组合数学第四章习题解答35页PPT
组合数学-卢开澄
第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{{1,6},{2,7},{3,8},…,3,8},…,3,8},…,{45,50} {45,50} ) (b) 45´5+(4+3+2+1) = 235 ( 1®2~6, 2®3~7, 3®4~8, …,45®46~50, 46®47~50, 47®48~50, 48®49~50, 49®50 ) 2.(a) 5!8! (b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)! (c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20! 5. 因首数字可分别为偶数或奇数,知结果为因首数字可分别为偶数或奇数,知结果为 2´5´P(8,2)+3´4´P(8,2). 6. (n+1)!-1 7. 用数学归纳法易证。
用数学归纳法易证。
8. 两数的公共部分为240530, 故全部公因数均形如2m 5n ,个数为41´31. 9. 设有素数因子分解设有素数因子分解 n=p 1n 11p 2 n 22…p k nk k , 则n 2的除数个数为的除数个数为( 2n 1+1) (2n 2+1)…(…(2n 2n k +1). 10.1)用数学归纳法可证n 能表示成题中表达式的形式;能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。
;这说明表达式是唯一的。
11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。
验证等式成立。
组合数学-卢开澄-习题答案
第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 48→49~50, 49→50 ) 2.(a) 5!8! (b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)! (c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 因首数字可分别为偶数或奇数,知结果为 2⨯5⨯P(8,2)+3⨯4⨯P(8,2).6. (n+1)!-17. 用数学归纳法易证。
8. 两数的公共部分为240530, 故全部公因数均形如2m 5n ,个数为41⨯31. 9. 设有素数因子分解 n=p 1n 11p 2 n 22…p k n k k , 则n 2的除数个数为( 2n 1+1) (2n 2+1) …(2n k +1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。
11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。
组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。
12.考虑,)1(,)1(1010-=-=+=+=∑∑n nk k k n nnk kk nx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk k n n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。
组合数学第四篇
证 (1)C1(2) C…2 (n) C即n
1个 2个
n个
_∧_
_∧_
____∧____
/\
/\
/
\
(·)…(·)(··)…(··)… (·…·)…(·…·)
\______ ______/ \/
C1个
\________ ________/ \/
C2个
\________ ________/ \/
Cn个
令 P={p1,p2,…,pm},(是集合不一定是群.)
令解G)ii=≠Zj,kGpi∩i,i=G1j=,2Φ,…. G,m1+.GG2i包+…含·+G于m·G包(G含·关于于GZ.k的陪集分
-1
另一方面,任意P∈G. k→Paj→Pkj
PPj ∈-1 Zk,
P∈ZkPj=Gj.
4.4 Burnside引理
(2)k不动置换类 设G是[1,n]上的一个置换群。G≤Sn.
K∈[1,n]G中使k保持不变的置换全体,称 为k不动置换类,记做Zk.
4.4 Burnside引理
定理 置换群G的k不动置换类Zk是G的一个
子群。
封闭
性:k→k→k,k P1 P2 k. P1P2 结合性:自
然。
有单位元:G的
单位元属于Zk.
含目标集元素k的在G作用下的等价类也 称为含k的轨道。
4.4 Burnside引理
定理 设G是[1,n]上的一个置换群,Ek是[1,n]在G 的作用下包含k的等价类(轨道),Zk是k不动置换 类。有|Ek||Zk|=|G|.
证 设|Ek|=m,Ek={a1(=k),a2,…,am},于是存在pi满足 a1→pi ai,i=1,2,…,m.
