管道摩擦阻力计算资料

合集下载

管道阻力损失计算

管道阻力损失计算

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。

化工原理摩擦阻力损失计算公式

化工原理摩擦阻力损失计算公式

化工原理摩擦阻力损失计算公式摩擦阻力是指物体在运动过程中由于与流体接触而产生的阻力。

在化工领域中,摩擦阻力的计算对于设计和优化流体传输系统至关重要。

本文将介绍化工原理中常用的摩擦阻力损失计算公式,并探讨其应用。

一、流体在管道中的摩擦阻力损失计算公式流体在管道中的摩擦阻力损失可以通过多种公式进行估算,其中最常用的是达西-魏泽巴赫公式和库珀-普拉萨公式。

1. 达西-魏泽巴赫公式达西-魏泽巴赫公式是描述流体在管道中摩擦阻力损失的经验公式。

该公式的表达式为:ΔP = f * (L / D)* (ρ * V^2) / 2其中,ΔP为单位长度管道的压力损失,f为摩擦系数,L为管道长度,D为管道直径,ρ为流体密度,V为流体速度。

2. 库珀-普拉萨公式库珀-普拉萨公式是一种修正达西-魏泽巴赫公式的方法,适用于大口径管道和高速流动条件。

该公式的表达式为:ΔP = f * (L / D) * (ρ * V^2) / 2 * (1 + (K / D))其中,ΔP为单位长度管道的压力损失,f为修正后的摩擦系数,L 为管道长度,D为管道直径,ρ为流体密度,V为流体速度,K为管道粗糙度。

二、摩擦阻力损失计算公式的应用1. 流体传输系统设计在进行化工流体传输系统设计时,摩擦阻力损失的计算是必不可少的。

通过摩擦阻力损失的计算,可以确定管道的直径、流速等参数,从而实现流体的高效传输。

2. 管道网络优化对于已经建立的管道网络系统,通过计算摩擦阻力损失可以找到系统中的瓶颈点和低效区域,进而进行优化。

通过增加管道直径、调整流速等方式,可以降低摩擦阻力损失,提升系统的运行效率。

3. 节能减排摩擦阻力损失是流体传输系统中能量损失的主要来源之一。

通过合理计算和优化,可以降低摩擦阻力损失,降低系统的能耗,实现节能减排的目标。

三、总结摩擦阻力损失的计算对于化工流体传输系统的设计和优化具有重要意义。

达西-魏泽巴赫公式和库珀-普拉萨公式是常用的摩擦阻力损失计算公式,可以根据具体的应用场景选择合适的公式进行计算。

管道阻力损失计算公式

管道阻力损失计算公式

管道阻力损失计算公式
管道阻力损失是流体在管道中经历的机械能损失,由其内的摩擦力,压力损失和间断损失组成。

管道阻力损失的计算公式是:
ΔP = L × 0.109 × (V²/ D4) × (f / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:流体流速,单位是m/s;
D:管道内径,单位是m;
f:管道内摩擦系数;
2g:重力加速度,一般把2g定为9.8。

管道阻力损失计算公式可以帮助我们计算管道中流体的机械能损失,从而更好地控制管道的设计和运行。

管道阻力损失的计算公式可以用于计算水管、汽油管、空气管、蒸汽管等各种流体的阻力损失。

例如,可以用来计算水管中水流的阻力损失,计算公式如下:
ΔP = L × 0.109 × (V²/ D4) × (0.02 / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:水流流速,单位是m/s;
D:管道内径,单位是m;
0.02:水流的摩擦系数;
2g:重力加速度,一般把2g定为9.8。

