离散数学平面图

合集下载

离散数学PPT课件10着色与对偶图(ppt文档)

离散数学PPT课件10着色与对偶图(ppt文档)






不同颜色.
四. 图G的正常着色(简称着色):
1. 对G的每个结点指定一种颜色,使得相邻接的两个结点
着不同颜色. 如果G着色用了n种颜色,称G是 n-色的.
2.对G着色时,需要的最少颜色数,称为G的着色数,记作
x(G) .
3.对G着色方法:(下面介绍韦尔奇.鲍威尔法)
3.对G着色方法:(介绍韦尔奇.鲍威尔法 Welch.Powell) ⑴将G中的结点按照度数递减次序排序,(此排序可能不唯 一,因为可能有些结点的度数相同) ⑵用第一种颜色对第一个结点着色,并按照排序,对与前面 着色点不邻接的每一个点着上相同颜色. ⑶用另一种颜色对尚未着色的点, 重复执行⑵和⑶,直到
⑶当且仅当ek只是一个面Fi的边界时, vi*上有一个环ek* 与ek相交.
v3*
则称图G*是G的对偶图.
v5
F1 v1*
F3
可见G*中的结点数等于
F2 v2*
G中的面数.
二. 自对偶图:如果图G对偶图G*与G同构,则称G是自对偶
图. (如下图) 三.对偶图与平面图着色的关系:

对平面图面相邻面用不同颜 色的着色问题,可以归结到对 其对偶图的相邻接的结点着
有共同的学生在读, 就在两门课程之间连一直线.得到图:
结点度数递减排序:
A
B,C,D,G,A,E,F 对图正常着色后, 标有同一种颜色的 G
课,可以同时考试.安排考试日程: 周一: A 周二: B,F 周三:C,E 周四: D,G
F E
作业 P189 – 8.16 8.17
B C
D
所有结点都着上颜色为止.
B C
例如:结点排序:A,B,E,F,H,D,G,C A

离散数学 第八章

离散数学 第八章
12
欧拉图(续)
例 图中, (1), (4)为欧拉图; (2), (5)为半欧拉图; (3),(6)既不 是欧拉图, 也不是半欧拉图. 在(3), (6)中各至少加几条边才能成为欧拉图?
13
欧拉图的判别法
定理 无向图G为欧拉图当且仅当G连通且无奇度顶点. 无向图G是半欧拉图当且仅当G连通且恰有两个奇度顶点. 定理 有向图D是欧拉图当且仅当D连通且每个顶点的入度都 等于出度. 有向图D具有欧拉通路当且仅当D连通且恰有两个奇度顶 点, 其中一个入度比出度大1, 另一个出度比入度大1, 其余 顶点的入度等于出度.
9
8.2 欧拉图
欧拉通路 欧拉回路 欧拉图 半欧拉图
10
哥尼斯堡七桥问题
欧拉图是能一笔画出的边不重复的回路.
11
欧拉图
欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路. 欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.
第8章 一些特殊的图
8.1 二部图 8.2 欧拉图 8.3 哈密顿图 8.4 平面图
1
8.1 二部图 二部图 完全二部图 匹配 极大匹配 最大匹配 匹配数 完备匹配
2
二部图
定义 设无向图 G=<V,E>, 若能将V 划分成V1 和 V2 (V1V2=V, V1V2=), 使得G中的每条边的两个端 点都一个属于V1, 另一个属于V2, 则称G为二部图, 记为<V1,V2,E>, 称V1和V2为互补顶点子集. 又若G 是简单图, 且V1中每个顶点都与V2中每个顶点相邻, 则称G为完全二部图, 记为Kr,s, 其中r=|V1|, s=|V2|. 注意: n 阶零图为二部图.

