高一数学函数图像知识点总结
高一数学必修一函数图像知识点总结
高一数学必修一函数图像知识点总结高一数学必修一函数图像知识点总结高中数学因为知识点多,好多同学听课能听懂,但是做题却不会。
因此,经常性的复习是巩固数学知识点的很好的途径。
以下是小编为您整理的关于高一数学必修一函数图像知识点的相关资料,供您阅读。
高一数学必修一函数图像知识点总结 1知识点总结:本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数图像知识点总结 2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
高一数学二次函数图像性质总结
高一数学二次函数图像性质总结二次函数性质:a正号说明开口向上,负号说明开口向下;a的肯定值越大,抛物线开口越小;c表示抛物线与y轴的交点,图像过(0,c)点。
下面是给大家带来的(高一数学)二次函数图像性质(总结),希望能够帮助到大家!高一数学二次函数图像性质总结1二次函数图像2二次函数性质二次函数y=ax+bx+c(a0),当y=0时,二次函数为关于x的一元二次方程,即ax+bx+c=0(a0)此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax,y=ax+k,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a0)的图象形态相同,只是位置不同。
2.抛物线y=ax+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a).3.抛物线y=ax+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大。
若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小.4.抛物线y=ax+bx+c(a0)的图象与坐标轴的交点:(1)图象与y轴肯定相交,交点坐标为(0,c);(2)当△=b-4ac0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax+bx+c=0(a0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)当△=0.图象与x轴只有一个交点;当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0.5.抛物线y=ax+bx+c的最值(也就是极值):假如a0(a0),则当x=-b/2a 时,y最小(大)值=(4ac-b)/4a.顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a0).7.二次函数学问很简单与(其它)学问综合应用,而形成较为困难的综合题目。
高一数学指数函数ppt课件
与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
高一数学人必修件指数函数的图象和性质
在生物学领域,指数函数用于描述生物种群的繁殖速度。某 些生物种群的增长符合指数函数的规律,如细菌繁殖、昆虫 数量增长等。
其他领域应用案例
放射性衰变
在物理学中,指数函数用于描述放射性物质的衰变过程。放射性元 素的原子数量随时间呈指数减少。
化学反应速率
化学领域中,指数函数可用于描述某些化学反应的速率。反应速率 与反应物浓度的关系可以用指数函数表示。
同底数幂相乘
幂的乘方
底数不变,指数相加。即$a^m times a^n = a^{m+n}$。
底数不变,指数相乘。即$(a^m)^n = a^{m times n}$。
同底数幂相除
底数不变,指数相减。即$a^m div a^n = a^{m-n}$。
幂的乘方法则
1 2
正整数指数幂的乘法
$(a^m)^n = a^{m times n}$,其中$m, n$为 正整数。
指数函数图像与坐标轴交点
指数函数的图像与x轴没有交点,与y轴的交点是(0,1)。
指数函数性质总结
指数函数的单调性
当a>1时,指数函数在定义域 内单调递增;当0<a<1时,指 数函数在定义域内单调递减。
指数函数的奇偶性
指数函数既不是奇函数也不是 偶函数。
指数函数的值域
指数函数的值域是(0, +∞)。
形如y=a^x(a>0且a≠1)的函 数叫做指数函数。
指数函数表达式
y=a^x,其中a是自变量,x是指 数,y是因变量。
指数函数图像特征
指数函数图像形状
指数函数的图像是一条从坐标原点出发,向右上方或右下方无限 延伸的曲线。
指数函数图像位置
当a>1时,图像位于第一象限和第二象限;当0<a<1时,图像位于 第一象限和第四象限。
高一数学一次函数图像知识点
高一数学一次函数图像知识点一、引言数学作为一门抽象的学科,对于许多学生来说往往让人头痛。
然而,它却无处不在,深深影响着我们的生活。
举个简单例子,我们所用的电梯、汽车加速器,甚至手表上的指针都离不开数学的运算。
而在高中阶段,数学的学习变得更为复杂,一个重要的知识点就是一次函数图像。
接下来,我将为大家详细介绍一次函数图像的知识。
二、基本概念1. 什么是一次函数一次函数又称为线性函数,是指函数的表达式中最高次幂为1的函数。
一般形式为y=ax+b,其中a为斜率,b为截距。
a的值描述了直线的倾斜程度,而b的值则代表了函数与y轴的交点。
2. 基本性质一次函数图像为一条直线,其具有以下特征:- 斜率相同的一次函数图像平行;- 斜率为正数的一次函数图像向上倾斜;- 斜率为负数的一次函数图像向下倾斜;- 截距为正数的一次函数图像与y轴正向相交;- 截距为负数的一次函数图像与y轴负向相交。
3. 斜率斜率是一次函数图像的一个重要特征,它决定了直线的斜率和方向。
斜率的计算公式为:a = Δy / Δx,其中Δy代表y轴的变化量,Δx代表x轴的变化量。
斜率为正数表示线性函数图像上升,斜率为负数表示线性函数图像下降,斜率为0代表线性函数图像水平。
三、一次函数图像的绘制方法1. 确定截距在绘制一次函数图像之前,我们需要确定两个关键点:截距和斜率。
截距是指一次函数与y轴的交点,我们可以通过将x=0代入函数表达式y=ax+b来求解。
2. 确定斜率斜率可以通过选择一对x和y的坐标点,然后计算它们之间的比值得出。
常用的选择是x的变化量为1,这样可以简化计算。
3. 绘制图像根据上述信息,我们可以确定至少两个坐标点来绘制一条直线。
然后,我们可以选择更多的坐标点以便准确地描绘一次函数图像。
四、实际应用一次函数图像在现实生活中有广泛的应用,例如:1. 经济学中的需求曲线和供给曲线都可以用一次函数来进行建模;2. 物理学中的速度、加速度等也可以用一次函数来描述。
高一数学复习知识点专题讲解32--- 正切函数的图像与性质
2
从图5.4.11可以看出,正切曲线是被与轴平行的一系列直线 = +kπ, k ∈Z所
隔开的无穷多支形状相同的曲线组成的.