组合数学(卢开澄)第4章课后习题答案
组合数学(卢开澄)版 第四章答案4.1,若群G 的元素a 均可表示为某一个元素x 的幂,即a=x m,则称这个群为循环群,若群的元素交换律成立。
即a ,b ∈G 满足,a ·b=b ·a证明:令a= x m ,b= x n ,则a ·b= x m ·x n = x n ·x m=b ·a ,因此是阿贝尔群4.2若x 是群G 的一个元素,存在一最小的正整数m ,使x m=e ,则称m 为x 的阶,试证: C={e,x,x 2,…x m-1}是G 的一个子群。
证明:一个群G 的不空集合H 作成G 的一个子群的充分必要条件是:1,a b H ab H a H a H-∈⇒∈∈⇒∈,a b 是H 的任意元素。
由题意知C 中的任意两个元素如,a b C ∈则ab C ∈;a C ∈则1a C -∈。
所以21{,,,,}m C e x x x -= 是G 的一个子群。
4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n 。
证明; 因为G 中每有元素都能生成一个与元素等阶的子群,子群的阶当然不能超过群G 的阶;所以则G 的所有元素的阶都不超过n 。
4.4若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂: a 1 ,a 2 。
a n 的元素a 的数目。
证明: 若一个群G 的每一个元都是G 的某一固定元a 的乘方,我们就把G 叫做循环群;我们也说,G 是由元a 所生成的,并且用符号()G a =来表示。
所以就有一个这样的a ,即就有一个母元素。
4.5 试证循环群G 的子集也是循环群根据子群的定义,循环群G 的子群应满足循环群G 所满足的所有运算。
所以其子群页应该是循环群。
4.6若H 是G 的子群,x 和y 是G 的元素,试证xH ∩yH 或为空,或为xH=yHx,y ∉G若 xH ⋂yH ≠Φ可知:存在g ∈xH,g ∈yH 由g ∈xH,知存在h 1∈H,有g=xh 1;由g ∈yH,知存在h 2∈H,有g=yh 2; 从而有 xh1=yh2 ⇒x=y(h 2h 11-)------------式1任取z ∈xH,则存在h ∈H,有z=xh-------------------式2将-式1代入-式2: z=y(h 2h 11-)h=y(h 2h 11-h)--------- -式3H 是子群,有h 1,h 2,h ∈H 可推知,h 2h 11-h ∈H从而 y(h 2h 11-h) ∈yH.再由式3知 z ∈yH,这样我们就可推知xH ⊆yH 同理可推得 yH ⊆xH综上知道 yH=xH4.7若H 是G 的子群,H =k ,试证:xH =k ,其中x ∈GH =k设 H={n h h h h 32,1,} 同时对于i,j ∈{k ,3,2,1} 当i ≠j 时,有ah i≠ah j(否则,若有ah i =ah j ,由消去律得h i =h j ,矛盾) 表明{}n h h h h 32,1, 为n 个不同元而aH 恰有这些元组成, 故 aH =k, ∴aH =H4.8有限群G 的阶为n ,H 是G 的子群,则H 的阶必除尽G 的阶。
组合数学第4章答案
组合数学第4章答案4.1证明所有的循环群是ABEL 群 证明:nn ,,**×x ,x m nm na b G G a b b a x xa b b a ++∈==∴=mmm 循环群也是群,所以群的定义不用再证,只需证明对于任意是循环群,有成立,因为循环群中的元素可写成a=x 形式所以等式左边x 等式右边x =,,即所有的循环群都是ABEL 群。
4.2x 是群G 的一个元素,存在一最小的正整数m ,使x m =e ,则称m 为x的阶,试证:C={e,x,x 2, …,x m-1} 证:x 是G 的元素,G 满足封闭性所以,xk 是G 中的元素 C ∈G再证C 是群:1、x i , x j ∈C , x i ·x j = x i+j 若i+j<=m-1,则x i+j ∈C若i+j>m,那么x i+j =x m+k =x m ·x k =x k ∈C 所以C 满足封闭性。
2、存在单位元e.3、显然满足结合性。