离散数学符号表

离散数学符号表

离散数学符号表∀ 全称量词任意量词∃ 存在量词├ 断定符公式在L 中可证╞ 满足符公式在E 上有效,公式在E 上可满足 ┐ 命题的“非”运算∧ 命题的“合取”“与”运算∨ 命题的“析取”“或”,“可兼或”运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算 “异或门” ↑ 命题的“与非” 运算 “与非门” ↓ 命题的“或非”运算 “或非门” □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于∉不属于A μ· 集合A 的特征函数P A 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ n A 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩ 集合的交运算- ~ 集合的差运算⊕ 集合的对称差运算m + m 同余加m ⨯ m 同余乘〡 限制R x ][ 集合关于关系R 的等价类A /R 集合A 上关于R 的商集)(A R π 集合A 关于关系R 的划分)(A R π 集合A 关于划分π的关系][a 元素a 产生的循环群R a ][ 元素a 形成的R 等价类r C 由相容关系r 产生的最大相容类 I 环,理想)/(n Z 模n 的同余类集合)(mod k b a ≡ a 与b 模k 相等)(R r 关系R 的自反闭包)(R s 关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理CP 规则EG 存在推广规则存在量词引入规则ES 存在量词特指规则存在量词消去规则 UG 全称推广规则全称量词引入规则 US 全称特指规则全称量词消去规则 A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数 )(][A A K 集合A 的势基数R 关系r 相容关系 R 否关系R 补关系1-R c R 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域前域ranf 函数f 的值域Y X f →: Y X f −→−f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元 )(Ha aH H 关于a 的左右陪集 )(f Ker 同态映射f 的核或称f 的同态核 A,B,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数 ⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数1,n 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数 )(v d + 点v 的出度 )(v d - 点v 的入度 ),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 WG 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ图G 的最小点度 )(G ∆图G 的最大点度 AG图G 的邻接矩阵 PG图G 的可达矩阵 MG图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集包含0在内 +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的结合环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。

离散数学课件_9 树与平面图

离散数学课件_9 树与平面图

1.概念:有向树,根树,树叶,内点,分支
点,层数,树高,祖先,后代,父亲,儿子,
兄弟,有序树,m叉树,完全m叉树,根子树,
左子树,右子树,带权二叉树,最优二叉
树,前缀,前缀码,二元前缀码,二叉树遍
历等;
4
返回本章首页
2019/12/4
第三节 有向树与根树(2)
2.定理: 设T是一棵根树,r是T的树根,则 对于T的任一顶点v,存在唯一的有向路 从r到v;
3.算法:最优二叉树的Huffman算法;
4.前缀码问题:前缀码与二叉树的对应关 系;
5.二叉树的遍历:三种遍历方法,即先根遍 历,中根遍历,后根遍历法.
返回本章首页
5 2019/12/4
第四节 平面图
平面图是很多实际问题的模型. 例如在 集成电路的布线设计中就遇到了平面图 的问题.
1.基本概念:平面图,平面嵌入,面,无限 面(外部面),内部面,边界,次数等;
第九章 树与平面图
树是一类结构较为简单的图,是用途极 为广泛的离散数学模型,特别是二叉树, 它在计算机科学中用得最多.因此在学习 时应很好地掌握好诸如树的充要条件、 生成树、最优生成树、根树、树的各种 算法、及二叉树的访问次序等内容.平面 图是实际背景很强的一类图,能用本章 介绍的方法判断一个图是否为平面图.
2.基本非平面图:K3,3与K5; 3.平面图的欧拉公式; 4.平面图的判定:库拉图斯基定理.
返回本章首页
6 2019/12ቤተ መጻሕፍቲ ባይዱ4
本章小结
本章我们介绍树与平面图,但以介绍树 为主.给出树的定义及树的充要条件, 生成树、最优生成树及最优生成树的克 鲁斯卡尔算法,特别是二叉树,我们讨 论 了 二 叉 树 的 Huffman 算 法 、 前 缀 码 、 二叉树的遍历等问题.最后介绍了一类 实际背景很强的一类图——平面图.

