九年级总复习之圆的有关性质PPT课件
合集下载
人教版九年级数学上册第24章第1节《圆》课件
A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
初中数学《圆的有关概念和性质》复习课优质课件
形的外接 叫做三角形的外心.
圆
性质:三角形的外心到三角形的三个
顶点的距离相等.
核心点拨
考点三:三角形的外接圆及圆内接四边形
圆内接四边形:如果一个四边形的
6.圆内
接四边形
的性质定
理
顶点都在同一个圆上
____________________,这个四边形
四边
叫做圆内接四边形,这个圆叫做_____
形的外接圆
)
思路分析
首先作出相关的辅助线,利用垂径定理和勾股定理求出各线段之间
的关系,得到一些特殊的三角形,再利用圆周角定理推出相关角的
度数即可.
变式训练
2-1
如 图 , 在 ⊙O 中 , 弦 AB , CD 相 交 于 点 P. 若 ∠A = 48° ,
∠APD=80°,则∠B的度数为(
A
)
A.32°
B.42°
质.有时还需要添加
论
或等弧进行证明.
辅助线,构成直径所
推论2:半圆(或直径)所对的圆周角是
对的圆周角,以便转
弦
______,90°的圆周角所对的____是直
直角
化为直角三角形的问
径.
题去研究.
考点三:三角形的外接圆及圆内接四边形
定义:经过三角形各顶点的圆叫做三
5.三角 角形的外接圆.三角形外接圆的圆心
对的____相等,所对的____相等.
(1)在同圆或等圆中,
弧
弦
定理2:在同圆或等圆中,________、____、
如果弧不相等,那
圆心角
弧
弦
么弧所对的弦、圆
____中如果有一组量相等,那么它们所对应
的其余各组量都分别相等.
圆
性质:三角形的外心到三角形的三个
顶点的距离相等.
核心点拨
考点三:三角形的外接圆及圆内接四边形
圆内接四边形:如果一个四边形的
6.圆内
接四边形
的性质定
理
顶点都在同一个圆上
____________________,这个四边形
四边
叫做圆内接四边形,这个圆叫做_____
形的外接圆
)
思路分析
首先作出相关的辅助线,利用垂径定理和勾股定理求出各线段之间
的关系,得到一些特殊的三角形,再利用圆周角定理推出相关角的
度数即可.
变式训练
2-1
如 图 , 在 ⊙O 中 , 弦 AB , CD 相 交 于 点 P. 若 ∠A = 48° ,
∠APD=80°,则∠B的度数为(
A
)
A.32°
B.42°
质.有时还需要添加
论
或等弧进行证明.
辅助线,构成直径所
推论2:半圆(或直径)所对的圆周角是
对的圆周角,以便转
弦
______,90°的圆周角所对的____是直
直角
化为直角三角形的问
径.
题去研究.
考点三:三角形的外接圆及圆内接四边形
定义:经过三角形各顶点的圆叫做三
5.三角 角形的外接圆.三角形外接圆的圆心
对的____相等,所对的____相等.
(1)在同圆或等圆中,
弧
弦
定理2:在同圆或等圆中,________、____、
如果弧不相等,那
圆心角
弧
弦
么弧所对的弦、圆
____中如果有一组量相等,那么它们所对应
的其余各组量都分别相等.
