数值传热学4
《传热学》第四章 导热数值解法基础
边界
2.第二类边界条件:
Байду номын сангаас
Δx=Δy时简化为:
绝热边界:
3.第三类边界条件:
Δx=Δy时简化为:
其他情况的节点方程 ——见教材表4-1
外拐角与内拐角节点
对流边界内部拐角节点热平衡:
节点方程式推导实例 ——对流边界外部拐角节点
Δx=Δy时简化为:
数值导热离散方程组=内节点离散方程+边界节点离散方程
二、常用计算软件
1.MATLAB——矩阵计算软件
matlab软件主界面
2.FLUENT——流体流动通用数值计算软件
3. FLUENT AIRPAK ——人工环境系统分析软件,暖通空调专业和传热学领域必备软件
AIRPAK模拟温度场
第四章重点: 1.有限差分方程的建立 2.高斯-赛德尔迭代方法
谢谢观看
《传热学》
第四章 导热数值解法基础
本章研究的目的 ——利用计算机求解难以用 分析解求解的导热问题 基本思想 ——把原来在时间、空间坐 标系中连续的物理量的场, 用有限个离散点的值的集合 来代替,通过求解按一定方 法建立起来的关于这些值的 代数方程,来获得离散点 上被求物理量的值。 研究手段——有限差分法
数值导热离散方程组内节点离散方程边界节点离散方程三节点离散方程组的求解迭代法迭代法的原理离散方程组的求解方法消元法方程过多时计算机内存不足迭代法假定初值根据假定的初值求新值并重复此步骤若干次两次计算值足够接近认为达到真实值简单迭代法每次迭代时使用上次迭代的结果允许误差简单迭代法的缺点由于每次迭代中使用与真实值偏差较大的上次迭代的旧值使运算过程接近真实值的时间增加高斯赛德尔迭代法将本次迭代的最新结果立刻代入本次迭代过程计算其他未知值高斯赛德尔迭代法的优点由于每次迭代中使用与真实值偏差较小的本次迭代的新值使运算过程接近真实值的时间缩短第三节非稳态导热的数值计算一显式差分格式研究对象一维非稳态导热问题一维非稳态导热内节点差分方程
传热学第4章热传导问题的数值解法重点习题
t1 t5 y t9 t5 x t 6 t5 1 y xy yh t5 t f 0 y 2 x 2 节点 5: y 2 ; t 2 t6 t7 t6 t10 t5 t5 t 6 x y x y xy 0 y x y x 节点、一等截面直肋,高 H,厚 ,肋根温度为 t 0 ,流体温度为 t f ,表 面传热系数为 h,肋片导热系数为 。将它均分成 4 个节点(见附图) , 并对肋端为绝热及为对流边界条件(h 同侧面)的两种情况列出节点 2 , 3 , 4 的 离 散 方 程 式 。 设
节点 2: 节点 3:
t3 t 2
x
2hx t2 t f 0 2hx t3 t f 0
t 2 t3
x
t 4 t3
x x
; ;
t3 t 4
节点 4:肋端绝热 肋端对流
0 0 0 由此解得:肋端绝热 t2 92.2 C , t3 87.7 C , t4 86.2 C ;
肋端对流 t2 91.5 C , t3 86.2 C , t4 83.8 C 。 肋端对流换热的条件使肋端温度更接近于流体温度。
0 0 0
传热学第4章热传导问题的数值解法重点习题数值传热学传热学课后习题答案数值传热学答案数值传热学第二版答案数值传热学陶文铨数值传热学第二版pdf传热学习题解答数值传热学pdf传热学课后习题
第 4 章热传导问题的数值解法
一般性数值计算
4-4、试对附图所示的等截面直肋的稳态导热问题用数值方法求解节 点 2, 3 的温度。 图中
2 H=45cm, 10mm, h 50W /(m .K ) , =50W/(m.K), t 0 100 ℃, t f 20 ℃, 计算节点 2,3,4 的温度(对于肋端的两种边界条件) 。
数值传热学第4章作业
习题4-2图4-22 习题4-2插图[解]一维稳态导热问题的控制方程为:0=+⎪⎭⎫ ⎝⎛S dx dT dx d λ 4-2-1 该问题的边界条件为:()⎪⎩⎪⎨⎧=-=-==2,0,1001x T T h dx dT x T f λ 4-2-2分别对节点2,3进行离散,将已知数据代入离散格式中,得到方程组:130232=-T T 4-2-375432=+-T T 4-2-4 联立式(4-2-3)、式(4-2-4),可以解出2T ,3T : 852=T ,403=T 。
下面验证总体守恒性:4-2-5右端3放出的热量为:()()30020401533=-⨯=-=f T T h Q 4-2-6在总体容积内部产生的热量为:2.0150 2.0300S Q S x =⨯∆=⨯=还需要证明左端是绝热条件: 节点2的热平衡为:21851000.550.5150757501T T xS x λ--+∆=+⨯=-+=∆ 左端绝热,所以计算结果符合总体能量守恒。
习题 4-5[解] 根据习题4-2的分析,可以得到节点2的离散方程:130232+=T T 4-5-1对于节点3,应用边界条件:()()1324330.510f f T T S T T T T xλδ--+⨯=-- 4-5-2式(4-5-2)可以整理成:()5432355751020T T T =+-- 4-5-3采用局部线性化方法,可以得到:()()()()515***444333331020102012.520T T T T T -=-+-- 4-5-4节点3的离散方程表示成:()()()51**44323335575 2.52012.52020T T T T T =++---- 4-5-5迭代求解得出:2382.82;35.64T T == 检验热平衡:内热源生成热1300φ=; 右端散热5/4210(35.6420)311.0h T φ=∆=-=左端散热382.821000.5150510.91φ-=⨯+⨯=-所以123()30031110.90φφφ-+=-+≅不作热平衡扣0.5 分。
传热学—第4章 热传导问题的数值解法
⎧a11t1 + a12 t2 + a13t3 = b1 ⎪ ⎨a21t1 + a22 t2 + a23t3 = b2 ⎪a t + a t + a t = b 33 3 3 ⎩ 31 1 32 2
假定初场
⎧ (1) ⎪t1 = ⎪ ⎪ Jacobi ⎨t(1) = 2 ⎪ ⎪ (1) ⎪t3 = ⎩
4.1.1 4 1 1 基本思想 把原来在时间、空间坐标系中连续的物理量的场, 用有限个离散点上的值的集合来代替,通过求解按 定方 建 起来 关 值 代数方程 来获 一定方法建立起来的关于这些值的代数方程,来获 得离散点上被求物理量的值。 这些离散点上被求物理量值的集合称为该物理量 的数值解。
4.1.1 基本思想
λ Δy
Δx = Δy 时: tm −1,n
+ tm+1,n + tm,n+1 + tm,n−1 − 4tm,n = 0
tm ,n
1 = ( tm−1,n + tm+1,n + tm,n+1 + tm ,n−1 ) 4
与Taylor级数法相比,热平衡法物理意义明显。
4.3.1 边界节点离散方程的建立
4-2 内部节点离散方程的建立
4.2.1 4 2 1 Taylor级数展开法
4-2 内部节点离散方程的建立 内部节点离散方程的建
∂ 2t ∂x 2
=
m ,n
tm+1 n − 2tm ,n + tm −1 n 1, 1, Δx 2
控制方程
∂ 2t ∂ 2t + =0 ∂x 2 ∂y 2
∂ 2t ∂y 2
数值传热学陶文铨主编第二版习题答案
数值传热学4-9章习题答案习题4-2一维稳态导热问题的控制方程:022=+∂∂S xTλ 依据本题给定条件,对节点2节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程: 节点1: 1001=T节点2: 1505105321-=+-T T T 节点3:75432=+-T T求解结果:852=T ,403=T对整个控制容积作能量平衡,有:02150)4020(15)(3=⨯+-⨯=∆+-=∆+x S T T h x S q f f B即:计算区域总体守恒要求满足习题4-5在4-2习题中,如果25.03)(10f T T h -⨯=,则各节点离散方程如下:节点1: 1001=T节点2: 1505105321-=+-T T T节点3:25.03325.032)20(4015])20(21[-⨯+=-⨯++-T T T T对于节点3中的相关项作局部线性化处理,然后迭代计算; 求解结果:818.822=T ,635.353=T (迭代精度为10-4)迭代计算的Matlab 程序如下: x=30; x1=20;while abs(x1-x)>0.0001a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b;x1=x;x=t(3,1);endtcal=t习题4-12的Matlab程序%代数方程形式A i T i=C i T i+1+B i T i-1+D imdim=10;%计算的节点数x=linspace(1,3,mdim);%生成A、C、B、T数据的基数;A=cos(x);%TDMA的主对角元素B=sin(x);%TDMA的下对角线元素C=cos(x)+exp(x); %TDMA的上对角线元素T=exp(x).