3.单调性
观察正切曲线可知,正切函数在区间(- , )上单调递增.
由正切函数的周期性可得,
正切函数在每一个区间 (- +k, +k),k∈Z,上都单调递增.
就可得到y = ta ,
∈(- ,0]的图象;根据正切函数的周期性,只要把函数y
= ta ,
∈(- , )的图象向左、右平移,每次平移π个单位,就可得到正切函数∈R,且
2
≠ +kπ, k ∈Z的图象,我们把它叫做正切曲线(tangentcurve)(图5.4.11).
4.值域
当
∈(- , )时,ta 在(-∞,+∞)内可取到任意实数值,但没
有最大值、最小值.因此,正切函数的值域是实数集R.
典例解析
例6. 求函数 =
π
2
+
3
的定义域、周期及单调区间.
分析:利用正切函数的性质,通过代数变形可以得出相应的结论.
解:自变量的取值应满足;
ta
0
= = = =
0
由此可见,当
∈[0, )时,线段AT的长度就
是相应角的正切值.我们可以利用线段AT
画出函数y = ta , ∈[0, )的图象,
如图5.4.10所示.观察图5.4.10可知,
当 ∈[0, ) 时,随狓的增大,线段AT的长
高一数学必修一函数图像知识点总结
03
通过大量的练习和实践,提高对复杂函数图像的识别能力和分
析水平。
观看
REPORTING
复合函数性质
复合函数具有“同增异减”的性质,即内外函数的单调性相同时,复合函数为增函数;内外函数的单 调性不同时,复合函数为减函数。
分段函数表达式及性质
分段函数定义
在自变量的不同取值范围内,用不同的解析式来表示一个函 数,这样的函数叫做分段函数。
分段函数性质
分段函数的定义域是各段定义域的并集;分段函数的值域是 各段值域的并集;分段函数在定义域的不同子集上,具有不 同的对应关系。
坐标平面
由x轴和y轴组成的平面称为坐标 平面,其中x轴和y轴的交点称为 原点,坐标为(0,0)。
函数图像绘制方法
01
02
03
列表法
列出函数自变量与函数值 的对应表,然后在坐标系 中描出各点,最后用平滑 的曲线连接各点。
解析法
根据函数解析式,直接利 用函数的性质绘制出函数 的图像。
图象变换法
通过对基本初等函数的图 像进行平移、伸缩、对称 等变换,得到所求函数的 图像。
PART 02
一次函数图像知识点
一次函数表达式及性质
一次函数表达式
y = kx + b (k ≠ 0)
性质
当 k > 0 时,函数图像为增函数;当 k < 0 时,函数图像为减函数。
一次函数图像特征
直线性
一次函数的图像是一条直 线。
斜率
直线的斜率等于一次函数 表达式中的 k 值。
截距
直线在 y 轴上的截距等于 一次函数表达式中的 b 值 。
PART 05
三角函数图像知识点
三角函数基本概念及性质
山东高一上数学知识点总结
山东高一上数学知识点总结在山东高一上学期的数学学习中,我们学习了众多重要的数学知识点,下面将对这些知识点进行总结。
一、函数及其图像1. 一次函数:y = kx + b,其中k和b为常数。
一次函数的图像为一条直线,通过直线的斜率和截距可以唯一确定该函数。
2. 二次函数:y = ax^2 + bx + c,其中a、b和c为常数且a不为0。
二次函数的图像为一条抛物线,凹性取决于二次项系数a的正负。
3. 指数函数和对数函数:指数函数的一般形式为y = a^x,其中a为大于0且不等于1的常数;对数函数的一般形式为y = loga(x),其中a为大于0且不等于1的常数。
指数函数和对数函数是互为反函数的关系。
二、三角函数1. 正弦函数、余弦函数和正切函数:这三种函数是最基本的三角函数。
它们的定义涉及到直角三角形的边长之间的比值。
2. 三角函数的性质:包括周期性、奇偶性、对称性等。
3. 三角函数的图像:通过观察标准角的图像,可以得到其他角的图像。
三、数列与数列求和1. 数列的概念:数列是一系列按照一定规律排列的数的集合。
2. 数列的通项公式和递推公式:通项公式可以用来表示数列中的第n个数,递推公式可以用来表示第n+1个数与第n个数之间的关系。
3. 数列的求和公式:等差数列的求和公式为Sn = (a1 + an) * n / 2,等比数列的求和公式为Sn = a1 * (1 - q^n) / (1 - q),其中a1为首项,an为末项,n为项数,q为公比。
四、平面向量1. 平面向量的概念:平面向量是具有大小和方向的量,它可以用有向线段表示。
2. 平面向量的运算:包括向量的加法、减法、数乘以及数量积和向量积等。
五、三角恒等式1. 基本三角恒等式:包括正弦函数、余弦函数和正切函数的基本恒等式。
2. 诱导公式:将一个角用其他角的函数表示的公式,如二倍角公式、半角公式等。
3. 和差化积公式:将两个三角函数的和差形式转化为乘积形式的公式。
高一下数学知识点归纳大全
高一下数学知识点归纳大全在高一下学期的数学学习过程中,我们接触到了许多重要的知识点,这些知识点是我们建立起数学基础的关键。
为了更好地回顾和巩固这些知识点,下面将对高一下学期的数学知识点进行归纳总结。
一、二次函数及其图像1. 二次函数的定义及标准形式二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a≠0。
标准形式为y=ax²+bx+c。
2. 二次函数的图像特征二次函数的图像为抛物线,开口方向由a的正负决定。
若a>0,则抛物线开口向上;若a<0,则抛物线开口向下。
顶点坐标为(-b/2a,f(-b/2a))。
3. 二次函数的平移与缩放二次函数通过平移和缩放可以改变其图像的位置和形状。
平移时,将横轴上的每个点x移动h个单位,纵轴上的每个点y移动k 个单位。
缩放时,将横轴上的每个点x乘以一个比例系数a,纵轴上的每个点y乘以一个比例系数b。
二、三角函数及其应用1. 三角函数的定义与性质三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。
它们的定义通过单位圆上的点和坐标轴之间的关系来确定。
2. 三角函数的图像与周期性正弦函数和余弦函数的图像都是周期性的,周期为2π。