通过计算管道的阻力损失,我们可以更好地控制管道的运行,从而更有效地利用管道的资源。

管道阻力损失的计算公式实际上是一种能量守恒定律,它也可以用于分析水力学系统中流体的流动特性,从而发现和解决流体流动中的问题。

总之,管道阻力损失计算公式是一个非常有用的工具,可以帮助我们计算管道中流体的机械能损失,更好地控制管道的设计和运行。

直管摩擦阻力系数

直管摩擦阻力系数

直管摩擦阻力系数直管摩擦阻力系数,是指在直管中液体流动时,由于液体与管壁之间的摩擦而产生的阻力系数。

直管摩擦阻力系数对于研究流体力学和管道工程具有重要意义,它的大小直接影响着管道流量和压力损失。

直管摩擦阻力系数是通过实验测定得到的,根据实验结果,发现直管摩擦阻力系数与流速、管道直径、流体的黏度等因素有关。

根据实验数据的统计分析,科学家得出了一系列经验公式,用来计算直管摩擦阻力系数。

经验公式中最常用的是德尔塔式公式(ΔP=f*L/D*0.5*ρ*V^2)。

其中ΔP表示压力损失,f表示直管摩擦阻力系数,L表示管道长度,D表示管道直径,ρ表示流体密度,V表示流速。

该公式可以通过实验测量ΔP和其他已知参数,反解得到直管摩擦阻力系数f。

直管摩擦阻力系数与流速的关系可以通过雷诺数来描述。

雷诺数(Re)是表征流体流动状态的一个无量纲数,定义为Re=ρ*V*D/μ,其中ρ表示流体密度,V表示流速,D表示管道直径,μ表示流体黏度。

当雷诺数较小时,流体呈现层流流动状态,此时直管摩擦阻力系数较小;当雷诺数较大时,流体呈现湍流流动状态,此时直管摩擦阻力系数较大。

直管摩擦阻力系数与管道直径的关系可以通过雷诺数和克劳系数来揭示。

克劳系数(Cd)是表征流体流动阻力的一个无量纲数,定义为Cd=f/2,其中f表示直管摩擦阻力系数。

实验表明,当管道直径较小时,克劳系数较大,直管摩擦阻力系数也较大;当管道直径较大时,克劳系数较小,直管摩擦阻力系数也较小。

对于液体流动而言,直管摩擦阻力系数的大小对于能源的消耗以及管道系统的选型有着重要的影响。

通常情况下,为了降低阻力和压力损失,需要选择合适的管道尺寸和流速,以及减少管道的弯曲和支撑。

总结来说,直管摩擦阻力系数是衡量流体通过直管流动时摩擦阻力大小的物理量,其与流速、管道直径、流体黏度等因素相关。

研究直管摩擦阻力系数有助于优化管道工程设计,提高流体输送的效率。

随着科技的不断进步,对于直管摩擦阻力系数的研究也会更加深入,为实际工程提供更为准确和可靠的计算方法。

管道阻力损失计算

管道阻力损失计算
管道的阻力计算
风管空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而 产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设 备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻 力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图 6-1-1)。
(6-1-10)
式中 Kr——管壁粗糙度修正系数;
K——管壁粗糙度,mm;
v——管空气流速,m/s。
表 6-1-1 各种材料的粗糙度 K
风管材料15~0.18 塑料板
0.01~0.05 矿渣石膏板
1.0 矿渣混凝土板
1.5 胶合板
1.0 砖砌体
3~6 混凝土
1~3 木板 0.2~1.0
矩形风管的水力半径

则 (6-1-11)
Dv 称为边长为 a×b 的矩形风管的流速当量直径。 (2)流量当量直径 设某一圆形风管中的空气流量与矩形风管的空气流量相等,并且单位长度摩擦阻力 也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以 DL 表示。根据推 导,流量当量直径可近似按下式计算。
图 6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道流动时的摩擦阻力按下式计算:
(6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:
(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3) 以上各式中
λ——摩擦阻力系数; v——风秘空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m;
(1) 比摩阻法 令
称 Rm 为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:

最新管道摩擦阻力计算资料

最新管道摩擦阻力计算资料

长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2 v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。

海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。

三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。

2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。

公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。

舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。

舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。

管道阻力的基本计算方法

管道阻力的基本计算方法

管道阻力的基本计算方法管道阻力是指液体在流动过程中受到的摩擦力和阻力,它是影响管道流量和压力损失的主要因素之一、管道阻力的基本计算方法包括经验公式法、实验法和数值模拟法。

1.经验公式法:经验公式法是根据实际操作经验总结出来的计算方法。

经验公式法包括达西-魏兹巴赫公式、普朗特公式等。

-达西-魏兹巴赫公式:达西-魏兹巴赫公式是最常用的计算管道阻力的经验公式之一,表示为:Rf=λ(L/D)(V^2/2g)其中,Rf是单位长度的管道阻力,λ是阻力系数,L是管道长度,D 是管道内径,V是流速,g是重力加速度。