离散数学第七章图论习题课

离散数学第七章图论习题课
利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集


应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没

离散数学CH04_图论_根树

离散数学CH04_图论_根树

4.6 树
4.6 树
图中的三棵树T1,T2和T3都是带权2,2,3,3,5
的二叉树,它们的权分别是:
W(T1)=2×2+2×2+3×3+5×3+3×2=38 W(T2)=3×4+5×4+3×3+2×2+2×1=47 W(T3)=3×3+3×3+5×2+2×2+2×2=36 以上三棵树都是带权2,2,3,3,5的赋权二叉树,但不 是最优树。
【例】求图所示的二叉树产 生的前缀码。 解:在图(a)中,每一个 分枝点引出的左侧边标记0, 右侧边标记1。由根结点到 树叶的路经上各边的标记组 成的0、1序列作为对应树叶 的标记,如图 (b)所示。产 生的前缀码为: 01,11,000,0010,0011
4.6 树
定理 任意一个前缀码,都对应一个二叉树。 证明:
4.6 树
给定了一个前缀码,设h是其中最长序列的长度。画出一个高为 h的正则二叉树。按定理9.6.7中描述的办法给各边标记0或1。 每一个结点对应一个0、1序列,它是由根结点到该结点的路经 上各边的标记组成的。如果某个0、1序列是前缀码的元素,则 标记该结点。将已标记结点的所有后代和该结点的射出边全部删 除,得到了一个二叉树,再删除未加标记的树叶,就得到要求的 二叉树。
在通信中常用0、1字符串表示英文字母,即用二进制 数表示英文字母。最少用多少位二进制数就能表示26
个英文字母呢?1位二进数可以表示2=21个英文字母
,两位二进制数可以表示4=22个英文字母,……,n 位二进制数可以表示2n个英文字母。如果规定,可以 用1位二进制数表示英文字母,也可以用两位二进制数 表示英文字母。
4.6 树
定理 在完全m叉树中,其树叶数为t,分枝点数为i,则 (m1)*i=t-1。 证明:

离散数学第17章 平面图

离散数学第17章 平面图

6/2/2013 9:05 PM
Discrete Math. , Chen Chen
19
平面图与对偶图的 阶数、边数与面数之间的关系
CHAPTER seventeen
定理17.17 设G*是连通平面图G的对偶图,n*, m*, r*和n, m, r分别为G*和G的顶点数、边数和面数,则 (1) n*= r (2) m*=m (3) r*=n (4) 设G*的顶点v*i位于G的面Ri中,则dG*(v*i)=deg(Ri) 证明线索 (1)、(2)平凡. (3) 应用欧拉公式. (4) 的证明中注意,桥只能在某个面的边界中,非桥边在两 个面的边界上.
定理17.12 设G为n(n3)阶m条边的简单平面图,则m3n6. 证 设G有k(k1)个连通分支,若G为树或森林,当n3时, m3n6为真. 否则G中含圈,每个面至少由l(l3)条边围成 ,又 l 2 1 l2 l2 在l=3达到最大值,由定理17.11可知m3n6. 定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6. 证 由定理17.4, 欧拉公式及定理17.7所证. 定理17.14 设G 为简单平面图,则 (G)5. 证 阶数 n6,结论为真. 当n7 时,用反证法. 否则会推出 2m6n m3n,这与定理17.12矛盾.
轮图都是自对偶图. 图中给出了W6和W7. 请画出它们的对偶图, 从而说明它们都是自对偶图.
6/2/2013 9:05 PM Discrete Math. , Chen Chen 22
第十七章 习题课
CHAPTER seventeen
主要内容 平面图的基本概念 欧拉公式 平面图的判断 平面图的对偶图

平面图有4个面, deg(R1)=1, deg(R2)=3, deg(R3)=2, deg(R0)=8. 请写各面的边界. 定理17.4 平面图各面次数之和等于边数的两倍.

《离散数学》图论 (上)

《离散数学》图论 (上)
12
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。

离散数学第8章 图论

离散数学第8章 图论
ij
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。

离散数学第十四章图论基本概念

离散数学第十四章图论基本概念
8
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则
n
d(vi ) 2m
i 1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
(3) 初级通路(路径)与初级回路(圈): 中所有顶点各异,则 称 为初级通路(路径),又若除v0=vl,所有的顶点各不相 同且所有的边各异,则称 为初级回路(圈)
(4) 复杂通路与回路:有边重复出现
20
几点说明
表示法 ① 定义表示法 ② 只用边表示法 ③ 只用顶点表示法(在简单图中) ④ 混合表示法
3
有向图
定义14.2 有向图D=<V,E>, 只需注意E是VV 的多重子集 图2表示的是一个有向图,试写出它的V 和 E
注意:图的数学定义与图形表示,在同构(待叙)的意义下 是一一对应的
4
相关概念
1. 图 ① 可用G泛指图(无向的或有向的) ② V(G), E(G), V(D), E(D) ③ n阶图
定义14.17 G=<V,E>, EE E是边割集——p(GE)>p(G)且有极小性 e是割边(桥)——{e}为边割集
25
点割集与割点
例3 {v1,v4},{v6}是点 割集,v6是割点. {v2,v5} 是点割集吗? {e1,e2},{e1,e3,e5,e6}, {e8}等是边割集,e8是 桥,{e7,e9,e5,e6} 是边割 集吗?
3. 非负整数列d=(d1, d2, …, dn)是可图化的,是可简单图化的.

