机械工程控制理论大作业:2013

合集下载

机械工程控制课程设计

机械工程控制课程设计

机械工程控制课程设计一、课程目标知识目标:1. 让学生掌握机械工程控制的基本理论,包括控制系统的数学模型、传递函数、稳定性分析等;2. 使学生了解控制系统的常见类型,如位置控制、速度控制、温度控制等,并掌握其工作原理;3. 引导学生掌握控制系统设计的基本方法,包括模拟控制、数字控制及现代控制技术。

技能目标:1. 培养学生运用控制理论分析实际问题的能力,能对简单控制系统进行数学建模;2. 培养学生设计控制系统并进行仿真实验的能力,提高实际操作技能;3. 培养学生运用控制系统工具软件,如MATLAB/Simulink等,进行控制系统设计与分析。

情感态度价值观目标:1. 激发学生对机械工程控制领域的兴趣,培养其探索精神;2. 培养学生具有团队合作意识,能在小组合作中发挥个人作用,共同完成任务;3. 引导学生认识到机械工程控制技术在国家经济建设和国防事业中的重要作用,树立社会责任感和使命感。

本课程针对高年级本科生,具有一定的专业基础知识和实践能力。

课程性质为专业选修课,旨在提高学生理论联系实际的能力,注重实践操作和创新能力培养。

通过本课程的学习,使学生能够在实际工程问题中运用控制理论,为我国机械工程领域培养具有创新精神和实践能力的优秀人才。

二、教学内容1. 控制系统概述:介绍控制系统的基本概念、发展历程、分类及应用领域,使学生建立控制系统整体认识。

教材章节:第1章 控制系统导论2. 控制系统的数学模型:讲解控制系统的微分方程、差分方程、传递函数等数学描述方法。

教材章节:第2章 控制系统的数学模型3. 控制系统的稳定性分析:介绍稳定性概念,分析线性系统的稳定性判据,如劳斯-赫尔维茨准则等。

教材章节:第3章 控制系统的稳定性分析4. 控制系统设计:讲解PID控制、状态反馈控制、最优控制等设计方法,培养学生控制系统设计能力。

教材章节:第4章 控制系统设计5. 控制系统仿真:介绍MATLAB/Simulink软件在控制系统仿真中的应用,使学生掌握仿真实验方法。

机械工程控制理论基础 实验报告 附小结与心得

机械工程控制理论基础 实验报告 附小结与心得

《机械控制理论基础》——实验报告班级:学号:姓名:目录实验内容实验一一阶环节的阶跃响应及时间参数的影响P3 实验二二阶环节的阶跃响应及时间参数的影响P9 实验三典型环节的频率特性实验P15 实验四机电控制系统的校正P20 实验心得…………………………………………P23实验一 一阶环节的阶跃响应及时间参数的影响● 实验目的通过实验加深理解如何将一个复杂的机电系统传递函数看做由一些典型环节组合而成,并且使用运算放大器来实现各典型环节,用模拟电路来替代机电系统,理解时间响应、阶跃响应函数的概念以及时间响应的组成,掌握时域分析基本方法 。

● 实验原理使用教学模拟机上的运算放大器,分别搭接一阶环节,改变时间常数T ,记录下两次不同时间常数T 的阶跃响应曲线,进行比较(可参考下图:典型一阶系统的单位阶跃响应曲线)。

典型一阶环节的传递函数:G (S )=K (1+1/TS ) 其中: RC T = 12/R R K =典型一阶环节的单位阶跃响应曲线:● 实验方法与步骤1)启动计算机,在桌面双击“Cybernation_A.exe ”图标运行软件,阅览使用指南。

2)检查USB 线是否连接好,电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。

检查无误后接通电源。

3)在实验项目下拉框中选中本次实验,点击按钮,参数设置要与实验系统参数一致,设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可继续进行实验。

● 实验内容1、选择一阶惯性环节进行实验操作由于一阶惯性环节更具有典型性,进行实验时效果更加明显。

惯性环节的传递函数及其模拟电路与实验曲线如图1-1: G (S )= - K/TS+1RC T = 12/R R K =2、(1)按照电子电路原理图,进行电路搭建,并进行调试,得到默认实验曲线图1-2图1-2(2)设定参数:方波响应曲线(K=1 ;T=0.1s )、(K=2;T=1s ),R1=100k Ω 3、改变系统参数T 、K (至少二次),观察系统时间响应曲线的变化。

机械工程控制基础

机械工程控制基础

1.1.1控制论控制:对对象施加某种操作,使其产生所期望的行为。

控制三要素:被控对象、控制目标、控制装置人类一切实践活动的目的在于认识世界和改造世界,而客观世界是由大大小小、各式各样的系统所组成的。

控制理论是研究各种系统的一般性共同控制规律的科学。

对于一个被控系统,控制理论必须回答下列三个基本问题:1.系统能否被控制?可控性有多大?2. 如何克服系统结构的不确定性及干扰带来的影响?3. 如何具体找到和实现满足要求的控制策略?为了回答上述问题,首先要建立系统的数学模型。