4、存在逆元, 设x a ·x b =e=x m x b =x m-ax a ∈C, (x a )-1= x b =x m-a4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n.证明:设G 是阶为n 的有限群,a 是G 中的任意元素,a 的阶素为k , 则此题要证n k ≤首先考察下列n+1个元素a a a a a n 1432,....,,,+由群的运算的封闭性可知,这n+1个元素都属于G ,,而G 中仅有n 个元素,所以由鸽巢原理可知,这n+1个元素中至少有两个元素是相同的,不妨设为aaji i+=(n j ≤≤1)aa ajii*=由群的性质3可知,a j是单位元,即a j=e ,又由元素的阶数的定义可知,当a 为k 阶元素时a k=e ,且k 是满足上诉等式的最小正整数,由此可证n j k ≤≤4.4 若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂:a,a2……..an解:设n=p 1a1…….p k ak ,共n 个素数的乘积,所以群G 中每个元素都以用这k 个素数来表示,而这些素数,根据欧拉定理,一共有 Φ(n)=n(1-1/p 1)………(1-1/p k )所以群G 中母元素的数目为n(1-1/p 1)………(1-1/p k )个. 4.5证明循环群的子群也是循环群证明:设H 是G=<a>的子群,若H=<e>,显然H 是循环群,否则取H 中最小的正方幂元m a ,下面证明m a 是H 的生成元,易见m a ⊆H ,只要证明H 中的任何元素都可以表成m a 的整数次方,由除法可知存在q 和r,使得l=qm+r,其中0≤r ≤m-1,因此有r a =qm l a -,因为m a 是H 中最小的正方幂元,必有r=0,这就证明出la=mq a }{m a ∈证明完毕。
组合数学第四版卢开澄标准答案-第四章
习题四4.1.若群G的元素a均可表示为某一元素x的幂,即a= x m,则称这个群为循环群。
若群的元素交换律成立,即a , b∈G满足a⋅b = b⋅a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。
[证].设循环群(G, ⋅)的生成元是x0∈G。
于是,对任何元素a , b∈G,∃m,n∈N,使得a= x0m , b= x0n ,从而a⋅b = x0m⋅x0n= x0m +n (指数律)= x0n +m (数的加法交换律)= x0n⋅x0m(指数律)= b⋅a故⋅运算满足交换律;即(G, ⋅)是交换群。
4.2.若x是群G的一个元素,存在一个最小的正整数m,使x m=e,则称m为x的阶,试证:C={e,x,x2, ⋯,x m-1}是G的一个子群。
[证].(1)非空性C ≠∅:因为∃e∈G;(2)包含性C⊆G:因为x∈G,根据群G的封闭性,可知x2, ⋯,x m-1,(x m=)e∈G,故C⊆G;(3)封闭性∀a , b∈C⇒ a ⋅b∈C:∀ a , b∈C,∃k,l∈N (0≤k<m,0≤l<m),使a = x k, b = x l,从而a ⋅b = x k⋅ x l = x(k+l) mod m∈C(因为0 ≤ (k+l) mod m < m) ;(4)有逆元∀a ∈C⇒ a -1∈C:∀ a ∈C,∃k∈N (0≤k<m),使a = x k, 从而a -1= x m-k∈C(因为0 ≤m-k < m) 。
综合(1) (2) (3) (4),可知(C, ⋅)是(G, ⋅)的一个子群。
4.3.若G是阶为n的有限群,则G的所有元素的阶都不超过n。
[证].对任一元素x∈G,设其阶为m,并令C={e,x,x2, ⋯,x m-1},则由习题4.2.可知(C, ⋅)是(G, ⋅)的一个子群,故具有包含性C⊆G。
因此有m = |C| ≤ | G | = n所以群G的所有元素的阶都不超过n。
《组合与组合数公式》课件
进阶练习题
题目4
在7个不同元素中取出5个 元素有多少种不同的取法 ?
题目5
从8个人中选出3个人来组 成一个小组,其中某个人 必须被选中,有多少种不 同的选法?
题目6
从10个不同的元素中取出 4个元素的组合数是多少?
