热功率。
(2)求 0-2s 内外力F 所做的功。
(3)如果t =2s 调整F 的大小及方向,使杆以1m/s 2 的加速度做匀减速运动,定性讨论F 的大小及方向的变化情况。
【答案】(1)0.25W (2) 2J (3) 见解析 【解析】 【详解】
(1)当t =1s 时,x =vt =1m ,B =B 0+kx =2T ,所以R 1上的电流为120.52BLv
I R R xr
==++A ,得
21P I R ==0.25W
(2)电流与导体棒位置的关系为012()0.52B kx Lv
I R R xr
+=
=++A ,得回路中的电流与导体棒位置
无关,由F ILB =得0F ILB ILkx =+,画出F -x 图象,求0-2s 内图象下面的“面积”,即是导体棒在运动过程中克服安培力所做的功
当t =0,B =1T ,所以0.5N F ILB ==,当t =2s ,B =3T ,所以 1.5N F ILB ==,x =2m ,所以做功的“面积”为2J 。
因导体棒是匀速运动,合力做功为0,所以外力克服安培力做功为2 J
(3)当t =2s 时 1.5N F ILB ==安,方向向左,此时合外力1N F ma ==合,方向向左,所以此时F 应向右,大小为0.5N 。
随着速度的减小,安培力将减小,F 先减小。
当安培力等于1N 时,F 减至0。
当速度更小是,安培力也更小,此时F 应反向增大,当速度接近为0时,安培力也接近为0, F 接近1N 。
12.如图,水平面上有两根足够长的光滑平行金属导轨,导轨间距为l ,电阻不计,左侧接有定值电阻R ,质量为m 、电阻为r 的导体杆,以初速度v 0沿轨道滑行,在滑行过程中保持与轨道垂直且接触良好,整个装置处于方向竖直向上,磁感应强度为B 的匀强磁场中。
宏观规律与微观规律有很多相似之处,导体杆速度的减小规律类似于放射性元素的半衰期,理论上它将经过无限长的时间衰减完有限的速度。
(1)求在杆的速度从v 0减小到0
2
v 的过程中: ①电阻R 上产生的热量; ②通过电阻R 的电量;
(2)①证明杆的速度每减小一半所用的时间都相等;
②若杆的动能减小一半所用时间为t 0,则杆的动量减小一半所用时间是多少?
【答案】(1)①2
038()Rmv R r +,②
2mv Bl
;(2)①22()v B l t v m R r ∆=∆+,②2t 0。
【解析】 【详解】
(1)①设电路中产生的热量为Q ,由能量守恒定律
22
0011()222
v mv m Q =+ 串联电路中,产生的热量与电阻成正比,可得
Q R =
R
R r
+Q 解得电阻R 产生的热量为
2
38()
R Rmv Q R r =+;
②设该过程所用时间为t ,由动量定理
0(
)2
v BIlt m v -=- 其中
It q =
解得通过R 的电量为:
2mv q Bl
=
; (2)①设某时刻杆的速度为v (从v 0开始分析亦可),则 感应电动势
E =Blv ,
感应电流
I =E R r
+, 安培力
F =BIl =22B l v
R r
+
在很短时间Δt 内,由动量定理
F Δt =m Δv ,(Δv 为速度变化绝对值)
可得
22B l v
t m v R r
∆=∆+ 所以在任意短时间内速度变化的比例为
22
()
v B l t v m R r ∆=∆+
由于22
()
B l m R r +为定值,可见任何相等时间内速度变化的比例都相等。
所以从任何时刻开始
计算,速度减小一半所用时间都相等。
②杆的动能减小一半,其速度v 减小为
2
,所用时间为t 0, 由①中分析可得,杆的速度从
2
再减小到22⨯所用时间仍为t 0, 所以杆的速度减小一半所用时间为2t 0,即动量减小一半所用时间为2t 0。
13.如图所示,宽0.2m L =、长为2L 的矩形闭合线框abcd ,其电阻为4R =Ω,线框以速度10m/s v =垂直于磁场方向匀速通过匀强磁场区域,磁场的宽度为L ,磁感应强度
1T B =问:
(1)当bc 边进入磁场时,线框中产生的感应电动势是多大? (2)bc 边进入磁场后,它所受到的磁场力是多大? (3)整个过程中线框产生的热量是多少?
【答案】(1)2V (2)0.1N (3)0.04J 【解析】 【分析】
bc 边进入磁场时,bc 切割磁感线运动,产生的感应电动势;同样ad 边进入磁场时,ad 切割磁感线运动,产生的感应电动势。
【详解】
(1)当bc 边进入磁场时,bc 切割磁感线运动,产生的感应电动势
10.210V 2V E BLv ==⨯⨯=
(2)bc 边进入磁场后,它所受到的磁场力即为安培力
2
10.2N 0.1N 4
B E F BIL B L R ==⋅⋅=⨯⨯=
(3)整个过程中,bc 边进入磁场和ad 边进入磁场过程都有感应电动势产生,产生的感应电动势大小相等。
两边在磁场中运动的时间:
0.222s 0.04s 10
L t v ⨯===
产生热量:
220.540.04J 0.04J Q I Rt ==⨯⨯=
答:(1)当bc 边进入磁场时,线框中产生的感应电动势是2V ; (2)bc 边进入磁场后,它所受到的磁场力是0.1N ; (3)整个过程中线框产生的热量是0.04J 。
14.某电子天平原理如图所示,E 形磁铁的两侧为N 极,中心为S 极,两极间的磁感应强度大小均为B ,磁极宽度均为L ,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C 、D 与外电路连接,当质量为m 的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I 可确定重物的质量.已知线圈匝数为n ,线圈电阻为R ,重力加速度为g.问:
(1)线圈向下运动过程中,线圈中感应电流是从C 端还是从D 端流出? (2)供电电流I 是从C 端还是从D 端流入?求重物质量与电流的关系; (3)若线圈消耗的最大功率为P ,该电子天平能称量的最大质量是多少? 【答案】(1)感应电流从C 端流出 (2)2nBL
m I g =(3)02nBL P
m g
R
=【解析】 【分析】 【详解】
(1)根据右手定则,线圈向下切割磁感线,电流应从D端流入,从C端流出
(2)根据左手定则可知,若想使弹簧恢复形变,安培力必须向上,根据左手定则可知电流应从D 端流入,根据受力平衡2mg nBI L =⋅① 解得2nBL
m I g
=
② (3)根据最大功率2P I R =得P I R
= ②③联立解得:02nBL P
m g R
=
15.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求
(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .
【答案】(1)2020n B r E t π=(2)2
0120
3n B t r q Rt π=
【解析】 【详解】
(1)由法拉第电磁感应定律E n t
φ
∆=∆有2020n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流E
I R =
总
③ 0~t 1时间内通过电阻R1的电荷量1q It = ④
由①②③④式得2
01203n B t r q Rt π=。