*cos(x); %温度数据%由A、B、C构成TDMAcoematrix=eye(mdim,mdim);for n=1:mdimcoematrix(n,n)=A(1,n);if n>=2coematrix(n,n-1)=-1*B(1,n);endif n<mdimcoematrix(n,n+1)=-1*C(1,n);endend%计算D矢量D=(coematrix*T')';%由已知的A、B、C、D用TDMA方法求解T%消元P(1,1)=C(1,1)/A(1,1);Q(1,1)=D(1,1)/A(1,1);for n=2:mdimP(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1));Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end%回迭Tcal(1,mdim)=Q(1,mdim);for n=(mdim-1):-1:1Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);endTcom=[T;Tcal];%绘图比较给定T值和计算T值plot(Tcal,'r*')hold onplot(T)结果比较如下,由比较可知两者值非常切合(在小数点后8位之后才有区别):习题4-14充分发展区的温度控制方程如下:)(1rTr r r x T uc p ∂∂∂∂=∂∂λρ 对于三种无量纲定义w b w T T T T --=Θ、∞∞--=ΘT T T T w 、w w T T T T --=Θ∞进行分析如下1)由wb wT T T T --=Θ得:w w b T T T T +Θ-=)(由T 可得:x T x T x T T T x T w b w w b ∂∂Θ-+∂∂Θ=∂+Θ-∂=∂∂)1(])[(rT r T T r T T T r T w w b w w b ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂)1()(])[( 由b T 与r 无关、Θ与x 无关以及x T ∂∂、rT∂∂的表达式可知,除了w T 均匀的情况外,该无量纲温度定义在一般情况下是不能用分离变量法的; 2)由∞∞--=ΘT T T T w 得: ∞∞+Θ-=T T T T w )(由T 可得:xT x T T T x T w w ∂∂Θ=∂+Θ-∂=∂∂∞∞])[(rT r T T r T T T r T w w w ∂∂Θ+∂Θ∂-=∂+Θ-∂=∂∂∞∞∞)(])[( 由b T 与r 无关、Θ与x 无关以及x T ∂∂、rT∂∂的表达式可知,在常见的四种边界条件中除了轴向及周向均匀热流const q w =的情况外,有0=∂∂rT w,则该无量纲温度定义是可以用分离变量法的; 3)由wwT T T T --=Θ∞得: w w T T T T +Θ-=∞)(由T 可得:xT x T T T x T w w w ∂∂Θ-=∂+Θ-∂=∂∂∞)1(])[(T r T T r T T T r T w w w w ∂-+∂Θ∂-=∂+Θ-∂=∂∂∞∞1()(])[( 同2)分析可知,除了轴向及周向均匀热流const q w =温度定义是可以用分离变量法的;习题4-181)采用柱坐标分析,写出统一的稳态柱坐标形式动量方程:S r r r r r r x x w r v r r r u x +∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂)(1)(1)()(1)(1)(θφλθφλφλφρθφρφρ x 、r 和θ分别是圆柱坐标的3个坐标轴,u 、v 和w 分别是其对应的速度分量,其中x 是管内的流动方向;对于管内的层流充分发展有:0=v 、0=w ,0=∂∂xu; 并且x 方向的源项:x pS ∂∂-=r 方向的源项:r pS ∂∂-= θ方向的源项:θ∂∂-=pr S 1 由以上分析可得到圆柱坐标下的动量方程: x 方向: 0)(1)(1=∂∂-∂∂∂∂+∂∂∂∂x pu r r r u r r r θλθλ r 方向:0=∂∂r pθ方向:0=∂∂θp边界条件: R r =,0=u0=r ,0=∂∂r u ;对称线上,0=∂∂θu 不考虑液体的轴向导热,并简化分析可以得到充分发展的能量方程为:)(1)(1θλθλρ∂∂∂∂+∂∂∂∂=∂∂Tr r r T r r r x T uc p 边界条件: R r =,w q r T =∂∂λ;0=r ,0=∂∂rTπθ/0=,0=∂∂-θλT2)定义无量纲流速:dxdp R uU 2-=λ并定义无量纲半径:R r /=η;将无量纲流速和无量纲半径代入x 方向的动量方程得:0))1((1))1((122=∂∂-∂-∂∂∂+∂-∂∂∂xp U dx dp R R R R U dx dp R RR R θληλθηηλληηη 上式化简得:01)1(1)(1=+∂∂∂∂+∂∂∂∂θηθηηηηηU U 边界条件:1=η,0=U0=η,0=∂∂ηU ;对称线上,0=∂∂θU定义无量纲温度:λ/0R q T T b-=Θ其中,0q 是折算到管壁表面上的平均热流密度,即:Rq q wπ=0; 由无量纲温度定义可得:b T Rq T +Θ=λ将T 表达式和无量纲半径η代入能量方程得:)(1)(100θληλθηηλληηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂R q R R R R q R R R x T uc b p 化简得:)1(1)(10θηθηηηηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂x T u c q R b p (1)由热平衡条件关系可以得:mm m b m p b p p RU U q R u u R q A u u dx dT A u c x T u c x T uc 020221221)(===∂∂=∂∂ππρρρ 将上式代入式(1)可得:)1(1)(12θηθηηηηη∂Θ∂∂∂+∂Θ∂∂∂=m U U 边界条件:0=η,0=∂Θ∂η;1=η,R q q w πη10==∂Θ∂0=θ,0=∂Θ∂θ;πθ=,0=∂Θ∂θ单值条件: 由定义可知:0/0=-=ΘλR q T T b b b 且: ⎰⎰Θ=ΘAAb UdAUdA即得单值性条件:0=Θ⎰⎰AA UdAUdA 3)由阻力系数f 及Re 定义有:228)(21/Re ⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D D U D u u dx dp D f e m e m me νρ 且:m W b m W b m W R q T T D T T q Nu ,0,,0~2)/(2Θ=-=-=λλ5-21.一维稳态无源项的对流-扩散方程如下所示:xx u 22∂∂Γ=∂∂φφρ (取常物性)边界条件如下:L L x x φφφφ====,;,00上述方程的精确解如下:11)/(00--=--⋅PeL x Pe L e e φφφφ Γ=/uL Pe ρ 2.将L 分成20等份,所以有:∆=P Pe 201 2 3 4 5 6 ………… …………… 17 18 19 20 21 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) 中心差分中间节点: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ 20,2 =i2) 一阶迎风中间节点: ∆-∆++++=P P i i i 2)1(11φφφ 20,2 =i3) 混合格式当1=∆P 时,中间节点:2)5.01()5.01(11-∆+∆++-=i i i P P φφφ20,2 =i当10,5=∆P 时,中间节点: 1-=i i φφ 20,2 =i 4) QUICK 格式*12111)35(8122121⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆i i i i i i i P P P P P φφφφφφφ 2≠i *1111)336(8122121⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆i i i i i i P P P P P φφφφφφ 2=i数值计算结果与精确解的计算程序如下:%except for HS, any other scheme doesnt take Pe<0 into consideration %expression of exact solutiony=dsolve('a*b*Dy=c*D2y','y(0)=y0,y(L)=yL','x')y=subs(y,'L*a*b/c','t')y=simple(subs(y,'a*b/c*x','t*X'));ysim=simple(sym(strcat('(',char(y),'-y0)','/(yL-y0)')))y=sym(strcat('(',char(ysim),')*(yL-y0)','+y0'))% in the case of Pe=0y1=dsolve('D2y=0','y(0)=y0,y(L)=yL','x')y1=subs(y1,'-(y0-yL)/L*x','(-y0+yL)*X')%grid Pe numbertt=[1 5 10];%dimensionless lengthm=20;%mdim is the number of inner nodemdim=m-1;X=linspace(0,1,m+1);%initial value of variable during calculationy0=1;yL=2;%cal exact solutionfor n=1:size(tt,2)t=m*tt(1,n);if t==0yval1(n,:)=eval(y1);elseyval1(n,:)=eval(y);endend%extra treatment because max number in MATLAB is 10^308if max(isnan(yval1(:)))yval1=yval1';yval1=yval1(:);indexf=find(isnan(yval1));for