代数式恒等变形及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式恒等变形
A 卷
1、若3265122-+
-+=+--x b
x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C
解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴⎪⎩
⎪⎨⎧-=--=++-=1
236051b a M b a M M ,解得:⎪⎩⎪
⎨⎧=-==831
b a M
提示:利用待定系数法解决问题。
2、(2002年重庆市初中竞赛题)若012192=+-
x x ,则=+441
x
x ( ) A 、411 B 、16121 C 、1689 D 、4
27
答案:C 解答:∵0≠x ∴2191=
+
x x ,411
122=+x
x ∴16892112
2244
=-⎪⎭⎫ ⎝
⎛+=+x x x x
提示:本题的关键是利用2112
22
-⎪⎭⎫
⎝
⎛+=+x x x x 进行化简。
3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D
解答:∵143=-x x
∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x
提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。
4、(全国竞赛题)如果52
332412--
-=----+c
c b a b a ,则c b a ++的值是( )
A 、6
B 、8
C 、20
D 、24 答案:C
解答:∵52
332412--
-=----+c
c b a b a ∴()[]()[
]()[]
053293632
142421121=+--+----+---++---c c b b a a
∴
()()
()
0332
122112
2
2
=---
--+--c b a
∴011=--a ,022=--b ,033=--c ∴2=a ,6=b ,12=c ∴20=++c b a
提示:本题利用添项构造完全平方式解决问题。
5、(第16届“希望杯”初二年级竞赛题)已知a 是整数,x 、y 是方程012=++--ay ax xy x 的整数解,则__________=-y x 或 .
答案:1±
解答:原方程可以变形为:()()1-=---y x a y x x 即()()1-=--a x y x ∵a 、x 、y 都是整数 ∴⎩⎨⎧-=-=-11a x y x 或⎩
⎨⎧=--=-11a x y x
故1±=-y x
提示:本题利用方程的解的特殊解决问题。
6、(2001年全国初中竞赛“创新杯”广西赛区题)已知2
323+-=x ,2
323-+=
y ,那么
____________22=+x
y y x . 答案:970
解答:由题意得:1=xy ,10=+y x 故原式()()()[]()97032
2
23
3=-++=+=
xy xy y x y x xy y x
提示:类似已知x 、y 的值求关于x 、y 代数式的问题,通常将x 、y 的问题转化为y x +,y x -,
xy 来解决。
7、(2001年河北省初中竞赛试题)已知21=+x
x ,那么
1
91
32
2++-
++x x x
x x x
的值
为 .
答案:
11
11
55-
解答:∵21
=+x
x
∴
=+⎪⎭⎫ ⎝
⎛+++⎪⎭⎫ ⎝⎛+=++-
++9
11311191
322x x x x x x x x x x
1111
55-
提示:本题利用方程变形,然后整体代入解答。 8、(2000年“五羊杯”竞赛题)已知43322a c c b b a -=
-=+,求b
a c
b a 98765+-+的值。 解:令
k a
c c b b a =-=-=+43322,则 k b a 2=+,k c b 32=-,k a c 43=-
解得:k a 511=,k b 521=,k c 5
3
= ∴
101
50
5
1011098765==+-+k k b a c b a 提示:本题关键是引入参数,将多个字母的问题转化为同参数有关,进而化简。
B 卷
9、(2005年第16届“希望杯”初二年级竞赛题)x 、y 、m 均为正整数,且满足⎩
⎨⎧=+=+m y x y x 5229
73,
那么__________=m .
答案:20
解答:由已知⎩
⎨⎧=+=+m y x y x 522973
由①得:()y x 7293
1
-=
③ 将③代入②得:
()m y y =+-572932
,即y y m 53
14358+-= ∴0583 -=m y ,即3
58
m 又由①得:()x y 3297
1
-=
代入②得:()m x x =-+
32975
2,即m x x =-+7
1571452 ①
②