其中,正弦函数的图像在x=π/2和x=3π/2处取得最大值和最小值,余弦函数的图像在x=0和x=π处取得最大值和最小值。
3. 三角函数的性质与公式三角函数具有很多性质和公式,如和差化积、倍角公式、平移公式等。
这些公式在解三角方程和简化三角式等问题中起到重要作用。
三、平面向量与解析几何1. 平面向量的定义与运算平面向量是有大小和方向的量,用箭头表示。
平面向量的加法满足三角形法则,减法则是加上对应向量的相反向量。
向量的数乘、数量积和向量积是平面向量的常见运算。
2. 解析几何的基本概念解析几何是通过代数的方法来研究几何问题的分支学科。
在平面直角坐标系中,点的坐标表示为(x, y),向量的表示为(xi, yj)。
高一数学函数图像知识点总结
高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换1平移变换①水平平移:y=fx±aa>0的图象,可由y=fx的图象向左+或向右-平移a个单位而得到.②竖直平移:y=fx±bb>0的图象,可由y=fx的图象向上+或向下-平移b个单位而得到.2对称变换①y=f-x与y=fx的图象关于y轴对称.②y=-fx与y=fx的图象关于x轴对称.③y=-f-x与y=fx的图象关于原点对称.由对称变换可利用y=fx的图象得到y=|fx|与y=f|x|的图象.①作出y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作出y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.3伸缩变换①y=afxa>0的图象,可将y=fx图象上每点的纵坐标伸a>1时或缩a<1时到原来的a倍,横坐标不变.②y=faxa>0的图象,可将y=fx的图象上每点的横坐标伸a<1时或缩a>1时到原来的倍,纵坐标不变.4翻折变换①作为y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作为y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:1写出函数解析式的等价组;2化简等价组;3作图.3.描点法作图方法步骤:1确定函数的定义域;2化简函数的解析式;3讨论函数的性质即奇偶性、周期性、单调性、最值甚至变化趋势;4描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别1一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.1图象变换:平移变换、伸缩变换、对称变换.2函数解析式的等价变换.3研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。
高一数学三角函数必备知识点总结归纳
高一数学三角函数必备知识点总结归纳三角函数章节主要包括三角函数的图象及其性质、函数y=Asin(ax+b)、y=Acos(ax+b)及y=Atan(ax+b)的图象及其性质。
数学三角函数必备知识点是理解并掌握三角函数的图象及其性质、三角函数图象的变换。
1.任意角和弧度制任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P(x,y),那么角α的正弦、余弦、正切分别是:sin α=y,cos α=x,tan α=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.具体内容请点击:高一数学任意角和弧度制知识要点2、任意角的三角函把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。
这点的坐标为(x,y)。
3、三角函数诱导公式掌握三角函数的公式是解三角函数题的关键,尤其是要明白其中是如何变换的。
三角函数公式请点击:三角函数诱导公式知识点4、三角函数的图象与性质本节知识在段考中是必考内容,多以选择题和填空题形式考查基础知识,多以解答题的形式考查三角函数的图像和性质。
点击进入>>>>>《三角函数的图象与性质》知识点整理5、函数y=Asin(ωx+ψ)三角函数y=Asin(ωx+φ)是三角函数中一个较重要的内容,它是由基本函数变化而来,变化步骤也适用于余弦函数与正切函数。
在每年的高考中都有一道小题及解答题,需熟练掌握其基本图像与性质。
具体内容请点击高一数学函数y=Asin(ωx+φ)变换知识点总结学习三角函数必备知识点的内容就是这些,接下来需要的就是大家通过做题巩固知识,灵活运用,充实自己的过程了。
高一数学 三角函数的图像及性质
三角函数一、知识梳理1.正弦函数、余弦函数和正切函数的图象与性质:2.周期函数定义:对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期.结论:如果函数)()(k x f k x f -=+对于R x ∈任意的,那么函数()f x 的周期T=2k ;如果函数)()(x k f k x f -=+对于R x ∈任意的,那么函数()f x 的对称轴是k x k k x x =-++=2)()(3.图象的平移对函数y =A sin (ωx +ϕ)+k (A .>.0.,. ω.>.0.,. ϕ.≠0..,. k .≠0..).,其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移. (4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移二、方法归纳1.求三角函数的值域的常用方法:① 化为求代数函数的值域;② 化为求sin()y A x B ωϕ=++的值域; ③ 化为关于sin x (或cos x )的二次函数式;2.三角函数的周期问题一般将函数式化为()y Af x ωϕ=+(其中()f x 为三角函数,0ω>).3.