n=1:size(indexf,1)if rem(indexf(n,1),size(X,2))==0yval1(indexf(n),1)=yL;elseyval1(indexf(n),1)=y0;endendyval1=reshape(yval1,size(X,2),size(yval1,1)/size(X,2));yval1=yval1';end%CD solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*tt(1,n))*y0;d(n,mdim)=0.5*(1-0.5*tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval2=TDMA(a,b,c,d,mdim);yval2=[repmat([1],size(tt,2),1),yval2,repmat([2],size(tt,2),1)]; Fig(1,X,yval1,yval2,tt);title('CD Vs. Exact Solution')% FUS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval3=TDMA(a,b,c,d,mdim);yval3=[repmat([1],size(tt,2),1),yval3,repmat([2],size(tt,2),1)]; Fig(2,X,yval1,yval3,tt);title('FUS Vs. Exact Solution')% HS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);if t>2b(n,:)=repmat([0],1,mdim);c(n,:)=repmat([1],1,mdim);d(n,1)=y0;elseif t<-2b(n,:)=repmat([1],1,mdim);c(n,:)=repmat([0],1,mdim);d(n,mdim)=yL;elseb(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*t)*y0;d(n,mdim)=0.5*(1-0.5*t)*yL;endendc(:,1)=0;b(:,mdim)=0;% numerical cal by using TDMA subfuctionyval4=TDMA(a,b,c,d,mdim);yval4=[repmat([1],size(tt,2),1),yval4,repmat([2],size(tt,2),1)]; Fig(3,X,yval1,yval4,tt);title('HS Vs. Exact Solution')%QUICK Solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval5=zeros(size(tt,2),mdim);yval5com=yval5+1;counter=1;%iterativewhile max(max(abs(yval5-yval5com)))>10^-10if counter==1yval5com=TDMA(a,b,c,d,mdim);endfor nn=1:size(tt,2)for nnn=1:mdimif nnn==1d(nn,nnn)=((6*yval5com(nn,nnn)-3*y0-3*yval5com(nn,nnn+1))*tt(1,nn))/(8*(2+tt(1, nn)))+((1+tt(1,nn))/(2+tt(1,nn))*y0);elseif nnn==2d(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-y0)*tt (1,nn))/(8*(2+tt(1,nn)));elseif nnn==mdimd(nn,nnn)=((5*yval5com(nn,nnn)-3*yL-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt (1,nn))/(8*(2+tt(1,nn)))+(1/(2+tt(1,nn))*yL);elsed(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-yval5 com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)));endendendyval5=TDMA(a,b,c,d,mdim);temp=yval5;yval5=yval5com;yval5com=temp;counter=counter+1;endyval5=yval5com;yval5=[repmat([1],size(tt,2),1),yval5,repmat([2],size(tt,2),1)];Fig(4,X,yval1,yval5,tt);title('QUICK Vs. Exact Solution')%-------------TDMA SubFunction------------------function y=TDMA(a,b,c,d,mdim)%form a b c d resolve yval2 by using TDMA%eliminationp(:,1)=b(:,1)./a(:,1);q(:,1)=d(:,1)./a(:,1);for n=2:mdimp(:,n)=b(:,n)./(a(:,n)-c(:,n).*p(:,n-1));q(:,n)=(d(:,n)+c(:,n).*q(:,n-1))./(a(:,n)-c(:,n).*p(:,n-1));end%iterativey(:,mdim)=q(:,mdim);for n=(mdim-1):-1:1y(:,n)=p(:,n).*y(:,n+1)+q(:,n);end%-------------ResultCom SubFunction------------------ function y=ResultCom (a,b,c)for n=1:max(size(c,2))y(2*n-1,:)=a(n,:);y(2*n,:)=b(n,:);end%-------------Fig SubFunction------------------ function y=Fig(n,a,b,c,d)figure(n);plot(a,b);hold onplot(a,c,'*');str='''legend(';for n=1:size(d,2)if n==size(d,2)str=strcat(str,'''''Pe=',num2str(d(1,n)),''''')''');elsestr=strcat(str,'''''Pe=',num2str(d(1,n)),''''',');endendeval(eval(str));精确解与数值解的对比图,其中边界条件给定10=φ,2=L φ。
数值传热学
数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。
数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。
求解所建立起来的代数方程已获得求解变量的近似值。
数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。
数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。
求解所建立起来的代数方程已获得求解变量的近似值。
数值传热学常用的数值方法1.有限差分法历史上最早采用的数值方法,对简单几何形状中的流动与换热问题最容易实施的数值方法。
其基本点是:将求解区域中用于坐标轴平行的一系列网格的交点所组成的点的集合来代替,在每个节点上,将控制方程中每一个导数用相应的差分表达式来代替,从而在每个节点上,形成一个代数方程,每个方程中包括了本节点及其附近一些节点上的未知值,求解这些代数方程就获得了所需的数值解。
2.有限容积法将所计算的区域划分成一系列控制容积划分为一系列控制容积,每个控制容积都有一个节点做代表。
通过将守恒型的控制方程对控制容积坐积分导出离散方程。
在导出过程中,需要对界面上的被求函数本身及其一阶导数的构成做出假定,是目前流动与换热问题的数值计算中应用最广的一种方法。
3.有限元法把计算区域划分为一系列原题(在二维情况下,元体多为三角形或四边形),由每个元体上去数个点作为节点,然后通过对控制方程做积分来获得离散方程。
(完整版)数值传热学陶文铨主编第二版习题答案