答案解析
题目1答案
$C_{5}^{3} = frac{5!}{3!2!} = 10$种不同的 选法。
组合数的性质在计算中的应用
利用组合数的性质简化计算
通过组合数的性质,可以将复杂的组合数计算转化为简单的计算,例如利用性质 公式和递推公式简化计算。
解决实际问题
组合数在现实生活中有着广泛的应用,例如在概率论、统计学、计算机科学等领 域中都有涉及。通过掌握组合数的性质,可以更好地解决实际问题。
03
组合数公式的推导
题目2答案
$C_{5}^{3} = frac{5!}{3!2!} = 10$种不同的组 合数。
题目3答案
$C_{4}^{2} = frac{4!}{2!2!} = 6$种不同的取法 。
题目4答案
$C_{7}^{5} = frac{7!}{5!2!} = 21$种不同的取法。
题目5答案
$C_{8}^{3} - C_{7}^{2} = 56 - 21 = 35$种不同 的选法。
组合数的性质
总结词
组合数具有一些重要的性质,包括组合数的 对称性、组合数的递推关系、组合数的性质 等。
详细描述
组合数具有对称性,即C(n, m) = C(n, nm),这意味着从n个不同元素中取出m个元 素和从n个不同元素中取出n-m个元素的方 式数量是相等的。此外,组合数还具有递推 关系,即C(n, m) = C(n-1, m-1) + C(n-1,
6.2.4组合数PPT【新教材
新教材·新思维 高中数学
在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3 件. (1)有多少种不同的抽法? (2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?
小结
三、课堂小结 1.牢记2个知识点 (1)组合数的概念;(2)排列与组合之间的联系与区别. 2.掌握2种方法 (1)解简单的组合数应用题的方法; (2)解双重元素的组合数问题的方法.
新教材·新思维 高中数学
新教材·新思维 高中数学
谢谢大家!
6.2.4组合数
新教材·新思维 高中数学
思维自疑问和惊奇开始——亚里士多德
学习目标
新教材·新思维 高中数学
A. 理解并掌握组合、组合数的概念,掌握组合与排列 之间的联系与区别.
B.熟练掌握组合数公式及组合数的两个性质,并运用 于计算之中.
C.能够运用排列组合公式及计数原理解决一些简单 的应用问题,提高学生的数学应用能力与分析问题、 解决问题的能力.
问题探究
ห้องสมุดไป่ตู้
新教材·新思维 高中数学
组合数与组合数公式 1.组合数的定义:从n个不同元素中取出m(m≤n)个元
素的所有不同组合的个数, 叫做从n个不同元素中取出m个元素的组合数, 用符号 表示.
新知探究
新教材·新思维 高中数学
问题3:前面已经提到,组合和排列有关系,我们能否利用这种 关系,由排列数来求组合数呢?
组合数学第四章习题解答
4.23 凸多面体中与一个顶点相关的各角之和与2 的差称为该顶点的欠角,证明凸多面体各顶点欠 角之和为4
证:设V,S,E分别为顶点集,面集,边(棱)集。 由欧拉定理 |V|+|S|-|E|=2. 设aij为与顶点vi, 面Sj为相关的面角,ej为Sj的的边数, 给定Sj则∑aij=(ej-2)π 欠角和为∑(2π-∑aij)=∑2π-∑ ∑aij =2|V|π-∑ ∑aij=2|V|π-∑(ej-2)π =2|V|π-∑ejπ+2|S|π =2|V|π+2|S|π-2|E|π=4π
G×G’的单位元素是(e,e’),试证G×G’是群 (1)封闭性显然 (2)结合律显然 (3)逆元素显然
(4)单位元显然
4.27 一个项链由7颗珠子装饰成的,其中两颗珠 子是红的,3颗是蓝的,其余两颗是绿的,问有多少 种装饰方案,试列举之。
G (1)(2)(3)(4)(5)(6)(7) (1234567),(1357246), (1473625),(1526374), (1642753),(1765432)
4.24 足球由正五边形与正六边形相嵌而成 (a)一个足球由多少正五边形与正六边形组成 (b)把一个足球所有的正六边形都着以黑色,正五 边形则着以其它各色,每个正五边形着色各不相 同,有多少种方案?