函数sin()y A x ωϕ=+为奇函数k ϕπ⇔=()k ∈Z ; 函数sin()y A x ωϕ=+为偶函数2k πϕπ⇔=+()k ∈Z函数cos()y A x ωϕ=+为偶函数k ϕπ⇔=; 函数cos()y A x ωϕ=+为奇函数2k πϕπ⇔=+()k ∈Z4.函数sin()y A x ωϕ=+(0,0)A ω>>的单调增区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出,单调减区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出; 函数sin()y A x ωϕ=+(0,0)A ω<>的单调增区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出, 单调减区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出.5.对称性:(1)函数sin()y A x ωϕ=+对称轴可由2x k πωϕπ+=+()k ∈Z 解出;对称中心的横坐标是方程x k ωϕπ+=()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法) (2)函数()cos y A x ωϕ=+对称轴可由x k ωϕπ+=()k ∈Z 解出;对称中心的横坐标是方程2x k πωϕπ+=+()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法)(3)函数()tan y A x ωϕ=+对称中心的横坐标可由2kx ωϕπ+=()k ∈Z 解出, 对称中心的纵坐标为0,函数()tan y x ωϕ=+不具有轴对称性.三、课堂例题精讲例1.下列函数中,周期为2π的是( ) A.sin 2x y = B.sin 2y x =C.cos4x y = D.cos 4y x =答案:D例2.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A.关于点0π⎛⎫ ⎪3⎝⎭,对称B.关于直线x π=4对称 C.关于点0π⎛⎫ ⎪4⎝⎭,对称D.关于直线x π=3对称 答案:A.解析:由题意知2ω=,所以解析式为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,经验证可知它的一个对称中心为,03π⎛⎫⎪⎝⎭.例3.函数的最小正周期和最大值分别为( )A.π,1B.π2C.2π,1D.2π2答案:A.解析:x x x x x y 2cos 232sin 212cos 212cos 232sin =⋅-⋅+⋅+⋅=,∴T =π,y max =1 例4.函数[]()sin 3(π0)f x x x x =∈-,的单调递增区间是( )A.5ππ6⎡⎤--⎢⎥⎣⎦,B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,答案:D.解析:因为⎪⎭⎫ ⎝⎛π-=3sin 2)(x x f ,.0,6656,0),(65262),(22322符合题意由此可得得令得令⎥⎦⎤⎢⎣⎡π-π≤≤π-=∈π+π≤≤π-π∈π+π≤π-≤π-πx k k k x k k k x k Z Z例5.将⎪⎭⎫⎝⎛π+=63cos 2x y 的图象按向量a =⎪⎭⎫⎝⎛-π-2,4平移,则平移后所得图象的解析式为( ) A.243cos 2-⎪⎭⎫⎝⎛π+=x y B. 243cos 2+⎪⎭⎫ ⎝⎛π-=x y C. 2123cos 2-⎪⎭⎫ ⎝⎛π-=x y D. 2123cos 2+⎪⎭⎫⎝⎛π+=x y 答案:A.解析:看向量a =⎪⎭⎫⎝⎛-π-2,4的数据“符号”,指令图象左移和下移,按“同旁相减,异旁相加”的口诀,立可否定B 、C 、D.例6.函数sin y x =的一个单调增区间是( )A.ππ⎛⎫- ⎪44⎝⎭, B.3ππ⎛⎫ ⎪44⎝⎭, C.3π⎛⎫π ⎪2⎝⎭,D.32π⎛⎫π⎪2⎝⎭, 答案:C解析:法一:∵函数sin y x =的一个单调递增区间为⎥⎦⎤⎢⎣⎡π2,0, 又函数sin y x =是以π为周期的函数,∴函数sin y x =的单调递增区间为⎥⎦⎤⎢⎣⎡π+ππ2,k k (k ∈Z ).当k =1时,函数sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C. 法二:作出函数sin y x =的图象,由图易知sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C.法三:将每个选择支中区间的两个端点值代入函数表达式,A 、B 两个选择支的端点值相等,而选择支D 的左端点值大于右端点值, 所以根据单调递增的概念判断,可排除A 、B 、D ,故选C.例7.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .答案: ω=3例8.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()2cos 21g x x ϕ=++的图象的对称轴完全相同.若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围是 . 答案:3[-,3]2解析:由题意知,2ω=,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,由三角函数图象知:()f x 的最小值为33sin (-)=-62π,最大值为3sin =32π, 所以()f x 的取值范围是3[-,3]2. 例9.定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图象与y=5tanx 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图象交于点P 2,则线段P 1P 2的长为 . 答案:23解析“线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx=5tanx ,解得sinx=23. 