数值传热学4-9章习题答案习题4-2一维稳态导热问题的控制方程:022=+∂∂S xTλ依据本题给定条件,对节点2节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程:节点1:1001=T 节点2:1505105321-=+-T T T 节点3:75432=+-T T 求解结果:,852=T 403=T 对整个控制容积作能量平衡,有:2150)4020(15)(3=⨯+-⨯=∆+-=∆+x S T T h x S q f f B 即:计算区域总体守恒要求满足习题4-5在4-2习题中,如果,则各节点离散方程如下:25.03)(10f T T h -⨯=节点1:1001=T 节点2:1505105321-=+-T T T 节点3:25.03325.032)20(4015])20(21[-⨯+=-⨯++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算;求解结果:,(迭代精度为10-4)818.822=T 635.353=T 迭代计算的Matlab 程序如下:x=30;x1=20;while abs(x1-x)>0.0001a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b;x1=x;x=t(3,1);endtcal=t习题4-12的Matlab程序%代数方程形式A i T i=C i T i+1+B i T i-1+D imdim=10;%计算的节点数x=linspace(1,3,mdim);%生成A、C、B、T数据的基数;A=cos(x);%TDMA的主对角元素B=sin(x);%TDMA的下对角线元素C=cos(x)+exp(x); %TDMA的上对角线元素T=exp(x).*cos(x); %温度数据%由A、B、C构成TDMAcoematrix=eye(mdim,mdim);for n=1:mdimcoematrix(n,n)=A(1,n);if n>=2coematrix(n,n-1)=-1*B(1,n);endif n<mdimcoematrix(n,n+1)=-1*C(1,n);endend%计算D矢量D=(coematrix*T')';%由已知的A、B、C、D用TDMA方法求解T%消元P(1,1)=C(1,1)/A(1,1);Q(1,1)=D(1,1)/A(1,1);for n=2:mdimP(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1));Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end%回迭Tcal(1,mdim)=Q(1,mdim);for n=(mdim-1):-1:1Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n);endTcom=[T;Tcal];%绘图比较给定T值和计算T值plot(Tcal,'r*')hold onplot(T)n gin th a r e 结果比较如下,由比较可知两者值非常切合(在小数点后8位之后才有区别):习题4-14充分发展区的温度控制方程如下:)(1rTr r r x T uc p ∂∂∂∂=∂∂λρ对于三种无量纲定义、、进行分析如下w b w T T T T --=Θ∞∞--=ΘT T T T w ww T T T T --=Θ∞1)由得:wb wT T T T --=Θww b T T T T +Θ-=)(由可得:T x T x T x T T T x T w b w w b ∂∂Θ-+∂∂Θ=∂+Θ-∂=∂∂)1(])[(rT r T T r T T T r T w w b w w b ∂∂Θ-+∂Θ∂-=∂+Θ-∂=∂∂)1()(])[(由与无关、与无关以及、的表达式可知,除了均匀的情况外,该无量b T r Θx x T ∂∂rT∂∂w T 纲温度定义在一般情况下是不能用分离变量法的;2)由得:∞∞--=ΘT T T T w ∞∞+Θ-=T T T T w )(由可得:T xT x T T T x T w w ∂∂Θ=∂+Θ-∂=∂∂∞∞])[(rT r T T r T T T r T w w w ∂∂Θ+∂Θ∂-=∂+Θ-∂=∂∂∞∞∞)(])[(由与无关、与无关以及、的表达式可知,在常见的四种边界条件中除了b T r Θx x T ∂∂rT ∂∂轴向及周向均匀热流的情况外,有,则该无量纲温度定义是可以用分const q w =0=∂∂rT w离变量法的;3)由得:wwT T T T --=Θ∞ww T T T T +Θ-=∞)(由可得:T xT x T T T x T w w w ∂∂Θ-=∂+Θ-∂=∂∂∞)1(])[(r T T r T T T r T w w w -+∂Θ∂-=∂+Θ-∂=∂∂∞∞1()(])[(同2)分析可知,除了轴向及周向均匀热流const q w =温度定义是可以用分离变量法的;习题4-181)采用柱坐标分析,写出统一的稳态柱坐标形式动量方程:S r r r r r r x x w r v r r r u x +∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂(1)(1)()(1)(1)(θφλθφλφλφρθφρφρ、和分别是圆柱坐标的3个坐标轴,、和分别是其对应的速度分量,其中x r θu v w 是管内的流动方向;x 对于管内的层流充分发展有:、,;0=v 0=w 0=∂∂xu并且方向的源项:x x pS ∂∂-=方向的源项:r r pS ∂∂-=方向的源项:θθ∂∂-=pr S 1由以上分析可得到圆柱坐标下的动量方程:方向:x 0)(1)(1=∂∂-∂∂∂∂+∂∂∂∂x pu r r r u r r r θλθλ方向:r 0=∂∂r p 方向:θ0=∂∂θp 边界条件:,R r =0=u ,;对称线上,0=r 0=∂∂r u 0=∂∂θu 不考虑液体的轴向导热,并简化分析可以得到充分发展的能量方程为:)(1(1θλθλρ∂∂∂∂+∂∂∂∂=∂∂Tr r r T r r r x T uc p 边界条件:,;,R r =w q r T =∂∂λ0=r 0=∂∂rT,πθ/0=0=∂∂-θλT2)定义无量纲流速:dxdp R uU 2-=λ并定义无量纲半径:;将无量纲流速和无量纲半径代入方向的动量方程得:R r /=ηx 0))1((1)1((122=∂∂-∂-∂∂∂+∂-∂∂∂xp U dx dp R R R R U dx dp R RR R θληλθηηλληηη上式化简得:011(1(1=+∂∂∂∂+∂∂∂∂θηθηηηηηU U 边界条件:,1=η0=U ,;对称线上,0=η0=∂∂ηU 0=∂∂θU定义无量纲温度:λ/0R q T T b-=Θ其中,是折算到管壁表面上的平均热流密度,即:;0q Rq q wπ=0由无量纲温度定义可得:bT Rq T +Θ=λ0将表达式和无量纲半径代入能量方程得:T η(1)(100θληλθηηλληηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂R q R R R R q R R R x T uc b p 化简得:(1))1(1)(10θηθηηηηηρ∂Θ∂∂∂+∂Θ∂∂∂=∂∂x T u c q R b p 由热平衡条件关系可以得:mm m b m p b p p RU U q R u u R q A u u dx dT A u c x T u c x T uc 020221221)(===∂∂=∂∂ππρρρ将上式代入式(1)可得:)1(1)(12θηθηηηηη∂Θ∂∂∂+∂Θ∂∂∂=m U U 边界条件:,;,0=η0=∂Θ∂η1=ηR q q w πη10==∂Θ∂,;,0=θ0=∂Θ∂θπθ=0=∂Θ∂θ单值条件:由定义可知: 且: 0/0=-=ΘλR q T T b b b ⎰⎰Θ=ΘAAb UdAUdA 即得单值性条件:=Θ⎰⎰AA UdAUdA 3)由阻力系数及定义有:f Re 228)(21/Re ⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=D D U D u u dx dp D f e m e m me νρ且:m W b m W b m W R q T T D T T q Nu ,0,,0~2)/(2Θ=-=-=λλ5-21.一维稳态无源项的对流-扩散方程如下所示: (取常物性)xx u 22∂∂Γ=∂∂φφρ边界条件如下:LL x x φφφφ====,;,00上述方程的精确解如下: 11)/(00--=--⋅Pe L x Pe L e e φφφφΓ=/uL Pe ρ2.将分成20等份,所以有:L ∆=P Pe 20 1 2 3 4 5 6……………………… 17 18 19 20 21对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)中心差分中间节点: 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ20,2 =i 2)一阶迎风中间节点: ∆-∆++++=P P i i i 2)1(11φφφ20,2 =i 3)混合格式当时,中间节点: 1=∆P 2)5.01()5.01(11-∆+∆++-=i i i P P φφφ 20,2 =i 当时,中间节点: 10,5=∆P 1-=i i φφ20,2 =i 4)QUICK 格式*12111)35(8122121⎥⎦⎤⎢⎣⎡---++++++=+--∆∆-∆∆+∆i i i i i i i P P P P P φφφφφφφ2≠i*1111)336(8122121⎥⎦⎤⎢⎣⎡--++++++=+-∆∆-∆∆+∆i i i i i i P P P P P φφφφφφ2=i 数值计算结果与精确解的计算程序如下:%except for HS, any other scheme doesnt take Pe<0 into consideration %expression of exact solutiony=dsolve('a*b*Dy=c*D2y','y(0)=y0,y(L)=yL','x')y=subs(y,'L*a*b/c','t')y=simple(subs(y,'a*b/c*x','t*X'));ysim=simple(sym(strcat('(',char(y),'-y0)','/(yL-y0)')))y=sym(strcat('(',char(ysim),')*(yL-y0)','+y0'))% in the case of