激光焊接的工作原理及其主要工艺参数

合集下载

激光焊接工艺参数

激光焊接工艺参数

激光焊接原理与主要工艺参数1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。

功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。

其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。

用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。

下面重点介绍激光深熔焊接的原理。

激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。

在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。

这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。

小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。

孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。

光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。

就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。

2. 激光深熔焊接的主要工艺参数1)激光功率。

激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种高能束聚焦到小焊点上进行焊接的技术。

它利用激光束的高能量密度和较小的热影响区域,可以实现高精度、高效率和高质量的焊接。

激光焊接技术的原理是利用激光器产生的激光束,通过镜片的调整将激光束聚焦成小焊点,然后将激光束照射到焊接点上。

当激光束照射到工件表面时,激光能量会被吸收,形成热源,使接触到的工件表面迅速升温并熔化。

通过控制激光束的功率、速度和聚焦点的大小,可以控制焊接过程中的热输入和焊接区域,从而实现焊接的高精度和高质量。

激光焊接技术的工艺分析主要包括以下几个方面:1. 材料选择:不同材料对激光的吸收情况不同,在选择激光焊接工艺时需要考虑材料的吸光性和导热性。

通常情况下,高吸光性的材料更容易吸收激光能量,热输入更高,焊接速度也会更快。

2. 激光参数的选择:激光焊接的参数包括激光功率、激光脉冲频率、激光束的直径等。

这些参数直接影响焊接的速度、深度和质量。

激光功率越大,焊接速度越快,但也容易产生过高的热输入,导致焊接缺陷。

激光束的直径越小,焦点越集中,焊接速度也会更快,但对工件的要求也会更高。

3. 激光焊接工艺的控制:激光焊接工艺的控制主要包括焊接速度、焦点位置和气体环境的控制。

焊接速度一般根据焊接区域的尺寸和焊接质量的要求来确定,过快的焊接速度可能导致焊深不足,而过慢的焊接速度则容易产生焊接缺陷。

焦点位置的选择也很重要,需要将激光焦点调整到工件表面的适当位置,以确保焊缝的质量。

气体环境的选择可以影响焊接过程中的氧化、脱气和喷溅现象。

4. 激光焊接后的处理:激光焊接后的处理包括焊缝的清理和残余应力的释放。

焊缝的清理可以通过化学方法、机械方法或热处理方法来实现,以确保焊缝的质量。

残余应力的释放可以通过热处理、冷却和机械方法来实现,以减少焊接件的变形和应力集中。

激光焊接技术是一种高精度、高效率和高质量的焊接技术,它可以实现对材料的精确焊接,广泛应用于汽车、航空航天、电子和制造业等领域。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种使用激光束来进行焊接的方法。

它利用激光束的高能量和高聚焦度,将材料加热到熔点或者融化状态,从而实现材料的焊接。

激光焊接技术已广泛应用于各个行业,包括汽车制造、电子设备制造、航空航天工业等。

激光焊接技术的原理是利用激光器产生的激光束,经过透镜聚焦后,将高能量的激光束集中到焊接接头上。

当激光束照射到材料上时,它会与材料表面的原子或者分子产生相互作用,将光能转换为热能。

这样,就可以在局部区域内使材料加热到高温,从而达到焊接的目的。

激光焊接技术的工艺分析主要包括焊接参数的选择和焊接过程的控制。

焊接参数的选择是激光焊接工艺中非常重要的一环。

它包括激光功率、激光束的聚焦度、焊接速度等参数的选择。

激光功率的选择要根据焊接材料的种类和厚度来确定,功率过低会导致焊接质量不理想,功率过高会使焊接区域过热。

激光束的聚焦度决定了焊接区域的尺寸和能量密度,它的选择要根据焊接接头的形状和尺寸来确定。

焊接速度的选择要根据焊接接头的材料和厚度来确定,速度过快会导致焊接区域充分融化不充分,速度过慢会使焊接区域过热。

焊接过程的控制是保证激光焊接质量的关键。

焊接过程的控制包括焊接接头的准备、激光束的照射、焊接区域的保护、焊接过程的监控等。

焊接接头的准备包括清洁表面、调整焊接接头的形状和尺寸等。

激光束的照射要保证激光束的聚焦度和焊接速度均匀稳定。

焊接区域的保护可以采用惰性气体保护或者真空环境,以防止氧化和污染。

焊接过程的监控可以通过温度传感器、红外摄像头等设备来实现,以保证焊接过程的质量和稳定性。

激光焊接技术是一种高精度、高效率的焊接方法。

它的原理是利用激光束将材料加热到熔点或者融化状态,然后实现材料的焊接。

激光焊接技术的工艺分析包括焊接参数的选择和焊接过程的控制,这些都是保证激光焊接质量的关键。

激光焊接技术的应用前景非常广阔,它将继续在各个领域中发挥重要作用。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种利用激光高能密度、高能量流密度和高聚焦能力进行焊接的先进技术。