由于实际系统的复杂性,往往不能从基本的物理、化学和生物学定律直接推导出准确的数学模型,而必须利用系统的输入和输出数据做“反演”,这就形成了系统辨识理论。

由于系统的许多状态变量无法直接测量且系统中常有随机噪声的干扰,这就发展了信号滤波理论。

又由于许多系统的结构参数无法事先确定且随时间不断变化,这就产生了鲁棒和自适应控制理论。

对于具有更大不确定性和复杂性的系统,还需要发展能更好地模仿人类智能的智能控制理论。

为了得到具体的控制策略,需要动态全局优化的数学理论和方法,而为了真正实现这种策略,还必须借助于先进的计算手段和各种仪表与执行部件。

自动控制经历了从古典控制理论到现代控制理论的转变。

古典控制理论主要讨论单输入单输出线性系统,代表性的理论和方法包括Routh-Hurwitz稳定性判据,Nyquist分析、Bode图、Ziegler-Nichols调节律和Wiener滤波等。

单复变函数论和平稳过程理论等是古典时期重要的数学工具。

现代控制理论诞生的标志包括极大值原理,美国著名数学家Bellman的动态规划和Kalman的递推滤波以及状态空间模型的能控性、能观测性、反馈镇定等代数理论的出现等。

近40年来,现代控制理论在工程技术需求和计算机发展的有力推动下得到了蓬勃发展,特别在非线性控制、分布参数控制、随机控制、稳健控制、自适应控制、辨识与滤波、离散事件动态系统等若干主要方向上取得了重要进展。

机械工程测试技术大作业

机械工程测试技术大作业
振动测试包括位移、速度和加速度等参数的测量,通过这些参数的分析可以了解设 备的动态特性和潜在的故障模式。
振动测试在机械设备的故障诊断、预防性维护和优化设计等方面具有广泛应用。
压力测试
压力测试是评估机械设备承受压力能 力的重要手段,主要用于气瓶、压力 容器、管道等高压系统的检测。
压力测试对于保障机械设备的安全运 行和防止事故发生具有重要意义。
质量满足要求。
对未来研究的建议
进一步研发先进的测试技术
随着机械工程领域的不断发展和技术的不断创新,需要进一步研发更高效、准确和智能的 测试技术,以满足更高的测试需求。
加强测试技术的标准化和规范化
为了提高测试结果的可靠性和可比性,需要加强测试技术的标准化和规范化工作,制定统 一的测试标准和方法。
加强测试技术在实践中的应用研究
通过测试技术对生产过程中的各个 环节进行监控和评估,可以及时发 现和解决生产过程中的瓶颈和问题, 从而提高生产效率。
降低成本
通过测试技术对产品进行早期检测 和评估,可以减少后期维修和返工 的成本,从而降低整体成本。
测试技术的发展历程
传统测试技术
未来测试技术
传统的测试技术主要依靠人工操作和 经验判断,测试精度和效率相对较低。
意义。
位置和速度测试
位置和速度测试是机械工程测 试中用于评估机械设备运动性 能的方法。
位置和速度测试采用传感器进 设备的运动 特性和精度。
位置和速度测试在机械设备的 运动控制、精度检测和故障诊 断等方面具有广泛应用。
04
测试技术在机械工程中的应用
发动机测试
测试技术的作用
测试技术在机械工程中发挥着至关重要的作用,它能够确保产品、设备或系统 的性能和质量满足设计要求,同时也能为改进和优化提供数据支持和反馈。

现代控制理论大作业

现代控制理论大作业

现代控制理论直流电动机模型的分析姓名:李志鑫班级:测控1003学号:20100203030921直流电动机的介绍1.1研究的意义直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。

在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。

[1]1.2直流电动机的基本结构直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。

直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分:-图1.1①磁极:电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。

②电枢:电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。

③电刷:电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。

直流电动机的启动电动机从静止状态过渡到稳速的过程叫启动过程。

电机的启动性能有以下几点要求:1)启动时电磁转矩要大,以利于克服启动时的阻转矩。

2)启动时电枢电流要尽可能的小。

3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。

直流电动机调速可以有:(1)改变电枢电源电压;(2)在电枢回路中串调节电阻;(3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。

本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。

这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。

如图1.2Bm电枢线路图1.2——定义为电枢电压(伏特)。

——定义为电枢电流(安培)。

——定义为电枢电阻(欧姆)。

——定义为电枢电感(亨利)。

——定义为反电动势(伏特)。

完整版机械工程控制期末考试试题和标准答案及评分标准模板

完整版机械工程控制期末考试试题和标准答案及评分标准模板

X i (s )J agX °(s)《机械工程控制基础》试题(A 卷)(考试时间:120分钟)、单项选择题(共10分,每小题2分)1.控制系统中,下列元件通常属于反馈元件的是 A.电压放大器;B .热电偶;C.液压马达; D •电动机;A.比例环节;B.惯性环节;C.积分环节;D. —阶微分环节; 3.二阶系统的时域性能指标上升时间 t r 、峰值时间t p 、调整时间t s 、最大超调量M p 和振荡次数N ,反应系统稳定性的是 ____________ 。

A. t r 、M p ; B. t p 、t s ; C. t r 、N ; D . M p 、N ;A. 1 ;B. 2;C. 3;D. 4 ;5. PID 校正是针对 ____________ 进行比例、积分和微分运算后形成的控制规律。