4.25 若G和G是两个群
G G ' {( g ,g ')g G ,g ' G ' }, ( g ,g ')( g ,g ') ( g g ,g 'g '), 1 1 2 2 1 2 1 2
4.21 在正四面体的每个面上都引一条高,有多少 种方案?
解:除了绕顶点-对面的中心轴旋转均不会 产生不变的图象外, 绕其他轴的旋转相当于正 4面体的面3着色。参照讲义4.6例3可得不同的 方案数为 M=[34+3·32]/12=9
组合数学(第4章4.3)
2021/4/9
23
定理4.5.2 令(X, )是一个有限偏序集, 则 存在X上的线性序, 使得(X, )是(X, ) 的一个扩展.
证明:偏序的线性扩展算法,对集合
X={x1,x2,…,xn}的排序问题,满足:若xi xj, 则排序xi先于 xj 。
2021/4/9
2021/4/9
26
例4:X={1,2,3,4,5,6,7,8}, “”定义为整除 关系, 确定(X, )的一个线性扩展.
8
4
6
2
35
7
1
2021/4/9
27
等价关系与划分
定义6: 对于X中每一个元素a, a的等价类 定义为所有与a等价的元素构成的集合.记 为[a]={x x∈X , x~a }.
2021/4/9
2
4.4 生成r-组合
集合{1,2,3,4}的2-组合: {1,2}; {1,3}; {2,3}; {1,4}; {2, 4}; { 3,4}
字典序:令S={1,2,…,n}, 设A,B是S的两个r组合,若AB\AB中的最小整数属于A,则称 A先于B。
2021/4/9
3
S的r-组合可写成如下形式:
2021/4/9
8
字典序r-组合生成算法
初始: a1a2…ar=12…r 当a1a2…ar (nr+1) (nr+2)…n时,Do
1)确定最大整数k, 使得ak+1 n,且ak+1ai (i=1,2,…,r)
2) 用a1a2…ak-1 (ak+1)…(ak+rk+1)替换a1a2…ar.
2021/4/9
…
r)在始a,1a第2…r个ar后元面素存大在于an r1。ar 个组合,从a1a2…ar-1开
Richard组合数学第5版-第4章课后习题答案(英文版)
7365 412
73658412
8. (a) For a permutation of {1, 2, 3, 4, 5, 6} the corresponding inversion sequence
(b1, b2, b3, b4, b5, b6) satisfies 0 ≤ bi ≤ 6 − i for 1 ≤ i ≤ 6. The total number of inversions is
←− ←− ←− ←− ←− 12534 ←− ←− →− ←− ←− 12543 ←− ←− ←− ←− ←− 14523 ←−4 ←−1 →−5 ←−2 ←−3 →−4 ←−1 ←−5 ←−3 ←−2 ←−1 →−4 →−5 ←−3 ←−2 ←− ←− ←− →− ←− 13542 ←− ←− →− ←− →− 13524 ←− ←− ←− ←− ←− 31524 ←−3 ←−1 →−5 ←−4 ←−2
(c) The set {x6} corresponds to coordinate 7 6 5 4 3 2 1 0 entry 0 1 0 0 0 0 0 0
组合数学第四章习题解答
4.19 试说明S5群的不同格式及其个数, • 9.解:5的拆分共有:00005,00014,00023, 00113,00122,01112,11111共七种,根据讲义4.4 节定理1可得S5中: (1)5共轭类有5!/5!=1个置换; (1)1(4)1共轭类有5!/4=30个置换; (2)1(3)1共轭类有5!/(2· 3)=20个置换; (1)2(3)1共轭类有5!/(2!3)=20个置换; (1)1(2)2共轭类有5!/(2!2 )=15个置换; (1)3(2)1共轭类有5!/(3!2)=10个置换; (5)1共轭类有5!/5=24个置换; ∴共有不同格式7种,如上所示。
旋转 12345
12345 13524 14253 15432
5
2
翻转
12534 21345 32415 51423 41235
4
3
c ( a1 ) c(a2 ) 1 c ( ag ) l [m m ... m ] G
Байду номын сангаас
8( g r b y ) ]
3 3 3 3 2