离散数学平面图

离散数学平面图
12
同胚与收缩
消去2度顶点v 如上图从(1)到(2) 插入2度顶点v 如上图从(2)到(1) G1与G2同胚: G1与G2同构, 或 经过反复插入、或消去2度顶 点后同构 收缩边e 如下图从(1)到(2)
13
库拉图斯基定理
定理 G是平面图G中不含与K5同胚的子图, 也不 含与K3,3同胚的子图.
例如 下图中(1)~(4)是平面图, (2)是(1)的平面嵌入, (4)是(3)的平面嵌入. (5)是非平面图.
2
平面图和平面嵌入(续)
• 今后称一个图是平面图, 可以是指定义中的平面图, 又可以
是指平面嵌入, 视当时的情况而定. 当讨论的问题与图的画
法有关时, 是指平面嵌入.
• K5和K3,3是非平面图 • 设G G, 若G为平面图, 则G 也是
8.4 平面图
平面图与平面嵌入 平面图的面、有限面、无限面 面的次数 极大平面图 极小非平面图 欧拉公式 平面图的对偶图
1
平面图和平面嵌入
定义 如果能将图G除顶点外边不相交地画在平面上, 则称G是平面图. 这个画出的无边相交的图称作G 的平面嵌入. 没有平面嵌入的图称作非平面图.
18
平面图的对偶图(续)
平面图与对偶图的阶数、边数与面数之间的关系: 设G*是平面图G的对偶图,n*, m*, r*和n, m, r分别 为G*和G的顶点数、边数和面数,则 (1) n*= r (2) m*=m (3) r*=n-p+1, 其中p是G的连通分支数 (4) 设G*的顶点vi*位于G的面Ri中, 则d(vi*)=deg(Ri)
例 黑色实线为原平面图, 红色虚线为其对偶图
17
平面图的对偶图(续)
性质:
• G*是平面图,而且是平面嵌入. • G*是连通图 • 若边e为G中的环,则G*与e对应的边e*为桥; 若e

离散数学中的图的平面图与平面图的判断

离散数学中的图的平面图与平面图的判断

离散数学是一门研究离散的数学结构的学科,其中图论是离散数学中的重要分支。

图论研究的是图的性质及其应用,而平面图是图论中一个非常重要的概念。

在离散数学中,平面图的概念以及平面图的判断是一个非常有趣且具有实际应用的问题,本文将对平面图的概念以及如何判断图是否为平面图进行探讨。

首先,我们来定义平面图。

在离散数学中,平面图是指可以画在平面上并且其中不同边和不同顶点之间没有交叉的图。

换句话说,如果将图的各个顶点用点表示,将图的各个边用线段表示,那么这些点和线段在平面上的位置不会相互交叉。

接下来,我们来看一下如何判断一个图是否为平面图。

首先,我们需要了解一个重要的定理,即欧拉定理。

欧拉定理是由瑞士数学家欧拉在18世纪提出的,它表明对于任何平面图都有一个重要的等式:顶点数减去边数再加上面(连通分量的个数)等于2。

这个定理为我们判断一个图是否为平面图提供了一个重要的依据。

根据欧拉定理,我们可以得出一个结论:如果一个图的顶点数大于2且边数大于等于3,并且满足顶点数减去边数再加上面(连通分量的个数)等于2的等式,那么这个图就是一个平面图。

