幂等变换和幂等矩阵的性质

合集下载

幂等矩阵的性质及应用(定稿)

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix院系理学院专业数学与应用数学姓名邱望华年级A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域dim V 线性空间V 的维数 1T - 线性变换T 的逆变换TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r =均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫ ⎪λ⎝⎭,由200001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭ ,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭- ⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪ ⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠. 因此,若A 是幂等矩阵,则A 的若尔当标准型如下:12000000n r J λλλ⎛⎫⎪ ⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式***[2]()AB B A=.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000rr r E E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000rr E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌ 性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======. ▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2()()0()0E A Aa A A a -=⇒-=.由a 的任意性得 2A A =.1)⇔8)必要性: 由2A A =知 ()()N A R E A =-.于是有 dim ()dim ()N A R E A =-即有 rank rank()n A E A -=-亦即 rank rank()A E A n +-=.充分性: 由rank rank()A E A n +-= 易知:dim ()dim ()N A R E A =- (*) 又对()a N A ∀∈,有0Aa =则有()E A a a Aa a -=-=.由()()E A a R E A -∈-知()a R E A ∈-即有 ()()N A R E A ⊂-.据(*)式知()()N A R E A =-.再由6)得2A A =.8)⇔9)必要性: 由rank rank()A E A n +-=.即知:dim ()dim ()R A R E A n +-=.又对n a R ∀∈,有()a Aa E A a =+-,而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+---n =.故有dim[()()]0R A R E A -=. 于是, {}()()0R A R E A -=.充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+=.其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+==.即221212O ΛΛ+ΛΛ=. 因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有rank()rank()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=---.证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=---以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换. 由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==.2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知, 对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =. 据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s =.定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,ic u v s u v e a s c πλε-=∈≠=∈若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u =且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-.将它们相加得212AB B B u-=--.又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u =-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=- 121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v =-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-.又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u-=-. 结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v =--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v vλ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3ieπε=满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--.从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u =-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v =-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v=-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑴ A B -可逆.⑵ 12c A c B +及E AB -可逆. 证明:⑴⇒⑵对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑴⇐⑵对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑴ A B -可逆.⑵ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1 rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数, 所以111,0r r n λλλλ+======,故结论成立. ▌推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了. 定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A E ==∑.则 11rank rank()mmi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

幂等矩阵的例子

幂等矩阵的例子

幂等矩阵的例子
1. 嘿,你看单位矩阵不就是个幂等矩阵的典型例子嘛!就像一个永远坚守岗位,每次操作都不改变的忠诚卫士。

2. 零矩阵也是哦!它就像一个安安静静,啥也不影响的小透明,不管怎么和它作用,结果还是它自己呢!
3. 再想想,全是 1 的矩阵也是幂等矩阵呀!就如同一个充满热情,始终保
持一成不变的热血家伙。

4. 还有那种对角线上有些元素是 1,其他都是 0 的矩阵呢,这不也是幂等矩阵嘛,多特别呀!就像人群中有自己独特标志的人一样。

5. 你们想想上次我们碰到的那个矩阵,它居然也是幂等矩阵呢,真是神奇呀!
6. 难道你们不觉得幂等矩阵很有意思吗?就像生活中那些总是保持着某种特性的事物一样让人着迷。

7. 还有一种特殊的矩阵,经过计算发现它也是幂等矩阵呀,这就好像在一堆普通石头中突然发现了宝石一样惊喜。

8. 哎呀,这么多幂等矩阵的例子,是不是让你们对它们有了更深刻的认识呢!总之,幂等矩阵真的是很神奇的存在呀!。

幂等矩阵的性质及应用(定稿)