相比传统的电弧焊接和气体保护焊接,激光焊接具有更高的焊接速度、更小的热影响区和更高的焊接质量。

其原理是利用激光器将功率较高的激光束聚焦到焊缝上,使焊缝处的材料迅速加热并熔化,然后冷却凝固形成焊接接头。

激光焊接技术包括传统连续激光焊接和脉冲激光焊接两种。

传统连续激光焊接是将连续激光束聚焦到焊缝上,通过连续的加热和冷却过程实现焊接。

脉冲激光焊接则是利用脉冲激光束进行焊接,激光脉冲的能量和时间可以根据焊接工件的要求进行调整。

传统连续激光焊接的工艺参数主要包括焦距、聚焦点直径、激光功率和焊接速度等。

焦距决定了激光束在焊缝处的聚焦程度,聚焦点直径决定了激光束的功率密度,激光功率决定了焊接速度,焊接速度决定了焊接质量。

脉冲激光焊接的工艺参数主要包括脉冲能量、脉冲宽度和脉冲频率等,这些参数可以根据焊接工件的要求进行优化。

激光焊接的工艺分析主要包括焊接过程的数值模拟和实验验证。

通过数值模拟可以预测焊接过程中的温度分布、固相扩散、相变和应力变形等物理过程,通过实验验证可以验证数值模拟结果的准确性。

工艺分析的目的是找出最优的焊接工艺参数,以获得最佳的焊接质量和生产效率。

激光焊接技术在汽车制造、航空航天、电子电器和光电子等领域得到了广泛应用。

激光焊接可以实现对薄板、薄壁件和复杂结构的焊接,焊缝质量好,焊接速度快,适用于大批量生产。

激光焊接还可以实现金属与非金属的焊接,如金属与陶瓷、金属与塑料的焊接,这在传统焊接技术中是难以实现的。

激光焊接技术是一种高效、高质量的焊接技术。

通过优化工艺参数和进行工艺分析,可以进一步提高激光焊接的质量和生产效率,推动激光焊接技术的发展和应用。

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析讲解激光焊接是一种高能量密度激光束对焊接材料表面的作用,通过将激光束转化为热能,快速熔化并凝固焊缝来实现材料的连接。