故线段P 1P 2的长为23.例10.设函数()f x =·a b ,其中向量(cos2)mx =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫⎪⎝⎭,. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.解析:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1 由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,. 例11. 已知函数()sin(),(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,其图象关于点M )0,43(π对称,且在区间[0,2π]上是单调函数,求ϕ和ω的值. 解析:由)(x f 是偶函数,得)()(x f x f =-,故sin()sin()x x ωϕωϕ-+=+,cos sin cos sin x x ϕωϕω-=对任意x 都成立, 且0,cos 0.ωϕ>∴=依题设0≤ϕ≤π,cos .2πϕ∴=由)(x f 的图象关于点M 对称,得)43()43(x f x f +-=-ππ取0)43(),43()43(0=∴-==πππf f f x 得 0)43cos(),43cos()243sin()43(=∴=+=x x x f ωωπωπ又0>ω,得......2,1,0,243=+=k k x ππω ...2,1,0),12(32=+=∴k k ω当0=k 时,)232sin()(,32πω+==x x f 在]2,0[π上是减函数.当1=k 时,)22sin()(,2πω+==x x f 在]2,0[π上是减函数. 当k ≥2时,)2sin()(,310πωω+==x x f 在]2,0[π上不是单调函数. 所以,综合得32=ω或2=ω.四、课后作业1.函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A.233ππ⎛⎫ ⎪⎝⎭,B.62ππ⎛⎫ ⎪⎝⎭,C.03π⎛⎫ ⎪⎝⎭,D.66ππ⎛⎫- ⎪⎝⎭,2.已知函数()f x =Acos (x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) A.23-B .23 C.32 D. 32-3. 设ω>0,函数f (x )=2sinωx 在]4,3[ππ-上为增函数,那么ω的取值范围是 .4.判断方程sinx=π100x实数解的个数.5.求函数y=2sin )4(x -π的单调区间.6.已知函数()f x =xx x 2cos 1cos 3cos 224+-,求它的定义域和值域,并判断奇偶性.100л7.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.8.设()f x = x x 2sin 3cos 62-, (1)求()f x 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求tan α54的值.9. 求下列函数的值域: (1)y=x x x cos 1sin 2sin -; (2)y=sinx+cosx+sinxcosx ; (3)y=2cos )3(x +π+2cosx.10.已知函数f (x )=-sin 2x+sinx+a ,(1)当f (x )=0有实数解时,求a 的取值范围; (2)若x ∈R ,有1≤f (x )≤417,求a 的取值范围.11.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.12.已知f (x )=2a sin 2x -22a sin x +a +b 的定义域是[0,2π],值域是[-5,1],求a 、b 的值.参考答案: 1.答案:A 2.答案:C 3.答案:203ω<≤ 4.答案:199 解析:方程sinx=π100x 的实数解的个数等于函数y=sinx 与y=π100x 的图象交点个数, ∵|sinx|≤1∴|π100x|≤1, |x|≤100л 当x≥0时,如下图,此时两线共有100个交点, 因y=sinx 与y=π100x都是奇函数,由对称性知当x≤0时,也有100个交点, 原点是重复计数的,所以只有199个交点. 5.解析:y=2sin )4(x -π可看作是由y=2sinu 与u=x -4π复合而成的.又∵u=x -4π为减函数,∴由2k π-2π≤u ≤2k π+2π(k ∈Z ),得-2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y=2sin )4(x -π 的递减区间. 由2k π+2π≤u ≤2k π+23π (k ∈Z ), 得2k π+2π≤4π-x ≤2k π+23π(k ∈Z ), 解得-2k π-45π≤x ≤-2k π-4π (k ∈Z ),即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y=2sin )4(x -π的递增区间. 综上可知:y=2sin )4(x -π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ). 6.解析:由题意知cos2x≠0,得2x≠k π+2π, 解得x≠42ππ+k (k ∈Z ). 所以()f x 的定义域为⎭⎬⎫⎩⎨⎧∈+≠∈Z R k k x x x ,42ππ且,. 又()f x =xx x 2cos 1cos 3cos 224+-=x x x 2cos )1)(cos 1cos 2(22--=cos 2x-1=-sin 2x.又定义域关于原点对称, ∴()f x 是偶函数. 显然-sin 2x ∈[-1,0],但∵x≠42ππ+k ,k ∈Z . ∴-sin 2x≠-21.所以原函数的值域为⎭⎬⎫⎩⎨⎧≤<--<≤-021211|y y y 或.7.