A.输入信号X j (t) ;B.输出信号x 0(t) ;C.误差信号e(t) ;D.偏差信号 (t);二、填空题(共20分,每空2分)6.1954年,我国科学家 _______________ 发表了《工程控制论》,奠定了控制工程的理论基础。

7. 对于受干扰的闭环系统,如果系统只受输入X't)作用时的输出是x 01(t),系统只受干扰n(t)作用时的输出是x °2(t),则系统同时受X i (t)和n(t)作用时的输出 X 0 (t) ______________ 。

8. 如图所示的信号流图, 前向通道的传递函数为 ___________ ,反馈通道有 _________ 条,系统 的传递函数为 __________ 。

2.某系统的传递函数是 G(s)(s 20.5),其中没有(s 1)(S s 1)环节。

4.某放大器的传递函数G(s)(Ts 1)1rad / s ,相频为 45,贝U T 的值为s(2s1)入时的稳态误差分别为 _________ 、__________ 。

现代控制理论大作业

现代控制理论大作业

2019/11/21
2
课题背景
系统工作原理
Accelerometer gyroscope 遥控器
电源
左轮 软件编码
AD 采样
滤波
MCU
驱动器1 驱动器2
无线模块
软件编码 右轮
减速机构 左电机
右电机 减速机构
2019/11/21
3
系统工作原理 前进(后仰)
后退(前倾)
2019/11/21
课题背景
后退(纠正后仰) 前进(纠正前倾)
Matlab计算程序:
pole=[-1,-2,-3,-4]; K=place(A,B,pole) A1=A-B*K; pole=[-3,-4,-5,-6]; K=place(A,B,pole) A2=A-B*K; pole=[-8,-9,-10,-11]; K=place(A,B,pole) A3=A-B*K;
figure; hold on; plot(curve1(:,2),'color','blue'); plot(curve2(:,2),'color','red'); plot(curve3(:,2),'color','green'); xlabel(‘时间(s)'); ylabel(‘摆动角度(rad)'); hold off
2019/11/21
N C,CA,CA2 ,CA3
计算结果:
rankc = 4 ranko = 4
结论: k(M)=4 系统完全能控 Rank(N)=4 系统完全能观
稳定性分析
运用Matlab解出矩阵A的特征值如下:

机械工程控制理论基础PPT课件

机械工程控制理论基础PPT课件
• 第一节 稳定性概念 • 第二节 劳斯判据 • 第三节 乃奎斯特判据 • 第四节 对数坐标图的稳定性判据
8
第八章 控制系统的偏差 • 第一节 控制系统的偏差概念 • 第二节 输入引起的定态偏差 • 第三节 输入引起的动态偏差
9
第九章 控制系统的设计和校正
• 第一节 综述 • 第二节 希望对数幅频特性曲线的绘制 • 第三节 校正方法与校正环节 • 第四节 控制系统的增益调整 • 第五节 控制系统的串联校正 • 第六节 控制系统的局部反馈校正 • 第七节 控制系统的顺馈校正
反馈环节
图6-2
22
开环系统 优点:结构简单、稳定性能好; 缺点:不能纠偏,精度低。 闭环系统:与上相反。
23
第三节 典型控制信号
输入信号是多种多样的,为了对各种控制 系统的性能进行统一的评价,通常选定几种 外作用形式作为典型外作用信号,并提出统 一的性能指标,作为评价标准。
1.阶跃信号 x(t)=0 t<0 x(t)=A t≥0
机械工程控制理论基础
张 克 仁 教授
1
目录
第一章 自动控制系统的基本原理
• 第一节 控制系统的工作原理和基本要求 • 第二节 控制系统的基本类型 • 第三节 典型控制信号 • 第四节 控制理论的内容和方法
2
第二章 控制系统的数学模型
• 第一节 机械系统的数学模型 • 第二节 液压系统的数学模型 • 第三节 电气系统的数学模型 • 第四节 线性控制系统的卷积关系式
24
X i(t)
A
0
t
图7
当A=1时,称为单位阶跃信号,写为1(t)。
阶跃信号是一种对系统工作最不利的外作用形式。例 如,电源突然跳动,负载突然增加等。因此,在研究过渡 过程性能时通常都选择阶跃函数为典型外作用,相应的过 渡过程称为阶跃响应。