但这只是一个判断的充分条件,并不是必要条件。

除了欧拉定理,我们还可以借助其他一些方法来判断图是否为平面图,例如柯尼格斯堡七桥问题和柯辞定理。

柯尼格斯堡七桥问题是一个历史上著名的问题,它可以用图论的方式进行描述:在柯尼格斯堡的一座岛屿上有7个桥,这些桥将岛屿分为四个部分。

问题是能否依次经过这7个桥恰好一次并且回到原点。

通过研究这个问题,柯辞定理得出了一个结论:如果一个图中的所有顶点的度数都是偶数,则该图是一个平面图。

除了欧拉定理和柯辞定理,还有其他许多方法可以用来判断图是否为平面图,例如平面图的化简和平面图的染色等方法。

通过这些方法的结合使用,我们可以更加准确地判断一个图是否为平面图。

总结起来,离散数学中的图的平面图与平面图的判断是一个非常有趣且具有实际应用的问题。

通过欧拉定理、柯尼格斯堡七桥问题和其他一些方法的运用,我们可以准确地判断一个图是否为平面图。

第五章 图的基本概念-离散数学

第五章 图的基本概念-离散数学
3
Co
e4
e7
bo
oc
8
图 论
无向完全图:每对顶点间均有边相连的无向 简单图。N阶无向完全图记作Kn.
o o K2 o K3 o o o o K4
1 2
o o
o o o K5 o o
无向完全图Kn, 有边数
n( n − 1)
竞赛图:在的每条边上任取一个方向的有 向图.
9
图 论
有向完全图:每对顶点间均有一对方向相反 的边相连的有向图。例如:
2
图 论
5.1 图的定义及相关术语 5.2 通路 回路 图的连通性 5.3 图的矩阵表示 5.4 无向树 5.5 欧拉图和哈密顿图 5.6 平面图
3
图 论
§5.1 图的定义及相关术语
例1. 多用户操作系统中的进程状态变换图:
就绪 r 进程调度 ro 执行 e o w V={r,e,w}
E={<r,e>,<e,w>,<w,r>}
图 论
2
2. 回路:如果一条路的起点和终点是一个顶 点,则称此路是一个回路. ov e e 如右图中的 v o ov e e L1=v0 e1v1 e5v3 e6v2e4v0 e e L2= v0 e1v1 e5v3e2v0
0 1 4 1 2 3 5 6
2
o v3
22
3. 迹与闭迹
图 论
简单通路(迹) 顶点可重复但边不可重复的通路。 简单回路(闭迹) 边不重复的回路。 4. 路径与圈 初级通路(路径) 顶点不可重复的通路。 初级回路(圈) 顶点不可重复的回路。 例如右图中: o v0 L1=v0 e1v1 e5v3 e6v2e4v0 e1 e4 L2= v0 e1v1 e5v3e2v0 o v2 e2 e3 L3=v0 e1v1 e5v3 e2v0 e3v3 e6v2e4v0 v1 o e5 e6 L1和L2是闭迹, 也是圈. o v3 L3是闭迹,而不是圈.

离散数学(Ch15平面图及色数)

离散数学(Ch15平面图及色数)

定理15.4 设G为任一平面图, 则(G)≤5. (五色定理)
用第一数学归纳法对G的顶点数n进行归纳: 显然, 当n≤5时, 有(G)≤5. 假设 n–1 (n≥6)时, (G)≤5成立.
显然, 平面图G中必有度数小于6的顶点u0. (因m≤3n-2) 将顶点u0从G中去掉(含u0邻接的边), 得G0=G – u0, 则G0仍是平面图且顶点数为n-1, 根据假设, 有(G0)≤5. 再从G0加入顶点u0及邻接的边, 还原为G. ⑴如果d(u0)≤4, 则与u0邻接顶点最多涂4色, 有(G)≤5成立. ⑵如果d(u0)=5, 令与u0邻接的顶点按顺时钟排为u1,u2,u3,u4,u5. 并设这5个顶点涂色为C1,C2,C3,C4,C5.
3
定义15.2 设G是一个平面图, 如果连接G的任意两个 不邻接顶点u和v, 都会使G+(u,v)变成非平 面图, 则称G为极大平面图. (边数极大)
极大平面图
K5非平面图
K3
定理15.2 设G是至少具有三个顶点的极大平面图, 则G的任何一个面都是K3.
假设G是极大平面图, 但有一个面不是K3面, 不妨设为{u1,u2,u3,u4,…,u1}, 考察: ⑴ (u1,u3)邻接, (u2,u4)邻接 两边会在圈外相交 ⑵ (u1,u3)不邻接 可加边(u1,u3), 仍是平面图 ⑶ (u2,u4)不邻接 可加边(u2,u4), 仍是平面图
6
§15.2 色数
1. 对偶图 定义15.3 设G是一个平面图, 具有k个面F1,F2,…,Fk, 其中包括无限面, 构造对偶图G*: ⑴ 在G的每个面Fi的内部取一点fi, 作为G*的顶点; ⑵ 对应于G的任意一条边e,
如果e是Fi和Fj的公共边, 则与e交叉连接fi和fj, 使(fi, fj)G* 如果e仅是Fj的悬挂边或桥, 则连一个自环, 使(fj, fj)G*