圆的基本性质九年级上ppt课件
B =OA2-OP2
OP ∙ OQ=OP ∙(OP+PQ) =OP2-OP ∙ PQ =OP2- PC ∙ PB
弦相交定理
D
B
M
N
P
A
C
圆内的两条相交弦,被交点分成的两条线段长的积相等。 即:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD
连接BD、AC,则∠B=∠C,∠A=∠D ∴ △PBD ∽△PBA ∴ PA·PB=PC·PD
根据分析,添加辅助线
找出各等量角
∠ACB=∠AFB=∠AFC=∠ABC(等弧对应等圆周角) ∠BED=2∠CED=BAC(已知)
∠BFC+∠BAC=180°(内接四边形对角互补)
条件中存在“两角互 补”,且2倍关系
三角形中角平分线割成的两个 三角形的边的关系如下图
2 ∠EFC+ 2∠CED=180°
∵ CD过圆心O,∴ ∠CAD=90° ∵ ∠B=∠D(同圆共弧) ∴ ∠OCA=∠BPF ∵ ∠OCA=∠OAC ∠2=∠BPF ∴ ∠2=∠OAC (使两△相似的条件)
下面从相交弦定理(圆内的两条相交弦, 被交点分成的两条线段的积相等。)试试。
Q
CG 2P
O
A
1
F
E
∵ PC ∙ PB=PG ∙ PE =(OA-OP)(OA+OP)
M A
E
F
O∙
B
DC
外心:三角形三条边的垂直平方线 的交点,三角形外接圆的圆心。
【分析】OA是半径,要证明EF⊥OA,只要 证明EF平行于OA的切线即可。
证明:作AM⊥OA,垂直为A
由题意,得:∠BFC=∠CEB=90° ∴ B、C、F、E四点共圆 ∴ ∠AEF=∠ACB
OP ∙ OQ=OP ∙(OP+PQ) =OP2-OP ∙ PQ =OP2- PC ∙ PB
弦相交定理
D
B
M
N
P
A
C
圆内的两条相交弦,被交点分成的两条线段长的积相等。 即:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD
连接BD、AC,则∠B=∠C,∠A=∠D ∴ △PBD ∽△PBA ∴ PA·PB=PC·PD
根据分析,添加辅助线
找出各等量角
∠ACB=∠AFB=∠AFC=∠ABC(等弧对应等圆周角) ∠BED=2∠CED=BAC(已知)
∠BFC+∠BAC=180°(内接四边形对角互补)
条件中存在“两角互 补”,且2倍关系
三角形中角平分线割成的两个 三角形的边的关系如下图
2 ∠EFC+ 2∠CED=180°
∵ CD过圆心O,∴ ∠CAD=90° ∵ ∠B=∠D(同圆共弧) ∴ ∠OCA=∠BPF ∵ ∠OCA=∠OAC ∠2=∠BPF ∴ ∠2=∠OAC (使两△相似的条件)
下面从相交弦定理(圆内的两条相交弦, 被交点分成的两条线段的积相等。)试试。
Q
CG 2P
O
A
1
F
E
∵ PC ∙ PB=PG ∙ PE =(OA-OP)(OA+OP)
M A
E
F
O∙
B
DC
外心:三角形三条边的垂直平方线 的交点,三角形外接圆的圆心。
【分析】OA是半径,要证明EF⊥OA,只要 证明EF平行于OA的切线即可。
证明:作AM⊥OA,垂直为A
由题意,得:∠BFC=∠CEB=90° ∴ B、C、F、E四点共圆 ∴ ∠AEF=∠ACB
人教版-九年级-24.1圆的有关性质(共44张PPT)
探究3 圆心角、弧、弦之间的关系
命题角度: 在同圆或等圆中,圆心角、弧、弦之间的关系互相转化求 解或证明.
︵︵ 例 3 [2014·贵港] 如图 26-8,AB 是⊙O 的直径,BC=CD= ︵ DE,∠COD=34°,则∠AEO 的度数是( )
图 26-8 A.51° B.56° C.68° D.78°
解 析 过点 O 作 OE⊥AB 于点 E,直线 OE 交 CD 于点 F,
连接 OA,OC,如图,
∵AB∥CD,∴OF⊥CD,∴AE=BE=12AB=12,CF=DF =12CD=5,
在 Rt△OAE 中,∵OA=13,AE=12,∴OE=5, 在 Rt△OCF 中,∵OC=13,CF=5,∴OF=12.
圆内接四边形的对角___互__补_______ 的性质
8 反证法
定义:不直接从命题的已知得出结论,而是假设命题的结论不成 立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到 原命题成立,这种方法叫做反证法.
步骤: (1)假设命题的结论不正确,即提出与命题结论相反的假设; (2)从假设的结论出发,推出矛盾; (3)由矛盾的结果说明假设不成立,从而肯定原命题的结论正确.
精选例题
探究1 确定圆的条件
命题角度: 1.点和圆的位置关系与数量关系的互逆判断; 2.求三角形的外接圆的半径或确定三角形的外心.
例 1 [2015·盐城] 如图 26-5,在矩形 ABCD 中,AB=4, AD=3,以顶点 D 为圆心作半径为 r 的圆,若要求另外三个顶点 A, B,C 中至少有一个点在圆内,且至少有一个点在圆外,则 r 的取 值范围是________.
︵ ∵∠BAC 与∠CPB 都是BC所对的圆周角,∠ABC 与∠APC ︵ 都是AC所对的圆周角,
九年级数学上第章圆圆的有关性质圆课件 【人教版】PPT实用课件
思考:
①“直径是弦,弦是直径”这种说法正确吗? 直径是圆中最长的弦吗?
