最新中职数学基础模块下立体几何测试题

合集下载

中职数学基础模块下册第九章《立体几何》单元检测试题及参考答案

中职数学基础模块下册第九章《立体几何》单元检测试题及参考答案

中职数学基础模块下册第九章《立体几何》单元检测试题及参考答案中的夹角的正弦值。

解答:1)由于A1B1与CD平行,所以∠A1BC=∠ABCD=90°,又因为AB=1,BC=2,所以A1B1=√5.在平面A1B1C1D1中,A1B1与A1D1垂直,所以∠A1B1D1=90°,又因为A1B1=√5,A1D1=2√2,所以cos∠A1B1D1=√2/2,因此∠A1B1D1=45°。

所以∠A1BC1=∠A1B1D1=45°,所以∠A1BD=90°-45°=45°。

2)由于BC1与CC1D1垂直,所以cos∠BCC1D1=BC1/CC1D1=2/3,所以∠BCC1D1≈48.19°。

又因为BC1与BC垂直,所以cos∠ABC1=sin∠BCC1D1=sin48.19°≈0.7431,所以sin∠ABC1≈0.6682.16、(10分)一个正四面体的棱长为a,求其高和侧面积。

解答:设正四面体的高为h,则由勾股定理可得:h^2=a^2-(a/2)^2=a^2/4×3所以h=a√3/2.正四面体的侧面是四个全等的正三角形,所以侧面积为4×(a^2√3/4)=a^2√3.所以正四面体的高为a√3/2,侧面积为a^2√3.17、(10分)如图所示,四棱锥ABCDV的底面是边长为a的正方形,V是底面正方形中心,AV=VB=VC=VD=h,求四棱锥的侧面积和体积。

解答:首先连接AV、BV、CV、DV,可以得到四个全等的三角形,所以四棱锥的侧面积为4×1/2×a×h=2ah。

由勾股定理可得:h^2=(a/2)^2+(h-VG)^2又因为VG=h/2,所以h^2=(a/2)^2+(h/2)^2所以h=√(5/4)a。

四棱锥的底面积为a^2,所以体积为1/3×a^2×h=1/3×a^2×√(5/4)a=(√5/12)a^3.17、解:(1)因为PA垂直于平面ABC,所以PA垂直于AC和AB,即PA垂直于BC的平面,即BC垂直于PA,即BC垂直于PC。