离散数学_命题逻辑_1.1

离散数学_命题逻辑_1.1

1.1命题与联结词
例1.1 判断下列语句是否是命题 不是命题 (7) x+8>0。 (8)你出去么? 不是命题 (9)5或6是素数。 不是命题 (10)如果行列式的两行对应成比 真命题 例,则行列式的值为0。 (11)角A与角B相等当且仅当A与角 假命题 B是对顶角。
1.1命题与联结词


2.命题的特点 命题一定是陈述句,但陈述句不一定是命 题。 命题的真值有时明确给出,有时还要依 靠环境、条件、实际情况等因素才能确 定其真值。
什么是离散?离散就是不连续。
线与点。 人的说话声,鸟叫声等;计算机里储存声音。 生活中,人眼见到的图像(非计算机里的);计 算机里用灰度值(从0到255)表示的图像。 计算机不能处理连续信息的,这是由计算机的 本质:0和1,决定的。因此,如果要用计算机 来处理连续信息,必须经过离散化。


离散数学的地位


离散数学的特点

提高抽象思维、严格推理以及综合归纳 分析能力 以研究离散量的结构和相互关系为主要 目标
显著特征是符号化和形式化


离散数学的用途

又称“计算机数学”,因为离散数学的 主要应用领域是计算机。
数理逻辑——数字逻辑电路、密码学 图论(包括树)——数据结构、操作系统 、编译 原理、计算机网络 集合论和关系代数——软件工程和数据库原理
其他分支
代数系统
图论
形式语言与 自动机
数理逻辑
集合论
离散数学 的构成
数理逻辑 命题逻辑
离散数学
集合论 集合及其运算 二元关系
谓词逻辑
函数
代数系统
图论 图的基本概念
群、环、域
Euler图与Hamilton图

离散数学_第7章 图论 -1-2图的基本概念、路和回路

离散数学_第7章 图论 -1-2图的基本概念、路和回路

第9章 图论
返回总目录
第9章 图论
第7章 图论
图论是一个重要的数学分支。数学家欧拉1736年发 表了关于图论的第一篇论文,解决了著名的哥尼斯堡七 桥问题。克希霍夫对电路网络的研究、凯来在有机化学 的计算中都应用了树和生成树的概念。随着科学技术的 发展,图论在运筹学、网络理论、信息论、控制论和计 算机科学等领域都得到广泛的应用。本章首先给出图、 简单图、完全图、子图、路和图的同构等概念,接着研 究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、 连通矩阵和完全关联矩阵的定义。最后将介绍欧拉图与 哈密尔顿图、二部图、平面图和图的着色、树和根树。
v3
e7
a e6e3
e2
b e5
(本课程仅讨论无向图和有向图)
v4
c
9章 图论
【例7.1.1】无向图G=V(G),E(G),G
其中:V(G)=a,b,c,d
E(G)=e1,e2,e3,e4
G:G(e1)=(a,b) G(e2)=(b,c) G(e3)=(a,c) G(e4)=(a,a)
试画出G的图形。
即,deg(v)=deg-(v)+deg+(v),或简记为d(v)=d-(v)+d+(v)
4)最大出度:+(G) =max deg+(v) | vV
5)最小出度:+(G) = min deg+(v) | vV
6)最大入度: (G) =max deg-(v) | vV
7)最小入度: (G) = min deg-(v) | vV
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:

离散数学PPT【共34张PPT】

离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明
设G的连通分支分别为G1、G2、…、Gk,并设Gi的顶点数、 边数、面数分别为ni、mi、ri、i=1,2,…,k。
由欧拉公式可知: ni-mi+ri = 2,i=1,2,…,k 易知, m