②“半圆是弧,弧是半圆”这种说法正确吗? ③面积相等的两个圆是等圆吗?周长相等的两 个圆呢?
【针对训练】
D
D
0<d≤4
探究点二 运用“圆的半径相等”解决问题
C
【针对训练】
A
总结梳理 内化目标
达标检测 反思目标
A
等边三角形
•
9.使用了举例论证,以人们对待周六 观点这 个电视 栏目的 态度为 例,具 体有力 的论证 了关于 评论的 影响力:评论是 否有效 取决于 其具体 内容, 评论也 绝不是 简单的 对与错 的问题 。为下 文引出 中心论 点作铺 垫。
•
10.培根是英国文艺复兴时期最重要 的散文 家、哲 学家之 一。从 他的散 文中我 们可以 感受到 文艺复 兴时期 的思想 者如何 在旧的 社会结 构和思 想体系 日趋瓦 解之际 ,致力 于探讨 并树立 新的信 念、规 范和道 德。
r
A E
1.圆上各点到定点(圆心O)的距 离都等于定长(半径r)
2.到定点(圆心O)的距离都等于定
D
长(半径r)的点都在同一个圆上。
圆心为O,半径为r的圆可以看成是所有到定点的距 离等于定长r的点的集合。
我国古人ห้องสมุดไป่ตู้早对圆就有这样的认识了,战国时的 《墨经》就有“圆,一中同长也”的记载.它的 意思是圆上各点到圆心的距离都等于半径.
心,线段OA叫做半径.
圆的确定
O●
要确定一个圆,必须确定圆的_圆__心_和__半__径 圆心确定圆的位置,半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”.
A ·r O
【优质】初三九年级上册《圆的有关性质 圆》ppt课件
(1)∵OC=1BC=3,∴AO= AC2+CD2=3 5,∴AP′=AO-OP′=3 5-3. 2
(2)AP″=OP″+AO=3 5+3.
14.(武汉模拟)如图,在△ABC中,∠ACB=90°,AC=BC=6,以BC为直径的⊙O交AB于点D,P是⊙O 上的一动点,连接AP. (1)求AP的最小值; (2)求AP的最大值.
【解析】连接 AO,交⊙O 于 P′,延长 AO 交⊙O 于 P″,则 AP′的长即为 AP 的最小值, AP″的长即为 AP 的最大值.
2
10.(易错题)在同一平面内,点P到圆上的点的最大距离为8,最小距离为3,则此圆的半径为_2_._5_或.5.5
11.如图,AB是⊙O的直径,弦BC平行于半径OD,试探究∠A与∠C之间的数量关系.
【解析】∵OA=OD,∴∠A=∠D.∴∠DOB=2∠A.∵BC∥OD, ∴∠B=∠DOB=2∠A.∵OB=OC,∴∠C=∠B=2∠A.
第二十四章 圆
24.1 圆的有关性质
24.1.1 圆
武汉专版·九年级上册
1.与已知点A的距离为3 cm的点所组成的平面图形是___以__点__A__为__圆__心__,__以__3_cm__为__半__径__的__圆_____. 2.一个圆的最长弦长为10 cm,则此圆的半径是_5_c_m_. 3.有以下结论:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半 圆是等弧;⑤长度相等的两条弧是等弧.其中错误的有_②__⑤_.(填序号) 5.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,则AB的长是_1_0__.
Байду номын сангаас
8.如图,AB是⊙O的弦,点C,D在AB上,AC=BD.求证:OC=OD.
(2)AP″=OP″+AO=3 5+3.
14.(武汉模拟)如图,在△ABC中,∠ACB=90°,AC=BC=6,以BC为直径的⊙O交AB于点D,P是⊙O 上的一动点,连接AP. (1)求AP的最小值; (2)求AP的最大值.
【解析】连接 AO,交⊙O 于 P′,延长 AO 交⊙O 于 P″,则 AP′的长即为 AP 的最小值, AP″的长即为 AP 的最大值.
2
10.(易错题)在同一平面内,点P到圆上的点的最大距离为8,最小距离为3,则此圆的半径为_2_._5_或.5.5
11.如图,AB是⊙O的直径,弦BC平行于半径OD,试探究∠A与∠C之间的数量关系.
【解析】∵OA=OD,∴∠A=∠D.∴∠DOB=2∠A.∵BC∥OD, ∴∠B=∠DOB=2∠A.∵OB=OC,∴∠C=∠B=2∠A.