中职数学基础模块(下册)第七章-简单几何体练习题

中职数学基础模块(下册)第七章-简单几何体练习题

试卷第1页,共6页绝密★启用前第七章 简单几何体练习题数学试卷1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.半径为1的球的表面积是( ) A .2πB .4πC .πD .4π32.有下列命题,其中错误命题个数是( )①圆柱是将矩形旋转一周所得的几何体;②过圆锥顶点的截面是等腰三角形;③以直角三角形一边为旋转轴,旋转所得的旋转体是圆锥;④平行于母线的平面截圆锥,截面是等腰三角形. A .1个B .2个C .3个D .4个3.如图,用斜二测画法画一个水平放置的平面图形是一个边长为1的正方形,则原图形的形状是( )A .B .C .D .4.已知正四棱锥的高为3 )试卷第2页,共6页A .6B .C .2D 5.一个棱柱是正四棱柱的充要条件是( ) A .底面是正方形,有两个侧面是矩形 B .底面是正方形,有两个侧面垂直于底面 C .底面是菱形,且有一个顶点处的三条棱两两垂直 D .每个侧面都是全等矩形的四棱柱6.圆柱的侧面展开图是一个正方形,则它的母线长和底面半径的比值是( ) A .1B .2C .πD .2π7.如图,已知正三棱柱底面边长4,高为7,一质点从A 出发,沿三棱柱侧面绕行两周到达1A 的最短路线长为( )A .25B .24C .31D .288.某几何体底面的四边形OABC 直观图为如图矩形1111O A B C ,其中116O A =,112O C =,则该几何体底面对角线AC 的实际长度为( )A .6B .C .D .9.圆台上、下底面半径分别是12、 ) A B . C . D 10.正三棱柱111ABC A B C -,如图所示,以四边形11BCC B 的前面为正前方画出的三视图正确的是( )试卷第3页,共6页A .B .C .D .11.下列说法正确的是( ) A .多面体至少有3个面B .有2个面平行,其余各面都是梯形的几何体是棱台C .各侧面都是正方形的四棱柱一定是正方体D .棱柱的侧棱相等,侧面是平行四边形12.如图所示的是一个五棱柱,则下列判断错误的是( )A .该几何体的侧面是平行四边形B .该几何体有七个面C .该几何体恰有十二条棱D .该几何体恰有十个顶点13.已知棱长为1的正方体的所有顶点均在一个球的球面上,则该球的表面积是( ) A .πB .2πC .3πD .4π14.若一个正方体的顶点都在球面上,则该正方体表面积与球表面积的比值是( )试卷第4页,共6页A .2π3B .2πC D 15.已知某几何体的三视图如图所示,则该几何体的体积是( )A .12πB .18πC .24πD .36π16.如图,A B C '''是ABC 的直观图,其中1B O C O ''''==,A O ''=,那么ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .无法确定17.如图所示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.则这个几何体的侧面积与体积分别为( )A .4πB .4πC .2πD .π18.已知正三棱柱111ABC A B C -的底面边长为211A B BC −的体积为( ) A .12B C .1 D 19.若一个圆柱的母线长等于其底面圆的直径,且该圆柱的体积为16π,则该圆柱的母线长是( ) A .4B .3C .2D .1试卷第5页,共6页20.棱长都是1的三棱锥的表面积为( ) A B .C .D .第II 卷(非选择题)二、填空题21.圆柱的底面半径为1,高为2,则其表面积为______.22.边长为2的正方形ABCD 绕BC 旋转形成一个圆柱,则该圆柱的表面积为___________.23.如图是一个正方体的平面展开图,将其复原为正方体后,互相重合的点是_______.①A 与B ②D 与E ③B 与D ④C 与F24.如图,若斜边长为A B C '''(B '与O '重合)是水平放置的ABC 的直观图,则ABC 的面积为________.25.如图是一个多面体的三视图,则该多面体的体积为________.三、解答题试卷第6页,共6页26.如图,四面体−P ABC 的各棱长均为3,求它的表面积.27.圆锥底面积为3π,母线与底面所的成角为60︒,求它的体积.28.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,截去三棱锥A 1-ABD ,求剩余的几何体A 1B 1C 1D 1-DBC 的表面积.29.如图,正方形O A B C ''''的边长为a ,它是一个水平放置的平面图形的直观图,则它的原图形OABC 的周长是多少?30.已知棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S ABCD −.(1)求它的表面积; (2)求它的体积.答案第1页,共9页参考答案:1.B【分析】利用球的表面积公式直接求解即可.【详解】球的半径1R =,∴该球的表面积24π4πS R ==. 故选:B. 2.C【分析】由圆柱、圆锥的结构特征逐一分析四个命题得结论.【详解】解:①圆柱是将矩形以一边为轴旋转一周所得的几何体,故①错误; ②过圆锥顶点的截面是等腰三角形,故②正确;③以直角三角形一直角边为旋转轴,旋转所得的旋转体是圆锥,故③错误; ④平行于母线的平面截圆锥,截面不是等腰三角形,是抛物线,故④错误.∴其中错误命题个数为3. 故选:C . 3.A【分析】根据斜二测画法规律,平行于y 轴的线段长度是原长的一半即可判断. 【详解】在直观图中,其一条对角线在y 所以在原图形中其中一条对角线必在y 轴上,且长度为 故选:A . 4.C【分析】直接利用棱锥的体积公式计算即可.【详解】根据棱锥的体积公式得该棱锥的体积为1323=故选:C. 5.C【分析】由正四棱柱的定义及几何特征,结合充要条件的概念,依次判断即可.【详解】若底面是正方形,有相对的两个侧面是矩形,另外两个侧面是不为矩形的平行四边形,则棱柱为斜棱柱,故A 不满足要求;若底面是正方形,有相对的两个侧面垂直于底面,另外两个侧面不垂直于底面,则棱柱为斜棱柱,故B 不满足要求;若底面是菱形,且有一个顶点处的三条棱两两垂直则底面为正方形,侧棱与底面垂直,此时棱柱为正四棱柱,反之也成立,故C 满足要求;答案第2页,共9页若每个侧面都是全等矩形的四棱柱,其底面可能不是正方形,故D 不满足要求. 故选:C . 6.D【分析】设圆柱母线l 、半径r ,结合2πl r =即可得结果.【详解】令圆柱母线为l ,底面半径为r ,则2πl r =,故2πlr=.故选:D 7.A【分析】根据正三棱柱的侧面展开图求得最短线路长.【详解】正三棱柱的侧面展开图是底边长为4312⨯=,高为7的矩形,所以绕行两周的最短路线长为225.故选:A 8.B【分析】通过直观图与原图的关系得出A 、C 两点的坐标,即可得出答案. 【详解】根据四边形OABC 直观图将其还有为平面图形如图:根据直观图与原图的关系可得:116OA O A ==,OD ==112CD OC ==, 则点()6,0A ,(2,C −,AC ∴=故选:B. 9.A【分析】运用圆台体积公式直接计算.【详解】由圆台体积公式知:()()22221ππ121233V h R r Rr =++=++⨯= ;故选:A.答案第3页,共9页10.A【分析】根据三视图的知识确定正确答案. 【详解】由于四边形11BCC B 的前面为正前方, 所以主视图为矩形,左视图为三角形, 俯视图是中间有一条横线的矩形, 所以A 选项正确. 故选:A 11.D【分析】由多面体、棱台、棱柱等几何体的定义逐项判断即可. 【详解】对于A ,多面体至少有4个面,故选项A 错误;对于B ,有2个面平行,其余各面都是梯形,但各侧棱的延长线不能交于一点,则该几何体不是棱台,故选项B 错误;对于C ,各侧面都是正方形的四棱柱,可以是底面为菱形的直棱柱,不一定是正方体,故选项C 错误;对于D ,由棱柱定义知,棱柱的各侧棱平行且相等,故侧面是平行四边形,故选项D 正确. 故选:D . 12.C【分析】根据棱柱的定义及性质判断即可.【详解】解:根据棱柱的定义可知,该几何体的侧面是平行四边形,故A 正确; 该五棱柱有七个面,十五条棱,十个顶点,故B 、D 正确,C 错误; 故选:C 13.C【分析】利用正方体外接球的直径为正方体的体对角线,即可求解. 【详解】棱长为1 而正方体的外接球直径即为正方体的体对角线, , ∴该球的表面积为224π4π3πS R ==⨯=⎝⎭故选:C答案第4页,共9页14.B【分析】设正方体边长为a ,根据体对角线为球的直径即可求出球的半径,进而可求解. 【详解】设正方体的边长为a ,则正方体的体对角线d ==, 则正方体的表面积为26a ,球的表面积为224π()3π2d a =,所以该正方体表面积与球表面积的比值是22623ππa a =, 故选:B. 15.A【分析】通过三视图判断几何体的图形形状,利用三视图的数据,求出几何体的体积即可.【详解】由三视图可知,该几何体是底面半径为3,母线长为5的圆锥,=4故该几何体体积为2134123V ππ=⨯⨯=.故选:A.16.A【分析】将直观图还原为投影图,分析几何图形的形状.【详解】将直观图还原,则1BO CO ==,AO =ABC 是正三角形. 故选:A. 17.C答案第5页,共9页和体积公式求得结果.【详解】如图根据几何体的三视图知,该几何体是一个圆锥,底面圆的半径1r =,母线2l =,高h =π2πS rl ==侧,体积21π3V r h ==.故选:C . 18.C【分析】根据三棱锥的体积与三棱柱体积的关系求解.【详解】正三棱柱111ABC A B C -的底面边长为2 棱柱的底面面积为:122⨯棱柱的体积为:3SH . 由三棱锥的体积的推导过程可知:三棱锥11A B BC −的体积为:113133V =⨯=三棱柱.故选:C . 19.A【分析】根据圆柱的体积公式即可求解.【详解】解:设圆柱底面半径为R ,则母线长即高为2R ,所以圆柱的体积为2π216πV R R =⋅=,解得2R =,所以母线长为:24R =, 故选:A. 20.A【分析】棱长都是1的三棱锥,四个面是全等的正三角形,求出一个面积即可求得结果. 【详解】因为四个面是全等的正三角形, 1=112S ⨯⨯底面积 则表面积4S =故选:A. 21.6π答案第6页,共9页【分析】直接利用表面积公式计算得到答案. 【详解】表面积22π2π2π4π6πS r rh =+=+=. 故答案为:6π 22.16π【分析】圆柱的底面半径2r =,母线长2l =,代入公式求值即可. 【详解】该圆柱的底面半径2r =,母线长2l =,所以该圆柱体的表面积为222π2π2π22π2216πS r rl =+=⋅+⋅⋅=. 故答案为:16π. 23.①②④【分析】还原正方体即可解决. 【详解】根据题意,标记下图,还原得由图知,A 与B ,D 与E ,C 与F 重合, 故答案为:①②④ 24.【分析】还原原图,计算面积即可.【详解】在斜二测直观图中, 由A B C '''为等腰直角三角形, A B ''=2A C ''=,2B C ''=.还原原图形如图:答案第7页,共9页则2AB BC ==,则11222ABC S AB BC =⨯⨯=⨯=△故答案为: 25.2【分析】由三视图可得该几何体为如图所示的直三棱柱,由三视图的数据结合三棱柱的体积公式即可求解.【详解】由三视图可得该几何体为如图所示的直三棱柱,底面为直角三角形,底边长为2,高为1,三棱柱的高为2,故该几何体的体积为112222V =⨯⨯⨯=.故答案为:2. 26.【分析】利用四面体表面积的意义直接计算作答.【详解】因为四面体−P ABC 的各棱长均为3,于是得四面体−P ABC 的四个面是全等的正三角形,所以四面体−P ABC 的表面积22443ABCS S AB ==== 27.3π【分析】由圆锥底面积,可求得底面圆的半径,由母线,底面半径,高组成的直角三角形中答案第8页,共9页求得圆锥的高,即可求得体积.【详解】由圆锥底面积为3π,即23,r r ππ==603h =, 所以圆锥的体积为2133r h ππ=故答案为:3π 282【分析】结合正方体的性质,根据表面积的定义即可求解.【详解】解:由正方体的性质可知1A BD 的等边三角形, 所以1A BD 的面积)12A BDS==2, 所以所求几何体A 1B 1C 1D 1-DBC 的表面积S =1111133A BDBDCA B C D S SS ++2+2132a ⨯3a 2a 2. 29.8a【分析】根据斜二测画法,OA O A ''=,2OB O B ''=,且△OBC 为直角三角形,则可求OC 【详解】∵O A a ''=,对角线O B ''=,如图原图形OABC 中OA O A a ''==,2OB O B ''==,且△OBC 为直角三角形, ∴3OC a ==, ∴原图形周长是2(3a +a )=8a .30.(1)25+; (2)6【分析】(1)四棱锥表面积为四个侧面等边三角形面积和底面正方形面积之和;答案第9页,共9页(2)连接AC 、BD ,AC ∩BD =O ,连接SO ,则SO 为棱锥的高,求出SO ,根据棱锥体积公式即可求解. (1)∵四棱锥S ABCD −的各棱长均为5,底面为正方形,各侧面均为正三角形, ∴它的表面积为222114sin 4552522SA SB ASB AB ∠⨯⋅⋅⋅+=⨯⨯=+(2)连接AC 、BD ,AC ∩BD =O ,连接SO ,则SO 为棱锥的高, 则SO ==2=, 故棱锥的体积2153V =⨯=。

最新中职数学每周测试练习题:立体几何(2)数学

最新中职数学每周测试练习题:立体几何(2)数学

立体几何练习姓名:得分:一、选择题:1、直线L与平面α内的两条直线垂直,那么L与平面α的位置关系是()A、平行B、L⊂αC、垂直D、不确定2、如果直线a⊥b,且a⊥平面α,则()A、b//平面αB、b⊂αC、b⊥平面αD、b//平面α或b⊂α3、空间同垂直于一条直线的两条直线的位置关系()A、一定是异面直线B、不可能平行C、不可能相交D、异面、共面都有可能4、一个正三棱锥的底面边长为6,侧棱长为√15,这个三棱锥的体积是()A、9B、9/2C、27/2D、9√3/25、若直线L上有两点到平面α的距离相等且L⊄α,则直线L与α的位置关系为()A、平行B、相交C、平行与相交D、不能确定6、如图,是一个正方体,则∠ B1AC= ()A、30oB、45oC、60oD、75o7、如图是一个棱长为1的正方体,则A1B与B1C所成的角为()A、30oB、45oC、60oD、75o8、空间四面体A-BCD,AC=BD,E、F、G、H分别为AB、BC、CD、DA的中点,则四边形EFGH是()A、平行四边形B、矩形C、菱形D、正方形二、填空题9、共点的三条线段OA,OB,OC两两垂直,则OA与BC的位置关系是。