-普朗特公式:普朗特公式是用于计算气体在管道中流动时的阻力的经验公式,表示为:Rf=λ(L/D)KρV^2其中,K是一修正系数,ρ是气体密度。

2.实验法:实验法是通过实验来测量管道阻力,并将实验结果用于计算。

实验法一般需要进行水力实验或风洞实验,根据实验结果建立经验公式。

-水力实验:水力实验是通过在实验室中建立一段具有标准尺寸的管道,在实验过程中测量流量、压力等参数,从而计算管道阻力。

-风洞实验:风洞实验是用于测量气体在管道中的阻力的方法。

通过在风洞中设置一段具有标准尺寸的管道,在实验过程中测量流动参数,计算管道阻力。

3.数值模拟法:数值模拟法是利用计算机进行流体力学计算,通过数值模拟管道内流体的运动和阻力分布,从而得到管道阻力。

数值模拟法精度较高,能够考虑更多的因素和复杂的条件。

数值模拟法可以利用有限元、有限差分、计算流体力学(CFD)等方法进行计算。

利用计算机软件,将管道的几何形状、边界条件、流体性质等参数输入模拟软件,通过求解流体动力学方程,得到流场图像、速度分布、压力分布等结果,从而计算出管道阻力。

总结起来,管道阻力的基本计算方法包括经验公式法、实验法和数值模拟法。

不同的计算方法适用于不同的情况,工程师可以根据具体需求选择合适的方法进行计算。

(完整版)管道阻力的基本计算方法

(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。

对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。

对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。

因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。

υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。

管路阻力计算公式

管路阻力计算公式

管路阻力计算公式管路阻力是指液体在管道内流动时所受到的阻碍,其大小取决于流体的性质、管道的几何尺寸和流动的条件。

在实际工程中,准确计算管路阻力对于流体输送和工艺设计至关重要。

下面将介绍管路阻力的计算公式。

1.法氏公式法氏公式是计算管道流动阻力最常用的公式之一、它适用于圆形截面的水平、直立管道以及部分较短的水平、上升弯头。

其计算公式如下:ΔP=λ(L/D)(ρV^2/2)其中,ΔP为管道中的压力损失,单位为帕斯卡(Pa);λ为摩擦阻力系数,根据管道的材料及条件可以查表或参考标准值;L为管道的长度,单位为米(m);D为管道的内径,单位为米(m);ρ为流体的密度,单位为千克/立方米(kg/m^3);V为流体的流速,单位为米/秒(m/s)。

2.公因数法公因数法是另一种计算管道阻力的常用方法,适用于两端是同一直径的水平、上升和下降的圆管。

其计算公式如下:ΔP=KρV^2/2其中,ΔP为压力损失,单位为帕斯卡(Pa);K为公因数,其具体数值根据管道的条件可查表或参考标准值;ρ为流体的密度,单位为千克/立方米(kg/m^3);V为流体的流速,单位为米/秒(m/s)。

3.长度加速度法长度加速度法适用于水平直管或上升/下降弯头的计算中。

其计算公式如下:ΔP=1/2ρv^2(fL+g)其中,ΔP为压力损失,单位为帕斯卡(Pa);ρ为流体的密度,单位为千克/立方米(kg/m^3);v为流体的流速,单位为米/秒(m/s);f为管道长度与管径之比;L为管道长度,单位为米(m);g为液体的头压。

4.简化法式对于实际工程中的一些简化计算,可以采用以下常见的简化公式:-窄圆管公式:ΔP=32μLV/D^2,其中μ为动力黏度;-多种流状态公式:ΔP=αρV^2/2,其中α为系数;-工程系数法式:ΔP=βρV^2/2,其中β为系数。

需要注意的是,以上列出的公式都是针对一些特定条件下的近似计算公式,实际计算中需要结合具体的工程情况和流体参数,选择合适的公式进行计算。

管道阻力计算

管道阻力计算

(3)三通汇流要防止出现引射现象, 尽可能做到各分支管内流速相等. 分支管道中心线夹角要尽可能小, 一般要求不大于30°。
如图6-1-3。三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成涡流是造成局部阻力的原因。两股气流在汇合过程中的能量损失一般是不相同的,它们的局部阻力应分别计算。