第二十四章 圆
24.1 圆的有关性质
24.1.1 圆
武汉专版·九年级上册
1.与已知点A的距离为3 cm的点所组成的平面图形是___以__点__A__为__圆__心__,__以__3_cm__为__半__径__的__圆_____. 2.一个圆的最长弦长为10 cm,则此圆的半径是_5_c_m_. 3.有以下结论:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半 圆是等弧;⑤长度相等的两条弧是等弧.其中错误的有_②__⑤_.(填序号) 5.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,则AB的长是_1_0__.
Байду номын сангаас
8.如图,AB是⊙O的弦,点C,D在AB上,AC=BD.求证:OC=OD.
九年级数学总复习第六章圆第26课时与圆有关的概念及性质PPT课件
B.∠ABD C.∠BAC D.∠BAD
思路
由AB为直径,得∠ADB=90°,从而可得图中互余的两角.再根据“同弧所对圆周角 相等”可知与∠ACD相等的角是∠B,从而确定一定与∠ACD互余的角.
-
14
命题点二 圆周角定理及其推论——
命题角度2 运用直径所对圆周角是直角来求角的度数
典例5
变式训练3
解题方法
-
16
命题点二 圆周角定理及其推论——命题角度3 在直径条件下的综合题
典例6
变式训练4
典例6 (2016厦门,26)已知AB是☉O的直径,点C在☉O上,点D在半径OA上(不与 点O,A重合). (1)如图(1),若∠COA=60°,∠CDO=70°,求∠ACD的度数; (2)如图(2),点E在线段OD上(不与点O,D重合),CD,CE的延长线分别交☉O于点 F,G,连接BF,BG,点P是CO的延长线与BF的交点,若 CD=1,BG=2,∠OCD=∠OBG,∠CFP=∠CPF,求CG的长.
考点点拨 在同圆或等圆中,相等的圆周角所对的弧相等.
-
5
考点四 与圆有关的多边形
1.圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做这个 圆的内接多边形,这个圆叫做这个多边形的外接圆. 2.圆内接四边形性质:圆内接四边形对角 互补 ,每个外角等于与它相邻的内角的 对角,简称:外角等于它的内对角.
-
6
命题点一 垂径定理及其运用——命题角度1 求弦长
典例1
(2016莆田,15改编)如图,CD为☉O的弦,直径AB为4,AB⊥CD于点E,∠A=30°, 则CD的长为 .
思路
解题方法
圆中“铁三角”
在圆中,弦的一半、过该弦端点的半径和圆心到该弦的垂线段可谓是圆中的
人教版初中数学总复习第六章圆第20课时圆的有关概念及性质课件
角形,外接圆的圆心叫做三角形的外心.外心是三角形三边垂直平分线的交
点.锐角三角形的外心在三角形的内部;直角三角形的外心是斜边的中点;
钝角三角形的外心在三角形的外部.
3.圆内接多边形
如果一个多边形的所有顶点都在一个圆上,那么这个多边形叫做圆内接多
边形,这个圆叫做多边形的外接圆.圆内接四边形的对角互补.
第20课时 圆的有关概念及性质
基础自主导学
考点一 圆的有关概念及其对称性
1.圆的定义
(1)圆是平面内到一定点的距离等于定长的所有点组成的图形,这个定点叫
做圆心,定长叫做半径;
(2)平面内一条线段绕着它一个固定端点旋转一周,另一个端点所形成的图
形叫做圆,固定的端点叫做圆心,这条线段叫做半径.
2.弧:圆上任意两点间的部分叫做圆弧,简称弧;弧用符号“ ”表示.圆的任意
答案:A
)
命题点2
圆心(周)角、弧、弦之间的关系
【例2】 如图,已知A,B,C,D是☉O上的四个点,AB=BC,BD交AC于点E,连接
CD,AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的长.
(1)证明:∵AB=BC,∴ = .
∴∠ADB=∠BDC,∴DB平分∠ADC.
1.定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
2.推论
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦
相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对
的优弧和劣弧分别相等.
考点三 垂径定理及推论
1.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
周角.