机械工程控制基础教案

机械工程控制基础教案

机械工程控制基础教案第一章:机械工程控制概述1.1 课程介绍了解机械工程控制的基本概念、原理和应用掌握机械工程控制的基本环节和数学模型1.2 机械工程控制的基本概念控制、反馈和控制系统的定义开环控制和闭环控制的区别1.3 机械工程控制的基本环节传递函数、频率响应和状态空间表示系统的稳定性、线性、时不变性等特性1.4 机械工程控制的应用实例机械臂的控制、控制系统发动机控制、车辆控制等第二章:控制系统的数学模型2.1 数学模型的建立微分方程、差分方程和传递函数系统的输入、输出和状态变量2.2 线性系统的时域分析稳态误差、稳态响应和瞬态响应系统的稳定性和动态性能指标2.3 线性系统的频域分析频率响应、波特图和稳定性裕度系统的频率特性和平衡点2.4 非线性系统的分析非线性微分方程和差分方程非线性系统的相平面和李雅普诺夫理论第三章:控制系统的分析和设计方法3.1 系统的时域分析法根轨迹、频率响应和状态空间法系统的稳定性和动态性能分析3.2 系统的频域分析法波特图、频率特性和稳定性裕度系统的频域设计和优化3.3 系统的优化方法目标函数和约束条件最大误差最小化和动态性能最优化3.4 控制器的设计算法PID控制器、模糊控制器和自适应控制器数字控制器和模拟控制器的比较和选择第四章:机械工程控制的应用案例4.1 控制系统的运动学模型和动力学模型的路径跟踪和姿态控制4.2 车辆控制系统车辆的动力学模型和控制目标车辆的稳定性控制和燃油经济性控制4.3 发动机控制系统发动机的工作原理和控制需求发动机的排放控制和燃油控制4.4 生产线控制系统生产线的流程和控制目标生产线的调度和优化控制第五章:机械工程控制实验与实践5.1 控制系统实验设备控制实验台和实验设备的选择实验设备的连接和操作方法5.2 控制系统实验原理实验目的和实验步骤实验数据的采集和处理方法5.3 PID控制器的设计与实现PID控制器的参数整定方法PID控制器的仿真和实验验证5.4 控制系统的设计与实现控制系统的需求分析和系统设计控制系统的仿真和实验验证第六章:线性系统的状态空间分析6.1 状态空间表示法系统的状态空间描述和数学模型状态变量和控制变量的定义6.2 状态空间方程的求解系统的零输入和零状态响应系统的状态转移矩阵和时间响应6.3 状态空间分析的应用系统的稳定性分析系统的能观性和能控性分析6.4 状态空间控制器设计状态反馈控制器和观测器设计输出反馈控制器和最优控制第七章:非线性控制理论基础7.1 非线性系统概述非线性系统的特点和挑战非线性控制理论的作用和意义7.2 非线性系统的描述方法非线性微分方程和差分方程相平面图和李雅普诺夫方法7.3 非线性控制设计方法反馈线性化和滑模控制自适应控制和鲁棒控制7.4 非线性控制系统应用案例倒立摆控制和四旋翼控制手臂和非线性路径跟踪第八章:机械系统的动力学建模8.1 机械系统动力学的基本概念牛顿力学和拉格朗日方程刚体动力学和多体系统动力学8.2 机械系统的建模方法建立动力学模型的步骤和注意事项系统参数的测量和估计8.3 机械系统的稳态分析系统的平衡状态和受力分析系统的运动轨迹和速度分析8.4 机械系统的动态响应分析系统的自由响应和强迫响应系统的时域和频域分析第九章:控制系统的设计工具与软件9.1 控制系统设计工具概述模拟电子电路和数字电子电路设计工具控制系统设计和仿真软件的选择9.2 MATLAB控制系统工具箱MATLAB控制系统的功能和特点控制系统的建模、仿真和分析9.3 控制系统设计软件的应用控制系统的参数调整和优化控制系统的实时监控和调试9.4 控制系统设计案例分析典型控制系统的分析和设计控制系统设计过程中的注意事项第十章:机械工程控制实验与实践10.1 控制系统实验流程与要求实验目的和实验内容的确定10.2 控制系统实验案例分析实验数据的处理和分析方法实验结果的评估和总结10.3 控制系统设计实践控制系统设计方案的制定和实施控制系统设计的改进和优化10.4 控制系统实验与实践的总结实验与实践过程中遇到的问题和解决方法控制系统实验与实践的经验教训第十一章:现代控制理论简介11.1 现代控制理论概述现代控制理论的概念和发展历程线性时变系统和非线性系统的控制方法11.2 李雅普诺夫理论李雅普诺夫第一和第二定理稳定性分析和李雅普诺夫函数的选取11.3 哈密顿原理和最优控制哈密顿原理和拉格朗日方程最优控制问题的提法和求解方法11.4 状态反馈和观测器设计状态反馈的定义和作用观测器的类型和设计方法第十二章:控制12.1 控制概述的运动学和动力学控制的目标和挑战12.2 路径跟踪控制路径跟踪的数学模型PID控制器和模糊控制器的应用12.3 姿态控制姿态控制的概念和重要性姿态控制算法和实现方法12.4 视觉伺服控制视觉伺服系统的原理和结构视觉伺服控制算法的实现和优化第十三章:自适应控制13.1 自适应控制概述自适应控制的概念和特点自适应控制的应用领域13.2 自适应控制算法自适应控制器的设计方法自适应控制算法的仿真和实验13.3 自适应控制的应用工业过程控制和控制汽车控制和飞行器控制13.4 自适应控制的挑战和发展趋势自适应控制面临的挑战自适应控制的未来发展趋势第十四章:鲁棒控制14.1 鲁棒控制概述鲁棒控制的概念和重要性鲁棒控制的数学基础14.2 鲁棒控制算法鲁棒控制算法的设计方法鲁棒控制算法的仿真和实验14.3 鲁棒控制的应用工业控制系统和控制汽车控制和飞行器控制14.4 鲁棒控制的挑战和发展趋势鲁棒控制面临的挑战鲁棒控制的未来发展趋势第十五章:控制系统教学案例分析15.1 控制系统教学案例的选择选择具有代表性的教学案例教学案例的难度和复杂性15.2 控制系统教学案例的分析和讨论分析案例中的控制问题和解决方案讨论控制系统的设计和实现方法15.3 控制系统教学案例的实践和实验实践和实验的安排和指导实践和实验的结果和总结15.4 控制系统教学案例的反馈和改进学生对教学案例的反馈和评价教学案例的改进和优化方法重点和难点解析本文主要介绍了机械工程控制基础教案,内容包括机械工程控制的基本概念、原理和应用,控制系统的数学模型,分析和设计方法,以及机械工程控制的应用案例和实验实践等。