(6-1-11)
Dv称为边长为a×b的矩形风管的流速当量直径。
(2)流量当量直径
设某一圆形风管中的空气流量与矩形风管的空气流量相等,并且单位长度摩擦阻力也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以DL表示。根据推导,流量当量直径可近似按下式计算。
(6-1-2)
圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3)
以上各式中
λ——摩擦阻力系数;
v——风秘内空气的平均流速,m/s;
ρ——空气的密度,kg/m3;
(3)管壁粗糙度的修正
在通风空调工程中,常采用不同材料制作风管,各种材料的粗糙度K见表6-1-1。
当风管管壁的粗糙度K≠0.15mm时,可按下式修正。
Rm=KrRmo Pa/m (6-1-9)
Kr=(Kv)0.25 (6-1-10)
(6-1-4)
式中 K——风管内壁粗糙度,mm;
D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。

管道阻力计算公式

管道阻力计算公式

管道阻力计算公式管道阻力是指液体在管道内流动时所受到的阻碍力,也可以理解为液体通过管道时所需要克服的摩擦力。

管道阻力是流体力学中一个重要的参数,它不仅与管道的长度、直径、粗糙度等几何因素有关,还与流体的运动速度、粘度等流体性质相关。

下面将介绍一些常见的管道阻力计算公式。

1.低雷诺数情况的定泄流量计算公式:当雷诺数小于4000时,可以使用定泄流量公式进行计算。

定泄流量公式基于液体流动的黏滞机制,其计算公式如下:Q=(π/128)*d^4*(2gΔh/ρ)^0.5其中,Q为流量,单位为立方米/秒;d为管道直径,单位为米;g为重力加速度,单位为米/秒^2;Δh为两点之间的液位高度差,单位为米;ρ为流体的密度,单位为千克/立方米。

2.磁级法计算公式:对于封闭管道中直流液体的流动,可以使用磁级法计算管道阻力。

磁级法是通过测量管道内液体的压降来计算管道阻力的,其公式如下:ΔP=f*(L/d)*(ρv^2/2)其中,ΔP为管道内压降,单位为帕斯卡;f为阻力系数,没有单位;L为管道长度,单位为米;d为管道直径,单位为米;ρ为流体的密度,单位为千克/立方米;v为液体的流速,单位为米/秒。

3.流量-压降关系公式:不同流速下液体在管道内的流动会产生不同的压降。

利用实验数据可以得到流量-压降关系公式,通过该公式可以根据所需流量反推出相应的压降。

具体公式如下:ΔP=(ρ/2)*K*Q^2其中,ΔP为管道内压降,单位为帕斯卡;ρ为流体的密度,单位为千克/立方米;K为压降系数,没有单位;Q为流量,单位为立方米/秒。

4.英国工程学文献公式:提出了一种通用的计算管道阻力的公式,即英国工程学文献公式。

ΔP=4f*(L/d)*(ρv^2/2)其中,ΔP为管道内压降,单位为帕斯卡;f为阻力系数,没有单位;L为管道长度,单位为米;d为管道直径,单位为米;ρ为流体的密度,单位为千克/立方米;v为液体的流速,单位为米/秒。

总结:以上就是一些常见的管道阻力计算公式。

管道阻力计算

管道阻力计算

管道阻力的计算公式为:r =(λ/ D)*(ν^ 2 *γ/ 2G)。

ν-速度(M / s); λ-电阻系数;γ-密度(kg / m3); D-管道直径(米);P-压力(kgf / m2); R-沿途的摩擦阻力(kgf / m2);L-管道长度(米);G-重力加速度= 9.8。