激光焊接具有高耦合性、无接触和非传导性等特点,因此在许多领域得到广泛应用。

本文将对激光焊接的工艺参数及特性进行分析和讲解。

激光焊接的工艺参数主要包括激光功率、激光束面积、焦距、焊接速度和焊接气体等。

其中,激光功率是指单位时间内激光束所携带的能量,对焊接效果起到重要作用。

激光功率过低会导致焊缝不完全熔透,功率过高则容易产生毛刺。

激光束面积与焦距的选择会直接影响到焊接区域的集中度,过小会导致焊缝质量不稳定,过大则会降低焊接深度。

焊接速度决定了焊接过程中激光束的作用时间,过慢会导致过量热输入,过快则会影响焊缝的质量。

焊接气体的选择和流量控制对焊接质量也有着重要影响,一方面可以提供保护气氛,防止焊缝氧化或与空气中的杂质反应;另一方面可以有效盖住激光束与材料的相互作用。

激光焊接的特性分析主要包括焊接速度、热输入、焊缝形貌和焊接缺陷等。

焊接速度是决定焊接效果的重要因素之一,其取值应根据材料的熔化温度和焊缝的质量要求进行合理选择。

热输入则是指焊接过程中单位长度内传递给焊接区域的能量,直接影响着焊缝的熔透度和凝固组织。

热输入过小会导致焊缝凝固不完全,热输入过大则易产生裂纹和变形等缺陷。

焊缝形貌与焊接参数密切相关,激光焊接通常能够产生较窄而深的焊缝,焊缝形貌的良好与否直接关系到焊接质量。

焊接缺陷主要包括焊接裂纹、焊接变形和焊接缺陷等,这些缺陷的产生通常与焊接参数的选择不当和焊接材料的特性有关。

总之,激光焊接的工艺参数及特性对焊接质量起着至关重要的影响。

合理选择并控制这些参数可以提高焊接效率和质量,确保焊接结果符合设计要求。

因此,在实际应用中需要综合考虑各个参数之间的关系,通过优化调整,找到最佳的参数组合,从而实现高质量的激光焊接。

光纤激光焊接工艺原理

光纤激光焊接工艺原理

光纤激光焊接工艺原理光纤激光焊接是一种高精度、高效率的焊接方法,广泛应用于汽车制造、航空航天、电子设备等行业。

它利用激光束的高能量密度和光纤的柔性传导特性,将工件表面局部加热,使其熔化并形成焊缝。

本文将从光纤激光焊接的原理、工艺参数、优势和应用领域等方面进行介绍。

一、光纤激光焊接的原理光纤激光焊接的原理是利用激光束的高能量密度将焊接区域加热至熔点以上,使金属材料熔化并形成焊缝。

在光纤激光焊接中,激光器将激光束传输到焊接头部,然后通过光纤将激光束传导到焊接点。

在焊接点,激光束与工件表面交互作用,产生局部加热。

随着工件加热,金属材料熔化并形成焊缝,然后冷却固化,实现焊接。

光纤激光焊接的原理主要包括两个方面:激光束与工件相互作用和激光能量的转化。

激光束与工件表面相互作用时,激光能量被吸收,使工件表面温度升高。

当温度达到熔点以上时,金属材料开始熔化。

激光能量的转化涉及激光束的吸收、传导和辐射。

激光束通过吸收介质的能量转化为热能,然后通过传导和辐射传输到焊接点。

二、光纤激光焊接的工艺参数光纤激光焊接的工艺参数对焊接质量和效率起着重要作用。

其中,激光功率、激光脉冲频率、焦距和光斑直径是影响焊接效果的关键参数。

1. 激光功率:激光功率决定了焊接过程中的能量输入量。

适当的激光功率可以保证焊缝的充分熔化和深度穿透,提高焊接质量。

2. 激光脉冲频率:激光脉冲频率决定了激光束的作用时间。

适当的脉冲频率可以控制焊接过程中的热输入量,实现焊接参数的精确控制。

3. 焦距:焦距是指激光束从激光头到焊接点的距离。

适当的焦距可以控制激光束的聚焦深度和焦斑直径,影响焊接深度和焊缝质量。

4. 光斑直径:光斑直径决定了激光束的能量密度分布。

适当的光斑直径可以实现焊接过程中的热输入均匀分布,提高焊接质量。

三、光纤激光焊接的优势光纤激光焊接相比传统焊接方法具有许多优势。

1. 高能量密度:光纤激光焊接利用激光束的高能量密度,可以在较小的热影响区域内实现高温熔化,减少热影响和变形。

激光焊接工艺参数讲解

激光焊接工艺参数讲解

激光焊接原理与主要工艺参数作者:opticsky 日期:2006-12-01字体大小: 小中大1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。

功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。

其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。

用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。

下面重点介绍激光深熔焊接的原理。

激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。

在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。

这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。

小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。

孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。

光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。

就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。

2. 激光深熔焊接的主要工艺参数1激光功率。

激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。

手持激光焊工艺焊接参数

手持激光焊工艺焊接参数

手持激光焊工艺焊接参数手持激光焊工艺是一种高效快捷的焊接工艺,其主要应用于微细零件或未联接组件的精确加工。

这种工艺不仅具有无接触、高频率和低损耗等优点,而且特别适用于薄板和复杂构形的结构件。

而对于手持激光焊接工艺的焊接参数调节是影响焊接质量的重要因素。

一、手持激光焊接工艺1. 工艺原理手持激光焊接传统的钳工焊接方式存在无法到达的区域,操作过程繁琐且需要一定的技术要求。

手持激光焊是一种便携式的激光加工方式,通过将激光光束聚焦到较小的点上,从而产生高能量密度的热源,达到局部熔化的目的,完成部件的焊接。

2. 工艺优势与传统的焊接方式相比,手持激光焊可以大大缩短生产周期和减少物料的浪费,同时保持高精度和准确性。

此外,手持激光焊工艺还有如下优势:(1)材料使用效率高手持激光焊接过程中,激光光束能够被集成到经典焊接过程中所不可达到的难以处理的区域。

激光焊接利用高能量密度光束准确地融化焊点,从而可以在节省较大发生缺陷的部位时,使得材料使用效率更高。

(2)焊缝质量高手持激光焊接工艺焊接接头的质量比较高,其气氛是最容易控制的。

因为焊接时产生的热输入较低,从而可以减少焊接区域较大的应力问题,并保证零件焊接质量。

(3)适应性强手持激光焊接对各种材料都有很好的适应性,而且在焊接时不会改变材料的化学性质和物理特性。

二、手持激光焊接参数1. 激光功率激光功率是手持激光焊接工艺的一个重要参数。

当激光功率增加时,焊接速度会更快,但是焊缝的深度和宽度也会更大。

因此,需要根据实际的焊接要求选择适当的激光功率。

2. 焊接速度焊接速度也是手持激光焊接的重要参数之一。

当焊接速度较快时,焊缝是窄而深的。

反之,当焊接速度较慢时,焊缝会更宽而浅。

因此,在选择焊接速度时应根据实际要求进行选择。

3. 焦距焊缝的最终质量和形状与焦距有极大的关系。

当将焦距增加时,焊缝的深度会增加,而焊缝的宽度会减小,相反,当缩短焦距时,焊缝会变得更宽而更浅。

因此,需要根据实际情况进行选择。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种高效、精密的焊接方法,广泛应用于汽车制造、航天航空、电子电气、金属加工等领域。