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix院系理学院专业数学与应用数学姓名邱望华年级 A0411指导教师王侃民二零零八年五月摘要幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合AbstractThe idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusionof idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、 the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表实数域实数域n维列向量空间实数域上的n×n阶矩阵复数域复数域n维列向量空间复数域上的n×n阶矩阵矩阵A的转置矩阵A的伴随矩阵A的逆矩阵A的行列式矩阵A的秩矩阵A的核空间,即矩阵A的值域,即线性空间V的维数线性变换的逆变换的值域,即=的核,即目录第一章预备知识 11.1 幂等矩阵的概念及刻划 11.2 幂等矩阵的一些简单性质 3第二章相关的重要结论 72.1 幂等矩阵的等价条件 72.2 幂等变换 142.3 幂等矩阵线性组合的幂等性 172.4 幂等矩阵线性组合的可逆性 232.5 幂等矩阵的秩方面的有关性质 26结束语 29参考文献 30第一章预备知识1.1 幂等矩阵的概念及刻划定义1.对n阶方阵,若,则称为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若是幂等矩阵,则与相似的任意矩阵是幂等矩阵.证明:若相似于(记作),则有同阶可逆矩阵,使,从而=·===. ▌命题2.若是对角分块矩阵,设=则是幂等矩阵均是幂等矩阵.由于每个n级复数域矩阵都与一个若尔当矩阵相似,据命题1和命题2知,我们只需要讨论若尔当块的幂等性.若是一个2阶复数域矩阵,则的若尔当标准型有两种可能的形式:第一种:,但它不是幂等矩阵.否则有=,有.矛盾.第二种:,由,有,从而有或1,或1.于是该情况有四种可能的形式:,,,据命题1,于是得到:定理1.是二阶幂等矩阵,则是零矩阵或单位矩阵或形如.证明: 由以上讨论知相似于(1)式中的四个矩阵之一若~,显然有=若~,显然有=若~,则有可逆矩阵=,使=则有.即.对剩余的一种与此有同样的结果. ▌设,由,有这是不可能的.于是有:命题3.当时,阶若尔当块不具有幂等性.即.因此,若是幂等矩阵,则的若尔当标准型如下:据命题1即有.于是或1.于是我们得到如下定理:定理2.是阶幂等矩阵,当且仅当存在阶可逆矩阵,使得.其中是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵是幂等矩阵.性质2.方阵是幂等矩阵,且可逆,则.因为,则. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即(如果存在的话)是幂等矩阵.因为.性质3.若是实幂等矩阵,则都是幂等矩阵.证明: 对,.对,有.对,先证明对任意两个幂等矩阵,有关系式.由公式有:===于是,. ▌性质4.若是复数域上的幂等矩阵,则也是幂等矩阵.证明:.. ▌性质5.若是幂等矩阵,则的特征值只能是1或0.即知幂等矩阵是半正定矩阵.证明:由知(). ▌由此易知:幂等矩阵是半正定矩阵.性质6.若是幂等矩阵,设是的最小多项式,则=从而可对角化,且其若尔当标准型为.其中是阶单位矩阵,是的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知=.又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7.若是幂等矩阵,则,其中.证明:由有,立即知的阶列向量都是的解故有又对,有由的任意性知.于是有. ▌同样地,有结论.性质8.若是幂等矩阵,对任意实数是可逆矩阵.证明:由有.又由有故可逆,且. ▌性质9.任一秩为的幂等矩阵可分解成,其中是秩为矩阵,且.(其中是阶单位矩阵)证明:由性质6知,存在阶可逆矩阵使.则.记.显然满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为.故结论成立▌性质11.若均为阶幂等矩阵,且,则与均为幂等矩阵.证明:据题意有:.. ▌第二章相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设是的实矩阵,则下列命题是互相等价的:1)是幂等矩阵.2)是幂等矩阵.3)是幂等矩阵.4)对任意的可逆矩阵,是幂等矩阵.5)是对合矩阵.(满足的矩阵称为对合矩阵)6).7).8).9).10).11).12)以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设是的复矩阵,则下列命题是互相等价的:1)是幂等矩阵.2)是幂等矩阵.3)是幂等矩阵.4)对任意的可逆矩阵,是幂等矩阵.5)是对合矩阵.(满足的矩阵称为对合矩阵)6).7).8).9).10).11).12)证明:1)2) 由知.反过来,.1)3)必要性: 在1.2节性质3中已经给出了证明.充分性:.1)4)由知.反过来,.1)5)由,有==.反过来,.1)6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对有,故于是有.由的任意性得.1)7)必要性: 由知,有.又,有.于是故有.充分性: 对,有于是有.由的任意性得.1)8)必要性: 由知.于是有即有亦即.充分性: 由易知:(*)又对,有则有由知即有.据(*)式知.再由6)得.8)9)必要性: 由.即知:.又对,有,而.故.又.故有.于是,.充分性: 由有.即有.9)10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)11) 这是显然的.10)12) 这是显然的. ▌定理3.设是秩为的矩阵.则是幂等矩阵存在阶可逆矩阵,使.证明:必要性: 在1.2节性质6中已给出了证明.充分性: 由,有.则. ▌以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设是三次幂等矩阵,即,且满足,,记.则.证明:由矩阵是幂等可交换的,于是可同时对角化. 即存在可逆矩阵,使得均为对角矩阵,而且它们对角元素分别是的特征值.从而有进而.于是可以等价为.其中分别是的对角元.又由知的特征值只有0,-1,1.即于是等价为.即.因此等价为. ▌注:当,立即有,同样地,对,(为正整数)即任意的二次幂等矩阵均为次幂等矩阵.因此可得以下推论.推论: 设是二次幂等矩阵,且满足,,记.则. ▌引理1.对任意两个同阶矩阵,有.引理2.设为矩阵,满足,则有.定理5.设矩阵满足且可逆.则且.证明: 由可逆,有.于是据引理2有(1)又据引理1有. (2)有(1)式和(2)式有.由于可逆知.因此有. ▌定理6.设矩阵满足.则都是此幂等矩阵.证明:对,.对.对. ▌定理7. 设矩阵满足.则的特征值为0和.证明: 由,有,其中是矩阵的特征值.解方程可得. ▌2.2 幂等变换数域上维线性空间的全部线性变换组成的集合对于线性变换的加法与数量乘法构成上的一个线性空间,与数域上阶方阵构成的线性空间同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设是线性空间的一个线性变换,若,则称是幂等变换.由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩阵”一致. ▌性质2.若是幂等变换,则也是幂等变换.(其中是恒等变换)性质3.是幂等变换为对合变换.其中线性变换满足,则称是对合变换.性质4.是线性空间上的幂等变换,则.▌我们知道:对于一般的线性变换来说,虽然,但未必有.这样的例子很多.例如:在线性空间中令.则微分变换是一线性变换,其值域为,其核是子空间.它们的维数分别是.但显然+.性质5.设和是维线性空间上的线性变换,且.如果,则.证明:由,可得……………………………………①对①式左乘得…………………………………②对①式右乘得……………………………………③比较②和③得.代入到①式得到.于是就有. ▌性质6.设,是维线性空间上的线性变换,且.则 1).2).证明:1)对有.故使.从而.因此有.同样可证得.据可知,对,有,故.同样可证得.于是.2)对,作向量.据,有.故.从而有同理有.对,有.据,有.即有.同理可得.故有. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合仍是幂等矩阵的一些充分条件.引理1.设,的整数,且.则存在,使为幂等矩阵的充要条件是:.证明:(令).▌据引理1,下面将给出是幂等矩阵的十组充分条件.为了简化过程,先令,,.定理1.设,,若及满足下列任意一个条件,则必为幂等矩阵.(Ⅰ).①.且.证明:由易知,又由和知.满足引理1.故此时为幂等矩阵.②.且.证明: 由易知.将它们相加得.又由,可得.满足引理1.故此时为幂等矩阵.③.且.证明: 由条件易知.将它们相加后,再乘以可得。