2.圆周角定理及推论
圆 初三 ppt课件ppt课件
CHAPTER
06
圆的综合题解题思路
圆的综合题解题方法
利用圆的性质
根据圆的性质,如圆周 角定理、垂径定理等, 推导出其他相关条件或
结论。
数形结合
将圆的性质与代数方程 相结合,通过代数运算
解决问题。
构造辅助线
在解题过程中,根据需 要构造辅助线,以连接 圆上的点或与其他图形
建立联系。
运用相似三角形
在解题过程中,通过构 造相似三角形,利用相 似三角形的性质解决问
THANKS
感谢观看
详细描述
圆的一般方程是$x^{2} + y^{2} + Dx + Ey + F = 0$,其中$D, E, F$是三个系数 。这个方程表示所有满足这个方程的点都在圆上。通过解这个方程,可以得到圆 上三个点的坐标。
圆的参数方程
总结词
圆的参数方程是一种基于三角函数的描述圆的方式,它通过 角度和半径来描述圆上的点。
题。
圆的综合题解题技巧
寻找隐含条件
在题目中寻找隐含条件,这些条件可 能对解题起到关键作用。
化复杂为简单
将复杂的问题分解为多个简单的问题 ,逐一解决,最后再综合起来。
利用特殊到一般的思路
先考虑特殊情况,再推广到一般情况 ,这样有助于找到解题思路。
注意图形的变化
在解题过程中,注意图形的变化,如 角度、长度等的变化,并利用这些变 化解决问题。
VS
详细描述
根据圆的对称性质,我们可以利用已知圆 上的任意一点或直径两端点来作出一个与 已知圆相切或重合的新圆。具体操作包括 通过圆心和已知圆上一点作圆,以及通过 两个已知圆的中心和它们之间的距离作圆 。
利用已知点作圆
2020年九年级数学中考总复习 第22讲 圆的性质课件(23张ppt)
总复习第二十二讲 圆的性质
目录
考点一 圆的有关概念及性质 考点二 与圆有关 的定理及推论 考点三 多边形与圆 考点四 与圆的位置关系 考点五 三角形与圆
考点一 圆的有关概念及性质
圆的有关概念 1.圆: (1) 在一个平面内,线段OA绕它固定的一个端点
O旋转一周,另一个端点A随之旋转所形成的 图形叫圆,固定的端点O叫圆心,线段OA叫半径。 (2) 圆是平面内到一定点的距离等于定长的所有点 组成的图形,这个定点叫做_圆__心__,_定长叫做_半__径___; 2.弦:连结圆上任意两点的线段叫做弦,如AC.
【1】如左图,BC是☉O的直径,点A在圆上,连接 AO, AC, ∠AOB=64°,则∠ACB=___3_2_°____.
【2】如右图,AB为☉O的直径,C,D为☉O上两点,
若∠BCD=40°,则∠ABD的大小为 ( B )
A.60° B.50° C.40° D.20°
3.如图,AB是⊙O的一条弦,点C是⊙O上一动点,
的度数的一半. 1
如∠DAB=___2__∠DOB
推论: (1)同圆或等圆中,同弧或等弧所对的圆周角_相__等__;
如∠DAB=_∠__D_C_B_(同弧) , ∠DAB=_∠__C_D__B(等弧 ) (2)半圆(或直径)所对的圆周角是_直__角______,
90°的圆周角所对的弦是直径. 如∠ADB=_9_0_°_____.
(3)性质:三角形的内心到三角形__三__条__边____的距
离相等.
1
(4)角度关系: ∠BOC = 90°+ 2∠A
练习题 1.如左图所示,AB为⊙O的直径,点C在⊙O上,且
OC⊥AB,过点C的弦CD与线段OB相交于点E, 满足∠AEC=65°,连接AD,则∠BAD=_2_0_°_.
目录
考点一 圆的有关概念及性质 考点二 与圆有关 的定理及推论 考点三 多边形与圆 考点四 与圆的位置关系 考点五 三角形与圆
考点一 圆的有关概念及性质
圆的有关概念 1.圆: (1) 在一个平面内,线段OA绕它固定的一个端点
O旋转一周,另一个端点A随之旋转所形成的 图形叫圆,固定的端点O叫圆心,线段OA叫半径。 (2) 圆是平面内到一定点的距离等于定长的所有点 组成的图形,这个定点叫做_圆__心__,_定长叫做_半__径___; 2.弦:连结圆上任意两点的线段叫做弦,如AC.
【1】如左图,BC是☉O的直径,点A在圆上,连接 AO, AC, ∠AOB=64°,则∠ACB=___3_2_°____.