1 P(G ) [( g r b y ) 6 6 ( g r b y ) 2 ( g 4 r 4 b 4 y 4 )] 24 3 ( g r b y ) 2 ( g 2 r 2 b 2 y 2 ) 2 6( g 2 r 2 b 2 y 2 )3 8( g 3 r 3 b3 y 3 ) 2 ]
G×G’的单位元素是(e,e’),试证G×G’是群 (1)封闭性显然 (2)结合律显然 (3)逆元素显然
(4)单位元显然
4.27 一个项链由7颗珠子装饰成的,其中两颗珠 子是红的,3颗是蓝的,其余两颗是绿的,问有多少 种装饰方案,试列举之。
组合数学第4章[生成排列与组合]PPT教学课件
2020/12/10
14
§4.2 生成组合
生成组合
4.2.1 基2算法 若S是n个元素的集合,元素为{xn-1,...,x1,x0}, 则生成组合就是生成S的所有2n个子集。 任一子集可以描述成:
(an-1,...,a1,a0)=an-1...a1a0 其中,ai为1或0,表示xi在或不在子集中。
于是S的全部子集可以用0~2n-1的整数来描 述,只要生成这些整数,也就得到了所有组合。
其中,0表示空集,2n-1表示S本身。
全排列生 成算法
2020/12/10
6
3. 直接生成全排列的算法
全排列生 成算法
[定义]对排列中的每个元素k,赋予其一
个方向:k 或 k 。如果一个整数k的箭头 指向一个与其相邻但比它小的整数,则
称k是活动的。
例如,对于:263154
只有6、3、5是活动的。
2020/12/10
7
显然:
全排列生 成算法
a1+a2+...+an 度量了排列的无序程度。
2020/12/10
11
全排列生
[例]31524的逆序列是1,2,0,1,0。 成算法
[结论]对于逆序列,显然有0≤ak≤n-k。且 任何一个排列都可确定一个逆序列。
[定理]若b1,b2,...,bn是满足0≤bk≤n-k的整数 序列,则存在{1,2,...,n}的唯一的一个排 列,其逆序列为b1,b2,...,bn 。
21
2020/12/10
4
{1,2,3}的排列
全排列生
1 2 3 成算法 2 31 31 2 32 1 13 2 2 13
2020/12/10
5
组合数学 答案 第四章作业
法1:(采用Burnsinde公式)
每个格子有两种颜色可以选择,且规定红为2,蓝为7,则该题可等同于在3X3的透明方阵里任选2格来着色,则共有C(9,2)以下36种可能方案:
因为,棋盘只能做刚体运动,
所以,当每个图都绕过中心点的轴按逆时针方向旋转00、900、1800、2700以及绕东西方向的中线、南北方向的中线、西北对角线和东北对角线进行翻转时,得到36种图像的又一种排列,分别讨论如下:
(C10C12)(C11)(C13C15)(C14)(C22C27)(C23)(C24C33)(C25C32)
(C26C31)(C28C30) (C29 ) (C34C36) (C35) =6
(7)西北对角线翻转时:
P7 = (C1C33) (C2C21) (C3C36) (C4C30) (C5C15) (C6C35) (C7C26) (C8) (C9C18)
(2)关于中心旋转正负720时:(12345)(15432),共轭
类2个,循环节数:1;
(3)关于中心旋转正负1440时,(13524)(14253),共轭
类2个,循环节数:1;
(4)关于xy对折,对应的置换分别为:(14)(23)(5),共轭类5个,循环节数:3;
则由Polya计数定理得:
L= 1/10 X (35+2X31+5X33)= 39
(C5C26)(C13C20)(C7C15)(C31C16)(C8)(C19) (C10C32) (C25C12)
(C11C29) (C22C27) (C14) (C23) = 4
(4)旋转2700时:
P4= (C1C18C36C24) (C2C21C35C6) (C3C9C33C34) (C4C17C30C28) (C5C20C26C13)
组合数学4 ppt课件
英文字母共有5个元音字母,每个位置有5种可
能共53种放置法,其余5位都是辅音有215种可
能,从而具有3个元音的单词数为:
2020/12/27
30
8 35325 13!(88 !3)!5325 1
同理,含有4个元音的单词数为
8 45424 14!(88 !4)!5424 1
含有 5
8 55523 15!(88 !5)!5523 1
2020/12/27
26
于是若有C(n, r)种r组合,则有C(n, r)×r!种排
列, 因此C(n, r) ×r! =P(n, r) 。
例 8 在平面上给出25个点,没有三点共线,问 这些点能够成多少直线?能确定多少三角形?