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用

0引言幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。

在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。

但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。

因此本文对幂等矩阵的性质做出相关讨论。

本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。

1主要结果首先给出幂等矩阵的定义和基本性质。

定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。

下面给出关于幂等矩阵的一些简单的性质。

定理1:幂等矩阵A的特征值只能是0或者1。

证明:设A为任意一个幂等矩阵。

由A2=A,可得λ2=λ其中λ为A的特征值。

于是有λ=1或0,命题得证。

推论:可逆的幂等矩阵的特征值均为1。

证明:设A为一可逆的幂等矩阵。

由A2=A可得A2A-1=AA-1即A=E。

此时有λE-E=0即λ=1其中,λ为A的特征值。

命题得证。

定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得:P-1AP=Er0 00 (),其中r=R(A)。

证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=J10⋱0J s (),其中J i=λi1…0⋱┋⋱1 0λi ⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟。

由此可得J2=J。

于是有,J i2=J i。

此时,J i只能为数量矩阵λi E。

又因为A2=A,所以λi=0或1,且r=R(A)。

命题得证。

定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。

证明:(i)A为一n阶幂等矩阵。

α为其特征值1对应的特征向量。

则有,Aα=α。

由此可得α属于A的值域。

反之,对于任意一个A的值域中的向量α,总能找到一个向量β,使得Aβ=α,于是有Aα=A2β=β,即α=β。

综上可知,幂等矩阵的特征值为1的特征子空间与其值域等价。

(ii)A为一n阶幂等矩阵。

幂等变换

幂等变换

摘要幂等变换是一类特殊的线性变换,它不是孤立存在的,而是与其它线性变换紧密相连,在物理、化学等学科中也有着广泛的应用,极大地推动和丰富了它们的发展,许多新的理论、技巧和方法的诞生与发展都是幂等变换理论的应用与推广.本文首先简要叙述了一般线性变换的基本理论,在此基础上给出幂等变换的定义,并指出几类特殊的幂等变换;其次,归纳总结了幂等变换的性质,如幂等矩阵的形式、幂等变换的特征值与特征向量、特征多项式、秩与迹及幂等变换的对角化问题,讨论过程由浅入深,层层推进,对幂等变换的相关知识形成了较为完整的知识体系,对幂等变换的一些特殊的性质理解深刻;最后,结合幂等变换的概念与性质,给出常见的习题及解题技巧,并举例说明幂等变换与其它线性变换的联系与转化.关键词:幂等变换;幂等矩阵;性质;应用AbstractIdempotent transformations are a special type of linear transformation.It's not isolated,but closely connected with other linear transformation.In physics,chemistry,and other disciplines also has a wide range of applications,greatly promote and enrich their development.Birth of many new theories,techniques and methods are idempotent transformations and development application and popularization of the theory.This paper begins with a brief description of the basic theory of linear transformations,on this basis for idempotent transformation defined,the idempotent transformation and pointed out that some kinds of special.Second,discussed the nature of power transform,idempotent matrix of the form,idempotent transformation characteristic value and characteristic vector,characteristic polynomial,diagonalization of rank and track and idempotent transformation problems,discussion easy-to-digest,layers of promoting.For idempotent transformation knowledge formed a relatively complete system of knowledge,some special properties for idempotent transformation understand deep.Finally,with idempotent transformation and the concept of nature,out common problems and problem-solving skills,descriptions and examples of power-link,and other linear transforms and transformation.Key words: Idempotent transformation; Idempotent matrix; Nature; Application目录摘要 (I)Abstract .................................................................................................................................... I I绪论 (1)第1章幂等变换的基本概念 (2)第2章幂等变换的性质 (3)2.1 幂等变换的运算性质 (3)2.2 幂等变换与幂等矩阵的关系 (4)2.2.1 幂等变换的特征值与特征向量 (10)2.2.2 幂等变换的特征多项式、秩与迹 (15)2.2.3 幂等变换的对角化 (20)第3章幂等变换的应用 (23)3.1 幂等变换性质的应用 (23)3.2 幂等变换与其它线性变换 (25)结论 (32)参考文献 (33)致谢........................................................................................................... 错误!未定义书签。

幂等矩阵的概念及性质

幂等矩阵的概念及性质
! 射影 !, 使得 !" ( "! , ! $( # ) ( "# ’
…, 则 !! , …, …, !# % " , !& , !" , ! #, !# % ! , !# % " , !& 就是 " 的一组基 ’ 显然 ! !! ( !! , $ !!" ( !" ,…, ! !# ( !# , !!# %! ( #, $ !!# %" ( #,…, ! !& ( # 即在基 !! , …, …, !" , !#, !# % ! , !# % " , ! & 下的矩阵为 , # ( %&’( ( !) # # 故存在一个可逆矩阵 *,使得 ! ( * $!
! # 概念与引理
# # 定义 !# 若方阵 ! 满足 !% " ! 时, 称 ! 为幂等 矩阵 # 定义 %# 若方阵 $ 满足 $% " % 时, 称 $ 为对合 矩阵 # 引理 !# 设 &! 、 &% 是线性空间 & 的子空间, 令’ " &! ( &% , 则 ’ " &! C &% 的充要条件为 ABC ( ’ ) " ABC ( &! )( ABC ( &% ) 证明: 因为维数公式为 ABC ( ’ ) ( ABC ( &! D &% ) " ABC ( &! ) ( ABC ( &% ) 由已知可得 ABC ( &! D &% ) " & , 即 &! D &% " { &} 而 &! ( &% 是直和的充要条件是 &! D &% " { &} , 所以 得证 # 引理 %# 如果 !、 $ 是 ) * ) 方阵且满足 !$ " &, 那么 DEFG ( !)( DEFG ($) ’ )# 证明: 设 $ 的列向量组为 !! , !% , … !) , 因为 !$ " ! (!! , !% , …! ) ) " ( !! ! , !!% , … !! ) ) " & 所以