【2】如右图,AB为☉O的直径,C,D为☉O上两点,
若∠BCD=40°,则∠ABD的大小为 ( B )
A.60° B.50° C.40° D.20°
3.如图,AB是⊙O的一条弦,点C是⊙O上一动点,
的度数的一半. 1
如∠DAB=___2__∠DOB
推论: (1)同圆或等圆中,同弧或等弧所对的圆周角_相__等__;
如∠DAB=_∠__D_C_B_(同弧) , ∠DAB=_∠__C_D__B(等弧 ) (2)半圆(或直径)所对的圆周角是_直__角______,
90°的圆周角所对的弦是直径. 如∠ADB=_9_0_°_____.
(3)性质:三角形的内心到三角形__三__条__边____的距
离相等.
1
(4)角度关系: ∠BOC = 90°+ 2∠A
练习题 1.如左图所示,AB为⊙O的直径,点C在⊙O上,且
OC⊥AB,过点C的弦CD与线段OB相交于点E, 满足∠AEC=65°,连接AD,则∠BAD=_2_0_°_.
九年级数学上册(人教版)第二十四章《圆》课件
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
圆的有关性质ppt课件
7.1.4 圆周角定理及推论
(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相 等,都等于这条弧所对的圆心角的一半. (2)推论:半圆(直径)所对的圆周角是直角,90°的圆周角所 对 的弦是直径.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
【例1】如图,在⊙O中, A,B是圆上的两点,已知∠AOB=40°,直 径CD∥AB,连接AC,则∠BAC= 35 度.
②经过切点且垂直于切线的直线必经过圆心. (3)切线长定理:从圆外一点可以引圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.
【例1】在公园的O处附近有E、F、G、H四棵树,
位置如图所示(图中小正方形的边长均相等),现计划修建一座以
为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、
(3)正多边形的有关计算:
①边长:an=2Rn·sin180°/n
②周长:Pn=n·an
③边心距:rn=Rn·cos180°/n
④面积:Sn=
1 2
an·rn·n
⑤内角:n 2180
n
⑥外角:360
n
⑦中心角: 36n0(Rn为正多边形的半径,rn为边心距,an为边长)
7.3.2 圆的周长与弧长公式
最新人教版初中九年级上册数学【圆全章复习】教学课件
请补全解答过程.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.
圆的有关性质-课件ppt
在 Rt△ABC 中,
A
O
B
BC= AB2 AC 2 = 102 62 =8(cm)
D
应用
如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm, ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.
C
∵ CD 平分ACB,
∴ ACD=BCD,
∴ AOD=BOD . ∴ AD=BD.
重要思路:(由)垂径定理—构造直角三角形— (结合)勾股定理—建立方程.
31.1.3 弧、弦、圆心角
• 教学目标: 1.了解圆心角的概念; 2.掌握在同圆或等圆中,两个圆心角、两条弧、两 条弦中有一组量相等,就可以推出它们所对应的 其余各组量也相等.
• 教学重点: 同圆或等圆中弧、弦、圆心角之间的关系.
性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
性质
把圆心角等分成 360 份,则每一份的圆心角是 1°,
同时整个圆也被分成了 360 份.
则每一份这样的弧叫做 1°的弧.这样,
1°的圆心角对着 1°的弧,
O
2
∴
同理, BAC
CAD BAD
1 COD. 2 CAD
1 2
B BOC.D
C
证明猜想
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
探究
思考: 一条弧所对的圆周角之间有什么关系?同弧或等弧 所对的圆周角之间有什么关系? 同弧或等弧所对的圆周角相等.
A
D
O
B
C
探究
中考数学复习 1 圆的有关概念和性质【优质PPT】
2021/10/10
30
6.(2017·十堰)如图,△ABC内接于⊙O,∠ACB=90°,
∠ACB的角平分线交⊙O于D.若AC=6,BD=5 2 ,则BC的长 为__8__.
2021/10/10
31
考点四 圆内接四边形 (5年1考) 例4 如图,△ABC为⊙O的内接三角形,∠AOB=100°,则 ∠ACB的度数为 .
弦CD的长为___1_4__.
2021/10/10
18
考点二 圆心角、弧、弦之间的关系 (5年2考) 例2 (2017·宁津模拟)把一张圆形纸片按如图所示方式折叠 两次后展开,图中的虚线表示折痕,则 的度数是( )
A.120° B.135° C.150° D.165°
2021/10/10
19
【分析】 直接利用翻折变换的性质、锐角三角函数关系
2021/10/10
15
在Rt△OPH中,∵∠OPH=30°,
∴∠POH=60°, ∴OH= 1 OP=1.