Pe=0y1=dsolve('D2y=0','y(0)=y0,y(L)=yL','x')y1=subs(y1,'-(y0-yL)/L*x','(-y0+yL)*X')%grid Pe number tt=[1 5 10];%dimensionless length m=20;%mdim is the number of inner node mdim=m-1;X=linspace(0,1,m+1);%initial value of variable during calculation y0=1;yL=2;%cal exact solution for n=1:size(tt,2) t=m*tt(1,n); if t==0 yval1(n,:)=eval(y1); else yval1(n,:)=eval(y); end end%extra treatment because max number in MATLAB is 10^308if max(isnan(yval1(:))) yval1=yval1'; yval1=yval1(:);indexf=find(isnan(yval1)); for n=1:size(indexf,1) if rem(indexf(n,1),size(X,2))==0 yval1(indexf(n),1)=yL; else yval1(indexf(n),1)=y0; endendyval1=reshape(yval1,size(X,2),size(yval1,1)/size(X,2));yval1=yval1';end%CD solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*tt(1,n))*y0;d(n,mdim)=0.5*(1-0.5*tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval2=TDMA(a,b,c,d,mdim);yval2=[repmat([1],size(tt,2),1),yval2,repmat([2],size(tt,2),1)]; Fig(1,X,yval1,yval2,tt);title('CD Vs. Exact Solution')% FUS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval3=TDMA(a,b,c,d,mdim);yval3=[repmat([1],size(tt,2),1),yval3,repmat([2],size(tt,2),1)]; Fig(2,X,yval1,yval3,tt);title('FUS Vs. Exact Solution')% HS solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);if t>2b(n,:)=repmat([0],1,mdim);c(n,:)=repmat([1],1,mdim);d(n,1)=y0;elseif t<-2b(n,:)=repmat([1],1,mdim);c(n,:)=repmat([0],1,mdim);d(n,mdim)=yL;elseb(n,:)=repmat([0.5*(1-0.5*t)],1,mdim);c(n,:)=repmat([0.5*(1+0.5*t)],1,mdim);d(n,1)=0.5*(1+0.5*t)*y0;d(n,mdim)=0.5*(1-0.5*t)*yL;endendc(:,1)=0;b(:,mdim)=0;% numerical cal by using TDMA subfuctionyval4=TDMA(a,b,c,d,mdim);yval4=[repmat([1],size(tt,2),1),yval4,repmat([2],size(tt,2),1)]; Fig(3,X,yval1,yval4,tt);title('HS Vs. Exact Solution')%QUICK Solutiond=zeros(size(tt,2),mdim);a=repmat([1],size(tt,2),mdim);for n=1:size(tt,2)t=tt(1,n);b(n,:)=repmat([1/(2+t)],1,mdim);c(n,:)=repmat([(1+t)/(2+t)],1,mdim);d(n,1)=(1+tt(1,n))/(2+tt(1,n))*y0;d(n,mdim)=1/(2+tt(1,n))*yL;endc(:,1)=0;b(:,mdim)=0;%numerical cal by using TDMA subfuctionyval5=zeros(size(tt,2),mdim);yval5com=yval5+1;counter=1;%iterativewhile max(max(abs(yval5-yval5com)))>10^-10if counter==1yval5com=TDMA(a,b,c,d,mdim);endfor nn=1:size(tt,2)for nnn=1:mdimif nnn==1d(nn,nnn)=((6*yval5com(nn,nnn)-3*y0-3*yval5com(nn,nnn+1))*tt(1,nn))/(8*(2+tt(1,nn)))+((1+tt(1,nn))/(2+tt(1,nn))*y0);elseif nnn==2d(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-y0)*tt(1,nn))/(8*(2+tt(1,nn)));elseif nnn==mdimd(nn,nnn)=((5*yval5com(nn,nnn)-3*yL-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)))+(1/(2+tt(1,nn))*yL);elsed(nn,nnn)=((5*yval5com(nn,nnn)-3*yval5com(nn,nnn+1)-yval5com(nn,nnn-1)-yval5com(nn,nnn-2))*tt(1,nn))/(8*(2+tt(1,nn)));endendendyval5=TDMA(a,b,c,d,mdim);temp=yval5;yval5=yval5com;yval5com=temp;counter=counter+1;endyval5=yval5com;yval5=[repmat([1],size(tt,2),1),yval5,repmat([2],size(tt,2),1)];Fig(4,X,yval1,yval5,tt);title('QUICK Vs. Exact Solution')%-------------TDMA SubFunction------------------function y=TDMA(a,b,c,d,mdim)%form a b c d resolve yval2 by using TDMA%eliminationp(:,1)=b(:,1)./a(:,1);q(:,1)=d(:,1)./a(:,1);for n=2:mdimp(:,n)=b(:,n)./(a(:,n)-c(:,n).*p(:,n-1));q(:,n)=(d(:,n)+c(:,n).*q(:,n-1))./(a(:,n)-c(:,n).*p(:,n-1));end%iterativey(:,mdim)=q(:,mdim);for n=(mdim-1):-1:1y(:,n)=p(:,n).*y(:,n+1)+q(:,n);end%-------------ResultCom SubFunction------------------function y=ResultCom (a,b,c)for n=1:max(size(c,2))y(2*n-1,:)=a(n,:);y(2*n,:)=b(n,:);end%-------------Fig SubFunction------------------function y=Fig(n,a,b,c,d)figure(n);plot(a,b);hold onplot(a,c,'*');str='''legend(';for n=1:size(d,2)if n==size(d,2)str=strcat(str,'''''Pe=',num2str(d(1,n)),''''')''');elsestr=strcat(str,'''''Pe=',num2str(d(1,n)),''''',');endendeval(eval(str));a n d A l l t h i n g s i n t h ei r b e i n g a r e g 13精确解与数值解的对比图,其中边界条件给定,。
传热学课件第四章 导热问题数值解法基础
i , j
t x
t i 1 , j t i , j x
0 x
2.一阶导级的向后差分表达式:舍去<2>式△x2后各项,则有:
i , j
t x
t i , j t i 1 , j x
0 x
第一节 建立离散方程的方法
二、泰勒级数展开法(有限差分法)
k 2 k 1
对 流 h t f t1 A
k k
显式
△x
C.内能增量△u:
u c
x 2
A t1
k
k 1
t1 /
k
△x/2
k hx
据热平衡A+B=C并整理得:
k f
t 2 t1
k
t
t1
k
1 2
c
x
2
t1
k 1
LP
△y
t i 1 , j t i , j x
t i , j 1 t i , j y
y 2
x 2
1
BP
1
x 2
y 2
EP h t f t i , j
△x
1
FP h t f t i , j
t x
t
2
2
x i , j 2!