压力可以按以下方式转换为PA:1 pa = 1 / 9.81(kgf / m2)。

管道中的流体阻力管道中流体的流动阻力可分为摩擦阻力和局部阻力。

摩擦阻力是指当流体流过一定直径的直管时,由流体内部摩擦引起的阻力,也称为摩擦阻力,以HF表示。

局部阻力主要是由流经管件,阀门的流体以及管道横截面的突然膨胀或减小引起的,也称为主体阻力,由HJ表示。

管道中流体的总阻力为∑H = HF + HJ。

开发资料:流体阻力的类型如下:由于空气的粘性作用,物体表面会产生与物体表面相切的摩擦。

所有摩擦力的合力称为摩擦阻力。

耐压降性称为由垂直于物体表面的气压引起的耐压差性。

在不考虑粘度和不存在尾流的情况下,亚音速流中物体的抗压降特性为零(请参见提升线理论)。

在实际流体中,不仅会产生摩擦阻力,而且表面上的压力分布也会与理想流体中的压力分布不同,并且会产生压差阻力。

对于具有良好流线形形状的物体,由于没有边界层分离(请参见边界层)的情况,由粘度引起的压降阻力远小于由摩擦引起的压降阻力。

对于非流线型物体,边界层的分离将导致很大的压降阻力,这成为总阻力的主要部分。

当机翼或其他物体产生升力时,沿着流动方向在物体后面会形成尾流涡流。

与尾涡相关的电阻称为感应电阻,其值与升力的平方大致成比例。

在跨音速流(见跨音速流)或超音速流(见超音速流)中,会产生冲击波,冲击波后会产生机械能的损失,所产生的阻力称为波阻,这是波的另一种形式。

抵抗性。

处于加速运动中的物体将带动周围的流体一起加速,从而导致一部分附加阻力,这通常由虚拟附着质量与物体加速度的乘积表示。

船舶在水上航行时会产生水波,与之相关的阻力称为造波阻力。

(完整版)管道阻力的基本计算方法

(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:242v R R s m(5—3) 式中Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。

对圆形风管:4D R s(5—4)式中D ——风管直径,m 。

对矩形风管)(2b a ab R s(5—5)式中a ,b ——矩形风管的边长,m 。

因此,圆形风管的单位长度摩擦阻力22v D R m (5—6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21D K (5—7)式中K ——风管内壁粗糙度,mm ;Re ——雷诺数。

vd Re(5—8) 式中υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

(完整版)管道阻力的基本计算方法.doc

(完整版)管道阻力的基本计算方法.doc

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时 (如三通、弯头等 ),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:v2R m4R s 2 (5— 3)式中Rm——单位长度摩擦阻力,Pa/m;υ——风管内空气的平均流速,m/ s;ρ——空气的密度,kg/ m3;λ——摩擦阻力系数;Rs——风管的水力半径,m。

对圆形风管:R s D4 (5— 4)式中D——风管直径, m。

对矩形风管R sab2(a b) (5— 5)式中a, b——矩形风管的边长, m。

因此,圆形风管的单位长度摩擦阻力R mv2D 2 (5— 6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:1 2 lg( K 2.51 )3.7D Re (5— 7)式中K ——风管内壁粗糙度,mm;Re——雷诺数。

Re vd(5—8)式中υ——风管内空气流速,m/ s;d——风管内径,m;ν——运动黏度,m2/ s。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5— 2 是计算圆形钢板风管的线解图。

它是在气体压力B=101. 3kPa、温度 t=20 ℃、管壁粗糙度K = 0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/ d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力 4 个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图 5— 2 圆形钢板风管计算线解图[例 ]有一个10m长薄钢板风管,已知风量L = 2400m3/ h,流速υ= 16m/ s,管壁粗糙度 K = 0. 15mm,求该风管直径 d 及风管摩擦阻力R。