2
在Rt△OHC中,∵OC=4,OH=1,
2021/10/10
16
讲:
利用辅助线求解垂径定理问题
在与圆有关的题目中,涉及弦时,一般先作辅助线,
构造垂径定理的应用环境.最易触雷的地方是不会作辅助
得出∠BOC的度数,再利用弧度与圆心角的关系得出答案.
【自主解答】 如图,连接BO,过点O作OE⊥AB于点E,
由题意可得EO= 1 BO,AB∥DC,
2
∴∠EBO=30°,故∠BOD=30°,
则∠BOC=150°,
故 的度数是150°.故选C.
2021/10/10
20
3.如图,⊙O经过五边形OABCD的四个顶点,若∠AOD= 150°,∠A=65°,∠D=60°,则 的度数为__4_0_°_.
第9讲圆的基本性质复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
《圆的有关性质》PPT课件 人教版九年级数学
B
D
O
F
E
(2)请写出以点A为端点的弦及直径;
弦AF,AB,AC.其中弦AB又是直径.
C
A
(
(
(3)请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦AF,它所对的弧是 AF 和 ABF .
巩固练习
在以下所给的命题中:①半圆是弧;②弦是直
径;③如图所围成的图形是半圆.
其中正确的命题有 ①
.
解析: 弧不但包括半圆,还包括优弧、劣弧,
探究新知
垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧.
C
推导格式:
∵ CD是直径,CD⊥AB,
⌒ =BD.
⌒ =BC,
⌒
⌒ AD
∴ AE=BE, AC
·O
A
E
D
B
温馨提示:垂径定理是圆中一个重要的定理,三种
语言要相互转化,形成整体,才能运用自如.
探究新知
想一想:下列图形是否具备垂径定理的条件?如果不
(5)半圆是最长的弧;
(6)直径是最长的弦;
(7)长度相等的弧是等弧.
课堂检测
能力提升题
一根5m长的绳子,一端栓在柱子上,另一端栓
着一只羊,请画出羊的
活动区域.
5m
课堂小结
(描述性定义)
要画一个确定的圆,关
键是确定圆心和半径
集 合 定 义
同圆半径相等
旋转定义
同心圆
定义
圆
有关
概念
同圆
等圆
等弧
直径是圆中最长的弦
例 矩形ABCD的对角线AC,BD相交于点O.
求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
角对着n°的弧。
D 圆心角的度
n°圆心角 数和它所对
O
A 1°弧 的弧的度数
1°圆心角 B
相等。
9
在同圆或等圆中,
如果两个圆心角、两条弧、两条弦、
两条弦的弦心距中有一组量相等,
那么它们所对应的其余各组量都分
别相等
A
C
O
B
C' A'
B'
10
关于弦的问题,常 常需要过圆心作弦的 垂线段,这是一条非 常重要的辅助线。 圆心到弦的距离、 半径、弦长构成直角 三角形,便将问题转 化为直角三角形的问 题。
C
正多边形的半径:
边心距r
外接圆的半径
正多边形的中心角: 正多边形的每一条边所对的圆心角.
正多边形的边心距: 中心到正多边形的一边的距离24.
一、圆的切线:
∵直线l是⊙O的切线
∴圆心O到直线l 的距
O ●
离等于半径
┐l
A
∴OA是圆心O到直线l的距离
∴ l⊥OA
2、性质:圆的切线垂直于 经过切点的半径。
C
·O
E
A
B
D
平分弦(不是直径)的直径 垂直于弦,并且平分弦所对 的两条弧.
6
C
E
垂径定理:
O
A
M B由 ① CD是直径
可推得
③AM=BM,
⌒⌒
D
② CD⊥AB
④AC=BC,
⌒⌒
⑤AD=BD.
垂径定理推论:
由 ① CD是直径 ③ AM=BM
可推得
②CD⊥AB,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
14
点与圆的位置关系
如图,设⊙O的半径为r,A点在圆内,B点在圆上, C点在圆外,那么 OA<r, OB=r, OC>r. 反过来也成立,即
若点A在⊙O内 若点A在⊙O上
OA r
OA r
若点A在⊙O外
OA r
图 23.2.1
15
直线与圆的位置关系
直线与圆的 位置关系
相交
相切
图形
公共点个数 公共点名称
D
与三角形各边都相切的圆叫做三角形的内切圆. 内切圆的圆心是三角形三条角平分线的交点,叫 做三角形的内心.