解:由于没有三点共线,25个点中任意2个点就 能连成一条线,有: 2 2 52!(2 25 !52)!25 * 224 300
2) 5出现6不出现。 即5有7个位置,其余是{1, 2 , 3 , 4 , 7 , 8 , 9}
的6-排列 7×P(7, 6) 3) 5不出现6出现。
即5有7个位置,其余是{1, 2 , 3 , 4 , 7 , 8 , 9} 的6-排列 7×P(7, 6)
2020/12/27
12
4) 5与6同时出现,但是 a)第1位等于5。
P13练习题9 一间屋子内有10个人,他们中没有人年龄超
过60岁,但又至少不低于1岁。证明,总能找到 两组人(两组不含相同的人),各组人的年龄 和是相同。题中的数10能换成更小的吗? 解:从10个人中任意选0到10人为一组,则共有:
1 0 0 1 1 0 1 2 0 ... . .1 1 .. 0 0 210
若将人数降为9人,共有29-2=510种,分配 给260200/1×2/279=540个盒子,不能得到题意的要求。2
组合数学(西安电子科技大学(第二版))习题4答案
习题四(容斥原理)1.试求不超过200的正整数中素数的个数。
解:因为2215225,13169==,所以不超过200的合数必是2,3,5,7,11,13的倍数,而且其因子又不可能都超过13。
设i A 为数i 不超过200的倍数集,2,3,5,7,11,13i =,则22001002A ⎢⎥==⎢⎥⎣⎦,3200663A ⎢⎥==⎢⎥⎣⎦,5200405A ⎢⎥==⎢⎥⎣⎦,7200287A ⎢⎥==⎢⎥⎣⎦, 112001811A ⎢⎥==⎢⎥⎣⎦,132001513A ⎢⎥==⎢⎥⎣⎦,232003323A A ⎢⎥==⎢⎥⨯⎣⎦, 252002025A A ⎢⎥==⎢⎥⨯⎣⎦,272001427A A ⎢⎥==⎢⎥⨯⎣⎦,2112009211A A ⎢⎥==⎢⎥⨯⎣⎦, 2132007213A A ⎢⎥==⎢⎥⨯⎣⎦,352001335A A ⎢⎥==⎢⎥⨯⎣⎦,37200937A A ⎢⎥==⎢⎥⨯⎣⎦, 3112006311A A ⎢⎥==⎢⎥⨯⎣⎦,3132005313A A ⎢⎥==⎢⎥⨯⎣⎦,57200557A A ⎢⎥==⎢⎥⨯⎣⎦, 5112003511A A ⎢⎥==⎢⎥⨯⎣⎦,5132003513A A ⎢⎥==⎢⎥⨯⎣⎦,7112002711A A ⎢⎥==⎢⎥⨯⎣⎦, 7132002713A A ⎢⎥==⎢⎥⨯⎣⎦,111320011113A A ⎢⎥==⎢⎥⨯⎣⎦,2352006235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 2372004237A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231120032311A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231320022313A A A ⎢⎥==⎢⎥⨯⨯⎣⎦ 2572002257A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251120012511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251320012513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 271120012711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,271320012713A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 21113200021113A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,3572001357A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,351120013511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦351320013513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,371120003711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,…, 