可逆幂等分解

可逆幂等分解

可逆幂等分解
可逆幂等分解是数学中的一个重要概念,主要出现在矩阵理论和线性代数中。

在这里,“可逆”和“幂等”是两个关键属性,它们共同定义了这种特殊的矩阵分解。

可逆矩阵:可逆矩阵是指存在逆矩阵的矩阵。

对于给定的矩阵A,如果存在另一个矩阵B,使得AB=BA=I(I是单位矩阵),则称A是可逆的,B是A的逆矩阵。

可逆矩阵具有非零的行列式,并且可以进行一系列的行变换或列变换来还原为单位矩阵。

幂等矩阵:幂等矩阵是指满足A²=A的矩阵,即矩阵与其自身相乘的结果等于它本身。

幂等矩阵在线性代数中经常出现,它们代表了投影操作,即将向量投影到某个子空间上。

幂等矩阵的特征值只能是0或1,并且它的迹(对角线上元素之和)等于其秩。

可逆幂等分解是指将一个给定的可逆矩阵分解为一个幂等矩阵和另一个矩阵的乘积,同时这两个矩阵的乘积也能够还原为原始的可逆矩阵。

然而,值得注意的是,并不是所有的可逆矩阵都可以进行可逆幂等分解。

这种分解的存在性和唯一性取决于原始矩阵的特定属性。

在实际应用中,可逆幂等分解可以用于解决各种数学问题,如线性方程组的求解、矩阵的对角化、以及高维数据的降维等。

通过将一个复杂的问题分解为更简单的子问题,可逆幂等分解提供了一种有效的工具来简化和解决这些问题。

需要注意的是,可逆幂等分解并不是唯一的矩阵分解方法。

其他常见的矩阵分解方法包括特征值分解、奇异值分解(SVD)、LU分解、QR分解等。

每种分解方法都有其特定的应用场景和优势。

矩阵函数的定义与性质

矩阵函数的定义与性质

矩阵函数的定义与性质矩阵函数是一类涉及矩阵运算的多元函数,广泛应用于数学、物理、工程等领域。

矩阵函数的定义与性质对于深入理解矩阵运算非常重要,本文将介绍矩阵函数的基本定义以及一些常见的性质。

矩阵函数的定义矩阵函数通常可以表示为f(A),其中A是一个矩阵,$f(\\cdot)$是一个函数。

对于一个$n \\times n$的矩阵A,其矩阵函数可以通过泰勒级数展开来定义:$$f(A) = c_0I + c_1A + c_2A^2 + \\cdots + c_kA^k + \\cdots$$其中,I是单位矩阵,c i是函数f(x)在点i处的导数。

矩阵函数的性质1. 线性性质若f(A)和g(A)是矩阵A的函数,c1和c2为常数,则有:$$ \\begin{aligned} & f(A) + g(A) = g(A) + f(A) \\\\ & c_1f(A) = f(c_1A)\\end{aligned} $$2. 矩阵的幂运算对于矩阵函数f(A)=A k,其性质如下:•若A是可对角化的矩阵,则f(A)也可对角化。

•若A是对称矩阵,则f(A)也是对称矩阵。

•若A是幂等矩阵(即A2=A),则f(A)也是幂等矩阵。

3. 矩阵函数的微分对于矩阵函数f(A),其微分形式如下:df(A)=f′(A)dA其中,f′(A)表示f(A)的导数,dA表示矩阵A的微小变化。

4. 特征值与特征向量矩阵函数f(A)的特征值与特征向量也与矩阵A的特征值与特征向量有密切联系。

若$\\lambda$是矩阵A的特征值,v是对应的特征向量,则$f(\\lambda)$是矩阵f(A)的特征值,v是对应的特征向量。

结语通过以上介绍,我们对矩阵函数的定义与性质有了初步了解。

矩阵函数的研究不仅有助于理解矩阵运算的复杂性,还在实际问题中有着广泛的应用。

希望本文的介绍能够对读者有所帮助。

关于广义幂等矩阵的性质的探讨正文

关于广义幂等矩阵的性质的探讨正文

关于广义幂等矩阵的性质的探讨左航(导师:谢涛)(湖北师范学院 数学与统计学院 湖北 黄石 435002)1.引言在高等代数中,矩阵是代数学的一个重要研究对象,也是数学研究中不可缺少的工具。