专升本《机械工程控制基础》试卷答案

专升本《机械工程控制基础》试卷答案

专升本《机械工程控制基础》一、(共75题,共152分)1. 工程控制理论研究的是:工程技术中广义系统及其________和输出(2分).标准答案:1. 输入;2. 一个系统的输出,部分或全部地被反过来用于控制系统的输入,称为系统的________。

(2分).标准答案:1. 反馈;3. 当一个系统以所需的方框图表示而存在反馈回路时,称之为________系统。

(2分).标准答案:1. 闭环;4. 系统的稳定性就是指动态过程中的震荡倾向和系统能够恢复________________的能力。

(2分).标准答案:1. 平衡状态;5. 系统的传递函数是:当输入、输出的初始条件为零时,线性定常系统、环节或元件的输出和输入的________________的比值。

(2分).标准答案:1. 拉氏变化;6. 若系统的输入已经给定,则系统的输出完全取决于起系统的________________。

(2分).标准答案:1. 传递函数;7. 凡是输出量与输入量成正比,输出不失真、也不延迟而按比例地反映输入的环节称为________环节。

(2分).标准答案:1. 比例;8. 对于同一定常线形系统而言,如果输入函数等于某一函数的导函数,则该输入函数的响应函数也等于这一函数的响应函数的________。

(2分).标准答案:1. 导数;9. 可用一阶微分方程描述的系统称为________系统。

(2分).标准答案:1. 一阶;10. 系统的时间常数T越小,其过度过程的持续时间________。

(2分).标准答案:1. 越短; 11. 系统的误差是由系统的瞬态误差和________误差两部分组成的。

(2分).标准答案:1. 稳态;12. 频率特性的________坐标图又称为Bode图,它由对数幅频特性和对数相频特性组成。

(2分).标准答案:1. 对数;13. 积分环节的对数幅频特性曲线在整个频率范围内是一条斜率为____________dB/dec的直线。

现代控制理论大作业

现代控制理论大作业

专业综合调研报告电气工程与智能控制专业分类号:TH89 单位代码:10110学号:中北大学综合调研报告题目: 磁盘驱动器读写磁头的定位控制系别: 计算机科学与控制工程学院专业年级: 电气工程与智能控制2014级姓名: 何雨贾晨凌朱雨薇贾凯张钊中袁航学号: 14070541 39/03/04/16/33/47指导教师: 靳鸿教授崔建峰讲师2017年5月7日摘要硬盘驱动器作为当今信息时代不可缺少的存储设备,在人们日常生活中正扮演着越来越重要的角色,同时它也成为信息时代科学技术飞速发展的助推器。

然而,随着信息量的日益增长,人们对硬盘驱动器存储容量的要求越来越高。

但另一方面由于传统硬盘驱动器的低带宽、低定位精度,导致磁头很难准确地定位在目标磁道中心位置,从而限制了存储容量的持续增加。

自IBM公司于1956年向全球展示第一台磁盘存储系统R.AMAC以来,随着存储介质、磁头、电机及半导体芯片等相关技术的不断发展,硬盘的存储容量成倍增长、读写速度不断提高。

要保证可靠的读写性能,盘片的转速控制和磁头的定位控制问题具有重要意义。

其中磁头的定位控制主要包括寻道控制与定位跟踪控制两个问题,如PID控制、自适应控制、模态切换控制等,这些控制方法大大提高了硬盘磁头伺服系统的性能。

为达到更高的精度,磁头双级驱动模型成近年的研究热点,多种控制策略已有相关报道,但目前仍处于实验水平。

关键词: 磁盘驱动器;磁头;定位;控制AbstractHard disk drive (HDD), acted as requisite storage equipment in current information age,plays a more and more vital role in people’s daily life, and it becomes a roll booster in rapid development of science and technology. However, with the increase of information capacity, we put forward a severe request for HDD data storage capacity. Unfortunately, due to the low bandwidth, low positioning accuracy in conventional HDD, magnetic head is hard to be positioned onto the destination track center, thus it limits the continuing increase in storage capacity.Since IBM brought the first disk-the random access memory accounting machine(RAMAC) to market in 1956, the storage capacity and read/write speed have continuously increased along with the development of the techniques of media,read/write head, actuators and semiconducting chips. The problems of R/W head's settling control is definitely important in order to ensure the reliability of read and write performance. Track seeking and track following are two main stages of the hard disk servo system. Researchers have developed kinds of control strategies to implement the servo control from PID control to advanced controlmethods.Dual-stage actuator has attracted many researchers and engineers for its broaderbandwidth compared with single-stage actuator.Key Words:Hard Disk Drive;Heads; Location; Control专业综合调研报告电气工程与智能控制专业第1章磁盘驱动器的介绍自上世纪50年代计算机发明以来,随着科技的进步,软硬件技术都获得了相当大的发展。