(17.1)

i 1
k
m i, n
n
i 1
k
i
由于每个Gi 有一个外部面,而G只有一个外部面,所以G的面数 k
2m
deg( R
i 1
r
i
) 3r
(1 7 .5 )
将(17.4)代入(17.5),整理后得 m = 3n-6。
二、一个意义重大的定理 定理17.12 设G为简单平面图,则G的最小度(G)5。
证明
若阶数 n6,结论显然成立。
若阶数n7时,用反证法。
假设(G) 6,由握手定理可知:
小节结束
17.4 平面图的对偶图
一、对偶图的定义 定义17.6 设G是某平面图的某个平面嵌入,构造G的对偶图 G*如下: 在G的面Ri中放置G*的顶点vi* 。
设e为G的任意一条边,
若e在G的面Ri 与Rj 的公共边界上,做G*的边e*与e相交, 且e*关联G*的位于Ri与Rj中的顶点vi*与vj*,即e*=(vi*,vj*) ,e*不与其它任何边相交。 若e为G中的桥且在面Ri的边界上,则e*是以Ri中G*的顶点 vi*为端点的环,即e*=(vi*,vi*)。
实线边图为平面图,虚线边图为其对偶图。
从定义不难看出G的对偶图G*有以下性质: G*是平面图,而且是平面嵌入。 G*是连通图。 若边e为G中的环,则G*与e对应的边e*为桥,若e为桥, 则G*中与e对应的边e*为环。 在多数情况下,G*为多重图(含平行边的图)。
面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、几点说明 若平面图G有k个面,可笼统地用R1, R2, …, Rk表示,不需 要指出外部面。 回路组是指:边界可能是初级回路(圈),可能是简单回 路,也可能是复杂回路。特别地,还可能是非连通的回路 之并。
R1
R0 R2
R3
平面图有4个面,deg(R1)=1, deg(R2)=3, deg(R3)=2, deg(R0)=8。
设边e在G中某个圈上,令G'=G-e,则G'仍连通且m'=m-1=k , n'=n,r'=r-1。
由假设有 n'-m'+r'=2。 于是 n-m+r=n'-(m'+1)-(r'+1)=n'-m'+r'=2
定理17.7 对于具有k(k≥2)个连通分支的平面图G,有 n-m+r = k+1 其中n,m,r分别为G的顶点数,边数和面数。
m l l2 ( n k 1) (1 2 l2 )( n k 1) 3( n 2 ) 3 n 6
定理17.11 设G为n(n3)阶m条边的极大平面图,则m=3n6。
证明
由于极大平面图是连通图,由欧拉公式得:
r=2+m-n
(17.4)
又因为G是极大平面图,由定理17.7的必要性可知,G的每个 面的次数均为3,所以:
于是每条边在计算总次数时,都提供2,因而deg(Ri)=2m。
三、极大平面图 1、 定义 定义17.3 若在简单平面图G中的任意两个不相邻的顶点之 间加一条新边所得图为非平面图,则称G为极大平面图。
注意:若简单平面图G中已无不相邻顶点,G显然是极大平 面图,如K1(平凡图), K2, K3, K4都是极大平面图。
只有右边的图为极大平面图。
因为只有该图每个面的次数都为3。
四、极小非平面图 定义17.4 若在非平面图G中任意删除一条边,所得图G为平面 图,则称G为极小非平面图。 由定义不难看出: K5, K3,3都是极小非平面图。 极小非平面图必为简单图。 例如:以下各图均为极小非平面图。
小节结束
例17.2 对K5插入2度顶点,或在K5外放置一个顶点使其与K5上的若 干顶点相邻,共可产生多少个6阶简单连通非同构的非平面图?
解答
用插入2度顶点的方法只能产生 一个非平面图,如图(1)所示。 它与K5同胚,所以是非平面图。 在K5 外放置一个顶点,使其与 K5上的1个到5个顶点相邻,得5 个图,如图 (2)到(6)所示。 它们都含K5 为子图,由库拉图 斯基定理可知,它们都是非平 面图,并且也满足其它要求。
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上, 即除顶点处外无边相交。 G是可平面图或平面图——若G可嵌入平面。
G的平面嵌入——画出的无边相交的平面图。
非平面图——无平面嵌入的图。
(2)是(1)的平面嵌入,(4)是(3)的平面嵌入。
例17.3 由K3,3加若干条边能生成多少个6阶连通的简单的非同构的 非平面图?
解答
对K3,3加1~6条边所得图都含K3,3为子图,由库拉图斯基定理可 知,它们都是非平面图。 在加2条、加3条、加4条边时又各产生两个非同构的非平面图, 连同K3,3本身共有10个满足要求的非平面图。其中,绿线边表示 后加的新边。
m l l2 (n 2)
证明
由定理17.3(面的次数之和等于边数的2倍)及欧拉公式得
2m
deg( R
i 1
r
i
) l r l(2 m n)
解得 m