235720002357A A A A ⎢⎥==⎢⎥⨯⨯⨯⎣⎦,…,23571113200023571113A A A A A A ⎢⎥==⎢⎥⨯⨯⨯⨯⨯⎣⎦, 所以 23571113200(1006640281815)(3320149713965533221)(6432211110111i i j i j k i j k lii ji j ki j k li j k l m i j k l m ni j k l mi j k l m nA A A A A A S A A A A A A A A A A A A A A A A A A A A A <<<<<<<<<<<<<<<=-+-+-+=-++++++++++++++++++++-+++++++++++++∑∑∑∑∑∑0)00041+-+=但这41个数未包括2,3,5,7,11,13本身,却将非素数1包含其中, 故所求的素数个数为:416146+-=2.问由1到2000的整数中:(1)至少能被2,3,5之一整除的数有多少个? (2)至少能被2,3,5中2个数同时整除的数有多少个? (3)能且只能被2,3,5中1个数整除的数有多少个? 解:设i A 为1到2000的整数中能被i 整除的数的集合,2,3,5i =,则2200010002A ⎢⎥==⎢⎥⎣⎦,320006663A ⎢⎥==⎢⎥⎣⎦,520004005A ⎢⎥==⎢⎥⎣⎦, 23200033323A A ⎢⎥==⎢⎥⨯⎣⎦,25200020025A A ⎢⎥==⎢⎥⨯⎣⎦,35200013335A A ⎢⎥==⎢⎥⨯⎣⎦, 235200066235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, (1)即求235A A A ++,根据容斥原理有:235235232535235()1000666400(333200133)661466A A A A A A A A A A A A A A A ++=++-+++=++-+++=(2)即求232535A A A A A A ++,根据容斥原理有:232535232535235235235235()333200133266534A A A A A A A A A A A A A A A A A A A A A A A A ++=++-+++=++-⨯=(3)即求[1]N ,根据Jordan 公式有:1112233235232535235[1]2()310006664002(333200133)366932N q C q C q A A A A A A A A A A A A =-+=++-⨯+++⨯=++-⨯+++⨯=3.求从1到500的整数中能被3和5整除但不能被7整除的数的个数。
组合数学讲义及答案 4章 容斥原理
6/49
《组合数学》
语言的人。
第四章 容斥原理
(3)符号 设 S 为一个集合,A i 是 S 上具有性质 P i 的元素集,令 q0 = S
n
q1 = Ai = A1 + A2 +…+ An
i 1
q2=
Ai Aj =( A1 A2 + A1 A3 +…+ A1 An )+( A2 A3 +…
n1
n1
n1
An Ai Ai An = Ai An
i 1
i 1
i 1
n1
= Ai An
Ai Aj An
Ai Aj Ak An
i 1
1i jn1
1i jkn1
1 n2 A1 A2 An1 An
会 0 种语言(即不具有任何性质)的人数为: A1 A2 = S -( A1 + A2 )+ A1 A2 =11-(7+5)+2=1(人)
恰好会两种语言(即具有两种性质)的人数 A1 A2 =2
问:恰好会一种语言的人有多少? 从集合的角度,可以分别计算: (1)会英语而不会德语的人数为
A1 A2 = A1 A1 A2 = A1 - A1 A2 =7-2=5
=6
个,即
B={
3,
6,
9,
12,
15,
18 };
③ 二者相加为 10+6=16 个。
④ 实际为 13 个:即 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20;
⑤ 原因:把既是 2 的倍数,又是 3 的倍数的数重复算了一
次,这样的数恰好有