它具有焊缝窄、热影响区小、焊接速度快、焊接变形小等优点,因此备受行业的青睐。

本文将对激光焊接技术的原理及工艺进行深入分析,以便更好地应用于实际生产中。

一、激光焊接技术原理激光焊接技术是利用高能密度激光束对工件进行局部加热,使其熔化并与填充材料熔合,从而实现焊接的一种焊接方法。

激光焊接技术的焊接原理主要包括热传导和熔化两个过程。

1. 热传导过程激光束照射到被焊接工件表面时,会迅速将能量转移到工件内部,并在其表面形成一个“热源区”。

在热源区内,温度迅速升高,使金属材料发生相变,从而产生熔化现象。

热传导过程是激光焊接的关键步骤,决定了焊接质量和效率。

2. 熔化过程一旦工件表面温度达到熔点,金属材料便开始熔化,并与填充材料一起形成一层融合的熔池。

激光束的高能密度可以使金属材料迅速熔化,从而实现高速、高效的焊接过程。

二、激光焊接工艺分析激光焊接工艺主要包括焊接设备、工艺参数、焊接过程控制等方面。

下面将分别对这些方面进行分析。

1. 焊接设备激光焊接的设备主要由激光器、光纤传输系统、焊接头及其控制系统等组成。

激光器是激光焊接的核心部件,它产生高能密度的激光束,然后通过光纤传输系统输送到焊接头。

焊接头通过镜片对激光束进行聚焦和调节,然后照射到工件表面进行焊接。

2. 工艺参数激光焊接的工艺参数包括激光功率、焦距、焊接速度、频率等多个方面。

这些参数的选择直接影响到焊接效果和质量。

一般来说,激光功率越大,焊接速度越快,焊接效果越好。

而焦距、频率等参数则需要根据具体的焊接材料和厚度进行调节。

3. 焊接过程控制激光焊接的过程控制是确保焊接质量的关键。

焊接过程需要对激光功率、焊接速度、焦距等参数进行精确控制,同时还需要考虑到工件的热变形、填充材料的均匀性等因素。

现代化的焊接设备通常配备了先进的焊接控制系统,能够通过实时监控和反馈机制来实现焊接过程的精确控制。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接是一种利用高能量激光束进行材料焊接的技术。

它将激光光束聚焦到焊接点上,通过高能量密度的激光束短时间内加热材料,使其熔化并形成焊缝。

激光焊接的原理是利用激光的高强度和高能量密度。

激光是由激光器产生的一种狭窄、一致、相干的光束,具有较高的单色性和方向性。

激光束经过透镜聚焦后,能够将光束的能量集中到一个非常小的点上,从而形成高能量密度的光斑。

在这个高能量密度的光斑中,材料会迅速升温,达到熔化温度并形成焊缝。

激光焊接的工艺分析主要包括以下几个方面:1. 激光参数选择:激光焊接中,激光的功率、波长、脉冲频率等参数都会对焊接效果产生影响,需要根据具体材料和焊接要求选择合适的参数。

功率过大会产生焊缝熔穿,功率过小则焊缝质量不达标。

2. 材料选择:不同材料对激光焊接的适应性不同。

一些金属材料如铝合金、不锈钢等较容易进行激光焊接,而一些非金属材料如聚合物、陶瓷等则较难焊接。

3. 聚焦方式选择:激光焊接中,激光束的聚焦方式可以采用透镜、镜面反射等方法。

选择适当的聚焦方式可以提高焊接效果和效率。

4. 热影响区分析:激光焊接产生的高能量热源会对周围材料产生热影响,造成热变形、应力集中等问题。

需要通过优化焊接参数和调整焊接工艺,减小热影响区,降低热变形和应力。

5. 焊接质量控制:激光焊接中,焊缝形状、焊缝宽度、焊接深度等焊接质量指标直接影响焊接的可靠性。

需要通过严格控制焊接工艺参数和焊接设备的运行状态,保证焊接质量。

激光焊接技术具有焊接速度快、热影响区小、焊缝质量高等优势,已广泛应用于汽车制造、航空航天、电子电器等行业。

随着激光技术的不断发展,激光焊接技术将会在更多领域得到应用。

激光的焊接原理与主要实用工艺全参数

激光的焊接原理与主要实用工艺全参数

激光的焊接原理与主要实用工艺全参数激光焊接是一种利用激光束对材料进行加热并熔化,从而实现焊接的工艺。

它通过聚光器聚焦激光束,使其能量密度高度集中,可以快速加热和熔化焊接接头,达到焊接的目的。

激光焊接具有高能量密度、热影响区小、焊缝形状好、焊接速度快等优点,被广泛应用于航空航天、汽车制造、电子设备、医疗器械等领域。

激光焊接的主要实用工艺参数包括激光功率、激光束模式、焦距、扫描速度、频率等。

激光功率是指激光器输出的功率大小,它直接影响焊接效果。

功率过低会导致焊缝不完全熔化,焊接强度低;功率过高会造成过度熔化和材料脱焊。

因此,选择合适的功率对于激光焊接至关重要。

激光束模式是指激光束的激光光斑形状,常见的有高斯模式和顶帽模式。

高斯模式的激光光斑能量密度分布均匀,焊接效果较好;顶帽模式能量密度中心较高,适用于一些需要高能量密度局部熔化的焊接。

焦距是指聚焦系统中的聚焦镜离焊接接头的距离。

焦距的选择会直接影响激光束的聚焦效果,焦距过大会造成能量集中不够,焊接效果不好;焦距过小会造成聚焦区域过小,焊接速度降低。

扫描速度是指焊接头在焊接过程中的移动速度。

一般来说,激光焊接的扫描速度应适中,过快会导致材料没有充分熔化,焊接质量下降;过慢则可能造成熔池过大、焊缝变宽等问题。

频率是指激光脉冲的频率。

调整频率可以改变激光束的热输入和热传导,从而影响焊缝的形状和质量。

较高的频率能够得到较小的焊缝尺寸,但焊接速度会降低。

此外,还有一些重要的工艺参数需要注意,如气体保护、焊接速度控制、预热等。

气体保护可以保护焊接接头,防止氧气和水蒸气引起的气孔和氧化,常用的气体有氩气和氮气。

焊接速度控制可以控制焊接头的移动速度,保证焊接质量的一致性。

预热可以提高焊接接头的温度,减少热应力和变形,提高焊接质量。

总之,激光焊接作为一种高效、高精度的焊接工艺,具有很大的应用潜力。

在实际应用中,根据具体材料和焊接要求选择合适的激光功率、激光束模式、焦距、扫描速度、频率等参数,能够实现高质量的焊接。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。