l l2
(n 2)
推论 K5, K3,3不是平面图。
证明
若K5是平面图,由于K5中无环和平行边,所以每个面的次数 均大于或等于l≥3,由定理17.8可知边数10应满足
17.2 欧拉公式
一、欧拉公式相关定理 1、 欧拉公式 定理17.6 对于任意的连通的平面图G,有 n-m+r=2 其中,n、m、r分别为G的顶点数、边数和面数。
证明
对边数m作归纳法。 (1) m=0时,由于G为连通图,所以G只能是由一个孤立顶 点组成的平凡图,即n=1,m=0,r=1,结论显然成立。 (2) m=1时,由于G为连通图,所以n=2,m=1,r=1,结论 显然成立。
中国地质大学本科生课程
离散数学
第17章 平面图
本章说明
本章的主要内容
–平面图的基本概念
–欧拉公式
–平面图的判断
–平面图的对偶图
本章所涉及到的图均指无向图。
17.1 平面图的基本概念 17.2 欧拉公式 17.3 平面图的判断 17.4 平面图的对偶图


本章小结
习 作 题 业
10≤(3/(3-2))(5-2) = 9
这是个矛盾,所以K5不是平面图。 若K3,3是平面图,由于K3,3中最短圈的长度为l≥4,于是边数9 应满足 9≤ (4/(4-2))(6-2) = 8
这又是矛盾的,所以K3,3也不是平面图。
定理17.9 设G是有k(k≥2)个连通分支的平面图,各面的次数至 少为l(l≥3),则边数m与顶点数n应有如下关系:
2、图之间的同胚 若两个图G1 与G2 同构,或通过反复插入或消去2度顶点后 是同构的,则称G1与G2是同胚的。
上面两个图分别与K3,3, K5同胚 。
二、两个判断定理 定理17.13(库拉图斯基定理1) 图G是平面图当且仅当G中既不 含与K5同胚子图,也不含与K3,3同胚子图。 定理17.14(库拉图斯基定理2) 图G是平面图当且仅当G中既没 有可以收缩到K5的子图,也没有可以收缩到K3,3的子图。
例17.1 证明彼得松图不是平面图。
证 明
将彼得松图顶点标顺序,见图 (1)所示。 在图中将边(a,f), (b,g), (c,h), (d,i), (e,j)收缩,
所得图为图 (2)所示,它是K5,
由定理17.16可知,彼得松图不是平面图。
还可以这样证明:
用G表示彼得松图,令 G'=G-{(j,g),(c,d)} G‘如图 (3)所示,易知它与K3,3同胚, 由定理17.15可知,G为非平面图。
2、 几点说明及一些简单结论 一般所谈平面图不一定是指平面嵌入,但讨论某些性质时, 一定是指平面嵌入。 K5和K3,3都不是平面图。
定理17.1 设GG,若G为平面图,则G也是平面图。
设GG,若G为非平面图,则G也是非平面图。
由定理可知, Kn(n5)和K3,n(n3)都是非平面图。 定理17.2 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
ቤተ መጻሕፍቲ ባይዱr
r
i 1
i
k 1
于是,对(17.1)的两边同时求和得
2k
(n
i 1
k
i
m i ri )
n
i 1
k
i

m
i 1
k
i

r
i 1
k
i
n m r k 1
经整理得 n-m+r = k+1。
2、 与欧拉公式有关的定理 定理17.8 设G为连通的平面图,且每个面的次数至少为 l(l 3),则 G的边数与顶点数有如下关系:
2 m= d ( v i ) 6 n
n i 1
因而m 3n,这与定理17.10矛盾。 所以,假设不成立,即G的最小度(G)5。
说 明
本定理在图着色理论中占重要地位。
17.3 平面图的判断
一、为判断定理做准备 1、 插入2度顶点和消去2度顶点 定义17.5 设e=(u,v)为图G的一条边,在G中删除e,增加新的顶点w, 使u、v均与w相邻,称为在G中插入2度顶点w。 设w为G中一个2度顶点,w与u、v相邻,删除w,增加新边 (u,v),称为在G中消去2度顶点w。
相关文档
最新文档