10、如图,长方体ABCD-A1B1C1D1中,AB=a,BB1=BC=b,则CD1与BB1所成角的余弦值是;BC1与A1C所成的角的度数是。

三、解答题11.如图,在直角三角形ABC中,∠ACB=90o,AC=BC=1,若PA⊥平面ABC,且PA=√2,(1)证明BC⊥PC(2)求直线BP与平面PAC所成的角。

12、四棱锥P-ABCD中,底面ABCD是边长为2a的菱形,∠BAD=60o,侧棱PA⊥平面ABCD且PA=√3a,求:(1)二面角P-BD-A的大小。

(2)点A到平面PBD的距离。

练习2姓名:得分:一、选择题:1、线段AB的长为2(A∈α),它在平面内的射影长为1,则线段AB所在的直线与平面α所成的角是()A、30oB、60oC、120oD、150o2、在一个二面角的一个面内有一点,它到棱的距离等于它到另一面的距离的2√3/3倍,那么这个二面角的度数是()A、30oB、45oC、60oD、90o3、正四棱锥的底面边长是棱锥高的2倍,则侧面与底面所成的二面角是()A、30oB、45oC、60oD、90o4、圆锥的轴截面是正三角形,则它的侧面积是底面积的()A、√2/2倍B、√2倍C、2倍D、4倍5、圆锥的母线与高的比为2√3/3,则母线与底面的夹角为()A、30oB、45oC、60oD、75o6、两个球的表面积之比是1:16,那么这两个球的体积之比是()A、1:32B、1:24C、1:64D、1:2567、圆锥的轴截面是等边三角形,那么它的侧面展开图扇形的圆心角是()A、60oB、90oC、180oD、270o二、填空题8、设一圆锥的轴截面的面积为√3,底面半径为1,则此圆锥的体积。

中职数学基础模块下册第七章简单几何体习题答案

中职数学基础模块下册第七章简单几何体习题答案

第七章 简 单 几 何 体7.1多面体八、习题答案 练习7.1.1 1.略.2.(1)√;(2)√;(3)√; (4)√.3.)(侧2cm 60=S , S 表=73.86(cm 2), ()3320cm V =.4. 2a 22=表S ; 36a V =. 练习7.1.21.2.3.练习7.1.3 1.略.2.()2cm 34=侧S , ()3234cm V =. 3.(1)()()2cm 41939+=表S , ()3233cm V =;(2)习题7.1 A 组1.(1)Q M N P ⊆⊆⊆;(2) 2 ;(3) 4.2. S 侧=296()cm .3. 33)4V cm =.4. S 表=212()cm , 3)V =.5. S 侧2a =.6. 31)2V cm = . B 组1.S 表=(24a + , 33V a =. 2. ()372V cm =.3.4.C 组20+,S 表=122524202⨯⨯+⨯⨯⨯=+7.2旋转体习题答案 练习7.2.11. (1)√;(2)×;(3) ×.2. S 表=228()cm π, 320()V cm π=.3. S 侧=2100()cm π,3250()V cm π=.4. 2种;表面积不相等;体积不相等. 练习7.2.2 1.略.2.(1)×;(2)×;(3)√.3.38()V cm π=.4.310()3V cm π=. 5.S 表=236()cm π,316()V cm π=.6.6()L cm =, )h cm =. 练习7.2.31.(1)√;(2)√;(3)√.2.S 表=236()cm π, 336()V cm π=.3.16倍; 64倍.提示:设原球的半径为r ,S原=24r π , V 原343r π=,则现半径为R=4r ,S 现=222441664R r r πππ=⨯=,V 现=333444(4)64333R r r πππ=⨯=⨯,S 现=16S 原,V 现=64V 原. 4.4 cm. 习题7.2 A 组1. (1)26()cm π;(2)()343cm π;(3)236()cm π , 336()cm π ;(4) 8∶27.2. 2316()V cm π=.3. S 表=264()cm π,3128()3V cm =. 4. S 表=264()cm π,3256()3V cm π=. 5. 24 cm. B 组 1. 390 g. 2. (1)75()8h cm =;(2)不会溢出. 3.约4.49 cm. C 组粮囤的容积为49π+343√372π,最多能装稻谷约103 420 kg.提示:由题知圆锥的底面半径7()2r m =,高)h m =,故粮囤的容积V=V 圆柱+V 圆锥=2271774232649ππππ⎛⎫⎛⎫⨯⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=+所以所装谷物质量为4957510342072ππ⎛⎫+⨯≈ ⎪ ⎪⎝⎭kg.7.3简单几何体的三视图习题答案练习7.31.2.略.3.4.5.略.习题 7.3A 组1.俯视图,主视图,左视图.2.C.3.4.(1)(2)B 组1.2.C 组俯视图复习题7 A 组一、 1.B. 2.D. 3.C. 4.A. 5.C. 6.C.二、7. 312a .8. S 表= (236()cm +,3)V cm =. 9. 4 cm.三、10. S侧= (()2384cm +,31152()V cm =.提示:由S 底=72 cm 2得AB=BC=12cm ,AC=.S 侧= ((()22416384cm +⨯=+,372161152()V cm =⨯=.11. S 侧= S π,4SV π=.提示:设圆柱的底面半径为r ,则高为2r ,由题知S =4r 2,得2r =,S侧=222444Sr r r S ππππ⋅===,2322284S S V r r r ππππ=⋅==⋅=.12. 3288()V cm π= 或3192()V cm π=.13.14.B 组 1. C.2. 1 004.8(cm 3). 提示:223851004.8()V r h cm ππ==⨯≈.3.34 .提示:设球的半径为2r =,所以截面圆的面积)2213s r ππ==,大圆的面积:()2224s r r ππ==.所以截面圆的面积与大圆的面积之比为34.4.(1)方案一,体积31400()V m π= .提示:仓库的半径r=10m ,h=4m ,则2311400()V r h m ππ==.方案二,体积 32288()V m π= .提示:仓库的半径r=6m ,h=8m ,则2322288()V r h m ππ==.(2)方案一,墙面建造成本80πa 元.提示:墙面建造成本112210480y r ha a πππ==⨯⨯=(元).方案二,墙面建造成本96πa 元.提示:墙面建造成本22226896y r ha a πππ==⨯⨯=(元).(3)方案一更经济.提示:由(1)(2)知1212,V V y y ><,即方案一体积大,可以储藏的粮食多、墙面建造面积小,用材少、成本低,所以选择方案一更经济.。

中职数学《立体几何》练习

中职数学《立体几何》练习

中职数学《立体几何》练习(共4页)-本页仅作为预览文档封面,使用时请删除本页-《立体几何》测试卷一、选择题(32分)1、点A 在直线l 上,l 在平面α外,用符号表示正确的是 ( )(A )A∈l ,l ∉α(B )A∈l ,l ⊄α (C )A ⊂l ,l ⊄α (D )A ⊂l ,l ∈α 2、A ,B ,C 为空间三点,经过这三点( )A .能确定一个平面或不能确定平面B .可以确定一个平面C .能确定无数个平面D .能确定一个或无数个平面3、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( )A 、若l ∥α,m ⊥l ,则m ⊥αB 、若l ⊥m ,m ⊥n ,则m ∥nC 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α 4、已知a ,b 是两条相交直线,a ∥,则b 与的位置关系是 ( )A 、b ∥B 、b 与相交 C 、b ⊂α D 、b ∥或b 与相交5、在正方体ABCD-A 1B 1C 1D 1 的所有面对角线中,与AB 1成异面直线且与AB 1成60º的有 ( )(A) 1条(B) 2条(C) 3条(D) 4条6、有下面几个问题:(1)若a α⊥α⊥2)若a αα⊥β⊥3)若a ,b 是两平行线,b ⊂平面α,则a αα⊥βγ⊥βαγαβ,,m n //,,m n m n αα⊥⊥若则,,//m m αβαβ⊥若则,//,,m m n n αβαβ⊥⊂⊥若则//,,m n ααβ⋂=若则m//n EG ⊥面SEF AB .GF ⊥面SEFC 。