1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。

电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。

但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。

并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。

激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。

激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。

激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。

激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。

由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。

虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。

2. 激光焊接原理2.1激光产生的基本原理和方法光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。

微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。

光子的能量值为此两能级的能量差△E,频率为ν=△E/h。

爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。

激光焊接原理与主要工艺参数

激光焊接原理与主要工艺参数

1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。

功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。

其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。

用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。

下面重点介绍激光深熔焊接的原理。

激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。

在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。

这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。

小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。

孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。

光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。

就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。

2. 激光深熔焊接的主要工艺参数1)激光功率。

激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。

只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。

激光的焊接原理及工艺应用

激光的焊接原理及工艺应用

激光的焊接原理及工艺应用1. 激光焊接的原理激光焊接是利用激光束的高能量密度,将焊接区域加热至熔化或融化状态,通过热传导或熔池混合来实现材料的焊接。

主要原理包括以下几个方面:•光能转化:激光束通过外部激光器产生,由电能转化为光能,具有高能量密度和高聚焦性。

•热传导:激光束在材料表面的吸收会引发局部热量的产生,这种热量通过热传导进一步加热焊接区域。

•融合:当焊接区域的温度达到材料的熔点时,材料会发生熔化,形成熔池。

•熔池控制:通过调整激光的功率、扫描速度和焊接时间等参数,可以控制熔池的形成和稳定性。

•冷却:当激光束停止输入时,焊接区域的熔池会逐渐冷却凝固,完成焊接过程。

2. 激光焊接的工艺应用激光焊接具有许多优点,例如高精度、高速度、低热输入和无接触等特点,因此在工业生产中得到广泛应用。

以下是几种常见的激光焊接工艺应用:2.1 激光传导焊接激光传导焊接是通过激光束照射在材料表面,传导热量使材料表面熔化并与另一块材料接触。

这种焊接方式适用于薄板、线材和工件表面修补等应用。

2.2 激光深熔焊接激光深熔焊接是将激光束聚焦在焊缝上,使焊缝区域瞬间加热至熔融状态,形成深度较大的熔池。

这种焊接方式适用于厚板材和精密零件的连接。

2.3 激光微焊接激光微焊接是指使用激光束进行微小焊接。

由于激光焊接具有高能量密度和高聚焦性,可以实现微小尺寸的焊接,适用于精密仪器、电子元件和细小零件等微小焊接需求。

2.4 激光点焊激光点焊是将激光束聚焦在焊接区域的其中一个点上,通过控制焊接参数实现点对点的焊接。

这种焊接方式适用于需要精确定位和高速焊接的应用,例如汽车制造、电子组装等。

2.5 激光钎焊激光钎焊是利用激光束加热钎料而不是焊接材料来实现焊接。

激光钎焊常用于合金材料、玻璃和陶瓷等难焊材料的连接。

2.6 激光搅拌焊接激光搅拌焊接是将激光束与搅拌器结合,通过旋转激光焊接头和搅拌器,实现焊缝区域的熔化和搅拌,从而实现高质量的焊缝连接。

激光焊接原理

激光焊接原理

激光焊接的原理、优缺点及工艺参数激光焊接的原理激光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池。

它是一种新型的焊接方式,激光焊接主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝平整、美观,焊后无需处理或只需简单处理,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化。

焊接特性属于熔融焊接,以激光束为能源,冲击在焊件接头上。

激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦元件或镜片将光束投射在焊缝上。

激光焊接属非接触式焊接,作业过程不需加压,但需使用惰性气体以防熔池氧化,填料金属偶有使用。

激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。

激光焊接的主要优点(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。

(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。

(3)不需使用电极,没有电极污染或受损的顾虑。

且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。

(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。

(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。

(6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件。

(7)可焊材质种类范围大,亦可相互接合各种异质材料。

(8)易于以自动化进行高速焊接,亦可以数位或电脑控制。

(9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。

(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件。

(11)可焊接不同物性(如不同电阻)的两种金属。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数激光焊接是一种利用高能量激光束将焊接材料加热至熔化或半熔化状态并加压,使两个或多个焊接材料相互融合的焊接方法。

其工作原理基于激光的高能量和高密度,能够集中加热焊接材料的表面或内部,使其达到熔化或半熔化的状态,然后通过热量传导和传导在激光束的作用下产生的流动力将焊接件进行连接。