解析:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上增,在区间3π3π84⎡⎤⎢⎥⎣⎦,上减,又π08f ⎛⎫=⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为3π14f ⎛⎫=- ⎪⎝⎭.8.解析:(Ⅰ)1cos 2()622xf x x +=3cos 223x x =+12sin 232x x ⎫=-+⎪⎪⎭236x π⎛⎫=++ ⎪⎝⎭. 故()f x的最大值为3;最小正周期22T π==π.(Ⅱ)由()3f α=-2336απ⎛⎫++=- ⎪⎝⎭故cos 216απ⎛⎫+=- ⎪⎝⎭. 又由02απ<<得2666απππ<+<π+,故26απ+=π,解得512α=π.从而4tan tan 53απ==.9.解析:(1)y=x x x x cos 1sin cos sin 2-=xx x cos 1)cos 1(cos 22--=2cos 2x+2cosx=22)21(cos +x -21.于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-21,当且仅当cosx=-21时取得. 故函数值域为⎪⎭⎫⎢⎣⎡-4,21. (2)令t=sinx+cosx ,则有t 2=1+2sinxcosx ,即sinxcosx=212-t .有y=f (t )=t+212-t =1)1(212-+t .又t=sinx+cosx=2sin )4(π+x , ∴-2≤t≤2.故y=f (t )=1)1(212-+t (-2≤t≤2), 从而知:f (-1)≤y≤f (2), 即-1≤y≤2+21. 即函数的值域为⎥⎦⎤⎢⎣⎡+-212,1.(3)y=2cos )3(x +π+2cosx=2cos3πcosx-2sin 3πsinx+2cosx=3cosx-3sinx =23⎪⎪⎭⎫⎝⎛-x x sin 21cos 23=23cos )6(π+x . ∵)6cos(π+x ≤1,∴该函数值域为[-23,23].10.解析:(1)f (x )=0,即a=sin 2x -sinx=(sinx -21)2-41∴当sinx=21时,a min =-41,当sinx=-1时,a max =2, ∴a ∈[41-,2]为所求.(2)由1≤f (x )≤47得⎪⎩⎪⎨⎧+-≥+-≤1sin sin 417sin sin 22x x a x x a∵ u 1=sin 2x -sinx+2)21(sin 417-=x +4≥4u 2=sin 2x -sinx+1=43)21(sin 2+-x ≤3 ∴ 3≤a≤4.11.解析:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.12.解析:令sin x =t ,∵x ∈[0,2π],∴t ∈[0,1], 而f (x )=g (t )=2at 2-22at +a +b =2a (t -22)2+b . 当a >0时,则⎩⎨⎧=+-=,,15b a b 解之得a =6,b =-5.当a <0时,则⎩⎨⎧-=+=,,51b a b 解之得a =-6,b =1.。
高一数学三角函数图像知识点
高一数学三角函数图像知识点高一数学学习中,三角函数图像是一个非常重要的内容。
掌握了三角函数图像的基本知识点,不仅可以帮助我们理解三角函数的性质,还能够在解题中进行快速推导和判断。
下面就让我们来一起探讨高一数学中的三角函数图像知识点。
一、正弦函数的图像正弦函数是最早接触的三角函数之一,其图像具有周期性和对称性。
一般来说,我们首先需要掌握正弦函数的基本图像,即sin(x)的图像。
在坐标系中以原点为中心,沿着x轴正方向画出一段长度为2π的区间。
从图像上可以观察到,正弦函数在(0,0)处取得最小值0,在(π,0)处取得最大值1,在(2π,0)处又取得最小值0。
图像曲线是上下波动、连续不断的。
同时,正弦函数的图像关于y轴是对称的。
这是因为sin(-x) = -sin(x)。
二、余弦函数的图像余弦函数是正弦函数的对称函数,其图像也具有周期性和对称性。
同样在坐标系中以原点为中心,画出一段长度为2π的区间。
与正弦函数不同的是,余弦函数的最小值是-1,最大值是1,分别在(0,1)和(π,-1)处取得。
同样地,图像也是上下波动、连续不断的。
而余弦函数的图像关于y轴对称,即cos(-x) = cos(x)。
三、正切函数的图像正切函数是另一个重要的三角函数,其图像具有特殊的性质。
同样在坐标系中以原点为中心,画出一段长度为π的区间。
正切函数的图像没有确定的最大值或最小值,它在每个周期内反复逼近无穷大和负无穷大。
同时,正切函数的图像在每个周期内都有一个垂直渐近线(即x=kπ+π/2,其中k为整数),这个垂直线将图像分为多个相同的部分。
与之相关的是,正切函数的图像是关于原点对称,即tan(-x) = -tan(x)。
四、割函数的图像割函数是余切函数的倒数,其图像也非常有特点。
同样在坐标系中以原点为中心,画出一段长度为π的区间。
割函数的图像没有确定的最大值或最小值,它在每个周期内反复逼近无穷大和负无穷大。
同时,割函数的图像在每个周期内也有一个垂直渐近线,这个垂直线将图像分为多个相同的部分。
高一数学一次函数的图像及性质知识点梳理
高一数学一次函数的图像及性质知识点梳理
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,能够作出一次函数的图像——一条直线。
所以,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x 轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:
y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b0时,直线只通过一、三象限;当k;D.m0),S乙=4.5t(t>0),五、提示:(1)t=5.