2019-2020学年第一学期期末考试《机械工程控制基础》大作业答案

2019-2020学年第一学期期末考试《机械工程控制基础》大作业答案

吉林大学网络教育学院2019-2020学年第一学期期末考试《机械工程控制基础》大作业答案学生姓名专业层次年级学号学习中心成绩年月日作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。

一、名词解释(每小题2分,共20分)1、自动控制答:自动控制(automatic control)是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。

自动控制是相对人工控制概念而言的。

2、系统答:在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。

由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散3、反馈答:反馈是一个汉语词语,拼音是fǎn kuì,英文是feedback,是系统与环境相互作用的一种形式。

在系统与环境相互作用过程中,系统的输出成为输入的部分,反过来作用于系统本身,从而影响系统的输出。

根据反馈对输出产生影响的性质,可区分为正反馈和负反馈。

前者增强系统的输出;后者减弱系统的输出。

以人体的反射活动为例:当刺激(输入)作用于感受器之后,神经兴奋沿传入神经传递给大脑中枢,再沿传出神经控制效应器的活动(输出);效应器的活动情况又作为刺激信息(输入)返回作用于感受器,进而通过大脑中枢的调节影响效应器的活动(输出)。

4、开环控制系统答:开环控制系统是指一个输出只受系统输入控制的没有反馈回路的系统。

在开环控制系统中,不把关于被控量的值的信息用来在控制过程中构成控制作用。

其特点是施控装置指挥执行机构动作,改变被控对象的工作状态,被控量相应地发生变化,而这种变化并不再次构成施控装置动作的原因,即控制信号和被控量之间没有反馈回路。

为了选择一个控制力,重要的是,要用到关于扰动对被控量影响的信息,而不是关于扰动本身的信息。

现代控制理论大作业

现代控制理论大作业

现代控制理论大作业现代控制理论大作业1.解:(1).选取状态变量为:x1=y, x2=y’,x3=y’’由题可得:a2=1 , a1=4, a0=5所以x3’=-5x1-4x2-x3+3u系统的状态方程为:x1’=x2x2’=x3x3’=-5x1-4x2-x3+3u输出方程为:y=x1将微分方程表达为矩阵形式即得其状态空间表达式:[x1’; x2’; x3’]=[0,1,0;0,0,1;-5, -4, -1][x1;x2;x3]+[0;0;3]uy=[1, 0, 0][x1;x2;x3](2).选取系统的状态变量为:x1=y-h0ux2=x1’-h1u=y’-h0u’-h1ux3=x2’-h2u=y’’-h0u’’-h1u’-h2u 由题可得:a0=0, a1=3/2, a2=0b0=-1/2, b1=0, b2=1/2, b3=0所以:[h0;h1;h2;h3]=[1 0 0 0;0 1 0 0;3/2 0 1 0;0 3/2 0 1]^-1*[0 ;1/2;0 ;-1/2]=[0;1/2;0;-5/4]取状态变量为:x1=y-h0u=yx2=x1’-h1u=x1’-1/2ux3=x2’-h2u=x2’所以该系统的状态空间表达式为:[x1’;x2’;x3’]=[0 1 0;0 0 1;0 -3/2 0][x1;x2;x3]+[0;1/2;0;-5/4]uy=[1 ,0, 0][x1;x2;x3](3)由题可得:a2=2, a1=3, a0=5;b3=5, b2=0, b1=0, b0=7所以[h0;h1;h2;h3]=[1 0 0 0;2 1 0 0;3 2 1 0;5 3 2 1]^-1*[5;0;0;7] =[5;-10;5;2]取状态变量为:x1=y-h0u=y-5ux2=x1’-h1u=x1’x3=x2’-h2u=x2’所以该系统的状态空间表达式为:[x1’;x2’;x3’;]=[0 1 0;0 0 1;-5 -3 -2][x1;x2;x3]+[5;-10;5;2]u2.经典控制理论是建立在常微分方程稳定性理论和以拉普拉斯变换为基础的根轨迹和奈奎斯特判断理论之上。

机械控制理论大作业

机械控制理论大作业

机械工程控制理论课程作业一、计算题(应用MATLAB 求解)1. 一系统由下列两个子系统并联而成,试确定该系统的整体状态方程模型、传递函数模型,并确定系统的零、极点。