激光焊接具有高精度、高效率、灵活性以及不受材料类型限制等优点,被广泛应用于各种工业领域。

首先是激光功率。

激光功率是指激光束每秒钟传输到焊接材料上的能量。

激光功率的选择需要考虑焊接材料的厚度和类型,以及所需的焊接速度和焊缝的质量。

过高的激光功率可能导致焊接材料过热、气体喷溅和焊缝变形,而过低的激光功率则可能导致焊接缺陷。

其次是光束模式。

光束模式决定了激光束的焦点形状和能量分布。

常见的光束模式有高斯模式、TEM模式和多模式等。

选择适当的光束模式可以使焊接过程更稳定和准确。

焊接速度也是重要的参数,它决定了激光束在焊接材料上的停留时间。

过高的焊接速度可能导致焊接质量下降,而过低的焊接速度则可能造成焊接材料过热和焊缝变形。

焦距是指激光束与焊接材料之间的距离。

选择合适的焦距可以使激光束能够集中加热焊接材料并达到最佳焊接效果。

最后是气氛环境。

气氛环境通常包括惰性气体和活性气体等。

惰性气体如氩气可以防止焊接材料与空气发生氧化反应,保护焊接质量。

活性气体如氢气可以清除焊缝中的杂质和气泡,提高焊接质量。

除了以上主要的工艺参数外,还有一些辅助参数也需要考虑,如焊缝宽度、焊缝深度、焊接坡口形状等。

这些参数的选择需要根据具体的应用需求和焊接材料的特性来确定。

总之,激光焊接的工作原理是通过高能量激光束将焊接材料加热至熔化或半熔化状态,并在加压的作用下将焊接件连接起来。

主要的工艺参数包括激光功率、光束模式、焊接速度、焦距和气氛环境等,通过合理选择和调整这些参数,可以实现高质量、高效率的焊接过程。

激光焊接参数

激光焊接参数

激光焊接参数1 激光焊接技术简介激光焊接是一种先进的焊接技术,它利用激光发出的特定波长的脉冲光束,通过聚焦,将聚焦点加热到达到融合金属材料的温度,达到焊接效果,从而实现金属材料的焊接。

它采用较少的消耗能量和温度,具有精雕细琢的加工精度,加工质量高,非常有效率,因此受到各个制造行业的广泛应用。

2 激光焊接参数1. 激光源:激光焊接工艺的关键部件是激光源,由激光发生和调制器组成。

激光源的特性主要取决于激光发生器和调制器。

激光源可以根据焊接工艺来选择合适的激光波长和发射功率,一般情况下,常见的激光源可以采用激光束激发的Nd:YVO4和Ni + Yb:YW.2. 波长:由于不同的材料具有不同的吸收能力,在激光焊接工艺中,采用的波长应根据不同的材料来调节。

选择恰当的波长不仅有利于提高焊接质量,还有利于提高材料的热固性和机械性能。

3. 光斑尺寸:光斑尺寸(焦斑半径)可以根据材料的性能特点和加工过程要求来选择,焦斑半径将与加工工艺要求协调。

有足够大的尺寸,激光能量可以更好地分布在装配结构的表面,实现强大的焊接质量和降低射频焊接变形。

4. 激光功率:激光输出功率是激光料件表面的加热量,可根据具体工艺要求来调节,一般激光功率调节的范围从几瓦到数十瓦不等。

5. 激光束偏差:机械设计的要求,必须使焦距及聚焦光斑的位置稳定无偏差,除了在固定焦距下调整激光聚焦外,还可以调整激光束偏转来达到调节焦距的目的。

3 总结激光焊接是一种先进而高效的焊接技术,对激光焊接工艺参数有较高要求,包括激光源、波长、光斑尺寸、激光功率和激光束偏差等,这些参数可以根据具体工艺来控制,从而达到更高的质量要求的焊接效果。

激光焊接工艺解析

激光焊接工艺解析

激光焊接工艺解析激光焊接是一种高精度、高效率的金属焊接工艺,广泛应用于制造业的各个领域。

本文将对激光焊接工艺进行详细解析,从基本原理、设备要求、应用范围等方面进行探讨。

一、基本原理激光焊接主要通过激光束将焊接材料局部加热至熔化或融合状态,然后冷却固化,实现焊接效果。

其中,激光束的功率密度决定了焊缝的质量和焊接速度。

激光焊接具有热输入小、热影响区域小、焊缝精细等优点。

二、设备要求1.激光源:激光焊接所需的激光源通常采用固态激光器,如激光二极管、光纤激光器等。

2.光束传输系统:激光焊接中,需要通过光束传输系统将激光束聚焦到焊接点,常用的传输系统有镜片组、光纤等。

3.焊接头部:焊接头部通常包括准直镜、聚焦镜和保护气体喷嘴等。

准直镜用于将激光束调整为平行光束,聚焦镜将激光束聚焦在焊接点上,保护气体喷嘴用于保护焊接过程中的气氛环境。

4.焊接工作台:激光焊接需要将待焊接构件安放在工作台上进行定位和支撑。

5.控制系统:控制系统用于控制激光源、焊接头部、焊接工作台等各部分的工作状态,实现焊接参数的调节和焊接过程的监控。

三、应用范围激光焊接广泛应用于金属制品的生产中,特别是对于需要高精度焊接的领域具有重要意义。

以下是几个常见的应用领域:1.汽车制造:激光焊接可以用于汽车车身焊接、发动机零部件焊接等方面,其高精度和高效率确保了汽车的质量和安全。

2.航空航天:航空航天领域对焊接质量要求极高,激光焊接可以满足这些要求,常用于航空发动机的焊接、航天器结构零件的焊接等。

3.电子制造:激光焊接可以实现对微小电子组件的焊接,如芯片封装、电路板连接等,保证产品的稳定性和可靠性。

4.珠宝加工:激光焊接可以用于珠宝制作、修复和定制,其精细的焊接效果不会对珠宝产生破坏。

总结:激光焊接作为一种高精度、高效率的焊接工艺,在制造业中发挥着重要的作用。

本文对激光焊接的基本原理、设备要求和应用范围进行了解析,希望能够给读者提供一定的参考和了解。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种高精度、高效率的金属连接技术,目前已广泛应用于汽车、航空、电子、医药等领域。