(2)Q=42-6t(0≤t≤5).(3)Q=24
(4)∵加油后油箱里的油可供行驶11-5=6(小时),∴剩下的油可行驶6×40=240(千米),∵240>230,
∴油箱中的油够用.。
高一数学必修一 - 函数图像知识点总结
高一数学必修一 - 函数图像知识点总结函数图像是数学中的重要概念,它能帮助我们更直观地理解数学函数的特点和行为。
以下是高一数学必修一中与函数图像相关的知识点总结。
1. 函数的定义函数是一种特殊的数学关系,它将一个集合的元素映射到另一个集合的元素上。
函数通常用符号表示为“y = f(x)”,其中x是自变量,y是因变量。
函数图像是函数在平面直角坐标系上的图形表示。
2. 函数图像的基本性质函数图像的基本性质包括定义域、值域、奇偶性和周期性。
- 定义域:函数的自变量取值范围。
- 值域:函数的因变量取值范围。
- 奇偶性:函数关于y轴对称或关于原点对称。
- 周期性:函数图像在横轴方向上的重复性。
3. 常见函数图像高一数学必修一中常见的函数图像有直线、二次函数、指数函数和对数函数。
- 直线:线性函数图像为一条直线,表达式一般为“y = kx + b”,其中k为斜率,b为截距。
- 二次函数:二次函数图像为抛物线,表达式一般为“y = ax^2+ bx + c”,其中a、b、c为常数。
- 指数函数:指数函数图像是以底数大于1的指数为自变量的函数图像。
- 对数函数:对数函数图像是指数函数的反函数,用于解指数方程和指数不等式。
4. 函数图像的变换函数图像可以通过平移、伸缩和翻转等变换得到新的函数图像。
- 平移:将函数图像沿着横轴或纵轴平行地移动。
- 伸缩:将函数图像在横轴或纵轴上进行拉伸或压缩。
- 翻转:将函数图像关于横轴或纵轴进行翻转。
5. 函数图像的应用函数图像在实际应用中有广泛的应用,例如经济学中的需求曲线、物理学中的运动曲线等。
以上是高一数学必修一中与函数图像相关的知识点总结。
希望这份总结能够帮助你更好地理解和应用函数图像。
高一数学三角函数图像与性质详解
高一数学三角函数图像与性质详解在高一数学的学习中,三角函数是一个非常重要的知识点。
三角函数的图像与性质不仅是数学考试中的重点,也是解决许多实际问题的有力工具。
接下来,让我们一起深入探讨三角函数的图像与性质。
首先,我们来了解一下三角函数的定义。
在直角三角形中,正弦函数(sin)等于对边与斜边的比值,余弦函数(cos)等于邻边与斜边的比值,正切函数(tan)等于对边与邻边的比值。
正弦函数 y = sin x 的图像是一个周期为2π 的波浪形曲线。
它在 x = 0 时,函数值为 0;在 x =π/2 时,函数值为 1;在 x =π 时,函数值为 0;在 x =3π/2 时,函数值为-1;在 x =2π 时,函数值又回到0。
正弦函数的性质包括:1、定义域为全体实数。
2、值域为-1, 1。
3、它是一个奇函数,即 sin(x) = sin(x)。
4、周期性,周期为2π。
余弦函数 y = cos x 的图像也是一个周期为2π的曲线,不过它的形状与正弦函数有所不同。
在 x = 0 时,函数值为 1;在 x =π/2 时,函数值为 0;在 x =π 时,函数值为-1;在 x =3π/2 时,函数值为 0;在 x =2π 时,函数值又回到 1。
余弦函数的性质有:1、定义域为全体实数。
2、值域为-1, 1。
3、它是一个偶函数,即 cos(x) = cos(x)。
4、周期性,周期同样为2π。
正切函数 y = tan x 的图像则与正弦、余弦函数大不相同。
它的定义域是x ≠ π/2 +kπ(k 为整数),其值域为全体实数。
正切函数的周期为π。
正切函数的性质主要有:1、定义域的特殊性。
2、它是一个奇函数,tan(x) = tan(x)。
了解了三角函数的基本图像和性质后,我们来看看它们的平移和伸缩变换。
对于函数 y = sin(x +φ),其中φ 称为相位。
当φ > 0 时,图像向左平移φ 个单位;当φ < 0 时,图像向右平移|φ| 个单位。
高一数学函数图像专题(含详解)
高一数学函数图像专题(含详解)一、函数的概念函数是一种数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学中,我们用函数来描述数量之间的关系。
二、函数图像的绘制为了更好地理解函数的性质和规律,我们可以通过绘制函数图像来进行观察和分析。
绘制函数图像时,我们需要确定函数的定义域和值域,并选取一些代表性的输入值,计算出对应的输出值,然后将这些点连接起来,即可得到函数图像。
三、常见函数图像1.直线函数图像:直线函数的图像通常是一条直线,可以通过确定直线的斜率和截距来确定。
2.平方函数图像:平方函数的图像是一条抛物线,开口的方向由平方项的系数决定,开口向上为正,开口向下为负。
3.正弦函数图像:正弦函数的图像是一条波浪形曲线,表现周期性的特点。
4.指数函数图像:指数函数的图像呈现出递增或递减的趋势,斜率随着自变量的增大而增大或减小。
5.对数函数图像:对数函数的图像通常是一条曲线,呈现出随着自变量的增大,函数值增长趋缓的特点。
四、函数图像的性质1.奇偶性:函数图像关于原点对称的称为奇函数,图像关于y轴对称的称为偶函数。
