基于虚拟试验的轿车正面碰撞安全性分析(新版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 安全管理 )

单位:_________________________

姓名:_________________________

日期:_________________________

精品文档 / Word文档 / 文字可改

基于虚拟试验的轿车正面碰撞

安全性分析(新版)

Safety management is an important part of production management. Safety and production are in

the implementation process

基于虚拟试验的轿车正面碰撞安全性分析

(新版)

一、引言

长期以来,轿车安全性能一直是汽车工业界非常关注的课题。用实车碰撞试验可测定轿车安全性能,但因其需在实物样机上安装各种测试设备,进行实地试验,成本高、时间长,所以探索新的试验方法一直是汽车工业界所追求的目标。随着计算机技术的发展和各种应用软件的出现,人们可以用计算机来模拟轿车碰撞试验。利用虚拟现实技术设计的汽车虚拟试验场可逼真地实现试验过程,通过交互改变汽车设计参数、试验道路环境,可以验证设计方案,从而达到缩短设计周期、降低开发成本、提高产品质量的目的。与传统的实车试验相比,应用虚拟试验场具有快速、逼真、可重复性等特点,可无危险、无损坏地进行碰撞、翻倾等极限试验。这种方法

虽然不能完全取代实际的轿车碰撞试验,但却使人们能够根据计算机模拟试验的结果更好地、更精确地安排实际试验,以减少试验次数和时间,降低试验成本。

正面碰撞是汽车碰撞事故中最多、对人体危害最大的碰撞形式,也是国际上许多安全法规中规定的小型客车和轿车的最主要标准试验。本文选取国产燃料电池轿车“超越二号”为虚拟试验对象,模拟其正面碰撞,从而预测和评价该车型的被动安全性,对该车型安全设计的改进具有指导作用。由于燃料电池轿车目前仍属于前‘瞻型产品,其高昂的制造成本决定了暂时无法、进行实车碰撞试验,而虚拟试验场由于其无危险、无损坏、可重复性等特点正是非常合适的试验方法。

由于虚拟现实系统需要实时计算,对计算速度要求较高。因此,实现虚拟试验场景及仿真必须要有相应的软硬件支持,本试验采用的操作系统为UNIX(多任务、多线程),硬件为双CPU高速SCSI接口硬盘的HP可视化工作站。

作者利用HYPERMESH软件对整车模型进行网格划分,建立了车

辆的有限元模型,用PAM-CRASH软件建立了虚拟试验场,并模拟了正面碰撞,把分析的数据传送到虚拟环境中,驱动场景中的车辆使之形象、逼真地实现试验。

二、虚拟试验对象的建立

由于计算技术的局限性,在早期的计算机模拟碰撞试验中一般只独立模拟乘员的运动响应或者整车的变形吸能,而很少将两者结合起来研究。随着虚拟现实技术的发展,计算机模拟碰撞试验的能力不断提高,因此本文要将乘员及约束系统模型导入到“超越二号”燃料电池轿车整车碰撞计算模型中,其中主要包括仪表板、转向系统、座椅、人体模型以及安全带等,并将两者结合起来作为一个整体进行研究,这样建立的虚拟试验对象更加符合实际情况,从而得出更可信的结果。

(一)建立燃料电池轿车的整车有限元模型

1.料电池轿车车身建模

燃料电池轿车车身CAE建模使用ALTAIRHYPERMESH软件。

由于白车身零件基本上是薄壁板材结构,所以单元类型选择为

壳单元,燃料电池车身模型总共划分为177298个单元,其中燃料电池动力系统零部件及其车架、连接件模型单元数量为76082个(图1)。

由于研究的是整车的碰撞特性,因而单元划分原则上采用四边形单元。但是车身零部件结构形状非常复杂,仅使用规则的四边形单元会产生在边界和结构形状突变处的单元过于狭小,长宽比过大,所以在定义网格时,允许在局部(非平面处)使用内角大于45°的三角形单元,三角形单元数占单元总数的比值应尽量小,控制在10%左右,否则将会影响计算精度。单元边长为10~30MM,如果值太小会减小时间步长,增加计算时间,

2.材料定义

由于在整车的正面碰撞模拟中,燃料电池汽车前舱中的动力系统零件的质量会影响整车质量的分布和转动惯量,因此需要进行质量的重新分配和局部配重,力求使模型的质量和重心位置与实际相差无几。根据要求,钣金件通常使用ST13及ST14号材料,属于PAM-GENERIS中的103号弹性材料。燃料电池动力系统中,电机为刚体,对于高压接线盒、低压接线盒以及电动转向泵等材料为塑料的

零部件,选用ABS塑料材料。

3.刚体的定义

刚体用于碰撞中变形很小或不变形的部分。如在正面碰撞模型中,可将BA立柱之后的部分定义成刚体。这样可大大节省计算时间,提高计算效率。

4.连接的模拟

动力系统零部件通过螺栓连接在车架上,在碰撞模拟中采用杆单元连接点焊连接。零部件与车架或梁的螺栓连接其实也可以简化为杆单元连接焊点的方式,因为螺栓的失效表现为剪切和拉断,只要定义此处焊点在这些方向上的失效就能代替螺栓连接。

5.接触定义

将整车和车架模型分别定义为36号自接触(SELFCONTACT),对于接触参数的定义,如穿透厚度、惩罚系数、摩擦系数等的定义,则均通过多次模拟结果与试验数据对比获得。

(二)建立乘员约束系统的有限元模型

计算、模型中主要定义材料、刚体、爆点、接触几项。

1.材料(MATERIAL)

分别对仪表板、转向系统零件以及座椅、假人进行材料定义。其中假人材料为PAM-SAFE软件中自动生成的,仪表板材料定义为脆性材料,转向系统零件材料为铁。

2.刚体(RIGIDBODY)

由于在碰撞过程中座椅骨架的变形很小,因此将座椅骨架部分定义为了刚体。

3.焊点(SPOTWELD)

根据实际情况,将导入的转向系统和仪表板与整车连接起来。

4.接触(CONTACTINTERFACE)

由于导入了仪表盘、转向系统以及含约束系统的座椅假人模型,在碰撞过程中,人体由于惯性作用力,会和乘员舱内部件发生二次碰撞,为了能较好地模拟出在碰撞过程中人体运动响应,我们分别以下三类接触类型的共8对接触对(CONTACTPAIR)。

(1)点对面的接触

在PAM-GENERIS中提供了一种点对面的接触类型,即1#接触。

相关文档
最新文档