如取采样周期T=0.1s ,确定该系统所对应的Z 传递函数和离散状态方程,并判别系统的稳定性。

子系统1:系统状态空间模型的参数[]0,21,01,0152==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=D C B A子系统2:系统的传递函数模型为33)(+=s s G答: Matlab 程序: clc;clear all;A=[-2,-5;1,0];B=[1;0];C=[1,2];D=0;T=0.1;ss1=ss(A,B,C,D); %子系统1的状态空间方程[num1,den1]=ss2tf(A,B,C,D); %子系统1传递双数的分子分母各阶系数 sys1=tf(num1,den1); %子系统1转化为传递函数模型 sys2=tf([3],[1,3]); %子系统2的传递函数模型ssa=ss1+sys2; %两系统并联,系统总体状态空间方程 sys=sys1+sys2; %两系统并联,系统总体传递函数 zero(sys) %系统的零点 pole(sys) %系统的极点 ssad=c2d(ssa,T) %系统离散状态方程 sysad=c2d(sys,T) %系统脉冲传递函数if max(abs(pole(sysad)))>1 %判断是否稳定,通过极点我们可以判断系统稳定性 disp('系统不稳定') elsedisp('系统稳定') end2. 时不变系统 Cx y Bu Ax x =+=.,且 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=214321,001001,716531313C B A , 试计算该系统的特征值,并判别其能控性与能观性,确定系统状态方程模型(对角标准型)Jordan 标准型。

应用型本科院校“机械工程控制基础”课程教学改革初探

应用型本科院校“机械工程控制基础”课程教学改革初探

应用型本科院校“机械工程控制基础”课程教学改革初探作者:刘祥建来源:《中国电力教育》2013年第26期摘要:对应用型本科院校“机械工程控制基础”课程的特点及学生学习现状进行了分析,然后从教学内容、教学方法及考试模式等方面进行了课程教学改革的探索,以提高教师教学效果,加强学生实践、创新能力的培养。

关键词:应用型本科院校;机械工程控制基础;教学改革作者简介:刘祥建(1980-),男,山东日照人,金陵科技学院机电工程学院,讲师。

(江苏南京 211169)中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)26-0067-01近年来,随着我国高等教育的发展,应用型本科院校的发展异军突起。

这些院校大都是由以前的职业大学或者专科学校经过改制或重组而成,然而这一转变不仅仅表现在由原来的专科院校简单转变为普通本科院校,还应该体现在课程教学上的较大改革。

这里,笔者以其所讲授的“机械工程控制基础”课程为典型,对应用型本科院校“机械工程控制基础”课程的教学改革进行探索。

一、“机械工程控制基础”课程的特点与学生课程学习现状1.“机械工程控制基础”课程的特点“机械工程控制基础”课程是一门比较抽象的技术基础课,在大学三年级开设,其主要目的是通过对该课程的学习,为后续专业课程的学习做准备。

[1]“机械工程控制基础”课程密切联系工业生产及装备的发展趋势,综合多门已学课程知识,特别是多门理论性较强的课程,例如高等数学、线性代数、复变函数及电工电子学、机械振动学等,这些已学课程的学习难度本来就很大,而这里需要学生综合运用这些课程的知识来解决机械工程控制的相关问题,因此,学习难度将更大。

[2-5]同时考虑到其又是一门实践性较强的课程,这就要求上课的教师能熟练、灵活地综合运用上述课程的知识联系实际进行教学,要把枯燥无味的理论性问题转化为一个个学生感兴趣的话题,因此,教师教学难度也相对较大。

2.学生课程学习现状首先,应用型本科院校大都为新建本科院校,学校生源大部分是刚过普通高等院校分数线的高中毕业生或是一些高职院校的专转本学生,这就导致了学生的文化基础知识相对较差,尤其是数学基础。

控制理论大作业

控制理论大作业

一级倒立摆研究(160232 蒋琴)1. 背景介绍倒立摆装置被公认为自动理论中的典型实验设备, 也是控制理论教学和科研中不可多得 的典型物理模型。

通过倒立摆的研究,可以将控制理论所涉及的三个基础学科:力学、 数学 和电学有机结合起来,在倒立摆中进行综合应用。

在稳定控制问题上, 倒立摆既具有普遍性又具有典型性。

其结构简单, 价格低廉, 便于 模拟和数字实现多种不同的控制方法,倒立摆的控制方法有很多种,如 PID 、自适应、状态 反馈、智能控制、模糊控制及神经元网络等多种理论和方法。

用现代控制理论中的状态反馈方法来实现倒立摆系统的控制,就是设法调整闭环系统 的极点分布,以构成闭环稳定的倒立摆系统,实际上,用线性化模型进行极点配置求得的 状态反馈阵,不一定能使倒立摆稳定竖起来,能使倒立摆竖立起来的状态反馈阵是实际调 试出来的,这个调试出来的状态反馈阵肯定满足极点配置。

2. 倒立摆简介倒立摆可以分为直线倒立摆、平面倒立摆和环形倒立摆等。

3. 模型构建3.1 倒立摆系统运动示意图M 小车质量 m 摆杆质量 b 小车摩擦系数2-3 环形倒立摆3-1 倒立摆系统运动示意l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置Φ摆杆与垂直向上方向的夹角(逆时针为正)θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下,顺时针为正)3.2受力分析3-2 倒立摆受力分析图3.3模型构建1)理论分析应用 Newton 方法来建立系统的动力学方程过程如下。