我们把满足2A A =的矩阵A 叫做幂等矩阵,把满足2σσ=的线性变换σ叫做幂等变换。

文【1,2】已给出了幂等矩阵与幂等变换的性质和等价条件。

本文试图通过引入k 次幂等矩阵和k 次幂等变换的概念,来推广幂等矩阵和幂等变换,并讨论它们的性质。

同时由于可逆矩阵对处理矩阵问题的重要性,文中在可逆幂等矩阵的基础上给出可逆n 阶k 次幂等矩阵的定义,并总结出相关的一些性质。

而且在计量经济学中对于大多数经济现象进行比较静态分析的结果,都可以合理地归结为一个线性经济模型Ax=b ,其中的系数矩阵A 往往是一个幂等矩阵。

为此,也有必要对幂等矩阵展开理论方面的深入研究。

1.幂等矩阵定义1.1 任何一个满足幂等关系2A A =的矩阵A 称为幂等矩阵。

显然,n 阶零矩阵和单位矩阵都是幂等矩阵。

关于幂等矩阵,目前已有一些结论,我们选择其中一些性质列举如下:1.1.1幂等矩阵的特征值只取0和1两个数值;1.1.2所有的幂等矩阵(单位矩阵除外)都是奇异矩阵;1.1.3所有幂等矩阵的秩与迹相等,即()()Rank P Tr P =;1.1.4若P 为幂等矩阵,则'P 也为幂等矩阵;1.1.5若P 为幂等矩阵,则I P -也为幂等矩阵()()Rank I P n Rank P -=-所有对称的幂等矩阵(单位矩阵除外)都是半正定的;1.1.6令n ⨯n 幂等矩阵P 的秩为r,则P 有r 个特征1和n r -个特征值0;1.1.7所有的幂等矩阵P 都可对角化的:|000A r I U AU -⎛⎫= ⎪⎝⎭; 1.1.8一个对称的幂等矩阵P 可以表示为T P LL =,其中L 满足T LL I =;1.1.9设有全矩阵()n n I I ⨯=,则1C I n=是一个幂等矩阵; 1.1.10若方阵B 是幂等矩阵,则T B 和B E -也是幂等矩阵;1.1.11若n 阶方阵A 为幂等矩阵,则它的秩满足R(A)+R(E-A)=n 。

幂等矩阵的性质及应用

幂等矩阵的性质及应用

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix 院系理学院专业数学与应用数学姓名邱望华年级 A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵 C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵 A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域 dim V 线性空间V 的维数1T - 线性变换T 的逆变换 TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r = 均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫⎪λ⎝⎭ ,由20001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫ ⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫ ⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭-⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠.因此,若A 是幂等矩阵,则A 的若尔当标准型如下:1200000n r J λλλ⎛⎫⎪⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式 ***[2]()AB B A =.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为 000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000r r rE E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000r r E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======.▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2-=⇒-=.E A Aa A A a()()0()0由a的任意性得2A A=.1)⇔8)必要性: 由2A A=知()()=-.N A R E A于是有dim()dim()=-N A R E A即有rank rank()n A E A-=-亦即rank rank()+-=.A E A n充分性: 由rank rank()+-=易知:A E A ndim()dim()=- (*)N A R E A又对()∀∈,有a N AAa=则有-=-=.E A a a Aa a()由()()a R E A∈--∈-知()E A a R E A即有()()⊂-.N A R E A据(*)式知=-.N A R E A()()=.再由6)得2A A8)⇔9)必要性: 由rank rank()+-=.即知:A E A n+-=.dim()dim()R A R E A n又对n∀∈,有a R=+-,()a Aa E A a而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+--- n =.故有dim[()()]0R A R E A -= .于是, {}()()0R A R E A -= .充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+= . 其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+== .即221212O ΛΛ+ΛΛ=.因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有r a n k ()r a n k ()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=--- . 证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=--- 以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换.由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==. 2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知,对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =.据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s = .定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,i c u v s u v e a s c πλε-=∈≠=∈ 若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u=且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-. 将它们相加得212AB B B u-=--. 又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u=-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=-121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v=-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-. 又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u -=-.结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v=--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v v λ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3i eπε= 满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--. 从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u=-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v=-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v =-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++ 112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑪ A B -可逆.⑫ 12c A c B +及E AB -可逆. 证明:⑪⇒⑫对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑪⇐⑫对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+ 220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑪ A B -可逆.⑫ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数,所以111,0r r n λλλλ+====== ,故结论成立. ▌ 推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了.定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1m i i A E ==∑.则 11rank rank()m mi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

幂等矩阵的性质(1)

幂等矩阵的性质(1)

目录中文摘要 (1)英文摘要 (1)1 引言 (1)2 幂等矩阵的概念 (3)3 幂等矩阵的性质 (4)3. 1 幂等矩阵的主要性质 (4)3. 2 幂等矩阵的等价性命题 (7)3. 3 幂等矩阵的线性组合的相关性质 (11)4 幂等矩阵与其他矩阵的关系 (14)4. 1 幂等矩阵与对合矩阵 (14)4. 1. 1 对合矩阵 (14)4. 1. 2 幂等矩阵与对合矩阵的关系 (15)4. 2 幂等矩阵与投影矩阵 (16)4. 2. 1 投影矩阵 (16)4. 2. 2 幂等矩阵与投影矩阵的关系 (17)结束语 (19)参考文献 (20)致谢 (21)英文原文 (22)英文译文 (29)幂等矩阵的性质数学与应用数学专业2009级王素云摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系.关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵PROPERTIES OF IDEMPOTENT MATRIXSuyun Wang, Grade 2009, Mathematics and Applied MathematicsAbstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed. Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix1 引言幂等矩阵是矩阵中非常特殊的一类矩阵,也是非常重要且非常常见的一类矩阵,很多其他特殊矩阵都与幂等矩阵有着密切的联系,如对合矩阵及投影矩阵。

矩阵基础知识

矩阵基础知识

矩阵基础知识贺国宏 编为了学好测绘工程专业的核心课程〈测量平差基础〉,必须掌握以下所述矩阵的基础知识,同时,学习这些知识,对于学习测绘工程的其它课程,以及以后的深造,都是重要的。