管道摩擦阻力计算

管道摩擦阻力计算

管道摩擦阻力计算管道摩擦阻力可以分为两个部分:一部分是由于液体与管壁之间的摩擦力造成的阻力,另一部分是由于液体与管道内的流体之间的摩擦力造成的阻力。

计算管道摩擦阻力需要考虑流体的流动性质、管道的几何形状以及管壁的粗糙度等因素。

f=(λ*L*V^2)/(2*D*g)其中,f是单位长度的摩擦阻力,λ是摩擦阻力系数,L是管道长度,V是流体速度,D是管道直径,g是重力加速度。

摩擦阻力系数λ是根据实际情况进行测定的,它与流体的黏度、管道壁面的粗糙度以及管道的几何形状有关。

一般来说,管道摩擦阻力系数可以通过图表或经验公式得到。

根据实际情况可能需要进行实验测量或查阅相关文献来获取准确的摩擦阻力系数。

在实际应用中,需要根据具体的管道系统参数来计算摩擦阻力。

首先需要确定管道的几何形状和尺寸,包括管道的直径、长度以及管道径向的变化等。

然后需要确定流体的性质,主要包括流体的密度、动力黏度和流速等。

最后确定管道壁面的粗糙度,这可以通过表观粗糙度或雷诺数来确定。

在计算摩擦阻力时,需要注意以下几点:1.确保使用正确的单位。

通常使用国际单位制(SI)来进行计算,包括米、千克和秒等。

2.选择正确的公式和图表。

根据具体的情况选择适用的公式和图表进行计算和查阅。

3.考虑流量条件。

摩擦阻力与流体流速的平方成正比,因此流速的变化会对摩擦阻力产生重要影响。

4.考虑管道壁面的粗糙度。

管道壁面的粗糙度越大,摩擦阻力也越大。

通常可以使用平均粗糙度来进行计算。

除了管道摩擦阻力系数,还可以使用“摩阻因子”来描述管道摩擦阻力。

摩阻因子是指流体通过管道时所需施加的力与流体通过的管道长度之间的比值。

在管道系统设计和运行中,减小管道摩擦阻力可以提高流体输送的效率。

通过优化管道的几何形状、选择合适的管材和减小管壁的粗糙度等措施可以减小管道摩擦阻力。

此外,根据实际工况和要求进行合理的管道尺寸选择和调整,也是减小管道摩擦阻力的一个重要手段。

总之,管道摩擦阻力的计算是设计和运行管道系统中的一个重要内容。

管道阻力计算

管道阻力计算

第三节 管道阻力空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。

对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。

对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。

因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。

υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K=0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。