SG ⊥面SEF E B二、填空题(25分)9.在正方体ABCD-A 1B 1C 1D 1中,下列两直线成角的大小是:A 1A 和B 1C 1成角_________.A 1C 1和AB 成角__________. A 1C 1和D 1C 成角_________.A 1C 1和BD 成角__________.10..在正方体ABCD —A 1B 1C 1D 1中,二面角D 1—AC —D 的正切值是_____A BC D A` B`C` D` EF 11.如图,在长方体1111ABCD A BCD -中,已知11,AB AD AA ===则直线1B D 与平面ABCD 所成的角的大小是D AA 1B CD 1B 1C 112、已知PA 垂直于矩形ABCD 所在的平面,且PB=4,PC=6,PD=5,则PA 的长度是13.设AB αβ--为二面角,已知直线l α⊥,且l 与β所成的角为040,则二面角AB αβ--的大小为 三、解答题14、已知正方体ABCD-A`B`C`D`中,E ,F 分别是A`B`,B`C`的中点。

中职数学《立体几何》练习

中职数学《立体几何》练习

ABCD A`B`C`D` EF 《立体几何》测试卷一、选择题(32分)1、点A 在直线l 上,l 在平面α外,用符号表示正确的是 ( ) (A )A ∈l ,l ∉α(B )A ∈l ,l ⊄α (C )A ⊂l ,l ⊄α (D )A ⊂l ,l ∈α2、A ,B ,C 为空间三点,经过这三点( )A .能确定一个平面或不能确定平面B .可以确定一个平面C .能确定无数个平面D .能确定一个或无数个平面3、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l ,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥n C 、若a ⊥α,a ⊥b ,则b ∥α D 、若l ⊥α,l ∥a ,则a ⊥α4、已知a ,b 是两条相交直线,a ∥,则b 与的位置关系是 ( )A 、b ∥B 、b 与相交 C 、b ⊂α D 、b ∥或b 与相交5、在正方体ABCD-A 1B 1C 1D 1 的所有面对角线中,与AB 1成异面直线且与AB 1成60º的有( ) (A) 1条(B) 2条(C) 3条(D) 4条6、有下面几个问题:(1)若a //平面α,b ⊥a ,则平面α⊥b .(2)若a //平面α,平面α⊥平面β,则a ⊥平面β.(3)若a ,b 是两平行线,b ⊂平面α,则a //α.(4)若平面α⊥平面β,平面γ⊥平面β,则平面α//平面γ。

其中不正确的命题个数是( )。

(A ) 4 (B ) 3 (C ) 2 (D ) 17、已知两个不同的平面αβ,和两条不重合的直线,m n ,有下列四个命题: ①//,,m n m n αα⊥⊥若则②,,//m m αβαβ⊥⊥若则③,//,,m m n n αβαβ⊥⊂⊥若则 ④//,,m n ααβ⋂=若则m//n 。

其中真命题有 A 0个 B 1个 C 2个 D 3个 C 8、在正方形SABC 中,E 、F 分别是AB 、BC 的中点,现沿SE 、 SF 、EF 把这个正方形折成三棱锥,使得A 、B 、C 三点重合为点G F 则有 ( )A.SG ⊥ 面EFGB. EG ⊥面SEFB .GF ⊥面SEFC 。

中职立体几何试题及答案

中职立体几何试题及答案

中职立体几何试题及答案一、选择题(每题3分,共30分)1. 空间中,下列说法正确的是()。

A. 两条异面直线一定相交B. 两条异面直线一定平行C. 两条异面直线既不相交也不平行D. 两条异面直线可能相交也可能平行答案:C2. 一个长方体的长、宽、高分别为a、b、c,其体积为()。

A. abcB. ab+bc+acC. a+b+cD. a*b*c答案:A3. 一个球的半径为r,其表面积为()。

A. 4πrB. 4πr²C. 2πrD. 2πr²答案:B4. 一个圆柱的底面半径为r,高为h,其体积为()。

A. πr²hB. 2πrhC. πr²D. πrh答案:A5. 一个圆锥的底面半径为r,高为h,其体积为()。

A. πr²hB. 1/3πr²hC. 2πrhD. 1/2πr²h答案:B6. 一个棱锥的底面为正方形,边长为a,高为h,其体积为()。

A. a²hB. 1/2a²hC. 1/3a²hD. 1/4a²h答案:C7. 一个棱柱的底面为矩形,长为a,宽为b,高为h,其体积为()。

A. a*b*hB. 2ab*hC. 2a*b*hD. 2ab答案:A8. 一个棱锥的底面为三角形,边长为a,高为h,其体积为()。

A. 1/2a²hB. 1/3a²hC. 1/4a²hD. 1/6a²h答案:B9. 一个棱柱的底面为三角形,边长为a,高为h,其体积为()。

A. 1/2a²hB. 1/3a²hC. 1/4a²hD. 1/6a²h答案:B10. 一个棱锥的底面为正五边形,边长为a,高为h,其体积为()。

A. 1/2a²hB. 1/3a²hC. 1/4a²hD. 1/5a²h答案:B二、填空题(每题4分,共20分)1. 一个长方体的长、宽、高分别为3cm、4cm、5cm,则其体积为____cm³。

职中数学第九章 立体几何

职中数学第九章  立体几何

第九章 立体几何一、 判断题:(每小题2分,共20分)1.三个点确定一个平面。

( )2.三角形是一个平面。

( )3.经过一点和一条直线有且只有一个平面。

( )4.平行于同一条直线的两条直线平行。

( )5.过直线外一点和这条直线平行的直线有且只有一条。

( )6.一条直线和一个平面内的一条直线平行,一定和这个平面平行。

( )7.一条直线和一个平面平行,就和这个平面内的所有直线都没有公共点。

( )8.若一个平面内有一条直线平行于另一个平面,则这两个平面平行。

( )9.若两个平面没有公共点,则这两个平面平行。

( )10.矩形的平行射影一定是矩形。

( )一、判断下列命题的真假:(每小题2分,共20分)1、在空间一组对边平行且相等的四边形是平行四边形。

( )2、空间两个向量一定共面,三向量不一定共面。

( )3、长方体的对角线相等。

( )4、过平面外一点可以作无数条直线与这个平面平行。

( )5、两个平面只要三点重合,那么这两个平面一定重合为一个平面。

( )6、如果两个平面相交,那么它们的交点不一定在交线上。

( )7、已知直线a//平面α,且直线b//平面α,则a//b 。

( )8、任给三个向量,空间任一向量都可用这三个向量表示。

( )9、过平面外一点可以作无数个平面与这个平面平行。

( )10、正方形的平行射影一定是菱形。

( )1、两条直线无公共点是这两条直线平行的( )A 、充分而非必要条件B 、必要而非充分条件C 、充要条件D 、既不充分也不必要条件2、在空间四边形ABCD 中,如果E 、H 分别是AB 、AD 边上的点,且41==HD AHEB AE,F 、G 分别是BC 、CD 的中点。