2
t x
3
x i , j 3!
3
3.一阶导级的中心差分表达式:<1>-<2>式且忽略后项,则有:
i , j
t x
数值传热学陶文铨第四章作业
4-1解:采用区域离散方法A 时;网格划分如右图。
内点采用中心差分123278.87769.9T T T ===22d T T=0dx - 有 i+1i 122+T 0i i T T T x ---=∆将2点,3点带入321222+T 0T T T x --=∆ 即321209T T -+= 432322+T 0T T T x --=∆4321322+T 0T T T x --=∆ 即4321209T T T -+-= 边界点4(1)一阶截差 由x=11dT dx =,得 4313T T -= (2)二阶截差 11B M M q x x xT T S δδλλ-=++V所以 434111. 1.36311T T T =++即 43122293T T -= 采用区域离散方法B22d T T=0dx - 由控制容积法 0w edT dT T x dT dT ⎛⎫⎛⎫--∆= ⎪ ⎪⎝⎭⎝⎭所以代入2点4点有322121011336T T T T T ----= 即 239028T T -=544431011363T T T T T ----= 即3459902828T T T -+=对3点采用中心差分有432322+T 013T T T --=⎛⎫⎪⎝⎭即2349901919T T T -+= 对于点5 由x=11dT dx =,得 5416T T -= (1)精确解求左端点的热流密度 由 ()21x x eT e e e -=-+ 所以有 ()2220.64806911x xx x dT e e q e e dxe e λ-====-+=-=++ (2)由A 的一阶截差公式210.247730.743113x T T dT q dxλ=-=-==⨯= (3)由B 的一阶截差公式0.216400.649213x dTq dxλ=-=-== (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B BT T dT dx x δ-⎛⎫==⨯=⎪⎝⎭ 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3解:将平板沿厚度方向3等分,如图由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为22d T+S=0dxλx=0, T 0=75℃ x=0.1 dT =h(T-T )dxf λ- 1点 ,2点采用中心差分有21022+T 0T T S x λ-+=∆ (1) 32122+T 0T T S x λ-+=∆ (2)右端点采用一阶截差的离散231f hx T T T x h λλ⎡⎤+⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭V (3)右端点采用二阶截差的离散232.1f x S hx T x T T x h λλλ⎡⎤⎢⎥++⎢⎥⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭V V V 代入(1)(2)(3)得1223132280.62 5.67625T T T T T T T -=--=-= 解得123278.87769.9T T T ===代入(4)得12380.6380.6675.1T T T === 3221T 18125T -=解得 12380.6380.6675.1T T T ===精确解 22d T+S=0dxλ (4)x=0, T 0=75℃ (5) x=0.1 dT =h(T-T )dxf λ- (6) 代入数据积分的2250025075T x x =-++ 将 x 1=10.13⨯,x 2=20.13⨯, x 3=0.1 T 1=80.56 T 2=80.56 T 3=75.1通过比较可得右端点采用二阶截差的离散更接近真实值。
数值传热学第四章课件陶文铨
主讲陶文铨西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2010年9月27日, 西安数值传热学第四章扩散方程的数值解及其应用(1)4.1 一维导热问题4.1.1一维稳态导热的通用控制方程4.1.3界面导热系数的确定方法4.1.4 一维非稳态导热控制方程的离散化4.1.2通用控制方程控制容积积分法的离散4.1.5 数学上的稳定未必导致物理上有意义的解一维稳态导热问题不同坐标系通用控制方程0 P P()0P x x Δ=i调和平均已经广泛为国内外学术界所接受。
≤1数学上的稳定未必导致物理上有意义的解无内热源一维非稳态导热,初场均匀,两表面0]T +代入下式:P(全隐格式)才能满足。
结论:数学上的稳定未必导致物理上有意义的解;推=xΔa TP P极坐标均可以表示成为:2.解决通用化的一种方案为写出适合于三种坐标系中系数的通用表达式,特引进两个辅助变量:(1)x –方向标尺因子,scaling factor ,x-方向的距离表示成为sx x δi 。
对直角、圆柱坐标规定1;sx ≡(2)y-方向引入一个名义半径,R 。
对直角坐标R =1,据此,东西导热距离为:sx xδi 东西导热面积为:R /y sxΔ对极坐标取;sx r =对圆柱与极坐标R =r三种二维正交坐标系中离散方程的统一表达式按这种方式编制程序时,只要设置一个变量MODE,4.3 源项与边界条件的处理4.3.1非常数源项的线性化处理1. 线性化方法4.3.2第二、三类边界条件使方程组封闭的处理2. 线性化方法讨论3. 线性化方法应用实例1. 补充以边界节点代数方程的方法2. 附加源项法S= P2. 线性化方法讨论(1)对与被求解变量有关的非常数源项,线性化比假定为常数更合理:用*()PS f T =来表示P 的源项比落后一个迭代步;P C P T S S S =+(2)任何复杂的函数总可以用线性函数来近似逼近;线性又是建立线性代数方程所必须的;(3)是为保证代数方程迭代求解收敛所必须;0P S ≤P P nb nb a a b φφ=+∑P nb a a ≥∑P nb P a a S V =−Δ∑代数方程迭代求解收敛的充分条件是,因为可以确保代数方程迭代求解收敛。
传热学(4)-数值解法
(1)有限差分法
(2)有限元方法
(3)边界元方法
(1)有限差分法
基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点 称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散 变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和 来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分 方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值 方法便可以从离散解得到定解问题在整个区域上的近似解。
第四章 导热问题数值解基础
1 、重点内容:
① 掌握导热问题数值解法的基本思路;
② 利用热平衡法和泰勒级数展开法建立
节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两 种差分格式及其稳定性。