本文将介绍激光焊接技术的原理和工艺分析。

激光焊接技术利用激光束的高密度能量和热效应,在金属材料表面产生局部熔化和固化,以实现金属材料的连接。

其原理可以分为以下几个方面:1.激光束聚焦原理激光束由多束平行的光线组成,经过逐级放大和聚焦后,激光束变得非常狭窄,光强度也达到了很高的程度。

在激光束作用下,金属表面的材料被迫吸收能量,形成一个狭长的熔池。

2.激光能量传递原理激光能量可以在金属材料内部自由传递,由于金属材料具有较高的导热性,激光束在传递过程中会被传导到较远处,从而实现焊接。

3.激光束与材料反应原理激光束与金属材料的反应可以发生多种反应,如熔化、挥发和气化等。

在激光束的高温下,材料表面的氧化物和其他杂质都会被清除掉,从而保证焊接强度。

同时,激光束可以将金属表面融化,并与材料的熔池融合,使得连接处形成一条密封的焊缝。

激光焊接的工艺分析包括以下几个方面:1.焊接材料的选择激光焊接适用于大部分金属材料,如不锈钢、碳钢、铜、铝等。

但不同的金属材料具有不同的反应特性,需要选择合适的焊接材料和激光参数。

2.焊接前的准备工作在激光焊接前,需要进行一系列的准备工作,如对焊接材料进行清洗、表面处理等,以消除金属表面的氧化物和其他杂质,保证焊点的牢固度。

3.激光焊接参数的优化激光焊接参数的选择对焊接质量和效率都有很大的影响。

一般来说,需要优化激光功率、扫描速度、焦距等参数,以实现最佳的焊接效果。

4.焊接质量的检测和控制激光焊接的焊接质量受到多个因素的影响,如焊接参数、材料质量等。

因此需要对焊接过程进行实时监测和控制,以确保焊接质量达到要求。

总之,激光焊接技术具有高效率和高精度的特点,能够满足高端制造领域的需求。

随着科技的不断发展和进步,激光焊接技术将在更多领域得到广泛应用。

激光焊接的工作原理及特点

激光焊接的工作原理及特点

焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。

研究表明激光焊接技术将逐步得到广泛应用。

越来越多的企业选择使用激光焊接机了,那么激光焊接机工作原理是什么呢:激光焊接机工作原理:激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。

功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。

其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。

激光焊接工艺流程及特点非接触加工,不需对工件加压和进行表面处理。

短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。

焊点小、能量密度高、适合于高速加工。

不需要填充金属、不需要真空环境(可在空气中直接进行)、不会像电子束那样在空气中产生X射线的危险。

与接触焊工艺相比.无电极、工具等的磨损消耗。

微小工件也可加工。

此外,还可通过透明材料的壁进行焊接。

无加工噪音,对环境无污染。

可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。

很容易搭载到自动机、机器人装置上。

对带绝缘层的导体可直接进行焊接,对性能相差较大的异种金属也可焊接。

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。

通过光学系统将激光束聚焦在很小的区域内,在极短时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光焊接的工作原理焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。

1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。

电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。

但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。

并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。

激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。

激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。

激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。

激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。

由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。

虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。

2. 激光焊接原理2.1激光产生的基本原理和方法光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。

微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。

光子的能量值为此两能级的能量差△E,频率为ν=△E/h。

爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。

我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。

构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。

2.1.自发辐射处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。

这种辐射过程称为自发辐射。

自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。

2.2.受激辐射除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。

当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。

2.3.受激吸收受激辐射的反过程就是受激吸收。

处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。

自发辐射是不相干的,受激辐射是相干的。

由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。

普通光源在红外和可见光波段实际上是非相干光源。

如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干的受激辐射光子集中在某一特定模式内,而不是平均分配在所有模式中。

激光器就是采用各种技术措施减少腔内光场的模式数、使介质的受激辐射恒大于受激吸收来提高光子简并度,从而达到产生激光的目的。

产生激光的基本条件:一是能在外界激励能源的作用下形成粒子数密度反转分布状态的增益介质;二是要使受激发射光强超过受激吸收,必须实现粒子数反转N2/G2-N1/G1>0;三是要使受激发射光强超过自发发射,必须提高光子简并度。

2.2.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。

功率密度小于104~105 W/cm2为热传导焊接,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点[1]。

其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、功率和频率等参数使工件熔化形成特定的熔池。

激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,能量转换机制是通过小孔完成。

在高功率密度激光的照射下,材料蒸发形成小孔,这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光能量,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。

在光束照射下的壁体材料连续蒸发产生高温蒸汽,孔壁外液体流动形成的壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持动态平衡。

光束不断进入小孔,小孔始终处于流动的稳定状态,围着孔壁的熔融金属随着前导光束前进而向前移动,熔融金属填充小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

3.激光焊接的优缺点激光焊接具有很多优点。

激光焊接可以将热量降到最低的需要量,热影响区金相变化范围小,而且因热传导所导致的变形也很低;不需使用电极,没有电极污染或受损的顾虑;激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当的距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥作用;工件可放置在封闭的空间内,激光束可聚焦在很小的区域,可焊接小型或间隔相近的部件。