那么四边形EFGH 是( )A 、平行四边形B 、梯形C 、矩形D 、菱形3、三条直线相交于一点,可以确定的平面个数是( )A 、1个B 、3个C 、4个D 、1个或3个4、下列正确的命题是( )A 、矩形的平行射影一定是矩形B 、过平面外一条直线可作无数个平面与该平面平行C 、在空间,若OA//O 1A 1,OB//O 1B 1,则∠AOB=∠A 1O 1B 1D 、空间四条直线a,b,c,d ,若a//b ,c//d ,且a//b,则b//c.5、三条直线两两垂直,则下列命题中正确的是( )A 、三条直线必共点B 、其中必有两条直线异面C 、三条直线不可能在同一平面内D 、其中必有两条直线在同一平面内6、四面体ABCD 的每条棱长都等于a ,F ,G 分别是AD 、DC 的中点,则FG •BA=( ) A 、a B 、-221a C 、-241a D 、241a 7、在平行六面体ABCD-A 1B 1C 1D 1中,三个向量共面的是( )A 、1,1,BB 1 B 、AB ,AD ,AA 1C 、B 1B ,AC 1,DB 1D 、AD ,A 1B 1,CC 18、在正方体ABCD-A 1B 1C 1D 1中,下列不正确的是( )A 、<AC CD 1>=60ºB 、<AB ,C 1A 1>=135ºC 、<AB ,AD >=90º D 、<AB ,BA >=180º9、已知A (3,-2,1),B (-2,3,5)两点,有一点P 在0 轴上,且|PA|=|PB|,则P 的坐标是( )A 、(-512,0,0) B 、(-1,0,0) C 、(-52,0,0) D 、(2,0,0) 10、在棱长为1的正方体ABCD-A 1B 1C 1D 1中,AC 1•BC=( )A 、0B 、1C 、3D 、26、空间中的四点,如果其中任意三点都不共线,那么经过其中三点的平面( )A 、 可能有三个,也可能有一个B 、可能有二个,也可能有三个C 、可能有四个,也可能有一个D 、可能有4个,也可能有两个7、异面直线a 、b 分别在两个平面上α、β,α∩β=C ,则直线C ( )A、与a、b都相交B、与a、b都不相交C、至少与a、b中的一条相交D、至多与a、b中的一条相交8、已知直线L⊥平面α,直线m⊂平面β,有下列四个命题(1)α∥∥m (2)α⊥β⊥m(3)L∥m α⊥β(4)α∥β⊥m其中正确命题是()A、(1)(2)B、(3)(4)C、(2)(4)D、(1)(3)9、下列命题中错误的是()A、若一直线垂直于一平面,则此直线必垂直于这平面上的所有直线B、若一平面通过另一个平面的一条垂线,则这两个平面互相垂直C、若一直线垂直于一个平面的一条垂线,则此直线平行于这个平面D、若一平面内的一条直线和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直。

中职数学《立体几何》总复习专项测试题

中职数学《立体几何》总复习专项测试题

第九章立体几何总复习专项测试题一、判断题(立体几何基本概念)1、在一个平面内有三条直线和另一个平面平行,那么这两个平面平行…………(A B)2、分别在两个平行的平面内的两条直线一定平行…………………………………(A B)3、不存在与两条异面直线都相交的两条直线………………………………………(A B)4、平面就是平行四边形………………………………………………………………(A B)5、过直线外一点可以作无数条直线与这条直线平行………………………………(A B)6、空间内不相交的两条直线是异面直线……………………………………………(A B)7、在空间中,互相垂直的两条直线一定是相交直线………………………………(A B)8、过空间一点与已知直线垂直的直线有且只有一条………………………………(A B)9、空间内垂直同一条直线的两条直线一定平行……………………………………(A B)10、求两条异面直线所成的角的大小与在空间内选取的点的位置有关……………(A B)11、与两条异面直线都分别相交的两条直线一定是异面直线………………………(A B)12、平行于同一条直线的两条直线必平行……………………………………………(A B)13、平行于同一个平面的两条直线必平行……………………………………………(A B)14、垂直于同一条直线的两条直线必平行……………………………………………(A B)15、垂直于同一个平面的两条直线平行………………………………………………(A B)16、平行于同一个平面的两平面必平…………………………………………………(A B)17、垂直于同一个平面的两平面平行…………………………………………………(A B)18、如果一个平面内的两条直线和另一个平面平行,那么这两个平面平行…………(A B)二、填空题(柱、锥、球)①棱柱:侧面积:_________________;全面积:________________;体积:______________ .②棱锥:侧面积:_________________;全面积:________________;体积:______________ .③圆柱:侧面积:_________________;全面积:________________;体积:______________ .④圆锥:侧面积:_________________;全面积:________________;体积:______________ .⑤球:表面积:_____________________________;体积:__________________________ .1、正四棱柱的底面边长为3cm,高为4cm,则它的侧面积为_____;全面积_____;体积_____ .2、一个四棱锥的底面是长为4cm宽为3cm的矩形,侧棱长都为5cm,则它的体积为_______ .3、已知圆柱OO′的母线l = 4cm,表面积为42πcm2,则圆柱OO′的底面半径r=________cm .4、圆锥的母线长为10,高为8,则它的表面积为____________;体积为______________ .5、一个平面截球,得到的截面面积为36π,且球心到截面的距离为8,则该球的体积为_____ .再试牛刀:1、如果直线21//l l ,2l //平面α,那么1l _________平面α.2、设直线a 与b 是异面直线,直线c //a ,则b 与c 的位置关系是_____________.3、正四棱锥底面边长为a ,侧面积是底面积的2倍,则它的体积是____________ .4、圆柱的底面半径为2cm ,高为5cm,则这个圆柱的体积为___________cm 3 .5、圆锥的母线长12cm ,母线和轴的夹角30°,则圆锥的侧面积为______;全面积为:_______ .三、选择题(确定了答案再选)1、设P 为平面α外一点,则下述结论中,正确的是( ).A.过点P 可作无数条直线与α垂直B.过点P 只能作一条直线与α成60°的角C.过点P 只有一条直线与α平行D.过点P 有无数条直线与α平行2、两两相交的四条直线所确定平面的个数最多的是( ).A.4个B.5个C.6个D.8个3、如图,在直二面角α—PQ —β中,直角△ACB 在α内,斜边AB 在棱PQ 上,若AC 与平面α内,斜边AB 在棱PQ 上,若AC 与平面β成30°的角,则BC 与β所成的角为( ).A.60°B.45°C.30°D.90°4、若△ABC 在平面α内,P 是平面α外一点,则图中异面直线的对数是( ).A 、2对 B.3对 C.4对 D.5对5、如果直线l 和直线m 没有公共点,那么这两条直线的位置关系是( ).A.共面B.平行C.异面直线D.可能是平行直线,也可能是异面直线6、若点E 、F 、G 、H 分别是空间四边形ABCD 四边中点,EH 和FG 的位置关系是( ).A.异面直线B.平行直线C.相交直线D.相交直线或异面直线7、已知a 、b 是异面直线,c ∥b ,那么a 与c ( ).A 一定是平行直线B 一定是相交直线C 一定是异面直线D 不可能是平行直线8、分别在两个相交平面内的两条直线的位置关系是( ).A.异面直线B.平行直线C.相交直线D.以上三种情况均有可能9、直线a 与直线b 、c 所成的角都相等,则b 、c 的位置关系是( ).A.异面直线B.平行C.相交D.以上三种情况均有可能10、如果a 、b 是异面直线,那么与a 、b 都平行的平面有( ).A.有且只有一个B.有两个C.有无数个D.不一定存在11、下列结论中,错误的是( ).A.在空间内,与定点的距离等于定长的点的集合是球面B.球面上的三个不同的点,不可能在一条直线上C.过球面上的两个不同的点只能做一个大圆D.球的体积是这个球的表面积与球半径的31 12.设直线m //平面α,直线n 在α内,则( ).A.m //nB.m 与n 相交C.m 与n 异面D.m 与n 平行或异面四、简答题1、(直线与直线的位置关系)已知空间四边形OABC的边长和对角线长都为1,D、E分别为OA、BC的中点,连结DE .(1)求证:DE是异面直线OA和BC的公垂线;(2)求异面直线OA和BC的距离;(3)求点O到平面ABC的距离.2、(直线与平面的位置关系)已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD.3、(平面与平面的位置关系)已知二面角α- -β的平面角是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值.∆中,AB=AC=2,且∠A=90º(如图(1)所示),以BC边上的高AD为折4、(翻折问题)已知ABC痕使∠BDC=90º.(如图(2)所示)①求∠BAC;②求点C到平面ABD的距离;③求平面ABD与平面ABC所成的二面角的正切值.高考仿真:1、如图,平面α∩β=CD,EA⊥α,EB⊥β,且A∈α,B∈β.求证:(1)CD⊥平面EAB;(2)CD⊥直线AB.2、已知正方体ABCD-A1B1C1D1.(1)求直线DA1与AC1的夹角;(2)求证:AC1⊥平面A1BD.3、已知:在60º二面角的棱上,有两个点A、B,AC、BD分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD的长.4、已知等腰梯形ABCD,AB∥CD,上底=4,下底=6,高=3,沿它的对角线AC折成60º的二面角,求B、D两点之间的距离.。

中职数学基础模块下立体几何测试题 (一)

中职数学基础模块下立体几何测试题 (一)

中职数学基础模块下立体几何测试题 (一)
中职数学基础模块下的立体几何是数学知识中的重要内容之一,本文
将根据中职数学基础模块下的立体几何测试题,从以下几点进行分析。