1、矩阵的秩定义:矩阵A 的最大线性无关的行(列)向量的个数r ,称为矩阵A 的行(列)秩。

由于矩阵的行秩等于列秩,故统称为矩阵的秩,记为R(A)。

对于矩阵的秩有性质:{})(),(m in )(B R A R AB R ≤(1)2、矩阵的迹定义:方阵A 的主对角元素之和称为该方阵的迹,记为∑==ni ii a A tr 1)((2)对于矩阵的迹有下面的性质:(1) tr (A T )=tr (A)(3) (2) tr (A+B)=tr (A)+tr (B) (4) (3) tr (kA)=k tr (A) (5) (4) tr (AB)=tr (BA)(6)3、矩阵的特征值和特征向量定义:对于n 阶方阵A ,若存在非零向量χ,使得x x λ=A(7)则称常数λ为矩阵A 的特征值(或特征根),而χ称为矩阵A 属于特征值λ的特征向量。

由此可得=-χ)(A E λ0(8)因此,该齐次线性方程有非零解的条件是0)(0111=++++=-=--a a a A E f n n n λλλλλΛ(9)称λE-A 为矩阵A 的特征矩阵,而f (λ)为矩阵A 的特征多项式。

显然,矩阵A 的特征根),,2,1(n i i Λ=λ为特征方程(9)的根。

应该指出,对于一般的实矩阵A ,特征根可能是复数,从而特征向量也是复数。

以后将会看到,对于实对称矩阵,其特征根和特征向量都是实的。

这一点是很重要的。

特征值和特征向量具有下列性质:(1) 设n λλλ,,,21Λ为n 阶方阵A 的n 个特征值,则:A K 的特征值为kn k k λλλ,,,21Λ A -1的特征值为11211,,,---n λλλΛ(2) tr (A)=n λλλ+++Λ21 =A n λλλΛ21⋅(3) 矩阵A 的属于不同特征值的特征向量是线性无关的。

浅谈幂等矩阵的性质

浅谈幂等矩阵的性质
是 0,再由定理 7,存在正交阵 r 使
! " Er
T- 1AT= 0
上式中,对角线元素中,1 的个数为 A 的特征值的 1 个数,0 的个 数为 A的特征值 0 的个数。
综上所述,幂等矩阵的种常规的正定性,虽然在几何学,物理学 以及概率论等学科中都得到了重要的应用,但随着数学本身以及应用矩 阵的其他学科的发展,越来越不能满足人们的需要,现代经济数学等众 多学科中的重要作用,使矩阵的次正定性研究不仅在理论上,而且在应 用上都是有意义的。
(E- P) 2= (E- P) (E- P) =E2- EP- PE+P2=E- 2P+P2=E- P
故 E- P 为幂等矩阵
(E- P)T 2= (E- P)T (E- P)T = E2- EPT- PTE+ (P)T 2= E- PT
故 E- PT为幂等矩阵
(E- P)H 2= (E- P)H (E- P)H = E2- EPH- PHE+ (P)H 2= E- PH
在高等代数的研究中,矩阵占有重要的地位,线性变换中的许多
问题都是通过矩阵来解决的。幂等矩阵是一类特殊的矩阵,本篇文章探
讨的就是幂等矩阵的性质,研究过程中运用的特殊符号说明如下:AT
矩阵 A 的转置,AH矩阵 A 的共轭转置 R (A) 矩阵 A 的值域,N (A)
矩阵 A的核空间。
幂等矩阵
定义[1]设 A∈Cn×n,若 A2=A 则称 A 是幂等矩阵。
六、 种植设计 植物景观设计在整个环境规划设计中处于极其重要的地位,是整 个环境设计的核心内容之一。要形成“以人为本”的休闲、娱乐、交流 运动的环境空间与场所,最重要的就是植物生态景观群落的适当构成, 它是自然化景观再现的基础。因而,在滨河花园的植物景观设计上注入 “户户倚林”的设计理念,并本着“适地适树”,“三季有花,四季常 青”的原则,模拟自然的生态群落,按照上、中、下三层进行设计。上 层乔木:以落叶乔木和常绿树为主,形成上层界面空间,其中落叶乔木 与常绿树的比例为 6∶4 最宜,以保证夏景的浓荫与冬季有景可观。中

华中科技大学研究生矩阵论Matrix3-1

华中科技大学研究生矩阵论Matrix3-1

方法3:求列的极大无关组及表示(行变换):不用求逆 例题2 (P.69,eg5) 例题3(P.70,eg6) 法2
C r行 (A I) O P ,rank (C ) r rank ( A) C C 1 C PA O AP O ( B, B2 ) O BC
方阵的LU和LDV分解(P.61)~ 解方程
例题1(P.61eg1)设 求A的LU和LDV分解。
2 2 3 A 4 7 7 2 4 5
2 2 3 1 0 0 2 2 3 1 0 0 r 2 r 2 2 3 1 0 0 r 2 r 3 2 2 1 ( A I ) 4 7 7 0 1 0 0 3 1 2 1 0 0 3 1 2 1 0 r3 r1 2 4 5 0 0 1 0 0 6 5 2 1 0 6 8 1 0 1
1 0 1 0 1 1 2 1 1 2 A BC 0 1 0 2 0 2 2 0 1 1 1 1 1 1 / 2
1 1 2 二、矩阵的满秩分解 A 0 2 2 满秩分解的求法:初等变换 1 0 1 例题1-2(P.68-69,例4-5,)法2,法3:求A的满秩分解
Ir S A ( B, B2 ) O O ( B, BS ) B( I r , S ) BC
B ??
A ( A1 , A2 ) B A1
1 1 2 二、矩阵的满秩分解 A 0 2 2 满秩分解的求法:初等变换 1 0 1 例题1-2(P.68-69,例4-5,)法2,法3:求A的满秩分解