另外激光焊接可焊材质的种类范围很大,可以相互接合各种异质材料,并且易于以自动化进行高速焊接,也可以数位或电脑控制;用激光焊接薄材或细径线材时,不会像电弧焊接容易有回熔的困扰,而且激光焊接不受磁场所影响,能精确地对准焊件。

激光焊接也有一些缺点,主要表现在以下几个方面。

一是焊件位置需非常精确,务必在激光束的聚焦范围内;二是焊件需使用夹具时,必须确保焊件的最终位置需与激光束将冲击的焊点对准;三是最大可焊厚度受到限制,渗透厚度远超过19mm的工件在生产线上不适合使用激光焊接。

四是当进行中能量至高能量的激光束焊接时,需使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现。

最后,能量转换效率太低,通常小于10%;焊道快速凝固,可能有气孔及脆化的顾虑,并且设备昂贵。

表1对各种焊接工艺进行了比较。

表1 不同焊接工艺的各种性能比较焊接工艺精度变形热影响焊缝质量焊料激光焊精密小很小好无钎焊精糙一般一般一般需要电阻焊精糙大大一般无氩弧焊一般大大一般需要等离子焊较好一般一般一般需要电子束焊精密小小好无4.激光焊接的工艺参数一般而言,激光焊接的工艺参数有功率密度、激光脉冲波形、激光脉冲宽度、离焦量、焊接速度和保护气体等,图1是激光焊接的主要工艺参数图。

4.1. 功率密度:功率密度是激光加工中最关键的参数之一。

采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。

因此,高功率密度对于材料去除加工如打孔、切割、雕刻十分有利。

对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。

4.2.激光脉冲波形:当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,尤其是金、银、铜、铝、钛等材料反射强、传热快。

一个激光脉冲讯号过程中,金属的反射率随时间而变化。

当材料表面温度升高到熔点时,反射率会迅速下降,当表面处于熔化状态时,反射稳定于某一值。

4.3.激光脉冲宽度:脉宽是脉冲激光焊接的重要参数,。

脉宽由熔深与热影响分区确定,脉宽越长热影响区越大,熔深随脉宽的1/2 次方增加。

但脉冲宽度的增大会降低峰值功率,因此增加脉冲宽度一般用于热传导焊接方式,形成的焊缝尺寸宽而浅,尤其适合薄板和厚板的搭接焊。

但是,较低的峰值功率会导致多余的热输入,每种材料都有一个可使熔深达到最大的最佳脉冲宽度[2]。

4.4.离焦量:激光焊接通常需要一定的离焦量,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。

离开激光焦点的各平面上,功率密度分布相对均匀。

离焦方式有两种:正离焦与负离焦。

焦平面位于工件上方为正离焦,反之为负离焦。

按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上的功率密度近似相同,但实际上所获得的熔池形状有一定差异。

负离焦时,可获得更大的熔深,这与熔池的形成过程有关。

4. 5.焊接速度:焊接速度对熔深有较大的影响,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。

因此,对一定激光功率和一定厚度的特定材料有一个合适的焊接速度范围,并在其中相应速度值时可获得最大熔深。

3.6.保护气体:激光焊接过程常使用惰性气体来保护熔池,对大多数应用场合则常使用氦、氩、氮等气体作保护。

保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射,在高功率激光焊接时,喷出物非常有力,此时保护透镜则更为必要。

保护气体的第三个作用是可以有效驱散高功率激光焊接产生的等离子屏蔽。

金属蒸气吸收激光束电离成等等离子体,如果等离子体存在过多,激光束在某种程度上会被等离子体消耗掉。

图1 激光焊接的主要工艺参数5.激光焊接的应用随着大功率激光器的出现,激光焊接在机械、造船、汽车、航空航天等领域获得日益广泛的应用。

激光焊接早已应用在汽车制造业,随着车身防腐蚀和降低车重的要求,铝材料已经广泛应用在发动机、轮圈、仪表板等零部件上。

激光焊接在航空制造业的应用也已经非常广泛,飞机机身由众多零部件组成,需要铆钉连接,铆钉技术已经发展到了极限,很难再有所突破,激光焊接成为一种理想的替代技术,采用激光焊接技术还可以使机身的重量减轻15%。

近年来,双光束激光焊接正成为激光焊接领域的热门技术,研究发现,采用双光束激光焊接能降低熔池的冷却速率,对含碳量较高的钢材能显著提高焊缝质量,同时,双光束激光焊接的表面熔化蒸气团更为稳定,有利于形成稳定的焊缝质量,减少气孔等缺陷。

在汽车工业中,板材拼焊能生产出面积更大的钢板,而将不同材料和厚度的钢板连接在一起,又可减轻车体重量,减少废料,从而节约原材料。

因而拼焊成形已成为汽车制造的重要工艺[3]。

激光拼焊具有其他拼焊技术没有的一些优点,比如焊接性能高、压制性能好、喷涂能力好、拼板平整度好。

另外激光焊接还可以应用在造船业中,由于激光焊接具有速度快、熔深大的特点,在造船业中可以大大提高生产率,而且可以单道焊接或减少焊道数。

并且船坞焊接工作量大大减少,使船舶的精度制造成为可能。

6.总结激光焊接具有焊缝深窄、深宽比高、焊接速度快、热输入低、焊缝热影响区窄、焊接变形小、焊缝质量好等优点;采用激光复合焊还可降低间隙要求,可用于各类工业制造。

相关文档
最新文档