管道摩擦阻力计算

管道摩擦阻力计算

少距离输火管讲火力估计公式的采用之阳早格格创做 1. 时常使用的火力估计公式:供火工程中的管讲火力估计普遍均依照匀称流估计,暂时工程安排中一致采与的管讲火力估计公式有:达西(DARCY )公式:gd v l h f 22**=λ (1) 开才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C l Q h h f ***= (3) 式中hf------------沿程益坏,mλ―――沿程阻力系数l――管段少度,md-----管讲估计内径,mg----沉力加速度,m/s2C----开才系数i----火力坡落;R―――火力半径,mQ―――管讲流量m/s2v----流速 m/sCn----海澄――威廉系数其中大西公式,开才公式对付于管讲战明渠的火力估计皆适用.海澄-威廉公式做用参数较小,动做一个保守公式,正在海内中被广大用于管网系统估计.三种火力估计公式中,与管讲内壁细糙程度相闭的系数均是做用估计截止的要害参数.2.典型中火力估计公式的确定3.查阅室中给火安排典型及其余各管讲安排典型,针对付分歧的安排条件,推荐采与的火力估计公式也有所好别,睹表1:表1 各典型推荐采与的火力估计公式4. 公式的适用范畴:3.1达西公式达西公式是鉴于圆管层流疏通推导出去的匀称流沿程益坏一致估计公式,该式适用于所有截里形状的光润大概细糙管内的层流战紊流.公式中沿程阻力系数λ值的决定是火头益坏估计的闭键,普遍采与体味公式估计得出.舍维列妇公式,布推建斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对付工业管讲条件估计λ值的出名体味公式.舍维列妇公式的导出条件是火温10℃,疏通粘度1.3*10-6 m2/s,适用于旧钢管战旧铸铁管,紊流过度区及细糙度区.该公式正在海内使用教广.柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量细糙度,Re 为雷诺数)是根据洪量工业管讲考查资料提出的工业管讲过度区λ值估计公式,该式本量上是泥古推兹光润区公式战细糙区公式的分离,适用范畴为4000<Re<108.洪量的考查截止标明柯列勃洛克公式与本量商用圆管的阻力考查截止切合良佳,不但是包罗了光润管区战真足细糙管区,而且覆盖了所有过度细糙区,该公式正在海中得到及为广大的应用.布推建斯公式25.0Re 316.0=λ是1912年布推建斯归纳光润管的考查资料提出的,适用条件为4000<Re<105,普遍用于紊流光润管区的估计.3.2 开才公式该式于1775年由CHEZY 提出,本量是达西公式的一个变形,式中开才系数C 普遍由体味公式y e R nC *=1估计得出,其中61=y 时称为曼宁公式,y 值采与)1.0(75.013.05.2---=n R n y (n 为细糙系数)公式估计时称为巴浦洛妇斯基,那二个公式应用范畴均较广.便开才公式自己而止,它适用于有压大概无压匀称震动的各阻力区,但是由于估计开才系数C 的体味公式只包罗反映管壁细糙情景的细糙系数n 战火力半径R,而不包罗流速及疏通年度,也便是与雷诺数Re 无闭,果此该式普遍仅适用于细糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛妇斯基公式的适用条件为0.1m≤R≤3m;0.011≤n≤0.04.3.3 海澄-威廉公式是正在曲径≤3.66m 工业管讲的洪量尝试数据前提上建坐的出名体味公式,适用于常温的浑火输收管讲,式中海澄-威廉系数Ch 与分歧管材的管壁表面细糙程度有闭.果为该式参数与值简朴,易用,也是得到广大应用的公式之一.此公式适用范畴为光润区至部分细糙度区,对付应雷诺数Re 范畴介于104-2*106.通过对付各相闭典型所推荐估计公式的比较,除混凝土管仍旧推荐采与开才公式中,其余管材大多推荐采与达西公式.正在新版《室中给火安排典型》中与消舍维列妇公式的相闭条文,抽象采与达西公式,但是已精确央供估计λ值采与的体味公式.由于舍维列妇公式是建坐正在对付旧钢管及旧铸铁管钻研的前提上,然而当前普遍采与的钢大概铸铁材量管讲,内壁常常需举止防腐内衬,通过涂拆的管讲内壁表面均比旧钢管,旧铸铁管内壁光润得多,也便是Δ值小得多,采与舍维列妇公式隐然也便会爆收较大得估计缺点,该公式得适用范畴相映较窄.通过内衬得金属管讲采与柯列勃洛克公式大概开才公式估计更为合理.PVC-U,PE等塑料管讲,大概者内衬塑料得金属管讲,果为其内壁Δ值很矮,普遍处于0.0015-0.015,管讲流态大多位于紊流光润区,采与适用光润区得布推建斯公式以及柯列勃洛克公式普遍均不妨得到与本量交近得估计截止.果此,《埋天硬散氯乙密给火管讲工程技能规程》及《埋天散乙密给火管讲工程技能规程》中对付塑料管讲火力估计公式均是合理得且与《室中给火安排典型》本去不冲突.海澄-威廉公式不妨适用于百般分歧材量管讲得火力估计,其中海澄-威廉系数Ch得与值应根据管材决定.对付于内衬火泥砂浆大概者涂拆有比较光润得内防腐涂层得管讲,其海澄-威廉系数该当参照类似工程体味参数大概者真测数据,合理与用.果此,无论采与达西公式,开才公式大概者海澄-威廉公式估计,分歧管材得好别均表示正在 管内壁表面当量细糙程度得分歧上,各公式中与细糙度相闭系数得与值是做用估计截止得要害果素.值得一提得是,共种材量管讲由于采与分歧得加工工艺,其内表面得细糙度也大概有所好别,那一果素正在安排历程种也应沉视(时常使用管材得细糙度系数参照值睹表2) 表2 罕睹管材细糙度相闭系数参照值根据雷诺数估计公式v Re ,雷诺数与流速v,管径d 成正比,与疏通粘度成反比,果此对付应管讲得分歧安排条件应付于所使用估计公式得适用范畴举止复核.包管估计得准确性. 大多道供火工程得安排依照火温10℃,疏通粘度 1.3*10-5 m2/s 得条件思量,果此雷诺数本量受流速及管讲心径得做用.以塑料管讲为例,正在仄常安排流速范畴条件下,管讲内径大于100mm 时,虽然管讲仍旧处于紊流光润区,但是其雷诺数Re>105,也便是道已经超出了布推建斯公式得适用范畴,而且缺点大小与雷诺数成正比.对付PVC-U 管,采与布推建斯公式与柯列勃洛克公式对付比估计,当管内径为500mm ,流速1.5 m/s时,采与布推建斯公式得出得火力坡落比柯列波列克得截止矮11%以上.采与《埋天硬散氯乙密给火管讲工程技能规程》推荐得建正公式与柯式对付比估计,建正公式估计截止,小心径管偏偏仄安,中等心径与柯式切合较佳,大心径管得背缺点达5%以上.果此笔者认为,大心径塑料管大概采与塑料内衬管不宜采与布推建斯公式估计,而更宜于采与如柯列波洛克公式等适用条件更宽得其余体味公式,大概应通过考查等对付其举止建正.与上述情况类似,采与开才公式估计时,如果管讲内径大于2m 时则不采与曼宁公式估计开才系数.如果采与巴甫洛妇斯基公式,其适用管径不妨达到12m,对付普遍输火工程管讲已真足脚够了.海澄-威廉公式的数据前提是WILLIAMS战HAZEN正在洪量工业管讲现场大概考查丈量大概得的.该公式果为简朴易用,被广大使用正在管网火力估计中,海内中很多管讲火力估计硬件均采与该公式体例.由此可睹,对付于心径大于2m得管讲应尽管预防采与海澄-威廉公式估计以策仄安.6.值得提出得是,上述所有火力估计公式中采博得管径均为估计内径,百般管讲均应采与管讲洁内空曲径估计,对付于采与火泥砂浆内衬得金属管讲应试虑内衬层薄度得做用.大心径管讲估计应尽管预防采与海澄-威廉公式,提议采与柯列勃洛克公式估计,洪量考查截止道明该公式估计截止与本量工业管讲切合性佳,火力条件适用范畴广,虽然使用该式需要举止多次迭代估计才搞得到λ值,较为贫苦,不过使用估计机简朴编程既能便当天得到较为准确天截止,脚工估计时也不妨通过查表大概者查询蓦迪图辅帮估计.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档长距离输水管道水力计算公式的选用常用的水力计算公式:.1目前工程设计中普遍采用的管道水力计供水工程中的管道水力计算一般均按照均匀流计算,:
算公式有DARCY)公式:达西(2v?l??h 1)(f g?d2 chezy)公式:谢才(v?C?R?i(2)
海澄-威廉(HAZEN-WILIAMS)公式:
1.852?l?10.67Qh? 3)(f1.8524.87C?d h式中h------------沿程损失,m
fλ―――沿程阻力系数
l――管段长度,m
d-----管道计算内径,m
2 m/sg----重力加速度,
C----谢才系数
i----水力坡降;
R―――水力半径,m
2 m/sQ―――管道流量v----流速m/s
C----海澄――威廉系数n其中大西公式,谢才公式对于管道和明渠的水力计算都适用。