幂等变换的秩和迹

幂等变换的秩和迹

幂等变换的秩和迹
幂等变换是指一个线性变换与其自身的复合等于自身。

设一个
n×n 的矩阵 A 表示一个幂等变换,则其满足 A^2 = A。

幂等变换的秩是指矩阵 A 的列空间的维数,可以简单地理解为矩阵中线性无关的列向量的数量。

幂等变换的迹是指矩阵 A 的主对角线上的元素之和,即 A 的第1 行第 1 列、第 2 行第 2 列、...、第 n 行第 n 列的元素之和。

在幂等变换中,秩的范围为 0 到 n 之间(包括 0 和 n),迹的范围也是 0 到 n 之间(包括 0 和 n)。

这是由于幂等变换的性质决定的。

通过计算矩阵 A 的秩和迹,可以进一步了解幂等变换的特性和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂等变换和幂等矩阵的性质中文摘要:本文在已有文献资料的基础上,对幂等变换和幂等矩阵的性质作了归纳。

关键词:幂等变换,幂等矩阵,性质正文:(一)定义及说明定义1.设σ是数域P 上线性空间V 上的线性变换,且2σσ=,则称σ为V 上的幂等变换。

定义2.设A 是数域P 上的n 级方阵,若2A A =,则称A 为V 上的幂等矩阵。

因为数域P 上n 维线性空间V 的全部线性变换组成的集合()()n L V P 对于线性变换的加法和数量乘法构成的P 上的线性空间与数域P 上的n 级方阵构成的线性空间n n P ⨯同构,即()()n n n L V P P ⨯≅。

所以幂等变换σ对应于幂等矩阵A ,2A A =.(二)幂等变换的一个性质及其推广[1]定理1.设σ是数域P 上线性空间V 的线性变换,且2σσ=,则有(1)()Ker σ={}()|V ξσξξ-∈,Im()σ={}()|V ξσξξ=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是σττσ=将幂等变换的定义加以推广:设σ是数域P 上线性空间V 上的线性变换,且n σσ=,则称σ为V 上的幂等变换。

对于满足n σσ=的线性变换有类似性质定理2. 设σ是数域P 上线性空间V 的线性变换,且n σσ=(2n ≥),则有(1)()Ker σ={}1()|n V ξσξξ--∈,Im()σ={}1()|n V ξσξξ-=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是11n n σττσ--=证明:已知n σσ=(1):(),()0Ker ασσα∀∈=即122()(())(0)0n n n σσσσασ---⇒===1()n αααα-∴=-∈{}1()|n V ξσξξ--∈因此()Ker σ⊆{}1()|n V ξσξξ--∈反之,1()n ασα-∀-∈{}1()|n V ξσξξ--∈, 由1(())()()()()0n n σασασασασασα--=-=-=⇒1()n ασα--∈()Ker σ因此{}1()|n V ξσξξ--∈⊆()Ker σ从而()Ker σ={}1()|n V ξσξξ--∈Im(),,V ασβασβ∀∈∃∈=使得()11,()(())()()n n n n σσσασσβσβσβα--=∴====α∴∈{}1()|n V ξσξξ-=∈因此Im()σ⊆{}1()|n V ξσξξ-=∈反之,{}11()()|,n n V V ασαξσξξα--∀=∈=∈∈,有 2(())Im()n ασσασ-=∈因此{}1()|n V ξσξξ-=∈⊆Im()σ从而Im()σ={}1()|n V ξσξξ-=∈(2):由(1),,V ααασασα∀∈∈n-1n-1有=(-())+()()Ker σ+Im()σV ∴⊆()Ker σ+Im()σ从而V =()Ker σ+Im()σ又设β∀∈()Ker σIm()σ由β∈()Ker σ()0σβ⇒=又由β∈Im()σ={}1()|n V ξσξξ-=∈122()(())(0)0n n n βσβσσβσ---⇒====即()Ker σIm()σ={}0∴()Im()V Ker σσ=⊕(3):""⇒假设()Ker σ,Im()σ都在τ之下不变V α∀∈,由(2),存在唯一的β∈()Ker σ,唯一的γ∈Im()σ,使得αβγ=+ 则由假设,()τβ∈()Ker σ,()τγ∈Im()σ122()((()))(0)0n n n στβσστβσ---∴===,11()(())()n n στγστγτγ--==(由(1)) 111()()()0()()n n n σταστβστγτγτγ---⇒=+=+=又122()(())(0)0n n n σβσσβσ---===,1()n σγγ-=(由(1))1111()()(())(())n n n n τσατσβγτσβτσγ----⇒=+=+(0)()()ττγτγ=+=11()()n n στατσα--∴=由α的任意性,11n n σττσ--=""⇐若11n n σττσ--=,α∀∈()Ker σ即()0σα=,且由(1),V β∃∈使得1()n αβσβ-=- 1(())(())n σταστβσβ-⇒=- =11()()()()()()n n n στβστσβστβσστβστβστβ---=-=-=()()στβστβ-=0 ∴()τα∈()Ker σ即()Ker σ在τ之下保持不变Im()ασ∀∈,由(1),1()n ασα-= 11(())(())()n n στατσατα--∴==即1(())()n στατα-=由(1),Im()σ={}1()|n V ξσξξ-=∈ ∴()τα∈Im()σ即Im()σ也在τ之下保持不变 证毕定理1是定理2当n=2时的情形,当然也成立。