一、二维与三维
立体几何是几何的一个分支,与平面几何、解析几何等其他几何分支
不同,它关注的是三维模型,如正方体、球体、棱柱等。

而在立体几
何中存在一些与二维几何相似的概念,如点、线、面等,但这些概念
在立体几何中具有更加丰富的内涵,需要结合三维模型进一步理解。

二、空间距离
在立体几何中,我们还需要掌握空间距离的概念。

空间距离表示的是
物体之间的距离,需要在三维模型的基础上进行计算。

例如,在确定
两个顶点之间的距离时,我们需要绘制一条连接这两个顶点的线段并
计算其长度。

三、基本图形
正方体、球体、棱柱等是立体几何中的基本图形,在掌握这些基本图
形的基础上,我们才能进一步理解和掌握其他复杂的立体模型。

例如,当我们要确定一个棱锥的体积时,我们需要先将其分解为一个棱锥和
一个棱柱,再进行计算。

四、综合运用
在立体几何测试题中,我们需要综合应用上述知识点来解决问题。


如,可能会给出一个立方体的体积和表面积,要求我们根据这些数据
计算其边长;或者可能会要求我们计算一个锥体的侧面积和总表面积,需要我们首先将其进行分解。

总之,立体几何作为数学知识中的一部分,其相关概念和计算方法是
非常重要的,而在学习和应用的过程中,需要结合不同的题目进行理
解和练习,不断提高自己的认知水平和实际应用能力。

中职数学基础模块下册第九单元《立体几何》word练习题

中职数学基础模块下册第九单元《立体几何》word练习题

单元测试九 立体几何同P279-282 将原来第2、6、7、11、14、16、18、20题替换为如下各题:2、(11.浙江)下列命题中错误的是( D )(A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β(B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面α⊥平面γ,平面⊥β平面γ,αβ⋂=l ,那么l ⊥平面γ(D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β6、(11.辽宁)如图,四棱锥S-ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( D ) (A ) AC ⊥SB(B ) A B ∥平面SCD(C ) SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角(D ) AB 与SC 所成的角等于DC 与SA 所成的角。

提示:选项A 正确,∵SD ⊥底面ABCD ,∴ SD ⊥AC ,又ABCD 为正方形。

∴BD ⊥AC ∴AC ⊥平面SBD ,AC ⊥SB ;选项B 正确,∵AB ∥CD ,CD ⊂平面SCD ∴AB ∥平面SCD ; 选项C 正确,设AC ∩BD=O ,连SO 则SA 、SC 与平面SBD 所成角分别是∠ASO 、∠CSO ,易知这两个角相等;D 错误,AB 与SC 所成角等于∠SCD ,而DC 与SA 所成角是∠SAB ,这两个角不相等。

7、(11.金华模拟)有两条不同的直线m,n 与两个不同的平面α、β,下列命题正确的是( D )(A )m ∥α,n ∥β,且α∥β,则m ∥n (B )m ⊥α,n ⊥β,且α⊥β,则m ∥n(C )m ∥α,n ∥β,且α⊥β,则m ∥n (D )m ⊥α,n ∥β,且α∥β,则m ⊥n 解析:A 中除m ∥n 外,还可能相交异面;B 中只含m ⊥n ,B 不正确;C 中除m ∥n 外,还有相交或异面,C 不正确;故选D11、(11.新课标全国卷)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB=6,BC=O-ABCD的体积为 解析:设矩形对角线AC ,BD 交于点O ,则BO 1,则BO 1=,因此OO 1,则V=13Sh=1623⨯⨯=14、(11.全国)已知平面α截一球面得圆M ,过圆心从且与α成60︒二面角的平面β截该球面得圆N ,若该球面半径为4,圆M 的面积为4π,则圆N 的面积为13π解析:设圆N 半径为r ,球心为O ,平面AB αβ=,其中线段AB 是圆M 的一条直径,连接OM ,ON ,MN ,NA ,NB ,过点M 在α作AB 的垂线交圆M 于点C ,则有NA=NB ;又M 为AB 中点,所以NM ⊥AB ,∠NMC=60︒又AB ⊥OM ,AB ⊥MN ,所以AB ⊥平面OMN ;又M 为AB 中点;又AB ⊥平面CMN ,因此平面OMN 、CMN 重合,即O ,C ,M 。

中职数学试卷:立体几何

中职数学试卷:立体几何

中职数学试卷:立体几何XXX数学单元试卷(立体几何)时间:120分钟,满分:150分一、选择题(共10题,每题5分,共50分)1、一条直线和直线外两点可确定平面的个数是()A、1.B、2.C、3.D、1或2解析:一条直线和直线外两点可以确定一个平面,但如果这两个点在直线上,则只能确定一个平面,所以答案为D。

2、若直线L⊥平面a,直线m a,则L与m的关系是()。

A、L⊥m。

B、L∥m。

C、L与m异面D、无法确定解析:直线L与平面a垂直,而直线m在平面a内,所以L与m一定是相交的,答案为A。

3、如果空间中两条直线互相垂直,那么它们()A、一定相交B、是异面直线C、是共面直线D、一定不平行解析:两条直线互相垂直,说明它们在同一个平面内,所以它们一定是共面直线,答案为C。

4、棱长都是1的三棱锥的表面积为()A.3B。

23C。

33D.43解析:三棱锥的表面积为底面面积加上三个侧面积之和。

底面是个正三角形,面积为√3/4,每个侧面是个等腰三角形,面积为1/2,所以表面积为3√3/4+3/2=3√3/2,答案为B。

5、两个球的表面积之比为1:4,则它们的体积之比是()。

A、1:64.B、1:16.C、1:8.D、1:32解析:设两个球的半径分别为r和R,则它们的表面积之比为4πR^2:4πr^2=1:4,所以R:r=1:2,体积之比为(4/3)πR^3:(4/3)πr^3=8:1,答案为D。

6、正方体的全面积是18,则正方体的体积是()。

A、9.B、3.C、3√2.D、27解析:正方体的全面积=6a^2,所以a=√3/2,体积为a^3=(√3/2)^3=9√3/4,答案为A。

7、正方体ABCD A1B1C1D1中,上底面对角线A1C1与侧面对角线B1C所成的角为()。

A、30°B、45°C、60°D、90°解析:由勾股定理可知,A1C1=√2AC=√2a,B1C=√2BC=√2a,所以cos∠A1CB1=AC/AB1=1/√3,所以∠A1CB1=30°,答案为A。

中职数学——立体几何复习题

中职数学——立体几何复习题

第1页◎共4页 第2页◎共4页023-2024学年上学期高二职高测试数学学科试卷满分:100分 时间:90分钟10小题,40分).在空间中,下列命题是真命题的是( ) A .经过三个点有且只有一个平面B .垂直同一直线的两条直线平行C .如果两个角的两条边分别对应平行,那么这两个角相等D .若两个平面平行,则其中一个平面中的任何直线都平行于另一个平面 .若直线l 是平面α的一条斜线,则在平面α内与l 垂直的直线( ) A .有且只有一条 B .有无数条C .有且只有两条D .不存在.在棱长为1的正四面体ABCD 中,直线AD 与BC 是( ) A .平行直线 B .相交直线C .异面直线D .无法判断位置关系.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若m ⊥n ,n ∥α,则m ⊥α B .若m ∥β,β⊥α,则m ⊥αC .若m ⊥n ,n ⊥β,β⊥α,则m ⊥αD .若m ⊥β,n ⊥β,n ⊥α,则m ⊥α.若空间中有a 、b 、c 三条直线,则“a ∥b ”是“a 、b 同时垂直于c ”的( )条件.A.充分不必要B .必要不充分C .充要D .既不充分也不必要.给出下列四个命题,其中正确的个数为( )①两条相交直线确定一个平面;②两条平行直线确定一个平面; ③一条直线和一点确定一个平面.④经过三点确定一个平面 A .0B .1C .2D .3.直线a 、b 、c 两两平行,但不共面,经过其中两条直线的平面共有( )A .0个B .1个C .3个D .6个8.如图,已知空间四边形ABCD 中,AC =BD ,顺次连接各边中点P ,Q ,R ,S ,所得图形是( )A .长方形B .正方形C .梯形D .菱形9.如图,四棱锥P ﹣ABCD 中,M ,N 分别为AC ,PC 上的点,且MN ∥平面P AD ,则( )A .MN ∥PDB .MN ∥P AC .MN ∥ADD .以上均有可能10.下列说法中正确的是( ) A .平行于同一直线的两个平面平行 B .垂直于同一直线的两个平面平行 C .平行于同一平面的两条直线平行 D .垂直于同一平面的两个平面平行二.填空题(共4小题,16分)11.两个平面最多可以将空间分成 部分.12.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为 .第3页◎共4页 第4页◎共4页………………………………………..密………………………………………………………………………………………..封………………………………………………………………………………………..线…………………………………………………13.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD 和AB ,若PC =2,CA =3,CD =1,则AB = .14.如图.在长方体ABCD ﹣A 1B 1C 1D 1的侧面和底面所在的平面中: (1)与直线AB 平行的平面是 . (2)与直线AA 1平行的平面是 . (3)与直线AD 平行的平面是 .三.解答题(共4小题,10+10+12+12=44分)1.已知空间四边形ABCD 中E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.2.如图,ABCD ﹣A ′B ′C ′D ′为正方体,求证AC ⊥BD ′.3.在长方体ABCD ﹣A 1B 1C 1D 1中,,求直线A 1B 与C 1D 1所成角的度数.4.如图所示,在三棱锥S ﹣ABC 中,已知点E ,F 分别是棱SB ,AB 的中点. 求证:EF ∥平面SAC .。