21
知识回顾
一、圆的周长公式 C=2πr
二、圆的面积公式 S=πr2
三、弧长的计算公式
l n 2rnr
360
180
四、扇形面积计算公式
s n r2
360
或s 1 lr 2
五 、大于半圆的弓形面积为 S弓形=S扇形+S△
A
●O
经过圆心的弦叫
C D
做直径(如直径AC).
3
圆的相关概念
• 直径将圆分成两部分,每一部分都 叫做半圆(如弧ABC).
小于半圆的弧叫做劣弧,如记作 A⌒B
(用两个字母).
B
D 大于半圆的弧叫做优弧,
A
●O C 如记作 A⌒CD
(用三个字母).
4
5
垂径定理:垂直于弦 的直径平分弦,并且 平分弦所对的两条 弧.
六 、小于半圆的弓形面积为 S弓形=S扇形- 22
圆锥的侧面积和全面积
圆锥的底面周长就是其侧面展开图扇
形的弧长,
圆锥的母线就是其侧面展开图扇形的
半径。
S侧=S扇形
1 la 1 2 r a ra
2
2
ha
l S全=S侧+S底
r
rar2 23
正多边形的中心: E
D
一个正多边形的 半径R
外接圆的圆心. F 中心角O..
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story 讲师:XXXXXX XX年XX月XX日圆上,并且两边都与圆相交 的角,叫做圆周角.
F
A
E
●O
C
B
D
特征: ① 角的顶点在圆上. ② 角的两边都与圆相交.
圆周角.
12
圆周角定理:
在同圆(等圆)中,同弧 (等弧)所 对的圆周角相等.都等于这条弧所对的圆 心角的一半.
在同圆或等圆中,相等的 圆周角所对的弧相等.
直线名称 圆心到直线距离 d与半径r的关系
O
dr
l
2个 交点 割线
d<r
O dr
l
1个 切点 切线
d=r
相离
O r
d l
没有
d>r
16
用两圆的圆心距d与两圆的半径R,r的数量关系来 判别两圆的位置关系
17
定理:不在同一直线上的三个点 确定一个圆。
A.
B.
.C
18
经过三角形的三个顶点的圆叫做三角形的外 接圆,
等角等弧
13
1、圆周角定理的推论1:
等角等弧
同圆或等圆中,同弧或等弧所对的圆周角相等;
同圆或等圆中,相等的圆周角所对的弧也相等。
2、圆周角定理的推论2:
半圆(或直径)所对的圆周角是直角; 直径
90°的圆周角所对的弦是直径。
直角
3、内接四边形的对角互补。
4、如果三角形一条边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
外接圆的圆心叫做三角形的外心,
三角形叫做圆的内接三角形。
问题1:如何作三角形的外
接圆?如何找三角形的外
心?
A
问题2:三角形的外心一定 在三角形内吗?
C
O
B
19
5.锐角三角形的外心在三角形
__内__,直角三角形的外心在三角
形 斜边的中点
,
钝角三角形的外心在三角形__外__。
20
I
内切圆和内心的定义:
7
C E
垂径定理推论:
O
A
M B ① CD是直径 可推得
⌒⌒
D
④AC=BC,
②CD⊥AB,
③ AM=BM
⌒⌒
⑤AD=BD.
② CD⊥AB 可推得
③AM=BM,
① CD是直径
⌒⌒
④AC=BC,
⑤A⌒D=B⌒D.
8
把顶点在圆心的周角等分成
360份时,每一份的圆心角是
1°的角。1°的圆心角所对的弧
叫做1°的弧。n°弧 一般地,n°的圆心
O ●
┐l
A 25
2、切线的性质定理: 圆的切线垂直于过切点的半径
老师提示: 切线的性质定理是证 明两线垂直的重要根据;作过切点的 半径是常用经验辅助线之一.
26
思考: 切线的判定定理:
经过半径的外端并 且垂直于这条半径的 直线是圆的切线.
用几何符号语言表达:
∵OA⊥L,点A在⊙O上, ∴L是⊙O的切线
.O
L A
27
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
28
Thank You
圆的有关性质
1
1.要确定一个圆,必须确定圆的__圆__心和__半_ 径 圆心确定圆的位置,半径确定圆的大小.
O●
这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”.
2
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧.
以A,B两点为端点的弧.记作 A⌒B,
读作“弧AB”.
连接圆上任意两点间的
线段叫做弦(如弦AB). B