(三)幂等变换的几个等价表示定理3.设σ是数域P 上的线性空间V 的线性变换,则下列命题等价:(1)2σσ=(2)σ的特征值只能是1和0,且10V V V =⊕,其中1V 和0V 分别是σ的属于1和0的特征子空间(3)Im()Im()V σεσ=⊕-证明:"(1)(2)"⇒设2σσ=,λ是σ的特征值,则有()σξλξ=(ξ为σ的属于特征值λ的特征向量)由2σσ=知,22()()(())()(())σξσξσσξσλξλσξλξ===== 22()0λξλξλλξ∴=⇒-= ξ为非零向量2()010λλλλ∴-=⇒==或又{}1|()Im()V ξσξξσ==={}0|()0()V Ker ξσξσ===由定理1,Im()()V Ker σσ=⊕即10V V V =⊕"(2)(1)"⇒如果σ的特征值只能是1和0,且10V V V =⊕V α∀∈,有1120Im(),()V V Ker ασασ∃∈=∈=唯一的唯一的12ααα=+使得有112(),()0σαασα==1212()()(())(())σεσασεαασσαα∴-=+-+1212()(()())σαασσασα=+-+121(()())(0)σασασα=+-+=111111(0)(0)()0ασαασααα=+-+=-=-=由α的任意性,得()0σεσ-=,即2σσ="(1)(3)"⇒设2σσ=由(2),10V V V =⊕,()(())V αασαασα∀∈=+-有()Im(),()Im()σασασαεσ∈-∈-∴有Im()Im()V σεσ=+-设β∀∈Im()Im()σεσ-,则12,V ββ∃∈使得12()()()βσβεσβ==-从而2211222()()(),()()()()()0()0σβσβσββσβσεσβσσββ====-=-==0,β⇒=即Im()Im()σεσ-{}0⊆又0(0)()(0)σεσ==-∴{}0⊆Im()Im()σεσ- 因此Im()Im()σεσ-={}0从而Im()Im()V σεσ=⊕-"(3)(1)"⇒如果Im()Im()V σεσ=⊕-,则Im()Im()σεσ-={}0,()()[()()]Im()V ασεσασεσασ∀∈-=-∈有()()()[()]Im()εσσαεσσαεσ-=-∈-2()()()()()()σεσασσαεσσα-=-=-()()σεσα∴-∈Im()Im()σεσ-={}0从而()()0σεσα-=由α的任意性,2()0σεσσσ-=-=即2σσ=(四)幂等矩阵的一些性质性质1.设A 是n 级幂等矩阵,则对(0,1),a a A aE ∀≠+是可逆矩阵证明:由2A A = ()[(1)]A aE A a E ⇒+-+2(1)A A a a E =--+(1)a a E =-+101(){[(1)]}(1)a a A aE A a E E a a ∴≠≠-+-+=-+当且时, 因此A aE +可逆,且其逆矩阵为1[(1)](1)A a E a a -+-+性质2.设A 为幂等矩阵,则A 可以对角化证明:由20A A -=知2()g λλλ=-是A 的化零多项式又A 的特征值只能是1和0 ∴A 的最小多项式为2()1g x x x x x =--或或且这三种情形下()g λ均无重根故A 可对角化性质3.设A 是幂等矩阵,则A 的秩等于A 的迹证明:因为A 的特征值只能是1和0,设A 的秩为r ,则A 与000rI ⎛⎫ ⎪⎝⎭相似设12,,n λλλ为A 的全部特征值,则12n trA λλλ=+++相似矩阵有相同的特征值,而000rI ⎛⎫ ⎪⎝⎭的全部特征值为r 个1 ∴12n trA r λλλ=+++=即A 的秩等于A 的迹性质4.设A 是秩为r 的幂等矩阵则A CB =,其中,r BC E C =是秩为r 的n r ⨯矩阵 证明: A 与000rI ⎛⎫ ⎪⎝⎭相似,即存在可逆矩阵P 使得 ()11100000000r rr r I I I P AP A P P P I P ---⎛⎫⎛⎫⎛⎫=⇒== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令()10,0r r I B I P C P -⎛⎫== ⎪⎝⎭,则秩(C )=r 且()()10000r r r r r I I BC I P P I E -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭性质5.可逆幂等矩阵为单位矩阵证明:A 为幂等矩阵,2,A A AA A ==即又A 可逆,两边同时左(右)乘1A -,得 1A A A E -==即A 为单位矩阵由于幂等矩阵的性质是限制在n 维条件下讨论的,所以对应幂等变换的性质也只是在有限维情况下成立,至于这些性质能否推广到无限维的情形,本文未予讨论。

参考文献:[1]陈尔明.幂等变换的一个性质的推广[J]. 牡丹江师范学院学报(自然科学版),2003.3[2]王萼芳,石生明.高等代数[M].北京:高等教育出版社,2003.9.[3]李师正.高等代数解题方法与技巧[M].张玉芬,李桂荣,高玉玲.北京:高等教育出版社,2004.2.[4]张树青 ,王晓静.线性空间的幂等变换与对合变换的几个等价表示[J].烟台师范学院学报(自然科学版) ,2004 .20(1).[5]钟太勇,袁力,彭先萌.幂等矩阵与幂等变换性质的探讨[J]. 郧阳师范高等专科学校学报,2005年6月第25卷第3期.[6]宿维军. 幂等矩阵和幂等变换[J].重庆文理学院学报,2008.4。

相关文档
最新文档