最新中职数学基础模块下立体几何测试题

最新中职数学基础模块下立体几何测试题

最新中职数学基础模块下立体几何测试题中职数学立体几何测试题(时间:60分钟总分:100分)得分:_________一、单选题(本大题共10小题,每小题5分,共50分)1、直线L 与平面α内的两条直线垂直,那么L 与平面α的位置关系是() A 、平行 B 、L ?α C 、垂直 D 、不确定2、如果直线a ⊥b ,且a ⊥平面α,则()A 、b//平面αB 、b ?αC 、b ⊥平面αD 、b//平面α或b ?α3、已知,b ,,a b a b a ααα ?? 直线和平面,若,那么() A 、b ?α B 、b ⊥平面α C 、b//平面α D 、不确定 4、圆柱的轴截面面积为4,则它的侧面积为()A .π34B .π2C .π4D .π85、下列命题正确的是()A 、空间任意三点确定一个平面;B 、两条垂直直线确定一个平面;C 、一条直线和一点确定一个平面;D 、两条平行线确定一个平面6、在一个二面角的一个面内有一点,它到棱的距离等于它到另一面的距离的23倍,那么这个二面角的度数是()A 、30oB 、45oC 、60oD 、90o7、空间四面体A-BCD, AC=BD,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,则四边形EFGH 是()A 、平行四边形B 、矩形C 、菱形D 、正方形 8、如果直线a ⊥b ,且a ⊥平面α,则()A 、b//平面αB 、b ?αC 、b ⊥平面αD 、b//平面α或b ?α 9、如图,是一个正方体,则∠ B 1AC= () A 、30o B 、45o C 、60o D 、75o10、如果平面的一条斜线段长是它在这平面上射影的3倍,那么这条斜线与平面所成角的正切值为()A .2 B .2 C .4 D .22二、填空题(本大题共4小题,每小题5分,共20分)11、垂直于同一条直线的两个平面的位置关系是_________12、已知平面α//β,且α、β间的距离为1,直线L 与α、β成60o 的角,则夹在α、β之间的线段长为。

中职数学(基础模块)下册第九章立体几何单元测试卷含答案精选全文

中职数学(基础模块)下册第九章立体几何单元测试卷含答案精选全文

可编辑修改精选全文完整版中职数学(基础模块)下册第九章立体几何单元测试卷含答案一、、选择题1.下列条件不能确定一个平面的是()A.两条平行线B.两条相交线C.一条直线和该直线外一点 D.三个点2.平行于同一条直线的所有直线( )。

A.都相交B.互相平行C.既不相交也不平行 D.都在一个平面内3.直线l在平面α内用集合符号可表示为( ).A.l∈α B. l∩α C. α⊆l D. l⊆α4.下面说法正确的是( ).A.平面α是一个平行四边形B.平面β的长为3m,宽为2mC. 一个平面可以将空间分成两部分D. 一条线段在一个平面内,但其延长线可以不在这个平面内5.下面可以确定一个平面的条件是()A. 经过两点B.经过三个不同的点C.经过两条直线D.经过不在一条直线上的三点6. 以下四个命题中,正确的是( )A.不重合的两条直线确定一个平面B.两两相交的三条直线确定一个平面C.若线段AB在平面α内,则直线AB也在平面α内D.若线段AB在平面α内,则直线AB与平面α没有公共点7.若点M在直线l上,直线l在平面α内,则M,l,α之间的关系用符号可表示为( )A.M∈l,l∈αB.M∈l,l⊆αC. M⊆l,l⊆αD. M⊆l,l∈α8. 下列说法正确的是( )①平行于同一直线的两条直线平行;②平行于同一平面的两条直线平行;⑧垂直于同一直线的两条直线平行;④垂直于同一平面的两条直线平行.A.①④B. ①②④C. ①②③D. ②③9.在空间中,直线与直线的位置关系( )A.相交B.平行C.异面 D.相交、平行或异面10.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线和平面外的一条直线D.不在同一平面内的两条直线11.给出下列四个命题:①若直线a不平行于b,则a与b一定相交;②若直线a 与b 不相交,则a ∥b;③若a ,b 为异面直线,则a 不平行于b;④若a ,b 为异面直线,则a 与b 一定不相交.其中,正确命题的个数为( )A.1个 B .2个 C .3个 D .4个12.如图所示, 正方体ABCD-A'B'C'D'的对角线AC'与棱BC 的位置关系是( )A .平行B .相交C .共面 D.异面13.下面说法正确的是( ).A.过直线外一点与这条直线平行的直线有无数条B.如果两条直线没有交点,那么这两条直线平行C .空间四边形的四个顶点一定不共面D.四条线段首尾顺次连接而成的四边形一定是平面图形14. 垂直于同一条直线的两条直线( )A.相交B.平行C.异面D.相交、平行或异面15. 在长方体1111D C B A ABCD 中, 直线AC 与11B C 的关系为( )A.平行 B .垂直 C .异面 D.在同一个平面内16.已知直线a ∥平面α,直线b 在平面α内,则( )A. a//bB.a 和b 相交C.a 和b 异面D. a 和b 平行或异面17.以下条件中,能判定直线l ⊥平面α的是( )A.直线l 与平面α内一个三角形的两边垂直B .直线l 与平面α内的一条直线垂直C.直线l 与平面α内的两条直线垂直D.直线l与平面α内的无数条直线垂直18.若直线l在平面α外,则( ).A. l//αB.l和α至少有一个公共点C. l和α相交D. l和α至多有一个公共点19.两条直线都与一个平面平行,则这两条直线的位置关系是( ).A.异面 B.相交C.平行 D.可能共面,也可能异面20.若a,b为直线,α为平面,则下列命题中,错误的是( ).A. 若a∥b,a⊥α,则b⊥αB. 若a⊥α,b⊥α,则a∥bC. 若a⊥α,b⊆α,则a⊥bD. 若a⊥b,a⊥α,则b⊥α21.在一个平面内,与这个平面的斜线垂直的直线( ).A.只有一条B.有无数条C.有相交的两条D.一条都没有22.空间中过直线外一点与该直线平行的平面有()A.1个B.2个C.3个 D.无数个23.下列条件中能判断两个平面平行的是( )A. 两个平面与同一条直线平行B. 两个平面与同一个平面垂直C.一个平面内的两条直线平行于另一个平面D. 一个平面内的任意一条直线都平行于另一个平面24.若平面α∥平面β,α⊆β,b⊆β,直线a,b的位置关系是( ) A.异面 B.不相交 C.平行 D.垂直25.都与第三个平面垂直的两个平面( ).A.互相垂直B.相交C.互相平行D.如果相交,那么它们的交线垂直第三个平面26.下列命题中,错误的是( )A. 平行于同一个平面的两个平面平行B.平行于同一条直线的两个平面平行C.一个平面与两个平行平面相交,则交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个也相交27. 已知平面α与β,γ都相交,则这三个平面可能有( ).A. 1条或2条交线B. 2条或3条交线C.仅2条交线 D. 1条或2条或3条交线28.下面四种说法中,正确的个数为()①如果两个平面不相交,那么它们就没有公共点;②如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;③如果一个平面内有无数条直线都平行于另一个平面,那么这两个平面平行;④如果一条直线在两个平行平面中的一个平面内,则在另一个平面内有且只有一条直线与己知直线平行A.1个B.2个C.3个D.4个29.过平面外的两个点并且与这个平面垂直的平面()A. 有两个B.有无数个C. 有唯一的一个D.个数与两个点的位置有关30.如果一条直线上的两点到同一平面的距离相等,那么这条直线和这个平面的位置关系是()A. 直线在平面内B.直线与平面平行C.直线和平面相交 D.以上情况都有可能参考答案1—5 DBDCD6—10 CBADD11—15 BDCDC16—20 DADDD21—25 BDDBD26—30 BDADD。