求解导热问题实际上就是对导热微分方程在 定解条件下的积分求解,从而获得分析解。随着 计算机技术的迅速发展,对物理问题进行离散求 解的数值方法发展得十分迅速,这些数值解法主 要有以下几种:
用节点(m,n)的温度tm,n来表示节点(m-1,n)的
温度tm-1,n
tm 1,n t x 2 2t tm ,n x x m ,n 2 x 2 x3 3t 3 6 x m,n x 4 4t 4 24 x m,n
将上两式相加可得
tm 1,n tm 1,n
(3)建立节点物理量的代数方程(离散方程) 节点上物理量的代数方程称离散方程。其 过程如下: • 首先划分各节点的类型; • 其次,建立节点离散方程; • 最后,代数方程组的形成。 对节点 (m,n) 的代数方程,当 △x=△y 时, 有:
tm , n 1 (tm 1,n tm 1,n tm ,n 1 tm ,n 1) 4
传热学第4章
h x
上式写成显函数的形式
ti1 0
2Fo
t1i Bitfi
1 2BiFo 2Fo
t0i
边界节点温度方程的显式差分格式
19
ti1 0
2Fo
t1i Bitfi
1 2BiFo 2Fo
t0i
同内部节点温度方程的显式差分格式的道理一样,上式 必须满足显式差分格式的稳定性条件,即
要保证节点温度方程求解的 稳定性。
表tni 示 空 间 节 点 n 在 i 时 刻
(简称 i 时刻)的节点温度。
2) 节点温度差分方程的建立
运用热平衡法可以建立非稳态导热物体内部节点和 边界节点温度差分方程。
14
(1)内部节点温度差分方程
内部节点n所代表的控制容积在i 时刻的热平衡: dU
如果节点n的温度对时间的变化率
采用向前差分,热平衡方程式可写成
A
ti n1
tni
A
ti n1
tni
Axc
t i1 n
tni
x
x
t i1 n
tni
a
ti n1
ti n1
2tni
x2
ti1 n
tni
a
x2
ti n1
ti n1
t1 1
a 1 11
b1 a12t20 L
a1
j
t
0
j
L
a1nt
0
n
t1 1
传热学课件:第四章 数值解法
(2)高斯—赛德尔迭代法
①选初值;
②一次次的直接计算t1,t2,…,tn ,注意计算tn 时, tn前面的温度全部用新值代替。如知道t1后, 求t2时,用t1代替原设的初值。
例题:有一正方形截面,边界长为1m,边 界上的温度已知,求t1,t2,t3,t4。
解(1)列节点方程式
100℃
500℃
12
3 4 100℃
100℃
迭代法
n
t1
t2
t3
t4
0
300
300
200
200
1
275 268.75 168.75 159.38
2 259.38 254.69 154.69 152.35
3 252.35 251.26 151.18 150.61
4 250.61 250.31 150.31 150.15
由(a)可得:
cw 1 说明热源与管子中心不重合。
由(a)、(b)可得:
将(c)代入(b)可得:
从而只能选正号,所以有: 等温线为一圆。
2 具有偏心空腔的圆柱体
由于是稳定导热,从而流过每一等温面的热流量是 相同的
对于等温面 1
y0
h2 h1
ε
对于等温面 2
热阻: 但h1和h2是未知的
2. 间接法(迭代法)经过有限次的迭代,求出近似解, 对于计算机来说,存储量较少。
松弛法(余数调节法)
高斯—赛德尔迭代法
(1)松弛法 ①设初值; ②求R1,R2,…,Rn,找Rmax;(余数) ③如设R4为最大,改变t4,使R4 ≈0,t4=t4+R4/4: ④重新计算有关节点的余数;
⑤重复步骤③ ④ ,直到全部余数为零。
传热学-第4章-热传导问题的数值解珐
若步长∆x=∆y,有: , 若步长
t m ,n = 1 ( 2 t m −1 , n + t m , n + 1 + t m , n −1 + 4 ∆2 x Φ m , n
λ
+
2 ∆ xq w
λ
)
2. 外部角点 控制容积的热平衡为: 控制容积的热平衡为:
∆y tm−1,n − tm,n ∆x tm,n−1 − tm,n ∆x∆y ∆x + ∆y λ +λ + Φ m, n + qw = 0 ∆x 2 2 ∆y 4 2
4. 边界热流密度的三种情况
q (1)绝热边界: w = 0 )绝热边界:
(2) qw 值不为零:代入给定的 qw 值。 ) 值不为零: (3)对流边界:qw = h(t f )对流边界: 平直边界节点: 平直边界节点:
2( h∆x
− t m n = 2 t m − 1 , n + t m , n + 1 + t m , n −1 +
第一类边界条件 — 边界温度已知 m-1,n 第二类边界条件 需建立边界节点温度 ∆y 第三类边界条件 的差分方程 n 1. 位于平直边界上的节点
λ∆y
tm−1,n − tm,n ∆x +λ
m m,n+1
qw
m,n m,n-1
∆x
∆x tm,n+1 − tm,n ∆x tm,n−1 − tm,n ∆x∆y +λ + Φm,n + ∆yqw = 0 2 ∆y 2 ∆y 2
若步长∆x=∆y,有: , 若步长
t m ,n = 1 ( t m −1 , n + t m , n −1 + 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1, C1 0,
B1 D1 T1 T2 A1 A1
AT 1 1 B1T2 D1
D1 B1 P ; Q1 1 A1 A1
Bi Pi ; Ai Ci Pi 1
(2) 回代过程-从M1点开始,利用式(b) 逐一得出Ti。
TM 1 PM 1TM 11 QM 1 ,
4/60
2. Thomas算法的一般形式 将上式改写为: (a) AT i i BiTi 1 CiTi 1 Di , i 1, 2,.....M 1 端点条件:i=1, Ci=0; i=M1, Bi=0 (1) 消元过程-把每行的未知数由三个减少为二个。 设消元后方程形式为:
Ti 1 Pi 1Ti Qi 1 (b)
端点条件:i=M1, Bi=0
PM 1 0
8/60
TM 1 Q1
Ti 1 Pi 1Ti Qi 1
逐一得出:TM1-1,….T2,T1 。
3. 第一类边界条件下Thomas算法的实施 第一类边界条件下,求解区域为i=2,….M1-1=M2。 将消元公式用于i=1, 注意T1是给定的:
变量一维存储顺序与矩阵系数的关系
W
P
E
S
11/60
(1) 五对角阵算法(Penta-diagonal ,PDMA) (2) 交替方向隐式方法 ( Alternative-direction Implicit, ADI) 2. 3-D Peaceman-Rachford方法 第一个 t / 3 X方向为隐式, y,z方向为显式式; 第二,三个 t / 3 分别在 2-D交替方向隐式 y,z方向实施隐式;
T T T b T b ( )b Tb T Tb T
从物理意义上,平均温度为:
1.0
b
R
0
2 rudr
R um
2
r u r 2 d ( ) =1 0 R u R m
1
数值传热学
第四章 扩散方程的数值解及其应用(2)
主讲 陶文铨
西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER 2011年10月10日, 西安
1/60
第 4 章教学目录
4.1 一维导热问题 4.2 多维非稳态导热的全隐格式 4.3 源项与边界条件的处理 4.4 求解代数方程的TDMA及ADI 方法 4.5 管道内充分发展对流换热概说 4.6 圆管内充分发展的对流换热 4.7长方形截面通道内充分发展的对流换热
方程类型
?