2.单调性:函数图像上的点随着自变量的增大或减小而具有递增或递减的趋势。
3.零点与极值点:函数图像与x轴相交的点称为零点,图像上的极值点包括最大值和最小值。
五、总结函数图像是研究函数性质和规律的重要工具。
通过绘制函数图像,我们可以直观地了解函数的特点,并进行更深入的分析和推理。
在研究函数图像时,需要注意函数的定义域、值域以及一些常见函数的特点和性质。
这对于理解和应用函数概念都非常重要。
以上是关于高一数学函数图像专题的详细解释和内容总结,希望对你有所帮助。
高一数学必修一函数图像知识点总结
高一数学必修一函数图像知识点总结函数图像是高中数学中的重要内容之一,它是数学与实际问题相结合的桥梁。
在高一数学必修一中,我们学习了函数图像的基本概念、性质和绘制方法。
下面将对这些知识点进行总结。
一、函数图像的基本概念函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。
函数图像是函数在坐标系中的表示,横坐标表示自变量,纵坐标表示因变量。
函数图像可以用来描述实际问题中的变化规律,比如温度随时间的变化、销售额随月份的变化等。
二、函数图像的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
通过观察函数图像可以确定函数的定义域和值域。
2. 奇偶性:如果函数满足$f(x) = f(-x)$,则称该函数为偶函数;如果函数满足$f(x) = -f(-x)$,则称该函数为奇函数。
通过观察函数图像可以确定函数的奇偶性。
3. 单调性:如果函数在定义域上递增,那么称该函数为递增函数;如果函数在定义域上递减,那么称该函数为递减函数。
通过观察函数图像可以确定函数的单调性。
4. 最值和极值:函数的最大值和最小值称为最值,函数的极大值和极小值称为极值。
通过观察函数图像可以确定函数的最值和极值。
三、函数图像的绘制方法1. 函数关系式法:如果已知函数的关系式,可以根据关系式中的变量值来绘制函数图像。
比如,已知函数$y = 2x + 1$,可以取不同的$x$值计算对应的$y$值,然后将这些点连成一条直线。
2. 函数性质法:如果已知函数的性质,可以根据性质来绘制函数图像。
比如,已知函数是偶函数,且在定义域上递增,可以根据这些性质来确定函数的图像形状。
3. 函数变换法:通过对已知函数进行平移、伸缩、翻转等变换,可以得到新的函数图像。
比如,对函数$y = x^2$进行平移变换,可以得到函数$y = (x-2)^2$的图像,它在$x$轴上向右平移了2个单位。
四、常见函数图像1. 一次函数:一次函数的图像是一条直线,可以表示为$y = kx + b$,其中$k$为斜率,$b$为截距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数图像知识
点总结
文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)
高一数学函数图像知识点总结一、函数图像知识点汇总
1.函数图象的变换
(1)平移变换
(2)对称变换
由对称变换可利用y=f(x)的图象得到y=|f(x)|与y=f(|x|)的图象.
①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;
②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.
(3)伸缩变换
①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a<1时)到原来的a倍,横坐标不变.
②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的倍,纵坐标不变.
(4)翻折变换
①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;
②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.
2.等价变换
可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.
3.描点法作图
方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.
注意:
一条主线
数形结合的思想方法是学习函数内容的一条主线,也是考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.
两个区别
(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.
(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.
三种途径
明确函数图象形状和位置的方法大致有以下三种途径.
(1)图象变换:平移变换、伸缩变换、对称变换.
(2)函数解析式的等价变换.
(3)研究函数的性质.
二、例题解析
三、复习指导
函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。