最新中职数学每周测试练习题:立体几何(1)

最新中职数学每周测试练习题:立体几何(1)

立体几何练习姓名: 得分:一、选择题:1、下列命题中正确命题的个数是( )①两条直线分别与一个平面平行,则这两条直线平行;②两个平面分别与一个平面平行,则这两个平面平行;③一条直线分别与两个平面平行,则这两个平面互相平行;④一条直线与平面α平行,平面α与平面β平行,则这条直线与平面β平行。

A .1B .2C .3D .42、平面α与平面β平行:①平面α内一条直线可与平面β内的无数直线平行;②平面α内至少有两条直线与平面β平行;③平面α内的直线与平面β内的直线不可能垂直。

那么这三个命题 ( )A .全都正确B .全不正确C .只有一个正确D .只有一个不正确3、正方形ABCD 所在平面外一点P ,有PA=PB=PC=PD=AB ,则二面角P —AB —C 的余弦值是( )A .23B .33C .21 D .224、平面α⊥平面β,在平面β内直线CD 平行于两平面交线AB ,且CD 到AB 的距离是12㎝,在平面α内有一点E 到交线AB 的距离为5㎝,则E到直线CD 的距离是( )A .119B .149C .13D .175、等边ABC ∆的边长为a ,AD 是BC 边上的高,沿AD 将ABC ∆折成直二面角,则A 到BC 的距离是 ( )A .a 22B .a 414C .a 23 D .a二、填空题:6、三个平面γβα||||,并且α与β,β与γ距离相等,当直线a 与α、β、γ分别交于A 、B 、C 三点时,线段AB 与BC 的大小为__________。

7、如图2,在小于︒90的二面角βα--MN 中,MN A ∈,α⊂AB ,︒=∠45BAN ,AB 与β成︒30角,则二面角βα--MN 的度数为__________。

(如图2)8、自二面角内一点分别向两个面引垂线,则它们所成的角与二面角的平面角的关系是__________。

三、解答题:9、在正方体1111D C B A ABCD -中,求证:平面||11D AB 平面BD C 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学立体几何测试题
(时间:60分钟 总分:100分)
得分:_________
一、 单选题(本大题共10小题,每小题5分,共50分)
1、直线L 与平面α内的两条直线垂直,那么L 与平面α的位置关系是 ( ) A 、平行 B 、L ⊂α C 、垂直 D 、不确定
2、如果直线a ⊥b ,且a ⊥平面α,则 ( )
A 、b//平面α
B 、b ⊂α
C 、b ⊥平面α
D 、b//平面α或b ⊂α
3、已知,b ,,a b a b a ααα ⊄⊂ 直线和平面,
若,那么( ) A 、b ⊂α B 、 b ⊥平面α C 、b//平面α D 、不确定 4、圆柱的轴截面面积为4,则它的侧面积为 ( )
A .π3
4
B .π2
C .π4
D .π8
5、下列命题正确的是( )
A 、空间任意三点确定一个平面;
B 、两条垂直直线确定一个平面;
C 、一条直线和一点确定一个平面;
D 、两条平行线确定一个平面 6、在一个二面角的一个面内有一点,它到棱的距离等于它到另一面的距离的23倍,那么这个二面角的度数是 ( )
A 、30o
B 、45o
C 、60o
D 、90o
7、空间四面体A-BCD, AC=BD,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,则四边形EFGH 是 ( )
A 、平行四边形
B 、矩形
C 、菱形
D 、正方形 8、如果直线a ⊥b ,且a ⊥平面α,则 ( )
A 、b//平面α
B 、b ⊆α
C 、b ⊥平面α
D 、b//平面α或b ⊂α 9、如图,是一个正方体,则∠ B 1AC= ( ) A 、30o B 、45o C 、60o D 、75o
10、如果平面的一条斜线段长是它在这平面上射影的3倍,那么这条斜线与平面所成角的正切值为 ( )
A .
2 B .2 C .4 D .22
二、填空题(本大题共4小题,每小题5分,共20分)
11、垂直于同一条直线的两个平面的位置关系是_________
12、已知平面α//β,且α、β间的距离为1,直线L 与α、β成60o 的角,则夹在α、β之间的线段长为 。

13、在正方体ABCD-A’B’C’D’中,与棱AA’异面的直线共有_____条. 14、夹在两个平行平面间的平行线段________________ 三、解答题(共30分) 15、(15分)一个正三棱锥的底面边长为6,侧棱长为4,求这个三棱锥的侧面积和体积。

16、(15分)如图,在直角三角形ABC 中,∠ACB=90o ,AC=BC=1,若PA ⊥平面ABC ,且PA=2。

(1)证明BC ⊥PC (2)求直线BP 与平面PAC 所成的角。

财务优秀员工评语集锦
优秀员工的评选能够激发员工的工作积极性,能够让他们更好的在以后的工作中发光发热。

查字典范文大全为大家整理了关于财务优秀员工评语范文的相关资料,希望对您有帮助。

P
B
C
A
1、勤恳务实,善于学习,对本职工作兢兢业业,注重个人成长;工作成绩进步大,业绩发展迅速,或有效改进自己的工作方式,从而在工作中收到良好效果;悟性较强,能很快适应新的岗位,在新的业务区域可以立即开展工作;能随时根据工作需要调整工作方法和端正心态,不断反思自己,注重个人成长;能在业余时间精专业务知识,提高工作能力;悟性高,工作认真勤奋,吃苦耐劳,进步很快,在新人中起到了榜样作用。

2、良好的个人形象和素养,专业技能或业务水平优秀,为公司业务创造更多机会和效益,受公司客户及合作企业好评,为公司创造出较好的企业效益或社会效益;工作认真负责,积极主动,服从整体安排,爱岗敬业,乐于助人,与同事相处融洽,业务知识扎实,业务水平优秀,能带动东区的给为同事积极工作,胜任东区大区经理工作;工作出色,业务熟悉,为我们成立起榜样。

4、工作认真负责,积极主动,服从整体安排,爱岗敬业,业务知识扎实,业务水平优秀,与北区各位经理相处融洽,树立榜样,胜任北区大区经理工作;人品端正、做事塌实、行为规范、对待所负责区域进行有效指导,并提出建设性意见;高度敬业,表现出色。

5、工作热情高;人品端正、德行优良、自身修养较高、对待客户诚信;对待工作严谨、处处为公司考虑,能够虚心接受同事给予的建议并改正;学习进步较快、受到大多数客户的好评。

6、工作成绩进步大,悟性较强,能很快适应新的岗位,能随时根据工作需要调整工作方法和端正心态,不断反思自己,注重个人成长,能有效改进自己的工作方式,从而在工作中收到良好效果。

7、该员工平时积极向上,不仅配合度较好,且平时工作表现也很努力,在工作时能以认真、仔细、负责的心度去做好自己的工作。

8、该员工平时工作仔细、认真、负责,不但执行力强,且工作配合度也好,有积极向上的工作心态,能主动协助其他同事工作,并且能按时完成上级领导安排的相关工作!
9、该员工平时工作认真,有高速度、高效率、高质量的工作表现,且在日常生活中能与其他同事团结友爱,互助进取!
10、该员工平时工作能将自己的能力充分发挥出来,不仅工作认真、做事效率好,而且上班的纪律也很好,值得各位同事学习。

11、该同事今年工作成绩进步大,工作认真,业务知识扎实,业绩发展迅速,工作态度端正,遵守公司规章制度,能积极完成公司的任务。

篇二:财务优秀员工评语财务优秀员工评语
1、勤恳务实,善于学习,对本职工作兢兢业业,注重个人成长;工作成绩进步大,业绩发展迅速,或有效改进自己的工作方式,从而在工作中收到良好效果;悟性较强,。

相关文档
最新文档