海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。

三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。

2.规范中水力计算公式的规定
3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:
表1 各规范推荐采用的水力计算公式
精品文档.
4.公式的适用范围:
3.1达西公式
达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截λ值的确定是水头损失计面形状的光滑或粗糙管内的层流和紊流。

公式中沿程阻力系数算的关键,一般采用经验公式计算得出。

舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。

-62舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10 m/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广.
1?2.51?lg()2??? (Δ为当量粗糙度,Re为雷诺数柯列勃洛可公式)是 3.7d??Re 根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上
精品文档.
精品文档8大量的试是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<10.不仅包,验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好该公式在国外得到,含了光滑管区和完全粗糙管区,而且覆盖了整个
过渡粗糙区.
及为广泛的应用316.0?适用,是1912年布拉修斯总结光滑管的试验资料提出的
布拉修斯公式?25.0Re5. 条件为4000<Re<10一般用于紊流光滑管区的计算, 3.2 谢才公式一般实际是达西公式的一个变形,式中谢才系数C该式于1775年由CHEZY提出,11y用,y值采时称为曼宁公式由经验公式出计算得,其中?ey?CR?
n6(n为粗糙系数)公式计算时称为巴浦洛夫斯)1R(n?0.13y?2.5n?0.?0.75基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的
各阻力区,但由于计算谢才系数C的经验公式只包括反映管壁粗糙状况的粗糙系数n和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基
公式的适用条件为0.1m≤R≤3m;0.011≤n≤0.04.
3.3 海澄-威廉公式是在直径≤3.66m工业管道的大量测试数据基础上建立的著
名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch与不同管材的
管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re范围介于46.
-2*1010通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢
才公式外,其它管材大多推荐采用达西公式.
在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢
管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常
需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式
得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.
PVC-U,PE等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处
于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公
式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中
对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾.
海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数
Ch得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂
层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.
因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均
表现在管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值
是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工
精品文档.
精品文档
工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2)
表2 常见管材粗糙度相关系数参考值
5.管径对选择计算公式得影响
Vd Re,雷诺数与流速v,管径d成正比,根据雷诺数计算公式与运动粘度成反比,因此对应v管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.
-52/s得条件考虑,运动粘度1.3*10因此雷诺数实际受m大多说供水工程得设计按照水温10℃,流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm5,Re>10也就是说已经超出了布拉修斯公式得,虽然管道仍然处于紊流光滑区,但其雷诺数时适用范围,而且误差大小与雷诺数成正比.对PVC-U管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s时,采用布拉修斯公式得出得水力坡降比柯列波列《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公采用11%以上.克得结果低式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.
与上述情况类似,采用谢才公式计算时,如果管道内径大于2m时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.
海澄-威廉公式的数据基础是WILLIAMS和HAZEN在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m得管道应尽量避免采用海澄-威廉公式计算以策安全.
6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.
大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范
精品文档.
精品文档
围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.
精品文档.。

相关文档
最新文档