分析小车水平方向所受的合力,可以得到以下方程:Mx'' F bx' N由摆杆水平方向所受的合力,可以得到如下方程:d22 N md2(x lsin )mx'' mlcos '' mlsin ( ')2dt2合并得:(M m)x'' bx' ml[ '' cos ( ')2 sin ] F摆杆垂直方向:P mg m d2(l cos ) ml[ '' sin ( ')2 cos ] dt2I '' Pl sin Nl cos合并得到力矩平衡方程:Pl sin Nl cos I '' (3)当夹角很小时(小于 1rad ) ,可以做如下近似处理:cos cos 1 ,sin sin ,'' 0用 u 代替 F,可得:(M m)x'' bx' ml '' u(I ml2 ) '' mgl(4)mlx''设状态空间表达式为:1)X' AX Bu y CX Du在( 4)式中对 x''和 ' '进行线性求解,可得:x' x'(I ml 2)b m 2gl 2 I ml 2x'' x' u pp '' '' mlb x' mgl(M m) ml u其中: p I(M m) Mml 2 )2)实际问题实际系统参数如下:M 小车质量 1.096kgm 摆杆质量 0.109kgb 小车摩擦系数 0.1N/m/sl 摆杆转动轴心到杆质心的长度 0.25mI 摆杆惯量 0.0034 kg m 2T 采样时间 0.005s 所以,状态空间表达式为: x' 0 1 0 0x0 x'' 0 0.0883 0.6300 0 x' 0.8832' 0 0 0 1u0 '' 0 0.2357 27.8570 0 ' 2.3566 整理后,得到状态空间表达式为: 0x' x'' ''' y 10 0 其中: 1 (I ml 2)b p 0 mlb p 00 1 0 22 m 2gl 2 p 0 mgl(M m) p x 0x' 0 ' 00up I(M m) Mml 2ml 2pmlp6)5)x1 0 0001 3.4 系统的能观性和能控性 能观性矩阵:M [B AB A 2B A 3B]0 0.8832 0.0780 1.49150.8832 0.0780 1.4915 0.26290 2.3566 0.2082 65.66622.3566 0.2082 65.6662 6.1506 rank (M ) 4能控性矩阵:N C CA CA 2 CA 3 T1.0000 0 00 0 0 1.00000 0 1.0000 00 0 0 1.00000 - 0.0883 0.6300 00 - 0.2357 27.8570 00 0.0078 0.0556 0.63000 0.0208 0.1485 27.8570 rank ( N ) 4所以,系统是能控能观的,本身即为最小系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械工程控制理论
课程作业 2013.11.281
中国石油大学机电工程学院 研13级
一、计算题(应用MATLAB 求解)
1. 一系统由下列两个子系统并联而成,试确定该系统的整体状态方程模型、传递函数模型,并确定系统的零、极点。

如取采样周期T=0.1s ,确定该系统所对应的Z 传递函数和离散状态方程,并判别系统的稳定性。

子系统1:系统状态空间模型的参数[]0,21,01,0152==⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=D C B A 子系统2:系统的传递函数模型为3
3)(+=s s G 2. 时不变系统 Cx y Bu Ax x =+=.,且 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=214321,001001,716531313C B A , 试计算该系统的特征值,并判别其能控性与能观性,确定系统状态方程模型(对角标准型)。

3. 若系统的状态方程模型参数⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=5.34231201,0012
321301000010B A 选择加权矩阵Q=diag{1, 2, 3, 4}及R=eye(2), 则设计出这一线性二次型指标的最优控制器及在最优控制下的闭环系统极点位置。

4. 已知线性离散系统的状态方程,试判断系统的稳定性:
(a) )(05.05.01)(kT x T kT x ⎥⎦⎤⎢⎣⎡=+, (b) )(368.0632.0)(632.0632.0632.0368.0)(kT u kT x T kT x ⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+ 二、编程题(选做2题)
1. 现有一组开环系统频率特性数据(G (jw i )H (jw i ), i =1,2…,n ),试编写一小程序,来判断对应的闭环系统是否稳定.
2. 现通过实验取得一线性系统的频率特性参量,相关数据存在文件
FredataA.mat ,应用invfreqs 语句估计该系统参数(传递函数分子、分母系数)。

3. 编写求解线性时变系统的时域响应的子程序。

4. 编写一个小程序计算闭环系统的稳态误差,输入参数包括:开环传递函数与输入信号。

5 应用符号运算工具包和ode45等相关语句编写基于变分法求解最优控制的一个小程序。

6. 其它课内布置的编程题。

三、仿真及综合题
任选1题,要求写1 篇小论文,论述仿真模型及仿真结果。

所递交仿真程序代码应能实际运行,并能动画演示。

1. 开发一个普通倒立摆控制的自动仿真系统。

(n<11)
2. 建立1-4阶倒立摆控制模型,并进行仿真,考虑小车的线性磨擦(小车磨擦力同速度成反比)。

3. 建立1-3阶倒立摆控制模型,并进行仿真,考虑小车的非线性磨擦。

4. 建立1-3阶倒立摆非线性控制模型,并进行仿真。

5. 建立1-3阶倒立摆控制模型,并进行仿真,考虑小车运行的轨道高度为一曲线f(Z)。

6. 建立6自由度下的1-3阶倒立摆控制模型,并进行仿真。

(离散)
7 以一个工程实际应用例子为对象,建立其控制系统模型、并进行仿真,对系统及参数进行优化。

作业在2013年1月10日前完成。

统一交韩彬彬。

所有文件压缩打包,文件名对应于本人姓名。

不要重复多发!。

相关文档
最新文档