31/60
(2)边界条件
T r 0, 0 (对称条件); r T r R, he (T T ) (对流型外边界条件); r
因管壁热阻略而不计(5),故取外壁半径=R; 注意等式中的负号。
32/60
4.6.2. 控制方程的无量纲化 上述抛物型方程仍然是偏微分方程,难以求解; 利用充分发展条件引入无量纲温度,可化为常微分方程。
T
n 1 i, j ,k
v
n i, j ,k
t / 3
用von Neumann分析方法可以证明稳定性条件为:
1 1 1 at ( 2 2 2 ) 1.5 x y z
表面上看,相对于一维问题允许时间步长放大了3倍; 实际上并不! 对二维问题P-R方法绝对稳定。 3. 这种求解非稳态全隐格式的交替方向隐式(ADIimplicit)与求解多维稳态问题的交替方向迭代(ADIiteration)方法极为相似。
Laminar flow forced convection in ducts. Advances in heat transfer. Supplement 1, New York: Academic Press, 1978
19/60
4.5.3 部分算例汇总
20/60
21/60
22/60
23/60
d 0; 0, d
(b)
d ) 1 Bi w d
(c)
35/60
问:方程(a)-(c) 能否得出温度场的唯一解?
4.6.3. 单值性条件分析 由于方程与边界条件的齐次性(homogeneous): 微分方程的每一项都含有关于被求变量或其导数的 一次方的部分:
1 d d 1 u ( ) /( ) d d 2 um
a ( x2ui , j , k y2vi , j , k z2ui , j , k )
a( x2 vi , j , k y2 vin, j , k z2Ti ,nj,1 k)
13/60
vi , j , k u 第二个 子时层: t / 3
第三个 子时层:
2/60
4.4 求解代数方程的TDMA及ADI 方法
4.4.1 求解一维导热问题代数方程的三对角阵算法
1.一维导热问题代数方程通用形式 2.Thomas算法 3.第一类边界条件的处理
4.4.2 求解多维非稳态导热全隐格式的ADI方法
1.求解方法概述 2. Peaceman-Rachford的ADI迭代
3/60
4.4 求解代数方程的TDMA及ADI 方法 4.4.1 求解一维导热问题代数方程的三对角阵算法 1. 一维导热问题代数方程通用形式 稳态及非稳态隐式 (f>0)都要联立求解一 组代数方程: 每行三个未知数
aPTP aETE aW TW b
其系数矩阵是一三对角阵 (Tri-diagonal matrix )。
12/60
将 t 三等分:
设 ui,j,k, vi,j,k为两个中间子时层上的值;
T
2 n x i , j ,k
表示n时层x方向二阶导数的中心差分;
第一个 子时层:
ui , j ,k Ti ,nj ,k t / 3
n i, j,k
a ( x2ui , j ,k y2Ti ,nj ,k z2Ti ,nj ,k )
17/60
复杂的充分发展对流换热举例
18/60
4.5.2 能实现充分发展对流换热的边界条件 1. 轴向、周向均为均匀壁温:Tw=Const 2. 轴向均匀热流密度、周向均匀壁温: qx=Const, Tw=f(x) 3.轴向、周向均为均匀热流密度:q=Const 4.轴向热流密度呈指数规律变化:qx=C1eC2x R K Shah与A L London的专著有详细讨论。
T1 PT 1 2 Q1
P 1 0;
Q1 T1
因TM1已知,消元从M2开始:
TM 2 PM 2TM 1 Q2
注意:采用附加源项法来处理第二类,第三类边 界条件时,均将第二类,第三类边界条件问题视为第 一类边界条件问题,数学上的处理与此相同。
9/60
4.4 求解代数方程的TDMA及ADI 方法
T T 1 T T c p (u v ) ( r ) ( ) ST x r r r r x x
速度已经 充分发展 (6)
不计轴 向导热 (2)
不计黏 性耗散 (3)
T 1 T ( r ) c pu x r r r
二维抛物型方程!
29/60
1.简化假设 (1)常物性; (2)不计流体中的轴向导热; (3)不计流体中的黏性耗散; (4)不计自然对流; (5)管壁热阻略而不计; (6) 流体速度已经充分发展:
u r 2 2[1 ( ) ]; um R
v0
30/60
2.数学描写 (1)温度场方程 不计自然对流(4),温度场轴对称,圆柱坐标系:
Bi Di Ci Qi 1 )Ti 1 Ti ( Ai Ci Pi 1 Ai Ci Pi 1
对照 Ti 1
Pi 1Ti
Qi 1
6/60
Bi ; Pi Ai Ci Pi 1
Di Ci Qi 1 Qi ; Ai Ci Pi 1
上式特点:数学上是递归的(recurrent)-首先 必须知道P1,Q1。 为此,试重新审视式(a) (a) AT i i BiTi 1 CiTi 1 Di , i 1, 2,.....M 1 端点条件:i=1, Ci=0; i=M1, Bi=0 如果将(a)式用于i=1,则立即可得出i=1 时两点上 未知量的关系式,将它与(b) 相比就能得出P1,Q1。
16/60
平直通道中的充分发 展对流换热属于这一类。
Tw,m T ( )0 x Tw,m Tb
2. 复杂的充分发展对流换热 在垂直于主流方向的截面上仍然存在速度分量, 无量纲温度与主流方向坐标有关,常呈现周期性变化, 数学上必须求解完全的Navier-Stokes 方程。 本课程第十一章以及程序例题中讨论。
1 d d 1 u ( ) ( ) 2 um d d
边界条件也是齐次的
d 0, 0; d源自d ) 1 Bi w d
36/60
上述数学描述的解存在可任意乘一个常数的不确定性。
从已知条件的角度,在方程中的特征值 还有待于 确定,才能进行求解。 为获得唯一解,并确定特征值需要一个附加条件。 试从能量平衡角度来审视。
24/60
25/60
26/60
27/60
4.6 圆管内充分发展的对流换热 4.6.1. 物理与数学模型 4.6.2. 控制方程的无量纲化 4.6.3. 单值性条件分析 4.6.4. 数值求解方法 4.6.5. 数值求解结果的处理 4.6.6. 求解结果的分析与讨论
28/60
4.6圆管内充分发展的对流换热 4.6.1. 物理与数学模型 温度为Tf 的流体进入一长圆管,作层流流动。管 外受到温度为 T 的流体的冷却(加热),试确定换热 进入充分发展阶段时的Nu 数。
0
仅与X有关
仅与有关